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Geolocalization of water-waves origin within water distribution networks
using time reversal of first event detection

R. Guibert, A. Bayle and F. Plouraboué

Institut de Mécanique des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS, Toulouse, France

Abstract

Drinking water distribution networks in urban areas are daily -based subjected to fast propagating pressure

waves resulting from routine operations. These water-hammer waves leads to structural aging and facility

damages, the origin of which is not easy to find , but are sometimes of high managerial interest. In this

contribution, we demonstrate that using a reasonable number of high-frequency pressure detectors distributed

within the network combined with a proper post-processing method permits a close geolocalization of the

damaging wave origin. The method is first tested and validated on a real water distribution network having

approximately 26 000 pipes, whereas considering a known, prescribed wave-origin, so that the sensitivity

to sensor number (sensor spatial density), sensor location and signal-to-noise ratio on the geolocalization

robustness is are analyzed in detail. It is then applied and illustrated over real sensor recordings the result

of which are validated on the field from history matching. This paper thus presents the first field-scale

geolocalization of water-hammer events origin test as well conditions for which, given sensor density and

signal-to-noise ratio, the geolocalization success is to be expected.
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1. Introduction

Water hammer waves within Water Distribution Networks (WDNs) are a common hindrance resulting

from many possible routine operations, either organized, volountary or accidental. Not only these waves are

responsible of for structure’s wear, but they are also capable of facility damages. Intermittent water supply

operations have indeed been correlated to incident damages in WDNs (Agathokleous and Christodoulou,5

2016).

Since the water-hammer wave speed in WDNs is very fast (between 700 for 350 m/s for the softest

plastic pipes to 1200 m/s for cast iron pipes depending on pipes’ mechanical properties) having a rather slow

attenuation, the wave generated at a given location can propagate over a large portion of the entire urban

?Fully documented templates are available in the elsarticle package on CTAN.
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networks within a few seconds before decaying in less than a minute. It results in a myriad of reverberation10

causing as much disorder and possible breakages as pre-existing weaknesses. Since the life-time of these

events inside the network is short, and since they are not numerous within a day (e.g less than a few per

day in the considered city of about half a million people), the dynamic of each water-hammer event can

be considered separately. Being able to find the origin of a cascade of reverberating water-waves events is

interesting from various viewpoints: patrimonial management, security, insurances, etc...15

Nevertheless, this topic has not been developed in real WDNs because it necessitates to overcome over-

coming several challenges, not been fully addressed yet. Firstly, urban WDNs are, in many cases, not

sufficiently and reliably detected and observed in details for a precise modeling of transient waves into them

to be relevant. Secondly, localizing the origin of water-hammer waves necessitates a real-time high-frequency

monitoring with widely distributed detectors, rarely deployed in WDNs. Thirdly, the computational cost of20

direct transient wave modeling in water distribution networks is very challenging either using the Method

Of Characteristics (Wang et al., 2014; Nault et al., 2018; Meniconi et al., 2021; Moosavian and Lence, 2020;

Riaño-Briceño et al., 2022), or finite volumes e.g (Pal et al., 2021; Zhang et al., 2021). Fourthly, an inverse

method capable of identifying the origin of a reverberating water hammer wave over a large network, solving

as many direct problems as tentative tries for possible origin, is obviously even more challenging. Last but25

not least, from a more fundamental viewpoint, even if the uniqueness of the wave origin from detecting re-

verberation waves has been established on discrete wave models on arbitrary networks (Caputo et al., 2019;

Plouraboué et al., 2022), it is still a pending issue for continuum ones.

Hence, even if the idea of using the entire time-course of signal reverberation within the network at

the sensor location so as to enlarge as much as possible data collection is appealing, in practice, this ap-30

proach is still very difficult to develop at the present state of the art (Che et al., 2021). As part of the

European ”Surge-Net” project, Ferrante et al. (2009) carried out leakage location tests using echo analysis,

by combining Lagrangian and wavelet transforms signal analysis, in the Lintrahen’s (Scotland) WDN main

trunk. Shucksmith et al. (2012) performed leakage tests on the Bradford’s (Yorkshire, UK) WDN. The

authors operated at the neighbourhood scale (about 100m of weakly branched pipe) using spectral analy-35

sis for the leak echo-localization (cepstrum analysis) and with a wide variety of pipe materials (PVC, cast

iron, asbestos–cement). Recently, Meniconi et al. (2015) also combined a wavelet transform analysis with

a Lagrangian method to preliminary examine one of the main pressure transimission lines of the Milan’s

(Italy) WDN. Although achievable on a district scale or on the main supply pipes of a water distribution net-

work, the implementation of such leak detection techniques is questionable for large-scale analysis. Indeed,40

techniques based on leak wave reflection suffer from a high sensitivity to propagation speed uncertainties

and surrounding noise (Wang et al., 2021). Moreover, an idealized test case without leakage or blockage is

required for allowing direct comparison with the field pressure signal. Recently, Meniconi and co-workers
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have performed such measurements on a laboratory network (Meniconi et al., 2022a,b). However, such

benchmark case is often not operationally possible or, alternatively prone to modelling errors (e.g. cross-45

section pressure interactions, wave attenuation, incorrect network topology, etc...) as in other contexts such

as quality event detection (Kessler et al., 1998).

This is why an approximate alternative method avoiding the cost of a complete time-course of wave

propagation evaluation is proposed and developped in this contribution. Rather than trying to exploit the

entire signal complexity recorded at each sensor location, we take advantage of the first arrival time only.50

This already permits to back-track the wave origin using a time-reversal method. Time reversal methods,

either at the individual pipe level (Grigoropoulos et al., 2021) or at the network one (Shen et al., 2016) have

already permit computationaly efficient source identification. This method has been used to develop noise-

tolerant pipeline defect detection (Wang and Ghidaoui, 2018; Wang and Xie, 2018; Meniconi et al., 2021)

in the precise context of water-hammer waves. The aim of this contribution is This contribution aims to55

demonstrate that combining first-event detection with time-reversal is an interesting strategy to geolocalize

water-hammer events in real WDN.

The paper is organized as follows. Section 2.1 describes the material related to the urban network and

the pressure sensors used within the study. Section 2.2 details the algorithm of the first event detection,

time reversal method, and candidate ordering. Section 3.1 discusses the localization of prescribed events in60

a real WDN so as to test and validate the method efficiency and its sensitivity to detectors number (more

precisely the sensor ”density”, the sensor number divided by the total node number in the network). Section

3.2 finally describes the application of the proposed method to the field’s data so as to geolocalize real events

and discuss the obtained results.

2. Materials and Methods65

2.1. Materials

The materials consist in a WDN data within which high-frequency pressure detectors are disposed of.

2.1.1. Water distribution network data

The entire network from the city of Toulouse (France) illustrated in figure 1a is composed of a total

of 26 094 pipes. It has been formatted in Epanet format providing the pipe lengths, structural properties70

and diameters. The distinct pipe’s composition within the network is detailed in table 1, showing a great

majority of cast iron material. The heterogeneity of pipe diameters and lengths is illustrated in figure 1b

and c showing a great diversity of diameter and length over more than a decade.

3



Material Quantity (%) Length (%)

Iron 87.66 89.28

Steel 1.97 4.04

PVC 1.01 1.22

Others 2.15 1.46

Unknown 7.21 4.00

Table 1: Distribution of pipe materials. Others materials are inox, fiber, PE, and PVD.
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Figure 1: (a) Topography of the considered water distribution network. The network is composed of 23 784 nodes, 26 094 pipes

for a total pipe distance close to 1 200 km. The positions of high-frequency pressure detectors (from 1 to 18), arranged within

the network are illustrated with green dots. (b) Probability Density Functions (PDF) (with the corresponding histogram in

zoom’s inset) of dimensionless lengths (median 0.012 indicated with vertical dotted lines) normalized by maximal length. (c)

same as (b) for dimensionless diameters (median 0.05) normalized with maximal diameter.

75

This result in wave-propagation heterogeneity to be taken care-off from of considering the adapted velocity in
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each pipe. Local wave-hammer wave velocity indeed depends on the pipe diameter, length, thickness, Young

modulus, and material density. It is estimated from known validated formulas (cf Appendix). Furthermore,

the chosen location for high-frequency pressure sensor’s (18 in total) is depicted in Figure 1a with green dots,

each described by a label between 1 to 18, being spatially uniformly distributed over the urban network.80

2.1.2. High-frequency pressure detectors

Pressure detectors record at 128 Hz frequency with a 5000Pa accuracy. The recording mode is triggered

by an awaking threshold which empirically sets from the base signal. This precautionary procedure avoids

recording embarrassing irrelevant signal series in the detection event database. Since the event amplitude

is expected within the range of [0.8, 2]105Pa, the relative precision on the detected peak amplitude is of the85

order of 6.25%. Also, only the time-arrival of the first peak is critical for the chosen method. Each detector

has been primarily submitted to a pressure calibration test using a prescribed static pressure before field

deployment. Each sensor has its own embarked battery and RAM. Once triggered to awaken mode, the

detectors acquire at full high-frequency (i.e. 128Hz) during 300 seconds. The resulting collected data are

then more lately transmitted latelly with a standard GSM 3G protocol keeping each signal associated with90

each detector identifier.

2.2. Methods

The method decomposes into various steps : (i) first event detection into each detectors, (ii) back-

propagation from detectors to potential source of detected event using the time-reversal method and (iii)

calibration of time-reversal method on the network and detector set. The methods associated with these95

three steps are now detailed. An additional noise sensitivity check of the method has also been used, the

details of which is also given in 2.2.3.

2.2.1. First event detection and time reversal method

First event detection is performed using offline change point detection method (Truong et al., 2020). The

detection criteria isare associated with a functional minimization associated with the local gradient of the100

noisy signal. More precisely we use a binary change point detection to perform a fast signal segmentation,

coupled with a L2 cost function that detects mean-shifts in the signal. The determination of the arrival

times is illustrated for a real signal in figure 2.
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Figure 2: Illustration of change point detection applied to a real pressure signal detected on the considered WDN (figure 1a)

using high-frequency detectors. The illustrated event is discussed in subsection 3.2. For each signal related to the event, the

normalized pressure is reported versus time (cf figure 7). The obtained arrival time is represented by the vertical dashed line.

The signal is captured almost simultaneously at detectors #13 and #10 (respectively at time 112.92 and 112.96 s), then at

detector #12 (at time 114.29 s), and finally at detector #18 (115.00 s).

Time- reversal of first event detection within the network follows the approach proposed in Shen et al.105

(2016). The method principle is detailled in Figure 3. As a prerequisite, each pipe is associated with a

time propagation resulting from computing the ratio between pipe lengtht and velocity evaluated following

the Appendix formula. Then the signal processing starts when an event has been detected, resulting in a

first-time arrival (denoted ti, i = 1, 2, 3 in figure 3a) of the signal at various awaken detectors (denoted di,

i = 1, 2, 3). For each pair of detector/non-detector nodes in the network, a total-time is evaluated from110

by computing the sum of each time propagation within each pipes along the shortest path between those

within the network, as depicted in figure 3b. Performing this total time of propagation between each node

and one detector results in the detector back-propagation cartography depicted in figure 3c for detector d1,

figure 3d for detector d2 and figure 3e for detector d3. Now using the first-time arrival component vector
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ti, i = 1, 2, 3, results in back-propagating-time vectors at each nodes (each time is colored with the same115

color as the detector with which it is associated in figure 3f). In Shen et al. (2016) the source node is the

one with minimum variance back-propagating-time vector as illustrated in figure 3f. Note, however, that

depending on the recorded time, several source nodes are possibly found with this method as depicted in

figure 3e. Hence, in the case of noisy recordings one can infer that, in this case, the true source might not

necessarily be the one having the minimum variance. Hence, in order to give more robustness to the method120

(but obviously less sensitivity) we extend the search for the true source fromby considering the sorted list

of back-propagating-time vector variances in order to find the ”best” source candidates. This sorted list has

to be closed, keeping with a ”reasonable” number of possible candidates. This is what we call the method

”calibration” as detailed in the next section.
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(a) (b)
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(f) (g)

Figure 3: Time-reversal propagation method principle. (a) awaiken detectors di, i = 1, 2, 3 at first passage time ti, i = 1, 2, 3

(b) Shortest-path between detector d1 and one node. (c,d,e) Back-propagation cartography for detector d1-d2-d3. (f) For a

given arrival time vector, the source node is the one having a back-propagation vector with minimum variance. (g) Depending

on the first passage time ti, the resulting time arrival time vector can lead to several possible source nodes.
9
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2.2.2. Calibration of the time reversal method

In the original research (Shen et al., 2016), the locabilitylocality condition is widely discussed. Two main

aspects are highlighted: (i) all edges spreading times must be sufficiently different and (ii) nodes with a single

neighbor disrupt this condition. Consequently, the success rate (i.e. exact source location) of the method

depends on the topology of the considered network and the number of detectors. In our approach, the signals130

are real and uncertainties necessarily exist in the signal measurements. Moreover, it is currently not possible

to deploy sensors on 20% of the nodes in the city networks, as suggested by Shen et al. (2016); the current

order of magnitude is less than one percent. In response to this, the method has been adapted to achieve

interesting success rates with a limited number of sensors. The resulting variance of each source candidate

areis sorted in order to produce a tentative hierarchy of the best source candidate. Nevertheless, this priority135

list is not always relevant: the source having the minimum variance, i.e. the first source in the sorted list of

variances, is not always the true source. Hence, a list of potentially successful sources, i.e. “the best choice”

among the entire variance list has to be defined. This “best choice” needs a potentially successful source

number to be defined. For this, a dedicated “calibration” of the method needs to be performed so as to find

the most sensible potentially successful source number. Obviously, This potentially successful source number140

has to be chosen from a trade-off between accuracy and selectivity, i.e. maximizing the probability of finding

the true source whilst, on the order hand, not increasing too much the number of potential sources. This

“calibration” is highly sensitive to the specific network at hands, the detector number, and their positions, as

well as to the wave velocity variability among the pipes. Hence, this calibration is empirically evaluated using

the real network data and the exact detector positions and numbers. For this, we randomly chose sources in145

the network, perform the time-reversal approach in each case, and built the success-rate histogram of finding

the true source at each rank of the variance list. This is what we called the “calibration” of the method.
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Figure 4: Calibration of the method for the city network and the 18 real sensors (cf. figure 1a). 5% of the network nodes

are chosen independently and randomly as sources. (a) network with random sources in red. (b) Calibration histogram and

probability density function.

One calibration example is illustrated in figure 4a where all tested sources (used for building statistics)

have been colored in red (they represent 5% of the total network). Figure 4b depicts the probability of each

candidate to be being a true source versus its rank in the potentially successful source list. The closest to one,150

the most probable being the true source. Once adding together all potentially successful source probability

in the list result in the probability of having the true source versus rank, i.e. versus the chosen potentially

successful source number. The 0.9, 0.95, and 0.99 probabilities have been depicted with vertical dotted lines

in figure 4b. They are “calibrated” in this case by a potentially successful source number of 11, 23, and 75

respectively.155

2.2.3. Time reversal method with noisy data

In order tTo test the influence of noise in the first event detection time, some noise is added to the celerity

wave in each pipe. This noise modelsis modeling the uncertainty associated with structural or geometrical

parameters both influencing the wave velocity. We chose to impose a multiplicative noise, i.e. a noise being

a small fraction of the local value of the wave celerity in each pipe. In this framework, first event detection160

times become random variables to be evaluated a large number of times in order to access the reliability

and sensitivity of the source identification to noise. Obviously, for a given configuration (i.e. fixed network

topology, wave celerity field, detector number, and locations) the calibration procedure is performed only

once, so that for each set of random sources, the noise distribution is applied in a randomly and differently

way. Increasing the noise amplitude permits to quantifying the degradation of the method performance, so165
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as being to be able to extrapolate it for increasing noise and/or uncertainty.

3. Results

3.1. Influence of detector density and signal-to-noise ratio

As discussed in section 2.2.2, the success- rate, i.e. the capability of finding the true source among the

potentially selected ones depends both upon the sensor spatial density and on the signal-to-noise ratio. We170

hereby analyze both from randomly chosen detector locations within the network.
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Figure 5: Influence of detector number on the selectivity and success rate of the source geolocalisation. For each detector

number, 30 random sets are calibrated, using 5% of temptative randomly chosen true sources among all nodes (1189). (a)

Exact and one-neighbor detection versus function of detector number. In each case, the average behavior is plotted with bold

continuous lines where respective colored zone displays ± the standard deviation around it. (b) Average values of the potentially

successful source number versus detector number.

The detector density influence is first analyzed without noise, i.e. supposing that the wave velocity is

perfectly evaluated within each pipe. In this case, 30 randomly chosen detector configurations are analyzed

for each varying number of detectors between 10 to 50. This corresponds to a detector ”density” (i.e. the175

percentage of the detector within the total node number of the network) between 0.05% to 0.22%. Note

that these detector densities have been voluntarily chosen in a much modest range than the ones tested in

Shen et al. (2016), in line with what is currently deployed and what will be deployed in the near future soon.

This is motivated by the practical constraint that detectors deployment within the network is costly. Hence

it is required to test how the method performs for weak detector density. For such low detector density, it180

is not expected that the method could provide a highly reliable success rate. Nevertheless, Figure 5a shows
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that the success rate associated with the best source in the variance list can reach 45.5% of exact detection

for the highest detector density (with 50 detectors). This is already an interesting performance from the

practical point of view considering the poor detector deployment effort. Moreover, when relaxing/extending

the identification success to a one-neighbor distance within the network, i.e. considering one node distance185

to the best source of the variance list is a success, then the success rate can reach 68.7% as illustrated in

Figure 5a. This means that the obtained geolocalization of the best source positions in the network is useful

to locate the true source in its vicinity in case of an unsuccessful search. Hence, it is interesting to relax the

selectivity of the method (which is the maximum for a single choice associated with the best variance in the

potentially successful source list) in order to study how increasing the sensor density with a given calibration190

(from varying the list success rate from 0.9 to 0.99) impacts its selectivity. This calibration sensitivity to

detector density are is is shown in figure 5b. Whereas increasing the detector density had a weak impact on

the success rate of the best source candidate in the list, on the contrary, one can observe in figure 5b that

it has a strong impact on the potentially successful source number which strongly decays as the detector

number increases from 10 to 50. This is true for every level of calibration (i.e. for every prescribed success195

rate from 0.9 to 0.99). Hence, even if the method accuracy is poorly sensitive to sensor density, it is selectivity

is strongly influenced by it. For this reason, we also evaluate the convex hull of potentially successful sources

positions so as to provide a Region Of Interest (ROI) for the source location. This convex hull is not only

useful from the practical viewpoint to delineate the research ROI. It is also usefull as a possibly expandable

region in order to increase research success, in case of unsuccessful researches within it. This convex -hull200

will be exemplified in two practical cases in the next section.

We now turn to the analysis of noise impact on success rate. In order To analyze the expected precision

of the geolocalization produced by the first event detection method in the presence of noise, we analyze the

performance of the method with the same number of detectors as the one used on the field (18) for a large

number of randomly chosen sources when considering a relative uncertainty between 0 to 5% for each local205

wave velocity in pipes. As expected, the larger the noise amplitude, the lower the success rate. Interestingly

enough, the performance degradation scales linearly with the noise amplitude as found in figure 6a and 6b.

Hence this permits us to predict the method performances in different contexts for which the uncertainty of

the wave velocity are is larger.

3.2. Real events geolocalization210

The method is now applied to two real field’s data analyies denoted case 1 and case 2. For case 1,

figure 7a shows the time variation of the high-frequency pressure signal from the awaken detectors (four of

those, # 10, 12, 13, 18 whose location is given in figure 1) of one event. The geolocalization of the source

is provided in figure 7b using various convex-hull of potentially successful sources positions associated with

various calibrations as previously explained in section 3.1. As quantified in table 2, the ROI area provided by215
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Figure 6: Noise influence on the geolocalization (a) accuracy and (b) selectivity. Using the 18 detector locations provided

in figure 1a, the calibration is performed by randomly adding a multiplicative noise to each pipe travel time, for each tested

random source. Evolutions of (a) success rates and (b) potentially successful source number versus noise amplitude. Dashed

lines display linear regressions.

the convex hull represents a small fraction (a few percent) of the total network area. Obviously, depending

on the calibration level, this area varies. This area varies depending on the calibration level.
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Figure 7: Case 1 illustrating real event detection from the field’s data recordings. (a) Normalized pressure signals recorded by

high-frequency detectors. (b) Geolocalization of the source with three convex hulls associated with three calibration levels :

(yellow) 0.75 %, (orange) 0.5 %, ansd (red) 0.1 % of potentially successful source number in overall nodes. The four detectors

that awaken during this event are depicted in green. (c) Zoom on ROI with the largest hull in dashed lines and nodes colorized

versus their variance level from yellow to red for increasing probability of being the source.
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Figure 8: Same conventions as figure 7 for case 2.
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Case # % of pot. suc. source number Hull area (%) Pipe length (%)

Case 1

0.75 7.97 0.67

0.5 7.27 0.40

0.1 2.39 0.05

Case 2

0.75 15.92 0.77

0.5 10.05 0.52

0.1 4.24 0.08

Table 2: Hull areas (normalized by the total area of the network) and subgraph pipe lengths (normalized by the total pipe

length of the network) versus the node proportion kept in the potentially successful source list for the real events illustrated in

figure 7 and 8.

220

It decreases as the potentially successful source number used also levels - down. The proportion of pipe

length within the convex - hull for the case 1 is also provided in table 2. It shows that (in the less selective

choice) only 0.6% of the total pipe length are is worth of investigationing for finding the source. This

shows that the methods already permits a huge screening over the total pipe length inside the network, a

result of high operational interest. This is the geolocalized illustration of the method’s selectivity. Figure 7c225

also provides a zoom into the ROI region in order to better visualize the convex - hull as well as the true

source location. In the considered event, history matching has indeed permitted us to find the true location

of the responsible event associated with a pipe breakage. The black arrow of figure 7c indicates that the

breakage location indeed lies inside the ROI prediction of the method. This a posteriori confirmation is

a supplementary demonstration that the proposed method is relevant for the field’s water-hammer source230

identification.

Another geolocalization example associated with case 2 is illustrated in figure 8 for which the event

responsible for the water-hammer wave has been identified as the start-up of one boost pump inside a

drinking water production plant. In this case height detectors have been awakened (# 1, 2, 3, 4, 5, 6, 7, 18) all

showing a sudden uprising from base-state illustrated in figure 8a as opposed to the sudden depression found235

in figure 7a. This is indeed the expected behavior from an pressure injection event associated with a boost

pump turn-on. The location of the pump is however found (figure 8c arrow) at the very edge of the ROI

in this case. This might be related to the presence of high-diameter pipe connections of the drinking water

production plant into the distribution system for which the associated wave velocity is perhaps roughly

approximated. Concerning the quantitative figures obtained for the case 2 provided in table 2 a similar240

conclusion to case 1 can be raised. Also, in this case, the methods permits a huge screening over the total

pipe length worth investigating from the overall network.
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4. Conclusions

This work has investigated the geolocalization of water-hammer events sources within a water distribution

network from the use of high-frequency pressure detectors distributed within it. Combining first event245

detection with a time-reversal method, the accuracy and selectivity of the method have been analyzed within

real network configurations, considering the very low density of pressure detectors. In this context, we

demonstrate from a dedicated calibration procedure the relevance of the proposed method to perform a very

good screening of potentially successful sources. The effect of noise either associated with the detector signal

or the network uncertainty have has also been analyzed. Performance degradation of the method have has250

also been quantified for a noise range between 1 to 5% of the base signal. Finally, the relevance of the

proposed method is illustrated in two field cases for which history-matching analysis provides a true source

location consistent with the method’s prediction.

Hence the proposed method has demonstrated the proof-of-concept that water-hammer events geolocaliza-

tion are is possible with a combination of rather sparing computational and technological tools. Considering255

the possible managerial interest of such localization in insurance issues and/or repairing investigations, this

contribution can lead to significant operational consequences on in the field.

Obviously, Uncertainties on about the pipe’s properties as well as network topological reliability could

hamper a direct application of the method in some urban networks. Nevertheless, some more involved sensors

and/or a more elaborated use of the signal beyond first-event detection might be interesting to develop in260

the future in order to partly overcome these uncertainties.
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Appendix. Local water-hammer wave velocity

Given the Young modulus E of the pipe, the Poisson coefficient νs, the pipe’s density ρs, the dimensionless

thickness α = e/R (e being the pipe thickness and R its radius), the acoustic water velocity c0, K the

18



isothermal fluid bulk modulus, the water-hammer wave speed is given by

c = c− · cp, (.1)

with,275

c2p =
c20

1 + 2K
αE

(
2(1−ν2

s )
2+α + α(1 + νs)

) . (.2)

c2− =
1 + C2s +

4ν2
sD

α(2+α) −
√(

1 + C2s +
4ν2

sD
α(2+α)

)2
− 4C2s

2
(.3)

with Cs = E/ρscp being the pulse wave velocity ratio, whilst D = ρf/ρs being the fluid to solid density one.

These expressions can be found in Zhang et al. (1999); Tijsseling (2007).
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