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In the past decade, a number of approaches have been developed to fix the failure of (semi)local
density-functional theory (DFT) in describing intermolecular interactions. The performance of sev-
eral such approaches with respect to highly accurate benchmarks are compared here on a set of
separation-dependent interaction energies for ten dimers. Since the benchmarks were unknown be-
fore the DFT-based results were collected, this comparison constitutes a blind test of these methods.

I. INTRODUCTION

Computer modeling of materials has become a promi-
nent means to reduce the cost associated with notional
material synthesis, testing, and application. With many
significant developments in electronic structure theory
and computer science, as well as due to rapid increases in
available computer power, material modeling has reached
a level of maturity that yields reliable predictions and, in
fact, the computed observables for a variety of properties
often rival experiment in accuracy. There is a wide range
of computational methods available. The most accurate
methods use wave-functions (WF) and utilize many-body
perturbation theory (MBPT) or coupled cluster (CC)

expansions. The price for this accuracy is steep scal-
ing of the cost with system size which, even with access
to powerful supercomputers and highly scalable software
packages, renders these methods inapplicable to many
problems of interest. Another group of computational
approaches is based on density-functional theory (DFT).
These approaches utilize only electron densities and oc-
cupied orbitals and therefore scale much better than WF-
based methods. In fact, DFT is the only computation-
ally viable option for first-principles predictions involv-
ing molecules beyond the reach of WF-based methods,
as well as for condensed phase systems. DFT has been
applied to virtually all molecular systems as well as to
all types of condensed phases: from metals to molecu-
lar crystals. However, DFT has some reliability prob-



2

lems. Whereas it is in principle an exact theory [1], the
exact DFT functional is unknown and one has to use
one of the many approximate variants of DFT. Although
such variants have been successfully applied to a vari-
ety of problems (many variants are specifically tailored
for given types of problems), starting from mid 1980s
cases were reported of even the best DFT methods of
that time failing when applied to intermolecular inter-
actions. These interactions, called also van der Waals
(vdW) or noncovalent interactions, are at least one order
of magnitude weaker than the chemical bonds and can be
decomposed into contributions of different physical ori-
gins: electrostatic, induction, dispersion, and exchange.
These components are defined in symmetry-adapted per-
turbation theory (SAPT) [2, 3]. While DFT was able to
describe reasonably well interactions dominated by elec-
trostatics and induction components, it was failing badly
in calculations of the potential energy curves for pairs of
rare-gas atoms, dominated by dispersion energies [4–6].
The dispersion energies originate from mutual correla-
tions of electron motions between monomers. For a pair
of rare-gas atoms at separations a couple times larger
than the vdW minimum distance, the dispersion energy
constitutes nearly 100% of the interaction energy, so it
was clear that the failure is related to this component.
One should note that while the dimers of rare-gas atoms
are an extreme example of the importance of dispersion
interactions, these interactions are significant for all other
intermolecular complexes at all separations. As pointed
out by Kristyan and Pulay [5] in 1994, one reason for
the failure is the local (or semilocal) character of the ma-
jority of approximate DFT functionals. As a result, the
“exchange-correlation holes” modeled by such function-
als have a range on the order of about 1 Å, whereas dis-
persion interactions involve correlations of electron mo-
tion at distances of several Ångstrøms which is typical
of separations between monomers. Another type of in-
teractions where DFT was found to have problems are
those with large charge-transfer effects in the induction
energies [7].

The failures of DFT for intermolecular interactions
have spawned intense research activity directed toward
fixing this problem. The initial attempts were based
on hopes that one of the variants of DFT will actually
work for such cases. However, methods performing well
on a few dimers were later found to perform poorly on
others. Searches for the “best” DFT method for inter-
molecular interactions were later systematized to utilize
sets of benchmarks including dozens of dimers represent-
ing various classes of intermolecular interactions. These
tests have shown that such a DFT method does not exist
within the set of approaches published up to that time.
For example, Zhao and Truhlar [8] examined 45 different
density functionals on a set of 28 dimers at their mini-
mum configurations and found that the best performing
functional had an average unsigned error of 0.46 kcal/mol
which should be considered large since the interaction en-
ergies of the set range from -0.04 to -16.1 kcal/mol, with

the average of -3.8 kcal/mol. Investigations of this type
have also shown that different functionals overbind, un-
derbind, or do not bind at all, a given dimer. This fact
indicates that the inability to recover dispersion energies
is not the only problem of DFT. If this were the case, all
methods should underbind, or not bind, since the disper-
sion energy is always negative (for all distances). Some
authors pointed out to a lack of balance between kinetic
and exchange interactions in Kohn-Sham DFT as a pos-
sible other problem [4, 9].

The proposed strategies for making DFT-based meth-
ods more predictive for intermolecular interactions gener-
ally fall into the following four categories: (i) Optimiza-
tion of parameters in existing functionals on training sets
including interaction energies; (ii) Addition of dispersion
energies in the form of an asymptotic expansion to exist-
ing functionals, the so-called DFT+D approaches; (iii)
Development of nonlocal correlation density functionals
which should in principle be capable of describing dis-
persion interactions. Since the existing methods of this
type either do not include couplings to the local parts
of the functional, or the couplings result in practically
negligible effects, methods of this group can be viewed as
a type of DFT+D methods. (iv) Application of “post-
DFT” approaches, i.e., approaches that include virtual
orbitals.

Methods belonging to each of the four categories de-
fined above were first formulated in the early 2000s and
have been actively developed later on. We will refer to
these methods as “intermolecular interactions cognizant”
methods, whereas other DFT variants will be called stan-
dard methods.

With quite a number of intermolecular interactions
cognizant DFT methods available, the question arises
which of them is most suitable for application to prob-
lems in materials science. Obviously, the most relevant
feature is (a) the best accuracy in all regions of the po-
tential energy surface. The next factor to consider is (b)
computational efficiency. Finally, a given method should
also be (c) efficient when applied to condensed-phase sys-
tems using periodic boundary conditions, which gives
preference to methods not employing the so-called “ex-
act” exchange, i.e., not including the Hartree-Fock (HF)
exchange operator computed with Kohn-Sham (KS) or-
bitals. Whereas there are a number of papers in the
literature comparing the accuracy of various intermolec-
ular interactions cognizant DFT methods, it is not easy
for researchers not directly involved in such work to find
out which methods are the best. Most of the published
papers place emphasis on the methods developed by the
authors of these papers and sometimes the test set of
benchmarks is the same, or very similar, to the train-
ing set used to optimize parameters. The most exten-
sive tests including a variety of methods and distance-
dependent interaction energies have been published in
Refs. 10–12.

The present paper is related to a workshop entitled
“Dispersion Interactions and Density Functional Theory”
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co-organized by the Army Research Laboratory (ARL)
and the University of Delaware (UD). The workshop con-
sisted of presentations (available online) [13] covering de-
velopments of DFT-based methods for reliable treatment
of intermolecular interactions. A part of this workshop
was a “blind” test of such methods. Each speaker re-
ceived a set of dimer geometries and was asked to com-
pute interaction energies applying DFT-based methods
developed or used in their groups. Independently, the
organizers of the workshop computed benchmark interac-
tion energies which were not made known to the speakers
prior to the workshop. At the workshop, the results were
revealed and compared.

During the comparison of the data when working on
the present manuscript, it became clear that the bench-
marks cannot be accurate for large separation. The prob-
lem was first traced to a coding error in the coupled clus-
ter triple excitation subroutines of the NWChem soft-
ware package [14]. The error was fixed by the authors
of NWChem and all the benchmark calculations were re-
peated. An analysis of the new results revealed another
problem, resulting from loss of accuracy due to linear de-
pendencies in the largest basis sets used by us. We found
a way around this problem and repeated relevant calcula-
tions, as described in Sec. IV A. Both problems resulted
in a significant delay of publishing our results.

As a benchmark set, we have chosen a set of dimers rel-
evant to the field of energetic materials. This set includes
10 dimers which range in size from 6 to 32 atoms. For
each dimer, we considered the equilibrium configuration,
as well as several configurations with different separations
between the centers of mass of the monomers (sampling
the repulsive wall, minimum, and asymptotic regions),
but with the same relative orientation as in the mini-
mum configuration. In this way, we created a set of 80
benchmark interaction energies for the following dimers:

1. Water: (H2O)2;

2. Ethanol: (C2H5OH)2;

3. Nitromethane: (H3C-NO2)2;

4. Methylformate: (C2H4O2)2;

5. Benzene-methane: C6H6–CH4;

6. Benzene-water: C6H6–H2O;

7. Imidazole: (C3H4N2)2;

8. Nitrobenzene: (C6H5NO2)2;

9. 1,1-diamino-2,2-dinitroethylene (FOX-7):
(C2N4O4H4)2;

10. Ethylenedinitramine (EDNA): (C2O4N4H6)2.

This benchmark set has several advantages compared to
similar sets used in the literature. The latter sets tended
to be dominated by dispersion-bonded and hydrogen-
bonded dimers. Whereas our set does contain systems

belonging to these two categories, most of our dimers
cannot be classified in this way. Furthermore, most of
the dimers have not been used in previous sets, which
allows us to test methods on systems not used in op-
timization of these methods. For each system, interac-
tion energies were computed applying the CC method
with single, double, and perturbative triple excitations,
CCSD(T), and using complete basis set (CBS) extrapo-
lations, following the approach of Ref. 15.

Although in principle the participants could have com-
puted the benchmark interaction energies themselves,
which would have violated the “blind” character of the
test, in practice this was not possible except for the small-
est dimers in our set. As described later, the calcula-
tions of the benchmarks required extraordinary amounts
of computer resources and took several months to com-
plete which was more than the time available to the par-
ticipants.

We have included 12 different intermolecular interac-
tions cognizant DFT methods, representing all the ap-
proaches (i)–(iv) described above. We believe this selec-
tion is broader than in any previous survey of this type.
These methods are briefly described in Sec. II. Technical
details of the DFT-based calculations such as the basis
sets are specified in Sec. III. The methodology used to
obtain the benchmarks is outlined in Sec. IV. The results
and their graphical and statistical analysis is presented in
Sec. V. In the Supplementary Material [16], we include
Cartesian coordinates for all configurations as well as the
benchmark and DFT interaction energies for all entries
in the data set.

II. DFT METHODS COGNIZANT OF
INTERMOLECULAR INTERACTIONS

To facilitate the comparisons of various methods, we
briefly describe in this section the four types of inter-
molecular interactions cognizant DFT methods defined
in the Introduction. A summary of the salient features
of each method used in this work is presented in Table I,
along with some details of the computational approach
(basis set, use of counterpoise correction, etc.). In most
cases the authors used their own codes to perform the
calculations.

A. Reoptimized standard functionals

This category involves methods that utilize standard
generalized gradient approximation (GGA) functionals,
meta GGA functionals, and functionals including a frac-
tion of the exact exchange. The GGA functionals em-
ploy the exchange-correlation terms depending only on
the density and the magnitude of its gradient. Meta
GGA functionals include factors dependent on the ki-
netic energy density τ , i.e., on the sum of the squared
magnitudes of gradients of occupied KS orbitals. The
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TABLE I. Summary of methods. See text for explanations of acronyms; The term “meta” indicates that the exchange-correlation
functionals contain enhancement factors depending on the kinetic energy density.

Method Correlation Exchange Exact exchange Parameters Optimized Counterpoise Basis set

on Eint

Reoptimized standard functionals

M06 meta LDA/B96/VSXC meta LDA/PBE/VSXC 27% 36 yes no jun-cc-pVTZ

M11 meta LDA/PBE RSH LDA, meta PBE/RPBE 42.8% 46 yes no jun-cc-pVTZ

DCACP PBE PBE none 2/atom yes yes plane waves

300 Ry cutoff

DFT+D approachesa

dlDF+D meta modified PBE meta LDA 61.4% 11b noc yes aug-cc-pVTZ

B3LYP-D3 B88 LYP 20% 2d yes yes aug-cc-pVXZ

X = Q,5,6e

LC-ωPBE-D3 RSH PBE PBE ω = 0.4 2d yes yes aug-cc-pVQZ

LC-BOP12+LRD RSH B88 OP ω = 0.42f 2g yes yes aug-cc-pVTZ

LCgau-BOP+LRD RSH B88 OP ω = 0.42h 2i yes yes aug-cc-pVTZ

Nonlocal functionals

vdW-DF2 PW86 P86 none none no yes plane waves

85 Ry cutoff

Post-KS methods

SAPT(DFT) PBE PBE 25% none no BSSE-free aug-cc-pVTZ+mb

RSH+lrMP2 RSH PBEj RSH PBEj ω = 0.5 none no yes aug-cc-pVTZ

RSH+lrRPAx-SO2 RSH PBEj RSH PBEj ω = 0.5 none no yes aug-cc-pVTZk

a For DFT+D approaches, the parameters in dispersion functions fitted to vdW constants or to dispersion energies are not included in the
parameter count, but parameters fitted to total energies are included.
b Number of parameters in dlDF functional.
c The dlDF and D parts were separately optimized on the corresponding components of interaction energies.
d Parameters in the switching function of the dispersion energy.
e X = 6 for water dimer, X = Q for FOX-7, nitrobenzene, and EDNA dimers, and X = 5 for the remaining dimers.
f A parameter in the OP functional, denoted by qαβOP, was reoptimized to the value of 2.46 to match this value of ω.
g The LDR parameters were κ = 0.216 a.u., R0 = 4.760 a.u., and λ = 0.228.
h The Gaussian exponent in the attenuation function was α = 0.011 and the linear coefficient k = −18. The parameter qαβOP = 2.37.
i The LDR parameters were κ = 0.248 a.u., R0 = 4.690 a.u., and λ = 0.229.
j Short-range PBE exchange and correlation functionals from Ref. [17]. Note that this short-range PBE exchange functional is different from the
one used in LC-ωPBE-D3.
k For the nitrobenzene, FOX-7, and EDNA dimers, the results were obtained as Eint = ERSH+lrRPAx−SO2

int (aug-cc-pVDZ)

+[ERSH+lrMP2
int (aug-cc-pVTZ) −ERSH+lrMP2

int (aug-cc-pVDZ)].

functionals incorporating a fraction of the exact exchange
are called “hybrid” functionals. Most of the functionals
of these types depend on a number of adjustable parame-
ters and these parameters are optimized using a training
data set containing some benchmark interaction energies.
The first functional of this type was published by Xu and
Goddard [18] in 2004 and a large number of such func-
tionals appeared since then. We have included in our sur-
vey three such functionals, described in the subsequent
subsections.

1. M06

The M06 functional [19], where M stands for Minnes-
sota, belongs to the suite of methods developed by Truh-
lar and coworkers. It can be classified as a hybrid meta-
GGA functional. The GGA component of the exchange
part is taken from the Perdew-Burke-Ernzerhof (PBE)
functional [20] and the factors containing kinetic energy
densities are modelled in the spirit of the van Voorhis-
Scuseria exchange-correlation functional (VSXC) [21].
The M06 exchange functional includes in addition to

the PBE term also a local-density approximation (LDA)
term. The correlation functional is in a modified LDA
form with enhancement factors following a functional in-
troduced by Becke in 1996 (B96) [22] and the VSXC func-
tional. M06 includes a modest amount (27%) of the ex-
act exchange. The set of benchmark interaction energies
from Ref. [8] was used in the optimization of M06.

2. M11

The M11 functional [23] adopts a range-separated hy-
brid (RSH) approach [24–26], i.e., the exact exchange
is included to a varying degree depending on the inter-
electron separation. This is achieved by partitioning the
Coulomb operator into the long- and short-range compo-
nents:

1

r12
=

erf(ω r12)

r12
+

erfc(ω r12)

r12
, (1)

where erf is the error function and erfc = 1-erf. Since
erf(r) is zero at small r and one at large r, when this
function is used in the exchange integrals, it introduces
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the exact exchange only at larger separations. The sec-
ond term in Eq. (1) switches off the Coulomb interaction
for large r and is used in properly modified DFT ex-
change functionals [25, 27–29]. The extent of the DFT
versus the exact exchange is controlled by the parameter
ω. The M11 functional attenuates the Coulomb interac-
tions in the DFT part using the expression derived by
Gill, Adamson, and Pople [27] and by Savin [25] within
the LDA method. The attenuated LDA exchange energy
density is multiplied by the sum of the PBE [20] and
revised PBE (RPBE) [30] exchange factors, each of the
two factors multiplied in turn by its own meta enhance-
ment factor. The RPBE functional differs from the PBE
functional by using a different form of the exchange en-
hancement factor. M11 includes in addition to the range-
separated exact exchange also 42.8% of all-separation ex-
act exchange. The correlation functional in M11 is a sum
of the LDA term and of the gradient correction to this
term taken from the PBE functional, both multiplied by
their own meta enhancement factors. The set of bench-
mark interaction energies from Ref. [8] was used in the
optimization of M11.

3. DCACP

In the dispersion-corrected atom-centered potentials
(DCACP) approach [31, 32], the atomic pseudopotentials
routinely used in DFT calculations with plane-wave bases
are parametrized and the parameters (two per atom) are
fitted to a training set of benchmark interaction energies.
These pseudopotentials can be used with any DFT func-
tional. In the present work, the DCACP approach was
used with the PBE functional in a plane-wave basis with
a kinetic energy cutoff of 300 Rydberg.

B. DFT+D approaches

Although, as discussed above, inability to recover dis-
persion energies is certainly not the only problem that
DFT encounters in predicting intermolecular interaction
energies, one can hope that the predictions will be im-
proved if dispersion energies calculated using a non-DFT
approach are added to DFT interaction energies for se-
lected functionals that tend to underbind molecular com-
plexes. This idea was quite an obvious one since a
method consisting of adding dispersion energies to HF
interaction energies (so-called HFD approach) was pro-
posed by Scoles and coworkers [33, 34] already in 1970s.
An extended HFD method proposed in Ref. 35 is com-
petitive with the DFT+D approaches. Note that the
addition of the dispersion energy to the HF interaction
energy is rigorous, i.e., by the definitions of these quanti-
ties, it involves no double counting, which is not the case
for DFT+D. The DFT+D method was applied for the
first time by Gianturco et al. [36] in 1998 and by Wu et
al. [37] in 2001 for some specific systems. A generally

applicable approach was formulated by Wu and Yang
[38] in 2002. These authors selected a few functionals
that tended to underbind intermolecular complexes and
added to the dimer interaction energies given by these
functionals dispersion energies in the form of a simple
atom-atom function:

Edisp = −
∑

a∈A,b∈B

f(rab)C
ab
6 /r6

ab, (2)

where A and B refer to the two monomers, rab are in-
teratomic distances, Cab6 are constants, and f(rab) is a
damping function. This form of dispersion energy was
well known in work on vdW clusters and in biomolecular
force fields. The interatomic coefficients Cab6 were ex-
pressed in terms of atomic coefficients using simple com-
bination rules. The latter coefficients were fitted to repro-
duce molecule-molecule C6 coefficients known from ex-
periments, resulting in a universal atom-atom dispersion
function. Wu and Yang examined several damping func-
tions, but have not optimized parameters of these func-
tions on benchmark interaction energies. This critical
ingredient of the method was introduced by Grimme [39]
in 2004 who also included an overall scaling factor mul-
tiplying the dispersion energy. This approach led to a
significant improvement of the results since the disper-
sion energy was de facto used not only to reproduce this
component, but also to cancel various deficiencies of the
DFT methods to which it was applied. On the other
hand, the fact that such approaches rely on error cancel-
lations is their weak point from a physics point of view.
This problem was removed by the dispersionless density
functional plus dispersion (dlDF+D) method proposed
by Pernal et al. [40] in 2009. This method uses a den-
sity functional optimized to reproduce the interaction
energies with the dispersion (and exchange-dispersion)
energies subtracted. Then atom-atom functions repre-
senting the true dispersion energies at all intermolecu-
lar separations can be added to the dlDF interaction
energies. In fact, one can add accurate dispersion and
exchange-dispersion energies computed ab initio using
SAPT [3]. One should note that DFT+D approaches
provide improvements only for the energetics, whereas
all the other properties of the complexes (for example
dipole moments or polarizabilities) remain the same as
given by the DFT methods used. In our study, we have
included the following DFT+D methods: dlDF+D [40],
B3LYP+D3 [41], LC-ωPBE+D3 [42], LC-BOP12+LDR
[43, 44], and LCgau-BOP+LDR [44, 45].

1. dlDF+D

The dispersionless density functional (dlDF) [40] is a
hybrid meta GGA functional with parameters optimized
on intermolecular interaction energies with the dispersion
and exchange-dispersion energies subtracted. The total
interaction energies were computed for a set of dimers
using the CCSD(T) method and the dispersion and
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exchange-dispersion energies were computed using SAPT
based on DFT description of monomers [SAPT(DFT)]
[46–49] (see a description of the latter method below).
In contrast to the functionals of Sec. II A, dlDF includes
only the components of intermolecular interactions that
can be described by (semi)local DFT methods. The dlDF
functional form is analogous to that of the M05-2X func-
tional [50], i.e., it uses the PBE exchange density mul-
tiplied by a meta enhancement factor for the exchange
part and a modified meta-enhanced LDA form for the
correlation part.

Due to the way dlDF was constructed, one can
add to the dlDF interaction energies accurate disper-
sion and exchange-dispersion energies computed using
SAPT(DFT), and this approach leads to accurate total
interaction energies for all intermonomer separations [40].
However, since this post-KS approach is more time con-
suming than DFT calculations, one can alternatively add
an atom-atom function fitted to the SAPT(DFT) dis-
persion and exchange-dispersion energies: such functions
have been developed in Refs. 35 and 40. The functions
from Ref. 35 used in the present test have the form:

Edisp = −
∑

a∈A,b∈B

∑
n=6,8

fn(βabrab)
Cabn
rnab

(3)

where the Tang-Toennies [51] damping functions fn(r)
are defined as

fn(r) = 1− exp(−r)
n∑
k=0

rk

k!
, (4)

and the interatomic constants are expressed in terms
of atomic ones using the following combination rules:
βab =

√
βaβb and Cabn =

√
CanC

b
n. The damping pa-

rameters are the same for n = 6 and 8. All the param-
eters in this expression were fitted only to the sum of
the dispersion and exchange-dispersion energies, so that
these functions are DFT-independent and can be added
to any dispersion-free interaction energy. Notice that the
dlDF+D method, in contrast to most of the other ap-
proaches considered here, involves no fitting to the total
interaction energies. The concept of dispersionless in-
teraction energies was recently developed in alternative
ways by Rajchel et al. [52] and Austin et al. [53].

2. B3LYP-D3 and LC-ωPBE-D3

The B3LYP-D3 [41] and LC-ωPBE-D3 [42] approaches
use the standard DFT functionals for the DFT part and
add the D3 atom-atom dispersion function from Ref. 41
with different dispersion switching parameters. The hy-
brid GGA B3LYP functional [54, 55] consists of the
B88 Becke’s exchange functional [56] of 1988 and of the
Lee, Yang, and Parr (LYP) [57] correlation functional.
B3LYP contains three parameters (indicated by the nu-
meral 3 in the acronym) fitted to a set of atomization

energies, ionization potentials, proton affinities, and to-
tal atomic energies.

The LC-ωPBE functional [58], where LC stands for
“long-range corrected”, is an RSH version of the PBE
functional. Its exchange-correlation functional is a sum
of the PBE correlation functional, of the short-range
[attenuated according to Eq. (1)] PBE exchange func-
tional, and of the long-range exact exchange. The for-
mer exchange component used the expression developed
by Heyd et al. [29, 59] based on the exchange hole model.
Note that despite the use of this expression, LC-ωPBE is
a functional which is completely different from the func-
tionals of Ref. [29, 59] which use a certain amount of
exact exchange only at short range and therefore have
a wrong asymptotic behavior of the exchange potential.
LC-ωPBE is actually similar in spirit to the long-range
corrected functionals of Hirao and coworkers [28]. These
relations explain the origin of the LC in the LC-ωPBE
acronym, which may seem redundant since the use of
range separation alone, indicated by the parameter ω,
assures long-range correctness for exchange functionals
of this type. Note that whereas RSH functionals lead
to correct asymptotics of exchange-correlation potentials,
the more important electron densities produced by such
functionals still have wrong asymptotics with the stan-
dard values of ω [60]. LC-ωPBE was used here with the
recommended value of ω = 0.4 bohr−1 optimized for a
broad set of thermochemical data.

The D3 dispersion energy [41] is of similar charac-
ter but different in several details from that defined by
Eqs. (3) and (4). First, the following quantity is com-
puted for the dimer AB and the monomers A and B:

E
(2)
X = −

∑
a<b

∑
n=6,8

snfn (rab)
Cabn
rnab

(5)

(D3 can also include a third-order term which has not
been used here) where the switching function is of the
form

fn (rab) = 1/

[
1 + 6

(
tnr

0
ab

rab

)αn]
. (6)

The summation here is performed over all pairs of atoms
in a system. The dispersion energy is then calculated
using the supermolecular approach

Edisp = E
(2)
AB − E

(2)
A − E

(2)
B .

Note that all terms coming from intramonomer atom-
atom pairs cancel in this expression, so that one could
equivalently sum only over intermonomer pairs to obtain
the dispersion energy directly. The scaling parameters
sn and tn (the latter denoted as sr,n in the original pa-
per) were chosen to minimize deviations of the predic-
tions from benchmarks that include both intermolecu-
lar interaction energies and thermochemical data. The
value of s6 and t8 are set to 1.0 for both B3LYP and LC-
ωPBE functionals. Thus, only two scaling parameters,
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s8 and t6 are optimized. The constants r0
ab are distances

where atom-atom Heitler-London energies computed us-
ing Slater determinants built from KS orbitals reach a
prescribed value. Thus, the product tnr

0
ab defines the

value of atom-atom separation where the switching func-
tion changes rapidly from zero to one. We use the name
“switching” rather than “damping” function for the fn
of Eq. (6) to emphasize that the main role of this func-
tions is not to damp the asymptotic inverse power ex-
pansion of dispersion energy in order to account for the
charge-overlap effects at finite intermonomer distances
R, as done by the Tang-Toennies function, but rather
to completely switch off the dispersion energies at some
chosen distance (the dispersion energies damped by the
functions of Eq. (4) remain finite even at R = 0). Note
furthermore that whereas the function of Eq. (3) contains
summation only over the pairs of atoms from different
monomers, the function of Eq. (5) sums over all pairs
of atoms in a dimer and in the corresponding monomers.
Then the intermolecular dispersion energy is obtained by
the supermolecular approach. The powers in Eq. (6) were
chosen as α6 = 14 and α8 = 16.

The reference coefficients, Cab6,refmk
, for a pair of atoms

a =X and b =Y in their hydrides XmHn and YkHl are
computed from coupled KS frequency-dependent polar-
izabilites using the Casimir-Polder formula

Cab6,refmk
=

3

π

∫ ∞
0

dω
1

m

[
αXmHn(iω)− n

2
αH2(iω)

]
×1

k

[
αYkHl(iω)− l

2
αH2(iω)

]
. (7)

Different hydrides give different coefficients for a given
pair of atoms which corresponds to atoms in different
coordination states (e.g., corresponding to sp3, sp2, sp
hybridizations). For atoms X and Y in actual molecules,
their fractional coordination numbers are computed from
their environments and then the final value of Cab6 is ob-
tained as a weighted sum of the reference values from
Eq. (7).

The B3LYP interaction energies were obtained using
the NWChem software package [14] and the D3 cor-
rection was evaluated with the DFTD3 V2.1 program
[41]. The LC-ωPBE-D3 calculations were performed with
Gaussian09 codes [61]. In both cases only the two-body,
second-order dispersion energy was used.

3. LC-BOP+LRD and LCgau-BOP+LRD

The LC-BOP method [28] is an RSH approach which
employs the B88 exchange functional and the one-
parameter progressive (OP) correlation functional [62].
One should emphasize that the DFT-based short-range
exchange energy in LC-BOP has a very different form
than that used in the LC-ωPBE functional discussed
above. The recently modified [43] form of this functional,
LC-BOP12 was utilized in the present work. The LCgau-
BOP functional [45] differs from LC-BOP by the use a

of a more elaborate range partitioning function which in
addition to the terms present in Eq. (1) includes two mu-
tually cancelling Gaussian terms, one incorporated into
the DFT part and the other one into the exact exchange
part.

A “local-response dispersion” (LRD) function of Sato
and Nakai [63] is added to the LC-BOP12/LCgau-BOP
interaction energies. The form of this function is the
same as given by Eq. (3), except that the n = 10 term
is also included. However, in contrast to previously dis-
cussed approaches, the coefficients Cabn (van der Waals
constants) are calculated on-the-fly from electron densi-
ties. The starting point is the generalized Casimir-Polder
expression for the exact second-order dispersion energy
[64]

E
(2)
disp = − 1

2π

∫ ∞
0

∫ ∫ ∫ ∫
αA(r1, r

′
1|iu)αB(r2, r

′
2|iu)

×d
3r1d

3r2

|r1 − r2|
d3r′1d

3r′2
|r′1 − r′2|

du (8)

where αX(r, r′|iu) is the frequency-dependent density-
density response function (called also the frequency-
dependent density susceptibility) of monomer X. Such
functions can be computed very accurately using the
time-dependent DFT (TD-DFT) method. Therefore, the
use of TD-DFT response functions gives very accurate
dispersion energies, as shown for the first time in Refs. 46
and 47.

The first key simplifying assumption of Sato and Nakai
was the use of an approximate expression for the response
function, which is a modified version of the expression
proposed by Dobson and Dinte [65]:

αX(r, r′|iu) = ∇r ·∇r′

[
ρ(r)δ(r − r′)

ω2
0(r) + u2

]
(9)

where ρ(r) is the density of system X. The quantity
ω0 is a parametrized function of the density and of the
magnitude of its gradient

ω0(r) =
1

3
k2

F

[
1 + λs2

]2
, (10)

where kF (r) = (3π2ρ(r))1/3 and s(r) =
|∇ρ(r)| /(2kF(r)ρ(r)). The parameter λ was em-
pirically optimized as described below.

The second simplifying assumption of Sato and Nakai
was to expand the interelectronic distances in Eq. (8)
in the multipole series, leading to the asymptotic ex-
pansion of the dispersion energy. The volume integrals
give then frequency-dependent multipole polarizabilities.
The subsequent integration over the frequency gives the
van der Waals constants. In the simplest case, this ex-
pansion is a series in inverse powers of the distance be-
tween centers of mass of monomers, but one can also
formulate the so-called distributed expansion where all
the intermonomer atom-atom distances are used. To
this end, one partitions the response function into atomic
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domains and compute distributed polarizabilities. Sato
and Nakai achieved such distribution using numerical in-
tegration grids centered around individual atoms. Re-
cently it has been shown [66, 67] that one can formulate a
faster-converging distributed expansion of dispersion en-
ergy which almost exactly reproduces the SAPT(DFT)
dispersion energy in all regions where the overlap effects
can be neglected.

The parameter λ in Eq. (10) has been originally opti-
mized to reproduce the empirical C6 constants for pairs
of rare-gas atoms. It was recently reoptimized [44] for
1225 known empirical C6 constants for atoms and small
molecules.

To damp the asymptotic expansion at short inter-
monomer separations, Sato and Nakai used the following
damping function:

fn(r) = exp

[
−n− 4

2

(r0

r

)6
]

(11)

where r0 is a constant specific for each pair of atoms and
dependent on two parameters κ and R0:

r0 = κ
[
α1/3
a + α

1/3
b

]
+R0 (12)

where αx is the average static dipole-dipole polarizabil-
ity for atom x computed using the response function of
Eq. (9). In the orginal work, these parameters were op-
timized to reproduce the empirical minima of dimers of
rare-gas atoms. In the calculations presented here, the
values recently reoptimized [44] on the so-called S66 set
[68] of separation-dependent benchmark interaction en-
ergies of 22 dimers.

C. Nonlocal functionals

Our survey included one nonlocal functional, vdW-
DF2 [69], which is a modified version of the earlier vdW-
DF functional [70]. The vdW-DF2 functional adds to a
standard DFT functional a nonlocal term dependent on
the density and the magnitude of its gradient, aimed at
reproducing the dispersion energy. Thus, vdW-DF2 is in
this respect similar to the DFT+D approach. However,
the nonlocal term includes explicit overlap effects, as in
SAPT(DFT). One has to properly select the standard
DFT functional used in the vdW-DF method and the
choice was based on similarities of predictions to those
given by the HF approach. The original choice in vdW-
DF was the revPBE functional [71], a reparametrized
version of PBE. In vdW-DF2, the PW86R functional was
chosen. This functional is a refitted [72] version of the
PW86 functional with the exchange part from Ref. 73
and the correlation part (P86) from Ref. 74. PW86 was
chosen based on good agreement of its exchange-only ver-
sion with HF interaction energies for several dimers. The
refit concerned the parameters in the exchange enhance-
ment factor and was done to make this factor have the

exact large-s and small-s behavior, which was not the
case for PW86. The agreement of PW86 and PW86R
exchange-only interaction energies with HF interaction
energies is about the same.

The nonlocal term has been derived by making approx-
imations to the response function in the spirit of Eq. (9).
The resulting expression reads

Enl
c =

∫ ∫
d3rd3r′ρ(r)ρ(r′)φ(r, r′) (13)

Here ρ(r) is the density of the dimer, so that vdW-DF
methods include also the nonlocal correlation energies
within monomers. The kernel φ(r, r′) is given by the
expression

φ(r, r′) =
2

π2

∫ ∞
0

da

∫ ∞
0

db

a2b2W (a, b)T (ν(a), ν(b), ν′(a), ν′(b)). (14)

where W and T are relatively simple functions of their
arguments, given by Eqs. (15) and (16) in Ref. 70: W is
a linear combination of products of sines and cosines of
the variables a and b (so W does not depend on density),
whereas T is a sum of terms containing inverse powers of
the binomials of the arguments. The arguments of T are
defined as

ν(c) =
c2

2
(

1− exp
[
− 4πc2

9q20(r)|r−r′|2

]) (15)

and ν′ differs from ν by q2
0(r)⇒ q2

0(r′). The quantity q0

is given by

q0(r) =
ε0xc(r)

εLDA
x (r)

kF(r) (16)

where εLDA
x (r) = −3kF/4π and

ε0xc(r) = εLDA
c (r) + εLDA

x (r)

(
1− Zabs

2

9

)
. (17)

The LDA correlation energy density, εLDA
c (r), is an ap-

proximation to this quantity used in the associated stan-
dard DFT functional. The parameter Zab has been cho-
sen based on theoretical constraints arguments and its
value of -0.8491 used in vdW-DF was changed to -1.887
in vdW-DF2.

D. Post Kohn-Sham methods

All the methods discussed so far use only electron den-
sities, their gradients, and occupied KS orbitals. These
methods scale therefore as N4 with system size, where
system size can be defined as the number of electrons
(the methods that do not use the exact exchange can
easily be programmed to scale as N3). One way to im-
prove the results is to make use of virtual KS orbitals, a
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step towards WF theory. This usually makes the scaling
worse, but if it is only increased to N5, such an approach
can still be applied to very large systems. The post-KS
terms have to be properly added to the DFT interaction
energy to avoid double counting.

1. SAPT(DFT)

In SAPT [3, 75], the interaction energy is computed
using a perturbative approach. Starting from the wave
functions of unperturbed monomers, the intermolecu-
lar interaction energy can be evaluated order-by-order
as an expansion in powers of intermolecular interaction
operator V collecting Coulomb interactions of all elec-
trons and nuclei of monomer A with those of monomer
B. The resulting wave functions have to be properly
antisymmetrized which explains the phrase “symmetry-
adapted” in the name of this method and produces the
so-called exchange components of interaction energies
such as the exchange-dispersion term mentioned earlier.
The SAPT interaction energy is naturally and rigorously
decomposed into electrostatic, exchange, induction, and
dispersion contributions. Since the exact wave func-
tions of monomers are unknown, the starting point in
standard SAPT are actually products of HF determi-
nants of monomers. These wave function are corrected
by using MBPT/CC expansion in powers of the intra-
monomer correlation operators WX , i.e., the so-called
Møller-Plesset (MP) fluctuation potentials which are dif-
ferences between the exact Hamiltonian of a monomer
and the Fock Hamiltonian. The HF-based SAPT prop-
erly truncated at some power of WA gives interaction
energies of similar accuracy as those produced by the
CCSD(T) method, but also scales in the same way (N7)
and therefore is similarly time-consuming. A much bet-
ter scaling method can be obtained using a DFT de-
scription of the monomers. Since all components of in-
teraction energies are computed as a post-KS process,
there is by definition no double counting. An impor-
tant ingredient of SAPT(DFT) is the use of asymptot-
ically corrected exchange-correlation potentials [60] giv-
ing electron densities with correct long-range behavior.
The dispersion energies are computed from Eq. (8) us-
ing TD-DFT response functions without any approxi-
mations. SAPT(DFT) [46–49, 76–78] utilizing density
fitting techniques [46, 49, 79] scales as N5. If a nonhy-
brid DFT is used to describe the monomers and some
small exchange terms are neglected, SAPT(DFT) scales
in practice as N4, i.e., as a hybrid DFT, and can be ap-
plied to systems with hundreds of atoms [80] [one step,
the integral transformation, scales formally as N5, but
since this scaling is proportional to o2v2Naux, where o(v)
is the number of occupied (virtual) orbitals and Naux the
number of auxiliary functions, the prefactor of this term
is small].

SAPT(DFT) is usually applied at the second-order in
V , but for systems with large polarization effects the po-

larization terms of higher order are approximated by the
so-called δHF

int correction which is the difference between
the supermolecular Hartree-Fock interaction energy and
the sum of the first- and second-order SAPT(HF) terms
that are accounted for by the HF description of the sys-
tem. The criterion for including δHF

int was the ratio of the
sum of the induction and exchange-induction energies to
the total interaction energy for the distance where the in-
teraction energy was the most negative. If this ratio was
larger than 12.5%, δHF

int was included. By this criterion,
it was included for all systems except those containing
benzene and nitrobenzene. The threshold value was de-
termined by analyzing systems studied by SAPT(DFT)
in the past. It turned out in the post analysis that this
criterion was not working well for the nitrobenzene dimer.
Whereas for this system the large dipole moment of 2.1
a.u. does not result in a significant induction contribu-
tion near the minimum, the δHF

int term is very important
for large intermolecular separations where it significantly
improves the agreement with the benchmarks. However,
in order not to violate the ‘blind’ character of this test,
δHF
int was not used for the nitrobenzene dimer. In future

applications of SAPT(DFT), the criterion for adding δHF
int

should also take into account the dipole moments of the
monomers.

The DFT calculations for monomers have been per-
formed using the Tozer-Handy-Fermi-Amaldi asymptotic
correction [81, 82]. The electrostatic energies were com-
puted in quadruple precision arithmetics [83] and using
JK-optimized auxiliary bases [84]. For all other terms,
the correlation-optimized bases [85] were used.

2. RSH+lrMP2 and RSH+lrRPAx-SO2

As discussed earlier, the RSH methods mix DFT and
exact (HF) exchange in a ratio dependent on the inter-
electronic distance, using the DFT exchange at short
range (sr) and exact exchange at long range (lr). It is
also possible to mix the correlation part in the same way.
However, the long-range correlation part has to be ob-
tained from some WF-type approach. The simplest such
method is the second-order MBPT with the MP partition
of the Hamiltonian, known under the name MP2. The
MP2 expression in RSH methods is formally identical to
that of the regular MBPT, except that it is computed
with attenuated interelectronic interactions and with KS
orbitals and orbital energies. A method of this type,
dubbed RSH+lrMP2 was developed in Ref. [86]. In the
first implementation, this method used the short-range
LDA exchange-correlation functional of Ref [87]. In the
present work, the short-range PBE exchange-correlation
functional of Goll et al. [17] (which a modification of the
functional of Ref. [88]) is used. Note that the short-range
PBE exchange part of this functional is different from the
one of Refs [29, 59] used in LC-ωPBE.

The next step beyond MP2 is the random-phase ap-
proximation (RPA) approach. RPA may be derived from
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the CCD method by selecting from the CCD expression
only terms including products of two-electron integrals
that can be illustrated by the so-called ring diagrams
(the simplest ring diagram represents MP2) [89]. The
RPA amplitudes are obtained from equations of a sim-
ilar type as used in calculations of response functions.
There are several versions of RPA available. The method
selected in our survey, RSH+lrRPAx-SO2 [90], uses the
Hartree kernel plus the Hartree-Fock exchange kernel in
the equations for amplitudes. However, matrix elements
multiplying these amplitudes are not antisymmetrized.
This is variant 2 of a method introduced by Szabo and
Ostlund [91], which is indicated by SO2 in the acronym.
As for RSH+lrMP2, the calculations were done with the
short-range PBE exchange-correlation functional of Goll
et al. [17].

III. BASIS SETS

A. Choices of basis sets in DFT and post-KS
calculations

Ideally, in order to have the most unambiguous com-
parisons, all calculations should be performed using CBS
extrapolations from large basis sets. This approach, how-
ever, would be too time consuming for some methods.
Furthermore, some methods have been optimized using
specific basis sets and perform best if used with the same
basis sets. Finally, DFT calculations are known to con-
verge faster with respect to basis set size than post-KS
ones. The organizers of the blind test suggested that the
augmented triple-zeta basis set of Dunning and cowork-
ers [92, 93], denoted as aug-cc-pVTZ, be used and most
participants followed this suggestion. This basis set obvi-
ously could not be used in codes based on the plane-wave
functions. The other basis sets used were mostly different
members of the aug-cc-pVXZ family with X = 2 (marked
by D), 4 (Q), and 5. The jun-cc-pVTZ basis set is the
aug-cc-pVTZ basis with omitted diffuse f functions on all
atoms and without any diffuse functions on hydrogens.
We will discuss possible uncertainties resulting from the
use of different basis sets in Sec. V D. SAPT(DFT) cal-
culations used the so-called dimer-centered plus midbond
basis set format [94].

B. Basis set superposition error

Interaction energies computed using the supermolecu-
lar approach, i.e., by subtracting the total monomer en-
ergies from the dimer’s total energy, suffer the so-called
basis set superposition error (BSSE) resulting from the
lowering of monomer energies in dimer calculations due
to “borrowing” of the basis set from the interacting part-
ner. One way to reduce this error is to compute such en-
ergies in the counterpoise (CP) corrected way [95], i.e., by
performing calculations for monomers in the full dimer’s

TABLE II. Basis set convergence of calculations for benzene-
methane at R = 3.28, 3.8, and 8.8 Å. Energies are in kcal/mol
and aXZ denotes aug-cc-pVXZ+mb. All quantities in paren-
theses are obtained from extrapolation formulas as described
in the text.

R = 3.28 aDZ aTZ aQZ a5Z CBS

EHF
int 5.105 5.105 5.101 5.099 (5.099)

δEMP2
int -5.562 -5.761 -5.845 -5.882 (-5.921)

δE
CCSD(T)
int 0.725 0.775 (0.787)a (0.791)a (0.796)b

Eint
c 0.268 0.119 (0.043) (0.009) (-0.025)

ECBS
int

d (-0.047)

R = 3.8

EHF
int 0.885 0.897 0.898 0.898 (0.897)

δEMP2
int -2.599 -2.663 -2.688 -2.699 (-2.711)

δE
CCSD(T)
int 0.310 0.337 (0.344)a (0.346)a (0.349)b

Eint
c -1.403 -1.428 (-1.446) (-1.455) (-1.465)

ECBS
int

d (-1.476)

R = 8.8

EHF
int -0.0056 -0.0052 -0.0052 -0.0051 (-0.0051)

δEMP2
int -0.0145 -0.0149 -0.0150 -0.0149 (-0.0149)

δE
CCSD(T)
int 0.0026 0.0025 ( 0.0025)a ( 0.0025)a (0.0025)b

Eint
c -0.0175 -0.0176 (-0.0177) (-0.0176) (-0.0176)

ECBS
int

d (-0.0175)

a Values estimated from formula (20) applied to δE
CCSD(T)
int

with the CBS energy and the constant B obtained from the
(D,T) extrapolation.
b (D,T) extrapolation analogous to formula (20).
c Sum of values in preceding rows.
d Equation (18).

basis set. The organizers of the blind test suggested that
the CP correction will be used in all calculations, but
some participants have chosen not to use it. Note that
codes using plane-wave basis sets have to perform all cal-
culations in the same basis set, so that the CP correction
is an inherent feature of such methods. The SAPT ap-
proach is by definition free of BSSE since the interaction
energy is computed directly, i.e., it does not involve any
subtraction of dimer and monomer energies.

IV. BENCHMARK INTERACTION ENERGIES

A. Basis sets and extrapolations

The DFT-based methods described in Sec. II were as-
sessed by comparisons to a set of benchmark interaction
energies computed in the same way as in Ref. 15:

ECBS
int = EHF

int (CBS) + δEMP2
int (CBS) + δE

CCSD(T)
int , (18)

where EHF
int (CBS) is the CBS-extrapolated HF interac-

tion energy, δEMP2
int (CBS) is the CBS-extrapolated dif-
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ference between the MP2 and HF interaction energies,

and δE
CCSD(T)
int is the difference between CCSD(T) and

MP2 interaction energies, computed in the same basis
set, generally smaller than the bases used for the HF
and MP2 extrapolations. All correlated calculations em-
ployed the frozen-core approximation. The HF and MP2
interaction energies were extrapolated to the CBS limit
using two-point extrapolations, exponential in the HF
case

EHF
int (X) = EHF

int (CBS) +Ae−αX , (19)

with α fixed at 1.63 as recommended in Ref. 96, and
inverse third power in the case of MP2

δEMP2
int (X) = δEMP2

int (CBS) +BX−3, (20)

where “(X)” denotes that a given energy was obtained
using the basis aug-cc-pVXZ (plus midbond functions,
see below). The CBS values were obtained from calcu-
lations in X−1 and X bases. For all systems, extrap-
olations were performed with (X−1, X) = (4, 5) except
for the water dimer, for which we used (5,6) and the

EDNA dimer for which we used (3,4). The δE
CCSD(T)
int

contribution was obtained using the aug-cc-pVTZ basis
for all systems except for the water dimer for which the
aug-cc-pVQZ basis was used and for the EDNA dimer
for which aug-cc-pVDZ was used. For each configura-
tion, to improve basis set convergence, an additional set
of 3s (α=0.9,0.3,0.1), 3p (α=0.9,0.3,0.1), 2d (α=0.6,0.2),
and 2f (α=0.6,0.2) midbond (mb) functions was used
to augment the principal basis, with the location of the
midbond functions determined using the algorithm of
Ref. 97. The advantages of using midbond functions in
conjunction with CBS extrapolations were demonstrated
in Ref. 98. The NWChem software package [14] was used
to obtain all benchmark interaction energies except for
some MP2 energies in large basis sets, see below.

For larger monomers, our largest basis sets become lin-
early dependent to the point that NWChem removes a
number of linear combinations of atomic orbitals from
the basis set. With the default threshold of 10−5 for
the eigenvalues of the overlap matrix, it removes 23
(47) linear combinations from the benzene-water aug-cc-
pVQZ+mb (aug-cc-pV5Z+mb) basis set at R = 7 Å.
Since our calculations are performed in the same basis
set for the dimer and both monomers, and this reduc-
tion of basis set size is identical in all three cases, the
counterpoise procedure is still rigorously imposed. On
the other hand, the CBS extrapolations may be affected.
Worse, the interaction energies can still be inaccurate
despite the reduction and we found this to be the case
for NWChem with the threshold given above. As in the
case of the triple excitation error in CCSD(T), we found
this problem by comparisons with SAPT(DFT) results
which are very reliable at large separations. We first
tried to lower the threshold to 10−6, but it resulted in
even more erratic results and self-consistent field (SCF)
iterations convergence problems in some cases (even with

the 10−5 threshold for the overlap matrix, the iterations
would sometimes not converge if a tight SCF convergence
threshold was used). We then repeated the calculations
of MP2 energies using the GAMESS [99] and Gaussian
[61] packages and found that the results are consistent
and appear to be sufficiently accurate (probably to at
least about 3 significant digits for the interaction ener-
gies, based on the level of consistency). Also the CBS
extrapolations were consistent (although this could be
due to the same number of linear combinations removed).
Therefore, we repeated all the MP2 calculations using
GAMESS.

The CCSD(T) calculations (NWChem) were run on a
Cray XE6 (32 cores/node, 60 GB/node) at the U.S. Army
Engineer Research and Development Center (ERDC) us-
ing 512 cores for all systems except the 3 largest dimers
(FOX-7, EDNA, nitrobenzene) which used 4,096 cores.
For the small/intermediate sized systems most calcula-
tions completed in 12-36 hours (wall clock) with the total
time being a function of the size of the system, as well
as the center of mass (COM) separation R, with config-
urations at large R completing faster due to the signif-
icantly reduced number of non-negligible intermonomer
integrals remaining at large separation. The CCSD cal-
culations for the large systems completed in 4-6 days
(wall clock) on average and due to the 7-day maximum
runtime queue limits at ERDC, the (T) energy was eval-
uated using NWChem’s restart option. The SCF con-
vergence tolerance for all calculations was equal to 10−10

a.u. where the threshold corresponds to the magnitude of
the norm of the orbital gradient in NWChem’s quadrat-
ically convergent SCF implementation. The CCSD con-
vergence tolerance was equal to 10−8 hartree and by de-
fault, NWChem uses the same convergence tolerance for
the CC energy and the root mean square (RMS) error of
the amplitudes. For the three biggest dimers, this led to
an unacceptably large number of CC iterations (> 45)
thereby prolonging the total wall clock and CPU time of
these already expensive calculations. However, it was ob-
served that although the energy converged fairly quickly
(15-20 iterations), the remaining iterations were spent
reducing the amplitude error to an equivalent level with
little to no change observed in the energy. Therefore, for
the large systems, we modified NWChem so that it only
used the energy convergence criterion, and not that of
the amplitudes, to terminate the CCSD iterations. Al-
though not used as a criterion for terminating the CC
iterations, the root mean square error of the amplitudes
was still monitored and for all cases the final RMS error
was on the order of 10−6 or below.

The large basis MP2 calculations (using GAMESS)
were run on a Cray XC40 (32 cores/node, 126 GB/node)
at the U.S. Army Research Laboratory’s Defense Shared
Resource Center using 2,048 cores for all dimers ex-
cept EDNA which used 5,120 cores. The SCF energy
was converged to 10−10 hartree and required 1-8 hours
(wall clock) time per job, again depending on the sys-
tem size and COM separation. For three of the required
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energy components (MP2/aQZ energy of nitromethane
monomer A at R=4.131 Å, MP2/aQZ energy of the
methylformate dimer at R=4.243 Å, and MP2/a5Z en-
ergy of benzene-methane R=8.80 Å), the GAMESS SCF
was not convergent and these energies were computed
using Gaussian on the same Cray XC40 using 32 to 256
cores. In total, the computation of the benchmark ener-
gies required approximately 40 million CPU hours with
most of that time resulting from the required recalcula-
tion of the benchmarks due to the issues described above.

B. Interaction Energy Curves

The equilibrium geometries of the dimers were taken
from literature, when available, or optimized at the
MP2/aug-cc-pVTZ level of theory. Complete geometry
optimizations were performed, so that the two monomers
have slightly different geometries in homogeneous dimers.
The optimizations were not CP corrected. All the geome-
tries and references to the appropriate literature sources
are given in the Supplementary Material [16]. For each
system, given the optimized configuration, radial poten-
tial energy curves were obtained by variation of the radial
separation R between the COMs of the two monomers
and keeping the mutual orientations and intramonomer
coordinates unchanged. The interaction energies com-
puted are the vertical ones, i.e., the geometry of each
monomer in calculations for this monomer is exactly the
same as in the dimer calculations. All interaction ener-
gies from the DFT-based methods were obtained for the
same configurations as used to compute the benchmark
energies, i.e., the geometries of the dimers were not op-
timized using these methods. The number of points per
dimer ranged from six to sixteen (depending on the size
of the molecule) with geometries chosen to sample the
repulsive wall, potential well, and the asymptotic region.
The entire reference data set contains a total of 80 points.

V. RESULTS

A. Benchmarks

All the results of calculations leading to our bench-
marks are listed in the Supplementary Material [16].
These tables show that the CBS extrapolations only mod-
estly influence our results: the median unsigned per-
centage error of the nonextrapolated CCSD(T) interac-
tion energies computed in the applied basis sets (aug-
cc-pVTZ+mb for all but two systems) with respect to
the CBS interaction energies is 1.04%. The reason is
our use of the bond functions which makes the results
computed in the aug-cc-pVTZ+mb basis quite well con-
verged. However, there are a number of percentage de-
viations of the CCSD(T)/aug-cc-pVTZ+mb results from
the CBS ones, all occurring for the shortest distances,
that are very large in magnitude, up to 357% (for the

benzene–methane dimer at R = 3.28 Å). Despite such
a large discrepancy, we believe that the CBS results at
these separations are still reliable, as can be seen from
the following analysis. The large percentage errors are

due a combination of the fact that δE
CCSD(T)
int is quite

large for these dimers and that the interaction energy
at these distances, near the points where the potential
curves cross zero, are small differences of large num-
bers. Table II illustrates these relations for the benzene-
methane dimer. The 357% error quoted above is the for

the difference between E
CCSD(T)
int computed in the basis

aug-cc-pVTZ+mb, equal to 0.119 kcal/mol, and ECBS
int

equal to -0.047 kcal/mol. The MP2/CBS energy is still
quite different: -0.822 kcal/mol. Although such dramatic
differences may suggest a low reliability of our bench-
marks, an analysis of Table II shows that this is not
the case. Clearly, the observed behaviour results from
the fact that EHF

int and δEMP2
int , the former converged to

better than 0.001 kcal/mol and the latter to about 0.04

kcal/mol, cancel to a large extent. Since δE
CCSD(T)
int is

close to the MP2 interaction energy but of opposite sign,
adding it results in a near zero interaction energy, which
obviously is then very sensitive in relative terms to basis
set size and CBS extrapolations.

Additional support for the reliability of our bench-
marks, even for those difficult cases, can be obtained from

performing the (D,T) CBS extrapolation of δE
CCSD(T)
int .

We do not use such extrapolations in our benchmarks
since extrapolations from such low X are generally unre-
liable, but let us assume the (D,T) extrapolation works
in this case. Table II shows that the extrapolation
gives the value of 0.796 kcal/mol (in the CBS column)

and increases δE
CCSD(T)
int by 0.021 kcal/mol, so that

the interaction energy including this extrapolation is -
0.026 kcal/mol, 0.021 kcal/mol from our recommended
value. Also the sequence of the interaction energies in
the row Eint is seen to converge smoothly (since aug-
cc-pVTZ+mb was the largest basis set that we could

use at the CCSD(T) level, the δE
CCSD(T)
int entries in

columns aQZ and a5Z were obtained using the X−3 de-
pendence with the constants calculated using the aug-
cc-pVDZ+mb and aug-cc-pVTZ+mb bases). Whereas it
is difficult to say whether the value of -0.025 kcal/mol

that includes the (D,T) extrapolation of δE
CCSD(T)
int is a

better representation of the exact CCSD(T) value than
ECBS

int = -0.047 kcal/mol, it is clear from the conver-
gence patterns that either of these results is more accu-

rate than E
CCSD(T)
int computed using aug-cc-pVTZ+mb

and equal to 0.119 kcal/mol. Based on the analysis per-
formed above, we can estimate the residual error of ECBS

int

to be about 0.04 kcal/mol. Whereas it is a large error
percentage wise, it is reasonably small in absolute terms.

The results for two other distances presented also in
Table II show that in these cases there are no doubts
about the adequate convergence of the interaction en-
ergies. At R = 3.8 Å, the residual error can be roughly
estimated to amount to about 0.02 kcal/mol or about 1%
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FIG. 1. Potential energy curves for the water dimer. The left panel compares the performance of DFT+D-type methods and
of a nonlocal functional, whereas the right panel includes reoptimized standard functionals and methods using virtual orbital.
Lines are drawn only to guide the eye.

FIG. 2. Potential energy curves for the ethanol dimer. See Fig. 1 for explanations.

of interaction energy. This is the same relative accuracy
as given in Ref. [15] for the set of benchmarks obtained
there for systems involving only equilibrium dimer con-
figurations. At R = 8.8 Å, the absolute error is smaller
than 0.0001 kcal/mol and the relative one is smaller than
0.6%.

For our largest dimer, (EDNA)2 containing 32 atoms,
we were able to use only the comparatively small aug-cc-

pVDZ+mb basis in calculations of the δE
CCSD(T)
int contri-

bution. Table II shows that if this level of basis sets were
applied to the benzene-methane dimer, the error relative
to ECBS

int would be 0.15, 0.025, and 0.0001 kcal/mol for
the three consecutive distances. The two latter errors
are comparable to the estimated errors of ECBS

int for these
distances, so the results will be less accurate by about a

factor of two. This decrease of accuracy makes a differ-
ence only for the best-performing DFT approaches. At
R = 3.28 Å, the error increases about 4 times, so that
at very small R the EDNA dimer benchmarks could be
insufficiently accurate. However, the shortest R included
for this system is well beyond the zero-crossing point, so
that this issue does not become a problem.

B. Performance of DFT methods in different
regions of potential energy curves

Plots of the potential energy surfaces for each complex
are presented in Figs. 1 through 10 and a file listing all of
the DFT and benchmark interaction energies is available
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FIG. 3. Potential energy curves for the nitromethane dimer. See Fig. 1 for explanations.

FIG. 4. Potential energy curves for the methylformate dimer. See Fig. 1 for explanations.

in the Supplementary Material [16]. In each figure, for
clarity of presentation, the DFT methods were split into
two groups with 6 methods in each group, each plotted
in a separate panel. For a given system, both panels have
the same scales on both axes, therefore curves residing in
different panels can be compared directly.

Starting the comparisons from the asymptotic region,
one can see on the figures that for most systems the ma-
jority of the methods seem perform very well. One rea-
son is that all but two of our monomers have sizable
dipole moments (in some cases very large: 3.6 a.u. for
FOX-7 and 2.1 a.u. for nitrobenzene), so that the in-
teraction energy decays like 1/R3. For benzene-water,
the decay is still slow, as 1/R4, and only for benzene-
methane the decay of the electrostatic energy is 1/R6,
i.e., the same as that of the induction and dispersion en-
ergies. Since standard DFT methods give fairly accurate

multipole moments, one expects accurate reproduction of
electrostatically dominated asymptotic decays. Another
reason is just smallness of the interaction energy in this
region: the typical percentage errors at the largest dis-
tances are actually not negligible and amount to a few
percent for the systems with the 1/R3 decay. There are a
couple of methods, DCACP, M06, M11, and vdW-DF2,
which for several systems give still much larger errors, in
the range 20%-230%. Since at these distances the electro-
static energy constitutes a major fractions of the interac-
tion energy, this indicates that either the multipole mo-
ments of some monomer are not well reproduced by these
approaches or there are some unphysical components ap-
pearing at these distances. For benzene-methane, the
only dimer where electrostatics decays as fast as disper-
sion and the SAPT(DFT) energy decomposition shows
that at large R the interaction energy consists of equal
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FIG. 5. Potential energy curves for the benzene-methane dimer. See Fig. 1 for explanations.

FIG. 6. Potential energy curves for the benzen-water dimer. See Fig. 1 for explanations.

fractions of these components, the four methods have
errors between 52% and 77%, whereas the other meth-
ods perform overall similarly as for other systems. One
should point out that while DCACP, M06, and M11 can-
not produce the correct asymptotics of the dispersion en-
ergy, vdW-DF2 should be able to do so, so the large error
of this method is unexpected.

Somewhat surprisingly, even for methods with poten-
tially correct asymptotics, the relative unsigned errors of-
ten increase with R for large R. The observed behaviour
may be due to unphysical effects in the DFT part result-
ing from the wrong decay of DFT densities. It is probably
not due to insufficiently accurate C6 coefficients, since for
large enough R this error should be constant (but per-
haps R is not large enough in our calculations).

Near the equilibria, the discrepancies visible in the fig-
ures are generally much larger than at large separations.

In particular, RSH+lrMP2 and RSH+lrRPAx-SO2 sys-
tematically overbind, the former more strongly than the
latter. In contrast, DCACP systematically underbinds.
So does M06 and vdW-DF2, but to a much smaller ex-
tent. M11 is the only method which sometimes overbinds
and sometimes underbinds. However, for each of the re-
maining methods there is a dimer or two where a given
method clearly over or underbinds.

At the smallest R for each dimer, the deviations from
the benchmarks are generally the largest. The main rea-
son is that this point, for most systems, is near the region
where the potential energy curves cross zero. Thus, the
cancellations similar to those discussed in Sec. V A occur
for most methods. The observed discrepancies are actu-
ally not that critical since these interaction energies are
at the onset of the repulsive wall. As it is well seen on the
example of the water dimer (Fig. 1), the walls produced
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FIG. 7. Potential energy curves for the imidazole dimer. See Fig. 1 for explanations.

FIG. 8. Potential energy curves for the nitrobenzene dimer. See Fig. 1 for explanations.

TABLE III. Median unsigned percentage errors (MUPE) for individual dimers with respect to the benchmarks. The MP2 entry
are the CBS extrapolated values obtained as described earlier.

SAPT(DFT) MP2 B3-D3a dlDF+D LC-D3b gauBOPc BOPd vdw-DF2 M06 lrRPAe M11 lrMP2f DCACP Ave.

water dimer 1.38 1.04 1.61 1.39 4.44 3.28 6.23 5.56 4.48 7.03 5.32 7.63 7.06 4.34

ethanol dimer 1.94 1.59 3.96 2.31 4.49 6.75 10.10 16.68 22.65 8.22 29.64 9.18 39.12 12.05

nitromethane dimer 3.65 4.99 3.48 11.14 7.79 9.27 11.30 6.58 4.36 9.51 7.30 12.53 16.11 8.31

methylformate dimer 1.58 7.99 8.03 3.18 1.94 3.13 4.41 9.09 18.87 5.41 11.25 7.40 35.86 9.09

benzene-methane 3.47 13.93 7.84 6.16 9.11 7.73 8.23 28.02 29.77 8.87 40.98 16.40 67.74 19.10

benzene-water 4.38 3.31 4.90 5.56 11.09 6.95 8.08 25.03 7.54 7.65 5.17 9.96 18.26 9.07

imidazole dimer 0.70 4.38 1.20 4.11 2.66 3.04 5.38 2.17 6.85 4.23 4.01 5.70 6.79 3.94

nitrobenzene dimer 10.49 18.39 13.99 17.04 9.57 8.57 10.42 11.28 9.87 10.87 10.18 28.69 28.71 14.47

FOX-7 dimer 6.45 0.20 5.16 6.04 6.28 6.03 7.87 7.68 5.77 8.84 5.14 10.16 9.10 6.52

EDNA dimer 3.65 1.09 1.74 7.70 3.41 5.02 7.59 7.52 16.99 8.85 30.40 13.00 31.98 10.69

average of MUPEs 3.77 5.69 5.19 6.46 6.08 5.98 7.96 11.96 12.72 7.95 14.94 12.07 26.07

a B3LYP-D3; b LC-ωPBE-D3; c LCgau-BOP+LRD; d LC-BOP+LRD; e RSH-lrRPAx-SO2; f RSH-lrMP2.

by different methods are quite similar: the lateral shift of the wall between the extreme cases is less than 0.05 Å.
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C. Performance of DFT methods on individual
dimers

A summary of the performance of all methods on
all dimers is presented in Table III. Papers compar-
ing performance of various methods often use the av-
erage unsigned errors (AUE). To see that this approach
does not provide sufficient information about the per-
formance, one can recall the example given in the In-
troduction where the 0.46 kcal/mol AUE tells absolutely
nothing about the performance of a method for the weak-
est bound system with the interaction energy of −0.04
kcal/mol. A much better measure, in the case when a
benchmark set contains only energies at minima, is the
average unsigned percentage error (AUPE), which works
also very well in the asymptotic region. Unfortunately,
AUPE cannot be used for the complete potential energy
curves since the percentage errors in the region where a
given curve crosses zero can be huge, as we have seen in
Sec. V A. Thanthiriwatte et al. [11] proposed an elabo-
rate procedure to evaluate such results. Another option
is to use the median unsigned percentage error (MUPE)
since a few very large errors at the edge of the range do
not change the position of the median. We have used
MUPE to compare the methods in Table III.

As Table III shows, the two “easiest” systems for all
methods turned out to be the imidazole dimer and the
water dimer, where the average MUPE was only 3.9%
and 4.3% and the largest MUPE was 6.9% and 7.6%,
respectively. The reason for good performance in the
former case is that with the dipole moment of imidazole
equal to 1.5 a.u., this interaction is strongly dominated
by the electrostatic effects: for the largest R considered
(10.25 Å), the dispersion energy is only 3.5% of electro-
static energy. The water dimer interaction is dominated
by electrostatics as well, although to a lesser extent since
the water dipole moment is only 0.78 a.u. However, one
expects a good performance for water from methods with
fitted parameters since the water dimer is included in
most training data sets. Despite the low average MUPEs,
the differences in performance between different methods
are significant. For example, for the water dimer, several
curves [SAPT(DFT), LCgau-BOP+LRD, LC-ωPBE-D3]
almost overlap the benchmark curve, while methods
such as B3LYP-D3, RSH-lrMP2, RSH-lrRPAx-SO2, and
vdW-DF2 are quite distinctly shifted from it.

The performance is only a bit worse (average MUPE
6.5% and maximum MUPE 10.2%) for the FOX-7 dimer,
again related to the large FOX-7’s dipole moment of 3.6
a.u. As for the imidazole dimer, the dispersion energy is
only about 3.5% of the electrostatic energy at the largest
R (10.58 Å). One may ask why the importance of the
dispersion energy is about the same for the two dimers
despite the fact that imidazole has the dipole moment
twice as large as FOX-7. The reason is that whereas
electrostatic interactions coming from various regions of
monomers are of both signs, and therefore tend to can-
cel, the dispersion contributions all add up. Therefore,

for large molecules, dispersion becomes relatively more
important at the same level of polarity [100, 101]. Since
FOX-7 is twice as large as imidazole, this partially ex-
plains the observed relations.

The next group of systems includes the nitromethane,
benzene-water, methylformate, and EDNA dimers, with
average MUPEs in the range 8.3%–10.7% and maximum
MUPEs 16%–36%. The monomers have modest dipole
moments per size of a given molecule, so the increase of
difficulty compared to the group discussed above is ex-
pected. Exceptions are benzene-water with one dipole
moment of zero and nitromethane dimer with the dipole
moment of 1.6 a.u. The better than expected average
performance on benzene-water can be due to the fact
that this system is included in many training data sets.
The nitromethane monomer has about the same size and
dipole moment as the imidazole monomer, yet the perfor-
mance of the DFT methods is about twice worse in the
former case. This factor of two is quite consistently re-
flected by individual methods in both cases. The answer
to this puzzle is provided by SAPT(DFT) components.
Whereas at the largest separation, the ratio of the dis-
persion energy to the electrostatic energy (amounting to
9% for the nitromethane dimer) is larger than the 3.5%
found in the case of the imidazole dimer, (but still very
small), at the equilibria the ratios are 202% and 39%.
Thus, overall the difficult to reproduce dispersion energy
is much more important in the case of the nitromethane
dimer. This relative behavior of the electrostatic and dis-
persion energies is related to the dimer geometry. The
nitromethane dimer in a geometry with all atoms of a
given monomer fairly close to all atoms of the interact-
ing partner whereas the imidazole dimer has two rings
roughly in the same plane, so only a few atoms from
each monomer are in a close contact.

Somewhat surprisingly, for the ethanol dimer the av-
erage MUPE is 12.1% and the maximum MUPE is 39%,
one of the largest. According to the tendencies discussed
above, the ethanol dimer is expected to be a more diffi-
cult case than the water dimer since the ethanol dipole
moment of 0.69 a.u. is slightly smaller than that of water
and the number of atoms is twice as large. Also, in the
vdW minimum region, the dispersion energy is almost
two times larger in magnitude than the electrostatic en-
ergy in the former case, whereas in the latter case, the
ratio is about one third, similar to the nitromethane–
imidazole comparison. One may also notice that for the
ethanol dimer about half of the methods perform very
well with MUPEs in the range 1.6% to 6.8%, whereas the
remaining methods have errors from 8.2% to 39%. Thus,
only a subset of methods makes the average MUPE so
large.

The next to last most difficult system is the nitroben-
zene dimer, with the average MUPE of 14.5% and the
maximum MUPE of 29%. None of the methods per-
formed well on this system, with all MUPEs above 8.6%.
This happens since despite the very large dipole moment
of nitrobenzene, amounting to 2.1 a.u., the dispersion
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FIG. 9. Potential energy curves for the FOX-7 dimer. See Fig. 1 for explanations.

FIG. 10. Potential energy curves for the EDNA dimer. See Fig. 1 for explanations.

energy is about two times larger in magnitude than the
electrostatic energy in the region of the vdW minimum.
Even SAPT(DFT) gives a very large MUPE of 10.5% for
this systems, however, as mentioned earlier, this is partly
due to the fact that the δHF

int correction was mistakenly
omitted. If it is added, SAPT(DFT)’s MUPE drops to
3.7%.

The largest average MUPE of 19.1% and the maxi-
mum MUPE of 68% was obtained for benzene-methane.
This is expected as both monomers are nonpolar and
the interaction is dispersion dominated: the ratio of the
dispersion to the electrostatic energies is about 1 at the
largest R, but it is 3.2 near the minimum. The perfor-
mance of the methods falls into three groups. The best
performing SAPT(DFT) method gives a MUPE of only
3.5%, the DFT+D methods and RSH-lrRPAx-SO2 give
6.2%–9.1%, MP2 and RSH-lrMP2 give 14% and 16%, re-

spectively, and the remaining errors are above 28%. The
very large errors in the last group lead to the very large
average MUPE.

In summary, the order of difficulty correlates reason-
ably well with the size of the dipole moments, i.e., the
larger the moment the easier it is for most methods
to obtain accurate predictions of interaction energies.
However, for a given size of the dipole moment, the
performance will be worse for larger systems since the
dispersion energies increase with the number of atoms
whereas electrostatic interactions from various regions of
molecules tend to cancel. These simple rules explain most
trends, some more puzzling cases were explained by an-
alyzing the SAPT components.
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D. Overall performance

TABLE IV. Errors of the investigated methods with respect
to the benchmarks. AUPE: average unsigned percentage er-
ror; AUE: average unsigned error; MUPE: median unsigned
percentage error computed for all dimers. The MP2 entry are
the CBS extrapolated values obtained as described earlier.

Method AUPE AUE MUPE

R>1.5Rmin (kcal/mol)

SAPT(DFT) 3.3 0.17 2.6

MP2 4.3 0.30 3.0

B3LYP-D3 4.4 0.17 3.4

dlDF+D 5.5 0.26 4.2

LC-ωPBE-D3 6.3 0.15 5.3

LCgau-BOP+LRD 5.8 0.23 5.5

M06 20.6 0.31 7.3

vdW-DF2 14.5 0.42 7.5

LC-BOP12+LRD 8.1 0.27 7.7

RSH-lrRPAx-SO2 7.8 0.29 7.7

M11 22.7 0.34 8.5

RSH+lrMP2 11.3 0.57 10.2

DCACP 26.7 0.61 16.6

Table IV lists the overall errors of all computed interac-
tion energies for each method. The methods are ordered
using MUPE, but the AUE errors are also listed. The
MUPEs are computed for the whole set of 80 configura-
tions and therefore are different from the values in the
last row of Table III which are averages of MUPEs for
individual dimers. The MUPEs in Table IV range from
2.6% to 16.6%. Thus, the best methods perform really
well. In fact, in routine calculations for these systems
with the CCSD(T) method, where one would have to
choose a much smaller basis set than used in calculations
of our benchmarks, MUPE due to limited size of the ba-
sis set would certainly have been equal to a few percent,
as the MUPE of CCSD(T) predictions in the largest ba-
sis sets used by us (without any CBS extrapolations) is
1.2%.

We have also included in Table IV the MP2 method at
the basis set level used to calculate the benchmarks ex-
trapolated to the CBS limit. The overall MUPE of MP2
is small, 3.0%, but the method gives very large errors for
systems with π electrons, as seen in Table III. For exam-
ple, the MUPE for the nitrobenzene dimer is as large as
18.4%.

For the purpose of systematizing the discussion, one
can divide the methods into three groups using the
MUPE ranges below 5%, 5% to 8%, and above 8%. The
first group includes two methods that use virtual or-
bitals: SAPT(DFT) and MP2, and two DFT+D meth-
ods: B3LYP-D3 and dlDF+D. B3LYP-D3 calculations
are fully converged in basis set size due to much larger
basis set used than for other methods, see Table I, which

might have improved the relative performance of this
method. Despite using virtual orbitals, for systems of the
size included in the present comparison, a SAPT(DFT)
calculation is about as time consuming as a DFT su-
permolecular calculation of the interaction energy [102].
Thus, for such systems, there is no cost difference be-
tween SAPT(DFT) and the two DFT+D approaches.
The MP2 calculations presented in Table IV were, of
course, orders of magnitude more expensive due to the
use of very large basis sets. SAPT(DFT) also is over-
all most reliable since if the nitrobenzene dimer is ex-
cluded, the range of MUPE’s is between 0.7% and 6.5%.
The SAPT(DFT) MUPE of 2.6% is actually very close
to the uncertainties resulting from basis set effects: the
CBS benchmarks have about 1% uncertainties and a CBS
extrapolation of SAPT(DFT) interaction energies would
likely result in changes of the order of 1%. Thus, one may
say that SAPT(DFT) gives results of CCSD(T) quality
at DFT costs for dimers with up to a few dozens of atoms.

The second group includes three DFT+D meth-
ods, LC-ωPBE-D3, LCgau-BOP+LRD, and LC-
BOP12+LRD, one reoptimized standard functional,
M06, one nonlocal functional, vdW-DF2, and one
method using virtual orbitals, RSH-lrRPAx-SO2. Thus,
each type of approach has a representative in this
group. One should point out that there are significant
differences between these methods in terms of the largest
MUPE (see Table III): the M06 and vdW-DF2 methods
have the maximum MUPEs of 29.8% and 28.1%, respec-
tively, whereas for the remaining approaches the largest
MUPE is 11.3%.

The third group includes the M11, RSH+lrMP2, and
DCACP methods, with maximum MUPEs (see Table III)
amounting to 41%, 28%, and 68%, respectively.

The average unsigned errors (AUE), also shown in Ta-
ble IV, allow for much less precise differentiation between
various methods than MUPEs since the range is fairly
narrow, from 0.15 to 0.61 kcal/mol. The main reason
is that the asymptotic region has little effect on AUEs
and they reflect mainly the minimum and the repulsive
region results. For modelling of molecular crystals, the
long-range behavior downplayed by the AUE criterion is
critical since a major contribution to lattice energy comes
from dimers with large intermonomer separations. Thus,
AUE is not a good measure for applications in this field.

One more quantity listed in Table IV is the average
unsigned percentage error for distances larger than 1.5
the minimum distance. For such separations, one can
meaningfully use the simple average. These errors mainly
show the quality of the dispersion function. It so happens
that that the four top methods in terms of MUPE, have
also the lowest AUPE(R>1.5Rmin). The AUPE of LC-
ωPBE-D3 is 1.7% larger than that of B3LYP-D3, despite
the fact both methods share asymptotically the same
dispersion function. However, the short-range switching
factors are different in the two methods and the disper-
sion interaction is not the only component influencing
AUPE(R>1.5Rmin), as discussed earlier.
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One should also discuss here the influence of basis set
size on the comparisons. The benchmarks and the MP2
results are at the CBS level. Since DFT is known to
converge much faster in basis set size than the calcu-
lations using expansions in products of virtual orbitals,
the standard DFT methods, the DFT methods with non-
local functionals, and the DFT+D methods should all
be fairly close to their CBS limits despite using a fi-
nite basis set and no extrapolations. In particular, the
B3LYP-D3 calculations were performed in basis sets with
the cardinal numbers up to 6, so these results are cer-
tainly fully converged in basis set size. In contrast, the
SAPT(DFT), RSH-lrRPAx-SO2, and RSH+lrMP2 pre-
dictions would probably improve somewhat if calcula-
tions were performed in larger basis sets and extrapolated
to the CBS limit.

After having established the relative performance
of the investigated approaches, one should consider
the other properties of the methods discussed in the
Introduction. The methods using virtual orbitals
scale as N5 for SAPT(DFT) and RSH-lrMP2, and as
N6 for RSH+lrRPAx-SO2 in the present implementa-
tion. Despite such scaling, with proper programming
SAPT(DFT) and MP2 are comparable in costs to hy-
brid DFT methods, scaling as N4, for systems of the size
considered in the present test. However, for much larger
system the better scaling of the latter method will result
in a costs advantage. Only two DFT methods considered
here, vdW-DF2 and DCACP, are non-hybrid and there-
fore scale as N3. Since the exact exchange is particularly
costly in calculations with periodic boundary conditions,
these two methods are most economical in such cases.
This effectiveness has to be considered, however, in the
context of accuracy of these methods.

VI. CONCLUSIONS

We have assessed the performance of a variety of
DFT-based methodologies by comparisons to a set

of CCSD(T)/CBS interaction energies obtained for 10
dimers at varying intermonomer distances. This set
avoids the typical bias of mixing similar amounts of
hydrogen-bonded and purely dispersion-bonded systems
and should be more representative for work in the broad
field of molecular crystals. The benchmark data reported
here should be useful in the development of new method-
ologies and both the benchmarks and the performance
of DFT-based methods examined in this work should en-
able a convenient assessment of new approaches relative
to currently existing techniques. Since our test was blind
and used different monomers than considered in related
literature, none of the surveyed methods was optimized
on benchmarks similar to those included here (except for
the water dimer).
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[68] J. Řezáč, K. E. Riley, and P. Hobza, J. Chem. Theory
Comput. 7, 2427 (2011).

[69] K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and
D. C. Langreth, Phys. Rev. B 82, 081101 (2010).

[70] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and
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