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Abstract 

Individual differences in delay discounting—how much we discount future 

compared to immediate rewards—are associated with general life outcomes, 

psychopathology, and obesity. Here, we use machine learning on fMRI activity during an 

intertemporal choice task to develop a functional brain marker of these individual 

differences in human adults. Training and cross-validating the marker in one data set 

(Study 1, N = 110 male adults) resulted in a significant prediction-outcome correlation 

(r = 0.49), generalized to predict individual differences in a completely independent data 

set (Study 2, N = 145 male and female adults, r = 0.45), and predicted discounting several 

weeks later. Out-of-sample responses of the functional brain marker, but not discounting 

behavior itself, differed significantly between overweight and lean individuals in both 

studies, and predicted fasting state blood levels of insulin, c-peptide, and leptin in Study 1. 

Significant predictive weights of the marker were found in cingulate, insula, and 

frontoparietal areas, among others, suggesting an interplay among regions associated 

with valuation, conflict processing, and cognitive control. This new functional brain marker 

is a step towards a generalizable brain model of individual differences in delay discounting. 

Future studies can evaluate it as a potential transdiagnostic marker of altered decision-

making in different clinical and developmental populations.  
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Significance statement  

People differ substantially in how much they prefer smaller sooner or larger later 

rewards such as spending money now versus saving it for retirement. These individual 

differences are generally stable over time and have been related to differences in mental 

and bodily health. What is their neurobiological basis? We applied machine-learning to 

brain imaging data to identify a novel brain activity pattern that accurately predicts how 

much people prefer sooner versus later rewards, and which can be used as a new brain-

based measure of intertemporal decision-making in future studies. The resulting functional 

brain marker also predicts overweight and metabolism-related blood markers, providing 

new insight into the possible links between metabolism and the cognitive and brain 

processes involved in intertemporal decision-making.   
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Introduction 

Many decisions in life have consequences at different points in time. For example, 

most people need to decide whether to put part of their paycheck towards a retirement 

fund or spend it on something fun, like a short vacation. These trade-offs between options 

that are immediately rewarding and those that will be more rewarding in the long run are 

hard, and people differ substantially in delay discounting—the degree to which they 

discount future compared to immediate rewards (Kirby and Herrnstein, 1995). Greater 

delay discounting (i.e., greater impatience or higher preference for sooner rewards) is 

associated with obesity, addiction, and many psychiatric conditions (Bickel et al., 1999; 

MacKillop et al., 2011; Mole et al., 2015; Amlung et al., 2016). It has therefore been 

proposed as a potential transdiagnostic marker of psychopathology (Amlung et al., 2019; 

Lempert et al., 2019) and as a risk factor for short-sighted behaviors such as unhealthy 

diet, smoking, and excessive alcohol and drug use (Audrain-McGovern et al., 2009; Fernie 

et al., 2013). The goal of the present study is to identify and validate an fMRI-based brain 

marker of individual differences in delay discounting.  

Previous findings regarding the structural and functional brain bases of individual 

differences in delay discounting offer a mixed picture. Several studies suggest a role for 

areas involved in reward processing and valuation (Bartra et al., 2013; Cooper et al., 

2013), and for areas central to cognitive control (Hare et al., 2014). Brain areas associated 

with memory and prospection have also been found to contribute to individual differences 

in delay discounting (Benoit et al., 2011; Peters and Büchel, 2011; Lebreton et al., 2013). 

Studies using structural and functional connectivity measures suggested a role for fronto-

striatal and striatal-subcortical connections (van den Bos et al., 2014). The structure of 

midbrain dopaminergic nuclei and the ventral striatum has been associated with self-

reported trait impulsivity (MacNiven et al., 2020).  
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Individual differences in delay discounting may also emerge from the combined 

activity across multiple brain regions or functional networks. However, only a few studies 

(Berman et al., 2013; Li et al., 2013; Pehlivanova et al., 2018) have investigated the 

distributed patterns associated with individual differences in delay discounting. Further, 

most previous studies used relatively small sample sizes to explore these individual 

differences, increasing the risk of both false-positive and false-negative results (Poldrack 

et al., 2017). Given the use of standard correlation or regression analyses that are typically 

not cross-validated on independent data samples, previous results are difficult to compare 

with each other and do not provide any formal model that could predict delay discounting 

in completely independent studies.   

Here, we address these limitations by using a machine-learning-based ‘brain 

model’ approach (Woo et al., 2017; Kragel et al., 2018). Brain models are trained to predict 

a mental process or individual variable (here, delay discounting) and can be applied to 

independent data (Kragel et al., 2018; Scheinost et al., 2019). As such, brain models go 

beyond reporting peak coordinates by identifying specific large-scale patterns of brain 

activity that can be replicated, validated, or falsified in a quantifiable way. This approach 

has been successfully applied to brain-based prediction of pain (Wager et al., 2013), 

working memory (Rosenberg et al., 2020), and affective states (Yu et al., 2020), among 

others. The importance of independent validation and model generalizability has also been 

recognized for brain-based prediction of trait-like individual differences (Gabrieli et al., 

2015; Rosenberg et al., 2018; Rosenberg and Finn, 2022). 

Here, we build on this approach to predict individual differences in delay 

discounting. If there is a consistent activity pattern associated with individual differences 

in delay discounting during intertemporal choices, then this pattern should be able to 

predict delay discounting in new data (hold-out subjects) and even completely 

independent data sets. Comparing the resulting pattern to meta-analysis-based masks 
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allows us to assess the contribution of brain areas associated with valuation, cognitive 

control, and prospection. 

 

Materials and methods 

Overview 

We used an established machine-learning algorithm, LASSO-PCR (Tibshirani, 

1996; Wager et al., 2011) and fMRI data from two independent studies, from different 

scanners, labs, and countries. Study 1 (N=110) was used for training and cross-validation 

of a predictive model of individual differences in delay discounting. Study 2 (existing data 

set from previously published study, see Kable et al., 2017, N=145) was used as an 

independent test data set to assess the validity and replicability of the predictive model. 

 

Participants 

For Study 1, participants were recruited in the context of a seven-week dietary 

intervention study at the University of Bonn in Germany 

(https://osf.io/rj8sw/?view_only=af9cba7f84064e61b29757f768a8d3bf). Due to the nature 

of this longitudinal intervention study, we recruited only male participants who further 

fulfilled the following inclusion criteria: age between 20 and 60 years, right-handedness, 

non-smoker, no excessive drug or alcohol use in the past year, no psychiatric or 

neurological disease, body mass index (BMI) between 20 and 34, no other chronic illness 

or medication, following a typical Western diet without dietary restrictions, and no MRI 

exclusion criteria (large tattoos, non-removable piercings, metal in the body, 

claustrophobia, etc.). N=116 male participants performed the intertemporal choice task in 

Study 1. Here, we focus on behavioral and fMRI data collected during a baseline session 

before the group assignment and dietary intervention (to be reported elsewhere) and use 

post-intervention behavioral data only for demonstrating the temporal stability of 
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interindividual differences in delay discounting. The data of six participants had to be 

excluded for analysis due to the following reasons: technical problems with the scanner 

(1), with the synchronization between stimulation software and scanner (3), and with the 

response box (1), and strong motion artifacts (>5mm) and participant quitting the task mid-

scan (1). Therefore, 110 participants (mean age=31.7; 52 lean, 48 overweight, and 10 

obese; BMIs ranging from 20.6 to 33.7) were included in the final analysis of Study 1. 

There were no significant differences between lean and overweight-to-obese participants 

in age, education, or total brain volume (see Table 1). Data from 109 participants were 

available for the seven-week follow-up measurements (i.e., one participant did not return 

for the second session).  

Study 2 was conducted in the context of a large cognitive training study at the 

University of Pennsylvania in the United States (Kable et al., 2017). The goal was to 

examine whether commercial cognitive training software leads to significant changes in 

decision-making behaviors, including delay discounting. Participants completed two 

sessions of scans 10 weeks apart. As with Study 1, we focus on the baseline (pre-

intervention) behavioral and fMRI data, and report post-intervention behavioral data only 

to assess the temporal (10-week) stability of interindividual differences in delay 

discounting. Of the 160 non-pilot participants who completed session 1, we excluded 

those with missing runs (N=6), frequent or significant head movement (any run with >5% 

of mean image displacements greater than 0.5mm; N=3), more than 3 missing trials per 

run for two or more runs (N=2), or lack of participant blinding (N=1, one subject expressed 

awareness of their experimental condition, i.e. cognitive training vs. control). Of the 

remaining 148, we excluded three more participants whose choice was entirely one-sided 

(i.e., choosing only immediate reward or delayed reward), resulting in a final sample of 

N=145 participants for Study 2 (88 male, 57 female, mean age=24.4; 81 lean, 39 

overweight, and 25 obese; BMIs ranging from 16.5 to 40.9). There were no significant 
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differences between lean and overweight-to-obese participants in sex, age, education, or 

total brain volume (see Table 1). Due to drop-out, data from 102 participants was available 

for the 10-week post-intervention measurement of log(k).  

The study protocols were approved by the institutional review boards of Bonn 

University’s Medical School (Study 1) and the University of Pennsylvania (Study 2). All 

participants provided written informed consent, and were paid for their time and 

participation in the study. The research reported here complies with all relevant ethical 

regulations. 

 

Stimuli and task 

In Study 1, participants performed 108 choices (trials) between varying amounts 

of smaller sooner (SS) and larger later (LL) options, presented on the left or right of the 

screen (position randomized; see Figure 1a). Participants were instructed that one of their 

choices might be paid out at the end of the experiment. Thus, participants’ choices were 

non-hypothetical and incentive-compatible. During each trial, the two options were 

presented for 4s, during which participants could make their choice (left or right) by 

pressing the corresponding response key with their left or right index finger, respectively. 

Once the choice had been made, a yellow frame highlighted the chosen option and 

remained on the screen for the remainder of the 4s. Intertrial intervals were jittered using 

an approximately geometric distribution (2–11s) 

SS options varied among €5, €10, and €20, and always had zero delay (‘today’). 

LL options varied between €5 and €96.80 and had delays between 2 days and 8 months 

(~240 days, choice combinations are presented in Figure 1-1). Amounts and delays were 

chosen to allow fine-grained estimation of individual k’s between 0 and 0.256. Trials were 

presented in randomized order. 



A BRAIN SIGNATURE OF DELAY DISCOUNTING 9 

The intertemporal choice task in Study 2 consisted of 120 trials, again with the 

same choice sets for all participants (see Figure 1-2). In contrast to Study 1, the SS 

amount was fixed at US$20. Thus, participants were presented with the LL option (with 

amount ranging from US$22 to US$85 and delays from 19 days to 180 days) and were 

instructed to press one of two keys to either accept and receive this LL offer, or to reject 

the LL offer and receive the SS offer ($20 today) instead. Participants were informed that 

one trial would be randomly chosen at the end of the experiment and their choices 

implemented (i.e., the chosen amount would be paid via wire transfer at the indicated time 

delay), resulting in incentive-compatible and mutually independent choices in each trial 

(as in Study 1).  

 

Blood measures and body fat measures 

In Study 1, blood samples in a fasted state were collected from participants’ non-

dominant arm before they received a standardized breakfast. HOMA-IR (a marker of 

insulin resistance) was calculated as the product of fasting insulin and glucose levels, 

divided by 405 (Lozano et al., 2012). Body weight and proportion of body fat were 

measured using a bioimpedance scale (Tanita Europe BV, Amsterdam, the Netherlands). 

For technical reasons, this body fat measure was available for only 103 participants.  

 

Experimental design and statistical analyses 

Behavioral measures. For each participant, we calculated the proportion of SS 

choices (with respect to total number of non-misses) and the model-based discounting 

parameter k. Individual k’s were log-transformed in both studies to obtain less skewed 

distributions of discounting parameters. This log(k)-parameter describes the steepness of 

discounting as modeled by the hyperbolic discounting function (Kirby and Herrnstein, 

1995). Higher log(k) parameters reflect steeper discounting and thus greater impatience; 
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smaller (more negative) values reflect less steep discounting and thus more patient 

decision-making.  

In Study 1 we computed k by calculating the proportion of SS choices for all target 

k’s (i.e., the k-value for which SS and LL options of any given choice trial should 

theoretically be chosen at 50% each). We then used linear interpolation to identify the 

individual indifference point at which the proportion of SS and LL choices was equal (50% 

each).  

In Study 2, we fit a logit utility model on choice data via maximum likelihood 

estimation. The logit of the probability of choosing the delayed reward was modeled as 

follows: 

logit&p(Y! = delayed)0 = σ2 LL!
1 + kD!

− 20; 

Where LLt is the LL amount in trial t and Dt is the delay in trial t. ! was included as 

a scaling parameter that controls the relationship between utility difference scale and 

choice.  

 

MRI data acquisition. Functional and structural brain imaging data for Study 1 

were acquired using a Siemens Trio 3T scanner (Erlangen, Germany) at the Life & Brain 

Institute, Bonn University Hospital, Germany. Functional images used a T2* weighted EPI-

GRAPPA sequence (TR=2.5s, TE=30ms, flip angle=90°, FOV=192mm, acceleration 

factor R=2, average of 400 volumes) and covered the whole brain in 37 slices (voxel size 

of 2 x 2 x 3mm, 10% interslice distance). Structural images were acquired using a T1 

weighted MPRAGE sequence (1mm isomorphic voxels).  

For Study 2, the functional and structural imaging data were acquired with a 

Siemens 3T Trio scanner with a 32-channel head coil. High-resolution T1-weighted 

anatomical images were acquired using an MPRAGE sequence (T1=1100ms; 160 axial 
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slices, 0.9375 x 0.9375 x 1.000mm; 192 x 256 matrix). T2*-weighted functional images 

were acquired using an EPI sequence with 3mm isotropic voxels, 64 x 64 matrix, TR=3s, 

TE=25ms, 53 axial slices (no interslice gaps), 104 volumes. B0 fieldmap images were 

collected for distortion correction (TR=1270ms, TE=5 and 7.46ms). 

 

Preprocessing and basic statistical analyses of fMRI data. Preprocessing for 

Study 1 was performed in SPM12 and used a standard pipeline of motion correction, slice 

time correction, spatial normalization to MNI space, and spatial smoothing of images using 

an 8mm FWHM Gaussian kernel. Preprocessing for Study 2 was performed in FSL 

according to the original preprocessing pipeline (Kable et al., 2017). This involved the 

standard pipeline of motion correction, b0 map unwarping, interleaved slice time 

correction, spatial smoothing with FWHM 9mm Gaussian kernel, and high-pass filtering 

(cutoff=104s). 

For Study 1, we used SPM12 to fit a general linear model (GLM) for each 

participant’s imaging data, with choice screen onset modeled as a stick function (0s 

duration) as the main regressor and mean-centered parametric modulators for delay, 

relative LL amount (LL amount divided by SS amount), SS amount, and reaction time. Six 

nuisance regressors were added to control for movement artifacts. For Study 2, FSL was 

used to fit an otherwise similar statistical model with a choice screen onset as main 

regressor and mean-centered parametric modulators for delay, LL amount, and reaction 

time. As in Study 1, six movement regressors were added to control for head movement. 

Individual contrast images were calculated for the following three regressors of 

interest that were available for both studies: 1) choice screen onset versus implicit 

baseline (hereafter referred to as “Choice contrast”), 2) parametric modulation by (relative) 

LL amount (“LL Amount”), and 3) parametric modulation by delay (“Delay”). Contrast 

images were gray matter-masked to remove voxels that were unlikely to contain 
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meaningful BOLD signal and individually z-scored to remove differences in scale across 

images (and thereby make results transferable across studies and data sets).  

 

Training and cross-validation.  

Training and cross-validation were performed on data from Study 1 only (see 

Figure 1b). Individual differences in delay discounting may result from how participants 

respond to intertemporal choices overall, from how they process future rewards, and from 

how they process time delays. Thus, to capture a combination of functional processes that 

together determine delay discounting, we concatenated the contrast images for Choice, 

LL Amount, and Delay for each participant, resulting in a feature space that was triple the 

size of a single brain image. We then used LASSO-PCR (least absolute shrinkage and 

selection operator-principal component regression) (Tibshirani, 1996)—a machine 

learning-based regression algorithm—to train a classifier to predict log(k) across all voxel 

weights of the concatenated contrast images. LASSO-PCR first performs data reduction 

using principal component regression, thus identifying brain regions and networks that are 

highly correlated with each other. It then performs the LASSO algorithm, which shrinks 

regression weights towards zero, thus reducing the contribution of less important and 

more unstable components. LASSO-PCR has been shown to be advantageous for brain 

images for several reasons (see Wager et al., 2011; Wager et al., 2013): it is adequate for 

predictions based on thousands of voxels, it takes into account multicollinearity between 

voxels and brain regions, and it yields interpretable results by allowing reconstruction of 

voxel weight maps based on PCR results.  

To assess the predictive accuracy of the classifier in new subjects, we used 10-

fold cross-validation. Thus, the training data was split up in 10 stratified combinations of 

training (90%) and test sets (10%), such that every subject’s data was used for the training 

of the classifier in nine folds and held out in the remaining fold to independently assess 
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the prediction-outcome correlation. Tenfold cross-validation was chosen a priori as a good 

compromise between maximizing the sample size in each training set and being within the 

range of recommended folds (between 5 and 10) (Scheinost et al., 2019; Poldrack et al., 

2020). A priori set default regularization parameters were used for all machine-learning 

analysis to avoid biasing the model parameters to the data and thereby generating over-

optimistic accuracy scores. Permutation tests (5,000 iterations of randomly permuting the 

log(k) values) were used to generate null distributions and to assess the statistical 

significance of the prediction-outcome correlation and the mean absolute error. Out-of-

sample predictions of log(k) were used for all correlational analysis (e.g., with BMI, age, 

blood markers). 

 

Bootstrapping and thresholding. To identify the brain areas contributing the 

most reliable positive or negative weights, we performed a bootstrap analysis; 5,000 

samples with replacements were taken from the paired brain and outcome data, and the 

LASSO-PCR was repeated for each bootstrap sample. Two-tailed, uncorrected p-values 

were calculated for each voxel based on the proportion of weights above or below zero 

(Wager et al., 2011; Wager et al., 2013). False discovery rate (FDR) correction was 

applied to p-values to correct for multiple comparisons across the whole feature space 

(three combined brain maps).  

 

Independent test set. Study 2 was used as an independent test set to assess the 

validity and generalizability of the brain pattern classifier developed based on Study 1 (i.e., 

the k-marker). For this purpose of testing its validity in an independent data set (and for 

all future use of this brain-based model), the k-marker was trained on the data of all 

participants of Study 1. To assess the response of the predictive marker in Study 2, we 

calculated the matrix dot product between the k-marker and the concatenated contrast 
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images (Choice screen onset, LL Amount, and Delay) from each participant. The dot 

product reflects the pattern similarity between the classifier and each participant’s set of 

contrast images and, in sum with the classifier’s intercepts, provides a predicted value of 

log(k). Predictive accuracy of the marker was quantified by correlating the predicted value 

of log(k) with the actual log(k)’s of each participant and by calculating the mean absolute 

error for each prediction. 

 

Other statistical analyses. All statistical tests were performed in Matlab, were 

two-tailed, and used a significance criterion of p=0.05. Statistical power calculations 

confirmed that the sample sizes in both studies were sufficiently powered (>80%) to detect 

correlations of r > 0.3 at a significance level of p=0.05 (two-sided tests).  

 

Results 

Individual differences in delay discounting 

In Study 1 (Bonn University, N=110), participants chose the SS option in an 

average of 43.7% of all trials (median=48.1%) and had a fitted mean log(k) parameter of 

-5.70 (median log(k)=-5.28, corresponding to a k of 0.0051). Choice behavior was 

characterized by substantial individual differences, with %SS choices ranging from 5.6% 

to 88.8%, and log(k) ranging from -9.90 to -1.36 (see Figure 1c). Individual differences 

were very stable over a 7-week period (see Methods), with a test-retest reliability 

(correlation between baseline log(k)’s and second session) of r=0.86 (p<0.001, 95%-

confidence interval [CI]=[0.80, 0.90], Figure 1c). 

On average, participants in Study 2 chose the SS option in 57.4% of trials 

(median=60.0%) and had an fitted log(k) of -4.08 (median log(k)=-3.95, corresponding to 

a k of 0.0193). Again, individuals varied substantially in their intertemporal preferences, 

with %SS ranging from 0.8% to 99.2%, and log(k) ranging from -7.08 to -2.12 (see Figure 
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1c). As in Study 1, these individual differences were stable over time, with a test-retest 

reliability between baseline and post-intervention (10 weeks later) measures of log(k) of 

r=0.74 (Pearson correlation, p<0.001, 95%-CI=[0.63, 0.82], see Figure 1c). Thus, our data 

confirm both the substantial variability in delay discounting known from previous work 

(Kable and Glimcher, 2007; Pehlivanova et al., 2018) and the stability of these individual 

differences over time (Kirby, 2009; Anokhin et al., 2015; Lempert and Phelps, 2016), 

allowing us to investigate the neurofunctional bases of these individual differences. 

 

Significant cross-validated prediction of delay discounting based on fMRI 

Training (using LASSO-PCR) and cross-validating (10-fold) the predictive marker 

(termed k-marker, see Figure 2a) in Study 1 resulted in a cross-validated prediction-

outcome correlation (i.e., correlation between predicted and actual log(k)) of r=0.49 

(permutation test: p<0.001), a mean squared error of 2.84 (permutation test: p<0.001), 

and a mean absolute error for predicted log(k) of 1.32 (permutation test: p<0.001; see 

Figure 2b-c for additional results and random cross-validation folds). The explained 

variance of the prediction compared to a hypothetical mean model (prediction R2) was 

R2=0.23. Individual differences in head motion (mean absolute framewise displacement) 

were neither related to log(k) (Pearson correlation: r=-0.05, p=0.58) nor predicted log(k) 

(Pearson correlation: r=0.01, p=0.92). Statistically controlling for age, education, head 

motion, and total brain volume (using partial correlations), did not substantially change the 

relationships between actual log(k) and predicted log(k) (Partial correlation: r=0.54, 

p<0.001). Out-of-sample k-marker responses also predicted percentage of SS choices 

(Pearson correlation: r=0.50, p<0.001) and log(k) calculated based on the method of 

Study 2 (Pearson correlation: r=0.45, p<0.001).  

 

Validation of the k-marker in an independent test data set (Study 2) 
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Brain markers of individual differences become more meaningful if they can be 

validated in different and completely independent data (Kragel et al., 2018). The validity 

of the marker should not depend on study-specific parameters such as the type of scanner 

used for data acquisition, preprocessing software, or other aspects of the data (Woo et 

al., 2017; Kragel et al., 2018; Scheinost et al., 2019).  

We therefore tested whether the k-marker—developed and cross-validated 

entirely on Study 1—could predict discounting in a completely independent data set. The 

validation data set (Study 2) was acquired on a different scanner, in a different lab and 

country, and using a different participant sample and different task characteristics, and 

was preprocessed and analyzed using different MRI analysis software. Evaluating the 

performance of the k-marker in Study 2 is therefore an even stronger test than cross-

validation in Study 1 alone. 

For this purpose, we computed the pattern expression of the k-marker using the 

matrix dot product for each participant’s data (contrast images for Choice, parametric 

modulation for LL Amount, and Delay) in Study 2. The resulting predicted log(k) values 

were significantly correlated with actual log(k) values (Figure 2c), Pearson correlation: 

r=0.45, p<0.001, 95%-CI=[0.31, 0.57], mean absolute error of 1.68) demonstrating the 

replicability of the k-marker in a completely independent data set. For the transfer test to 

Study 2, prediction R2 was -3.2, indicating that, while the k-marker was very accurate in 

identifying the rankings among individuals, the absolute prediction values were less 

accurate than a hypothetical mean model.  

The training and cross-validation data set (Study 1) consisted of male participants 

only, which might limit the validity of the k-marker in females. We therefore assessed the 

accuracy of the k-marker in Study 2 separately in male and female participants (see Figure 

2c). In male participants (N=88), the prediction-outcome correlation was r=0.40 (Pearson 

correlation: p<0.001, 95%-CI=[0.21, 0.56]). In females (N=57), the prediction-outcome 
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correlation was r=0.55 (Pearson correlation: p<0.001, 95%-CI=[0.34, 0.71]) and thus 

comparable, if not superior, to the predictive accuracy in males. This demonstrates that 

the k-marker (despite being trained on male participants’ data only) predicts delay 

discounting well for both male and female participants. As in Study 1, individual 

differences in head motion in Study 2 were neither related to log(k) (Pearson correlation: 

r=0.12, p=0.14) nor predicted log(k) (Pearson correlation: r=0.04, p=0.59). Statistically 

controlling for age, sex, education, head motion, and total brain volume did not change 

the relationship between predicted and actual log(k) (Partial correlation: r=0.44, p<0.001, 

95%-CI=[0.30, 0.56]). 

 

Brain-based prediction of future discounting 

We next assessed whether responses of the k-marker were predictive of individual 

differences in delay discounting as measured several weeks later. Responses of the k-

marker at baseline significantly predicted (out-of-sample) discounting behavior seven 

weeks later in Study 1 (Pearson correlation: r=0.38, p<0.001, 95%-CI=[0.20, 0.53]) and 

10 weeks later in Study 2 (Pearson correlation: r=0.36, p=0.002, 95%-CI=[0.17, 0.51]; see 

Figure 2d). This shows that variability in k-marker responses is driven largely by stable 

individual differences and their underlying neurophysiological processes. 

 

Response of the k-marker differs between lean and overweight participants 

Given previous findings of higher delay discounting in overweight and obese 

people (Jarmolowicz et al., 2014; Amlung et al., 2016), we next tested whether individual 

differences in k-marker response were associated with individual differences in body mass 

and overweight (as measured by the body mass index [BMI] > 25). In contrast to previous 

reports (MacKillop et al., 2011; Amlung et al., 2016) that have studied this relationship 

more systematically, actual log(k) was not significantly correlated with BMI in either of the 
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two samples (Pearson correlations: Study 1: r=0.07, p=0.48, 95%-CI=[-0.12, 0.25]; 

Study 2: r=-0.04, p=0.69, 95%-CI=[-0.20, 0.12]). However, in Study 1, response of the k-

marker significantly correlated with both BMI (Pearson correlation: r=0.26, p=0.005, 95%-

CI=[0.08, 0.43]; see Figure 3a) and percentage of body fat (Pearson correlation: r=0.28, 

p=0.004, 95%-CI=[0.09, 0.45]). The k-marker response in Study 1 also differed between 

lean (BMI <= 25) and overweight-to-obese (BMI > 25) participants (two-sample t-test: 

t(108)=2.85, p=0.005, Cohen’s d=0.55, 95%-CI=[0.12, 0.69]; see Figure 3b). Further, k-

marker response in Study 1 significantly predicted metabolic blood markers that are 

associated with some of the negative health consequences of obesity, namely fasting-

state insulin levels (Pearson correlation: r=0.22, p=0.020, 95%-CI=[0.04, 0.39]), measures 

related to insulin—HOMA-IR, a marker of insulin resistance (Pearson correlation: r=0.24, 

p=0.015, 95%-CI=[0.05, 0.41], and C-peptide levels (Pearson correlation: r=0.23, 

p=0.018, 95%-CI=[0.04, 0.40])—and fasting-state leptin levels (Pearson correlation: 

r=0.34, p=0.001, 95%-CI=[0.16, 0.49]); see Figure 3c). All these associations remained 

significant when statistically controlling for age, education, total brain volume, and average 

head motion.  

 In Study 2, the correlation between predicted log(k) and BMI was positive but not 

significant (Pearson correlation: r=0.09, p=0.28, 95%-CI=[-0.07, 0.25]). However, 

paralleling the findings in Study 1, overweight-to-obese participants had a significantly 

higher k-marker response (higher predicted discounting) compared to lean participants 

(two-sample t-test: t(143)=2.11, p=0.037, Cohen’s d=0.35, 95%-CI=[0.02, 0.57]; see 

Figure 3b).  

 

Thresholded activation patterns of the k-marker 

 Activation patterns across the whole brain gray matter and across all three 

contrasts are used for prediction and cross-validation. To identify the areas that 
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contributed the most strongly with positive or negative weights, we used a bootstrapping 

procedure (5,000 samples). Bootstrapped weights were thresholded at q=0.05 FDR 

corrected across the whole weight map of the combined feature space (see Figure 2a and 

Figures 2-1, 2-2, and 2-3).  

Our results revealed a distributed network of areas that jointly contributed to 

individual differences in delay discounting, including the vmPFC, ventral striatum, anterior 

midcingulate cortex (aMCC), hippocampus, frontoparietal, and visual areas (see Figure 

2). Predictive activity patterns differed for the processes captured by the three different 

contrast images. Of note, some regions showed negative weights (i.e., predicted less 

discounting) for one contrast but positive weights (i.e., predicted more discounting) for 

another. For the Choice (versus implicit baseline) contrast, activity in the striatum, the 

anterior insula, and lateral prefrontal areas contributed positive weights for more 

discounting, whereas activity in visual, premotor, and motor areas contributed negative 

weights. For the parametric modulation by LL Amount, activity in vmPFC, aMCC, posterior 

cingulate cortex (PCC), precuneus, and frontoparietal areas contributed positive weights 

for greater discounting, whereas visual areas and premotor areas contributed mainly 

negative weights. For the parametric modulation by Delay, we observed positive weights 

in the most ventral part of the vmPFC, premotor areas, and visual cortex and negative 

weights in frontoparietal areas and brainstem regions.  

To further assess the stability of weights, we tested whether developing the 

predictive model on the data of Study 2 and testing on Study 1 would yield comparable 

results. Training and cross-validating the model on the data of Study 2 resulted in similar 

prediction and transfer accuracy (Figure 4) and qualitatively similar weight maps (see 

Figure 4). At FDR-corrected level, voxels with significant weights in both directions 

(conjunction null, Nichols et al., 2005) for the LL Amount contrast were found in aMCC, 

bilateral anterior insula (AI), vmPFC, vlPFC, dlPFC, intraparietal sulcus (IPS), visual 
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cortex, and cerebellum. For the Delay contrast, significant weights in both directions were 

found in aMCC, dlPFC, parietal cortex, and AI. No voxels survived FDR correction in both 

directions for the Choice contrast.  

Training predictive patterns on the three contrasts separately resulted in lower 

predictive accuracies (see Figure 5). 

 

Similarity of k-marker brain patterns to meta-analytic maps  

 We next compared the predictive maps of the k-marker with term-based meta-

analytic images (Yarkoni et al., 2011) for processes that may contribute to intertemporal 

decision-making. We computed the spatial correlation (Pearson’s r) between the k-marker 

and meta-analytic maps for 1) affective- and value-related, 2) conflict- and cognitive 

control-related, and 3) memory-related terms (see Figure 6). While these spatial 

correlations are descriptive (c.f., Koban et al., 2019), they can inform us quantitatively 

whether and in which direction (positive or negative) previously identified functional 

networks contribute to individual differences in delay discounting. 

 Value- and affect-related maps (especially ‘affect’ and ‘emotion’) showed 

consistent positive correlations (r’s > 0.05) with the Choice-related pattern of the k-marker, 

in line with the idea that more affect-related activity during intertemporal choices leads to 

more impatient decisions. However, stronger engagement of affective and especially 

‘reward’- and ‘value’-related activity for increasing LL Amount (and, to a lesser extent, for 

increasing delays) was associated with less discounting. This suggests that lower 

discounting is associated with greater sensitivity of valuation-related signals to the amount 

of LL rewards. 

 In contrast to our initial hypothesis, more activity in cognitive control-related areas 

was not associated with lower discounting. Instead, there were positive correlations (r’s 

from 0.05 to 0.19) of the Choice pattern with meta-analytic maps for ‘attention’, ‘cognitive 
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control’, ‘conflict’, and ‘executive’ (i.e., more positive weights predicting greater 

discounting). Further, stronger activation of control-related maps by greater LL Amount 

was associated with greater discounting, whereas stronger activation of control-related 

activity for longer delays was associated with less discounting.  

 Finally, we assessed the contribution of brain systems related to memory and 

prospection. While the term ‘memory’ (which also includes working-memory studies) 

showed a similar pattern as control-related maps, more specific terms such as ‘episodic 

memory’, ‘imagery’, and ‘planning’ were not substantially positively or negatively 

correlated with any of the k-marker patterns (r’s around 0.05 and smaller).  

Parallel findings were obtained when testing whether activity in non-overlapping 

meta-analytic maps (Yarkoni et al., 2011) (for value-related, cognitive control-related, or 

episodic memory-related activity) could separately predict log(k) (see Figure 7). Whereas 

areas associated with ‘cognitive control’ showed significant prediction in Study 1 and 

transfer to Study 2, areas associated with ‘value’ predicted discounting in Study 1 but no 

significant transfer to Study 2. Areas associated with ‘episodic memory’ showed only 

marginal prediction in Study 1 and no significant transfer to Study 2. 

 

Local prediction of log(k) 

 Finally, we assessed whether activity patterns in smaller, more local brain areas 

could predict out-of-sample log(k) in Study 1 and whether such predictions would 

accurately transfer to Study 2. For this purpose, we used an established multi-modal 

cortical parcellation (Glasser et al., 2016) in combination with several other, subcortical 

parcellations, resulting in a total of 485 regions (publicly available at 

https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Atlases_and_parcel

lations/2018_Wager_combined_atlas). We trained and cross-validated a separate 

classifier for each region (combining functional activity across all three contrasts). For 
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each region we then tested whether the pattern trained on Study 1 data was predictive of 

individual differences in Study 2. Activity patterns that consistently predicted delay 

discounting in both studies were found in mid- and posterior cingulate cortex, right insula, 

and lateral frontal and parietal areas (see Figure 8 and Table 2), in line with the 

contributions of these areas in the whole-brain predictive pattern. In addition, activity 

patterns in amygdala, hippocampus, basal ganglia and brainstem areas (periaqueductal 

gray) also predicted individual differences in delay discounting in both studies. 

 

Discussion 

A major goal of neuroscience and psychiatry is to identify neuromarkers of 

transdiagnostic processes that are altered across different diseases or predispose 

individuals to such diseases (Insel and Cuthbert, 2015). Delay discounting—how much 

people prefer sooner compared to future rewards—has been proposed as such a 

transdiagnostic process across obesity and various forms of psychopathology, especially 

addiction and eating disorders (Bickel et al., 2014; Amlung et al., 2019; Lempert et al., 

2019). In this paper, we advanced our understanding of the brain processes that drive 

variability in decision-making by identifying a distributed pattern of functional brain activity 

that predicts individual differences in delay discounting. We first used a cross-validation 

procedure to develop a novel functional brain marker of delay discounting (k-marker) 

based on whole-brain, gray matter-masked fMRI data (N1=110). We then validated the k-

marker (trained on Study 1 data only) in an independent second fMRI data set (N2=145), 

sampled in a cohort with different socio-demographic characteristics, on a different fMRI 

scanner, and employing a different delay discounting task. Prediction-outcome 

correlations were 0.49 (Study 1) and 0.45 (Study 2), as large or larger than prediction of 

individual differences in other domains reported in previous studies (Rosenberg et al., 

2016; Beaty et al., 2018; Han et al., 2021). In both studies, individual differences in 
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discounting were stable over time, and k-marker responses measured at baseline 

significantly predicted behavior several weeks later.  

Recent findings have questioned the utility of brain imaging in predicting individual 

differences, especially for structural and resting-state fMRI data and for univariate, 

voxelwise-associations (Marek et al., 2022). An important advance of the present study is 

that it overcomes many of the limitations of previous studies by providing an independently 

cross-validated and multivariate ‘brain model’ (Kragel et al., 2018) of stable individual 

differences in impatient decision-making, in line with recent recommendations on studying 

brain-based prediction of individual differences (Rosenberg and Finn, 2022). As such, this 

brain model can be directly tested, validated, or refined in other existing or future fMRI 

data sets acquired during an intertemporal choice task. Its predictive performance can 

also be tested in clinical populations, such as patients with severe obesity, eating or 

substance use disorders, and other types of psychopathology.  

Our results also inform the debate regarding the contributions of specific brain 

regions and functional networks to individual differences in delay discounting. Among the 

brain areas that contributed with positive and/or negative weights were the vmPFC, 

striatum, and other regions associated with valuation and reward (Levy and Glimcher, 

2011; Bartra et al., 2013; Clithero and Rangel, 2014). This finding is in line with previous, 

univariate findings (Cooper et al., 2013; Pehlivanova et al., 2018; MacNiven et al., 2020). 

The present results add to this emergent picture by showing that greater sensitivity of 

reward- and value-related areas to the amount of the LL reward is linked to more patient 

decision-making.  

 Significant weights were found most consistently in the frontoparietal areas, 

midcingulate cortex, and anterior insula. Activity in these areas also allowed for significant 

prediction based on local activity alone (see Figure 8, ROI analysis). The dorsolateral 

prefrontal cortex has been theorized to implement self-control and far-sighted decision-
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making (McClure et al., 2004; Hare et al., 2014). Yet the present results are surprising as 

they draw a more complex picture of these areas’ contribution to delay discounting, with 

modulation of these areas by greater LL rewards being positively associated with 

discounting and modulation by delay being negatively associated with discounting. Thus, 

areas meta-analytically associated with cognitive control were more recruited for long 

delays and small LL amounts for low discounters, and for shorter delays and larger LL 

amounts for high discounters. These are the cases in which decisions are most difficult 

(closer to the indifference point) and therefore require resolution of response conflict 

(Botvinick et al., 2001; Kool et al., 2013; Shenhav et al., 2013; Hutcherson et al., 2020), 

or integration of expected value and risk of future rewards (Tobler et al., 2009).  

 These findings have implications for models of delay discounting and self-control 

in cognitive neuroscience. First, they speak against the idea of a simple dual process 

account of intertemporal choice and self-control (McClure et al., 2004), joining previous 

work that has suggested more complex neural processes at play (Kable and Glimcher, 

2007; Ballard and Knutson, 2009; Hare et al., 2014; Berkman et al., 2017). Second, it also 

speaks against the idea that more frontoparietal activity is related to higher individual 

levels of self-control. Instead, it suggests that for which choice options control-related 

areas are activated is more informative than their overall level of activation. This finding is 

in line with value-based choice models of self-control (Berkman et al., 2017) and with 

recent evidence that high and low discounters differ in how much attention they allocate 

to amount versus delay information (Amasino et al., 2019). It also fits with the idea that 

low discounters may not need ‘control’ to discount less (Lempert et al., 2019), and that 

high discounters may employ cognitive control for different types of decisions.  

 In line with the importance of prospection and self-projection in intertemporal 

decision-making, the hippocampus and adjacent midtemporal areas have been 

associated with individual differences in discounting (Benoit et al., 2011; Peters and 
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Büchel, 2011; Lebreton et al., 2013). The k-marker has significant weights in 

parahippocampal areas and in occipital areas, but the weight maps were not strongly 

associated with broader meta-analysis-based activation maps of episodic memory or 

prospection, possibly because those masks also include many areas that are involved in 

processes other than memory and prospection. In agreement with the k-marker results 

and the literature described above, our ROI-based results showed significant local 

prediction of individual differences in delay discounting in hippocampus, amygdala and 

the memory-related anteromedial thalamus.  

Our findings highlight the importance of investigating distributed brain activity 

patterns, confirming the notion that delay discounting depends on the interactions among 

different functional processes and networks in the brain. In addition to frontoparietal areas, 

midcingulate, and hippocampus, several other cortical and subcortical areas also allowed 

for cross-validated local prediction of individual differences in delay discounting, across 

both data sets. Consistent with the whole-brain results, these included several areas in 

the mid and posterior insula, which is involved in interoception (Craig, 2009), salience 

(Bartra et al., 2013), and exploration (Zhen et al., 2022)—processes which may all be 

involved in delay discounting. Local prediction was also found in subcortical areas 

associated with affect and visceromotor control, including the amygdala and the 

periaqueductal gray. 

Previous work has related individual differences in delay discounting with obesity, 

substance use disorders, and psychiatric diseases (Peters and Büchel, 2011; Amlung et 

al., 2019; Lempert et al., 2019). In the two samples presented here, log(k) values based 

on participants’ choices themselves were not significantly associated with BMI or 

overweight. However, the two studies were not designed to include a large range of BMI 

or many obese participants, and obesity-related alterations in discounting might be more 

pronounced for food than monetary rewards. While in Study 1 participants’ height and 
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weight were measured by the experimenters, these values were self-reported in Study 2, 

which might explain the lower associations with BMI in Study 2.  

In contrast to discounting behavior, responses to the k-marker did significantly 

differ between lean and overweight participants and predicted out-of-sample blood 

markers related to glucose and fat metabolism. These findings suggest that this functional 

brain marker reflects variance in neurophysiology that is related to stable long-term 

patterns in decision-making and health. The k-marker even seemed more sensitive to 

individual differences than the behavioral measures it was trained on, potentially because 

it is a closer reflection of the neurophysiological underpinnings that drive both discounting 

behavior and more distal health outcomes, in line with previous evidence that brain-based 

can outperform behavior-based prediction (Genevsky et al., 2017). Of note, our approach 

is cross-sectional and remains agnostic regarding potential causal links among brain 

function, behavior, and body weight. While higher discounting is typically considered a 

causal or predisposing factor for weight gain, an alternative hypothesis is that overweight 

and changes in metabolism lead to changes in brain physiology and subsequent 

behavioral outcomes (Cornil et al., 2021; Schmidt et al., 2021). Future work can test the 

k-marker in larger numbers of participants with obesity and other health conditions.  

In conclusion, the k-marker—a novel fMRI-based brain signature—predicts 

individual differences in intertemporal decision-making in neurotypical, healthy adults 

across different populations, scanners, and analysis pipelines. It can be quantitatively 

tested in any other fMRI study on delay discounting for which contrast images for Choice, 

LL Amount, and Delay can be computed, including in other delay discounting paradigms, 

such as those that involve non-monetary rewards such as food or social discounting tasks 

(Jones and Rachlin, 2006; Strombach et al., 2015). Future work could test the 

generalizability of the k-marker in children, adolescents, the elderly, or clinical populations. 

Most importantly, future work will show whether the k-marker prospectively predicts clinical 
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status and health outcomes in conditions related to abnormal discounting, such as eating 

disorders, substance use, and other psychiatric disorders. 

 

Data and code availability statement 

Data from Study 2 is available in an online public repository (doi: 

10.18112/openneuro.ds002843.v1.0.0). Deidentified data from Study 1 will be made 

available upon publication. The resulting classifier patterns (k-marker) and code to apply 

it to other datasets is available at: https://github.com/ldmk/k-marker. Code for analyses is 

available at https://github.com/canlab and upon request to the first author. 
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Tables 

 

Table 1. Person-level characteristics of lean (BMI <= 25) and overweight-to-obese 

(BMI > 25) participants in Study 1 and Study 2. Except for body mass (by definition) 

and k-marker responses, none of the variables differed significantly between the two 

groups. 

 

Study 1 BMI <= 25 BMI > 25 two-sample t-test 

  M(STD) M(STD) t(df) p-value CI 

N 52 58 

   

BMI 23.0 (1.3) 27.8 (2.2) -13.8 (108) <0.001* [-5.51, -4.13] 

Log(k) -5.71 (1.83) -5.70 (2.04) -0.04 (108) 0.96 [-0.75, 0.72] 

k-marker -5.87 (0.76) -5.46 (0.74) -2.85 (108) 0.005* [-0.69, -0.12] 

Age (y) 30.8 (10.4) 32.4 (9.8) -0.85 (108) 0.40 [-5.43, 2.17] 

Education (ordinal scale) 5.09 (2.71) 5.05 (2.89) 0.08 (108) 0.93 [-1.02, 1.11] 

Total brain volume (l) 1.17 (0.09) 1.18 (0.09) -0.62 (108) 0.53 [-0.04, 0.02] 

      

Study 2 BMI <= 25 BMI > 25 two-sample t-test 

  M(STD) M(STD) t(df) p-value CI 

N 81 64 

   

BMI 22.2 (1.8) 29.4 (3.9) -14.9 (143) <0.001* [-8.18, -6.27] 

Log(k) -4.09 (1.00) -4.08 (0.83) -0.08 (143) 0.94 [-0.32, 0.30] 

k-marker -5.86 (0.90) -5.57 (0.74) -2.1 (143) 0.037* [-0.57, -0.02] 

Age 24.2 (4.5) 24.6 (4.5) -0.57 (143) 0.57 [-1.93, 1.07] 

Education 3.31 (0.93) 3.39 (0.81) -0.56 (143) 0.58 [-0.37, 0.21] 

Total brain volume (l) 1.26 (0.12) 1.26 (0.12) -0.11 (143) 0.91 [-0.04, 0.04] 

   chi2-test 
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Sex 

  

chi2 p-value  

–Male (N) 46 42 1.17 (1) 0.28 

 

–Female (N) 35 22 
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Table 2. ROI-based prediction of individual differences in log(k). This analysis used 

an existing atlas of the brain, including 485 regions based on several different previous 

parcellations (Diedrichsen et al., 2009; Shen et al., 2013; Bär et al., 2016; Glasser et al., 

2016; Pauli et al., 2016) available at: 

https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Atlases_and_parcel

lations/2018_Wager_combined_atlas). Predictive patterns were trained and cross-

validated on Study 1 data only (using the same procedures as for the global classifier) and 

then tested in Study 2. The table below shows only brain parcels that had significant 

prediction in both data sets (p-values are uncorrected for multiple comparisons). Note that 

each parcel contains many voxels, each of which may contribute with positive and/or 

negative weights to delay discounting for each of the three contrast images. 

 

  

Study 1 (training and 

cross-validation) Study 2 (test) 

Area name Area description Hemisphere 

Prediction-

outcome r p-value 

Prediction-

outcome r p-value 

RSC RetroSplenial Complex L 0.30 0.010 0.21 0.010 

RSC RetroSplenial Complex R 0.23 0.049 0.21 0.013 

23d Area dorsal 23 L 0.23 0.042 0.17 0.043 

7Am Medial Area 7a L 0.23 0.045 0.22 0.007 

7Am Medial Area 7a R 0.30 0.009 0.28 0.001 

7PC Area 7PC R 0.28 0.016 0.20 0.014 

Area1 Area 1 L 0.23 0.037 0.18 0.035 

p24pr Area posterior 24 prime L 0.30 0.014 0.21 0.011 
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a24pr Area anterior 24 prime L 0.38 0.001 0.21 0.013 

a24pr Area anterior 24 prime R 0.37 0.001 0.21 0.010 

p32pr Area posterior 32 prime L 0.43 0.000 0.20 0.016 

d32 Area dorsal 32 L 0.36 0.002 0.24 0.004 

d32 Area dorsal 32 R 0.28 0.016 0.34 0.000 

8BM Area 8BM L 0.25 0.033 0.29 0.000 

8BM Area 8BM R 0.30 0.012 0.26 0.001 

13l Area 13I R 0.25 0.025 -0.16 0.048 

6a Area 6 anterior R 0.40 0.001 0.30 0.000 

PoI2 Posterior Insular Area 2 R 0.35 0.004 0.21 0.009 

MI Middle Insular Area R 0.23 0.040 0.39 0.000 

AVI 

Anterior Ventral Insular 

Area R 0.30 0.009 0.43 0.000 

TPOJ3 

Temporoparietooccipital 

Junction 3 R 0.28 0.017 0.20 0.018 

IP1 Area lntraParietal11 R 0.29 0.013 0.23 0.006 

PFm Area PFm Complex R 0.25 0.028 0.24 0.003 

PoI1 Posterior Insular Area 1 R 0.24 0.041 0.27 0.001 

FOP5 Area Frontal Opercular 5 R 0.27 0.022 0.36 0.000 

GPi Internal globus pallidus R 0.23 0.046 0.23 0.005 

Thal_AM 

Anteromedial thalamic 

nucleus L 0.27 0.024 0.19 0.020 
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Bstem Midbd Brainstem midbrain L 0.23 0.047 0.22 0.008 

Bstem PAG 

Brainstem periaqueductal 

gray R&L 0.39 0.001 0.19 0.023 

CA2 

Hippocampus Hippocampus area CA2 R&L 0.22 0.040 0.20 0.015 

Amygdala CM Centromedial amygdala R&L 0.22 0.038 0.17 0.042 
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Figure Legends 

 

Figure 1. Experimental design, analytical approach, and discounting behavior. a) 

Visual presentation of the intertemporal choice tasks and their timing in Study 1 and 

Study 2. All combinations of amounts and delays can be found in Extended Data tables 

Figure 1-1 (for Study 1) and Figure 1-2 (for Study 2). b) Analytic approach. Contrast 
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images for brain activity in response to the onset of the Choice screen and its parametric 

modulation by LL Amount and Delay were computed for each participant and 

concatenated. Data from Study 1 was used for training and 10-fold cross-validation. In 

each fold, the classifier was trained on 90% of the data using LASSO-PCR and tested on 

the remaining 10% hold-out data to evaluate its predictive accuracy. The predictive 

classifier obtained from Study 1 was then tested on Study 2 data, acquired on a different 

scanner, in a different lab and country, assessing its validity in a completely independent 

data set. c) Distribution and temporal stability of individual log-transformed k-parameters 

by study. Scatterplots show high correlations between individual differences in discounting 

at baseline and several weeks later (Study 1: N=110, r=0.86, p=0.001, 95% CI=[0.80, 

0.90], Study 2: N=145, r=0.74, p=0.001, 95%-CI=[0.63, 0.82]). 
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Figure 2. Weight maps and predictive accuracy of the classifier (‘k-marker’). a) 

Classifier weights for the three contrast images (Choice screen onset, parametric 

modulation by LL Amount and Delay), thresholded for illustration at q=0.05 FDR corrected 

across the combined feature space (three concatenated maps). See Extended Data 

Figure 2-1, Figure 2-2, and Figure 2-3 for coordinate tables. Note that unthresholded maps 

are used for prediction and that the combined weights across maps are contributing to the 

prediction. Pop-out maps show the unthresholded patterns for selected regions of interest 

(transversal slices for vmPFC, coronal for dlPFC, and saggital for hippocampus), in order 

to illustrate the heterogeneity of voxel weights (e.g., positive versus negative) within each 
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region and across the three interdependent weight maps. b) Results of the permutation 

tests (Study 1). Log(k) values were randomly permuted, and the prediction algorithm was 

repeated on the permuted brain-outcome data 5000 times to generate null distributions (in 

gray) for standard accuracy metrics (from left to right): mean squared error (MSE), root 

mean squared error (RMSE), mean absolute error (mean abs error), and prediction-

outcome correlation (all p-values < 0.0002). In addition, observed metrics in 5000 random 

cross-validation folds are shown in blue bars. c) For interpretability and comparability 

across both studies, prediction–outcome correlations are shown as scatterplots, for 

Study 1 (N=110, r=0.49, p<0.001, permutation test) and Study 2 (independent validation 

data set, parametric prediction–outcome correlation, N=145, r=0.45, p<0.001, 95%-

CI=[0.31, 0.57]). Correlations between predicted and observed log(k) were significant in 

both male and female participants (Study 2). d) Prediction of future discounting. 

Responses of the k-marker responses at baseline significantly predict individual 

differences in log(k) seven weeks later in Study 1 (left panel, N=109, r=0.38, p=0.001, 

95%-CI=[0.20, 0.53]) and ten weeks later in Study 2 (right panel, N=102, r=0.36, p=0.002, 

95%-CI=[0.17, 0.51]). 
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Figure 3. Association of k-marker response with BMI, overweight, and metabolic 

blood markers. a) The k-marker response was positively and significantly correlated with 

BMI in Study 1 (N=110, r=0.26, p=0.005, 95%-CI=[0.08, 0.43]), but not significantly in 

Study 2 (N=145, r=0.09, p=0.28, 95%-CI=[-0.07, 0.25]). b) In both studies, k-marker 

response was significantly greater (predicting more delay discounting) in overweight 

(BMI > 25) compared to lean participants (Study 1: t(108)=2.85, p=0.005, Cohen’s d=0.55, 

95%-CI=[0.12, 0.69]; Study 2: t(143)=2.11, p=0.037, Cohen’s d=0.35, 95%-CI=[0.02, 

0.57]). Lean and overweight participants did not differ on any demographic variables in 

both studies (see Table 1). c) Individual differences in out-of-sample k-marker response 
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in Study 1 were positively and significantly correlated with serum insulin (N=110, r=0.22, 

p=0.020, 95%-CI=[0.04, 0.39]), C-peptide (N=110, r=0.23, p=0.018, 95%-CI=[0.04, 0.40]), 

insulin resistance (as measured by the HOMA-IR index, N=105, r=0.24, p=0.015, 95%-

CI=[0.05, 0.41]), and leptin (N=102, r=0.34, p=0.001, 95%-CI=[0.16, 0.49]). 
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Figure 4. Results for an alternative model trained on the data of Study 2 and 

comparison of weight maps (control analysis). a) Training and cross-validating an 

alternative predictive model on the data of Study 2 (N=145) resulted in a prediction-

outcome correlation of r=0.50 (comparable to the original predictive model) and a 
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prediction R2=0.25. Testing this model on the data of Study 1 (N=110, as an independent 

test set) resulted in a prediction-outcome correlation of r=0.47 and a prediction R2=-0.61. 

The contrast-wise unthresholded weight maps of the two different predictive models are 

displayed in panels b) (for the Choice contrast), c) (LL-Amount), and d) (Delay). Yellow 

indicates positive and blue indicates negative voxel weights, with lower transparencies 

indicating stronger absolute weights. Black outlines reflect the conjunction of significant 

feature weights in both models (at P < 0.05 corrected for multiple comparisons in each 

model). The correlation between feature weights correlated of the two models was r=0.09 

(across all three maps). Correlations for the LL-Amount (r=0.10) and Delay contrast 

(r=0.11) were numerically higher than for the Choice screen contrast (r=0.05). 

 

 

Figure 5. Results (prediction-outcome correlations) for training separate predictive 

models for each of the three contrasts (control analysis). To assess their distinct 



A BRAIN SIGNATURE OF DELAY DISCOUNTING 49 

contributions, we trained three separate predictive models on each of the three contrast 

maps of Study 1 and tested them on the corresponding contrast maps of Study 2 (using 

the same algorithm and cross-validation procedure as before). The results showed modest 

predictive accuracy for the model trained on the Choice screen contrast only (top row), 

with a prediction-outcome correlation of r = 0.19 in Study 1 (training and cross-validation 

set, p = 0.10 based on permutation test, 5000 iterations) and of r = 0.15 in Study 2 

(p = 0.07). Training a model based on the LL-Amount contrast had a significant prediction-

outcome correlation of r = 0.38 in Study 1 (p < 0.001, permutation test) and of r = 0.34 

(p < 0.001) in Study 2. Similarly, training a model on the Delay contrast resulted in a 

significant prediction-outcome correlation of r = 0.34 in Study 1 (p = 0.014, permutation 

test) and of r = 0.25 (p = 0.002) in Study 2. Thus, none of the separate models achieved 

similarly high predictive performance as the combined model (three concatenated 

contrasts), especially regarding transfer to Study 2. 
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Figure 6. Spatial similarity of the k-marker with meta-analytic maps. In order to 

quantitatively compare the classifier patterns with theoretically relevant functional 

networks, we computed the spatial correlation of the unthresholded k-marker patterns with 

thresholded Neurosynth meta-analytic maps (Yarkoni et al., 2011) associated with a) 

value, reward and affect, b) conflict and control, and c) memory, imagery, and planning. 

Meta-analytic maps from each group of terms are overlaid on the left (outline colors 

matching the outlines of the terms on the right) and can be inspected in greater detail 

online (www.Neurosynth.org). Note that spatial correlations are purely descriptive, 

indicating whether activity in any of the shown functional maps is positively (r > 0) or 
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negatively (r < 0) associated with discounting for each component map of the k-marker 

(Choice, LL Amount, Delay).  
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Figure 7. Results for training separate predictive models in three different meta-

analytic maps. Term-based meta-analytic maps for a) ‘value’, b) ‘cognitive control’, and 

c) ‘episodic memory’ were downloaded from Neurosynth (Yarkoni et al., 2011). To obtain 
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non-overlapping maps (displayed in orange), we masked by excluding voxels that were 

part of any of the other two maps. We then trained and cross-validated predictive patterns 

of individual differences in log(k) in the data of Study 1 (blue scatter plots) and further 

tested the performance of these patterns in Study 2 (green scatter plots). While activity in 

‘cognitive-control’-related areas led to significant cross-validated prediction in Study 1 and 

significant transfer to Study 2, such effects were weaker for value or episodic-memory 

related areas.  

 

 

Figure 8. Region of interest (ROI)–based prediction of individual differences in 

discounting. An established cortical parcellation (Glasser et al., 2016) together with a 

combination of subcortical parcellations (see atlas available on Github:  

https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Atlases_and_parcel

lations/2018_Wager_combined_atlas) was used to test whether functional activity across 

all three contrasts (Choice, LL -Amount, and Delay) in local brain areas could predict 

individual log(k)’s. ROIs that resulted in significant cross-validated prediction in Study 1 

and significant transfer to Study 2 are shown in yellow (p=0.01 uncorrected for multiple 

comparisons in both studies) and orange (p=0.05 uncorrected in both studies). They 

included areas in the mid- and posterior cingulate, dorsomedial prefrontal cortex, several 
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regions in the right insula, lateral frontoparietal regions, hippocampus, amygdala, 

thalamus, and brainstem areas. 
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Extended Data Legends 

 

Figure 1-1. Combination of SS, LL amounts, and delays used in Study 1. Indifference k 

denotes the discounting rate at which the SS and LL options should be chosen at equal 

proportions. 

 

Figure 1-2. Combination of SS, LL amounts, and delays used in Study 2. Indifference k 

denotes the discounting rate at which the SS and LL options should be chosen at equal 

proportions. 

 

Figure 2-1. Significant positive and negative weights contributing to the k-marker during 

Choice screen onset (FDR corrected q < 0.05 across the whole feature space, i.e., three 

concatenated gray-matter-masked whole-brain maps, and at least three contingent 

voxels). In the column ‘Atlas label’, cortical regions (Ctx) are labeled based on the 

multimodal cortical parcellation by Glasser et al. (2016), basal ganglia regions based on 

Pauli et al. (2016), cerebellar regions based on Diedrichsen et al. (2009), and brain stem 

regions based on a combination of studies (Shen et al., 2013; Bär et al., 2016). The entire 

combined anatomical atlas is available on Github:  

https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Atlases_and_parcel

lations/2018_Wager_combined_atlas. This repository includes multiple atlases and other 

meta-analytic and multivariate maps. Tools for manipulating and analyzing this and other 

atlases are in the CANlab Core Tools repository: https://github.com/canlab/CanlabCore. 

 

Figure 2-2. Significant positive and negative weights contributing to the k-marker for the 

parametric modulation by LL-Amount (FDR corrected q < 0.05 across the whole feature 
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space, i.e., three concatenated gray-matter-masked whole-brain maps, at least three 

contingent voxels).  

 

Figure 2-3. Significant positive and negative weights contributing to the k-marker for the 

parametric modulation by Delay (FDR corrected q < 0.05 across the whole feature space, 

i.e., three concatenated gray-matter-masked whole-brain maps, at least three contingent 

voxels). 

 



Figure 1-1 
 
 

LL delay  

(in days) 

Display of  

LL delay 

SS amount  

(in Euro) 

LL amount  

(in Euro) 

Indifference k 

2 In 2 days 5 7.6 0.256 

7 In 7 days 5 9.5 0.128 

7 In 7 days 5 14.0 0.256 

14 In 14 days 5 9.5 0.064 

14 In 14 days 5 14.0 0.128 

14 In 14 days 5 22.9 0.256 

30 In 1 month 5 6.1 0.008 

30 In 1 month 5 7.2 0.016 

30 In 1 month 5 9.5 0.032 

30 In 1 month 5 14.0 0.064 

30 In 1 month 5 22.9 0.128 

60 In 2 months 5 5.0 0 

60 In 2 months 5 5.1 0.00025 

60 In 2 months 5 5.2 0.0005 

60 In 2 months 5 5.3 0.001 

60 In 2 months 5 5.6 0.002 

60 In 2 months 5 6.2 0.004 

60 In 2 months 5 7.4 0.008 

60 In 2 months 5 9.8 0.016 

60 In 2 months 5 14.6 0.032 

60 In 2 months 5 24.2 0.064 

120 In 4 months 5 5.0 0 

120 In 4 months 5 5.2 0.00025 

120 In 4 months 5 5.3 0.0005 

120 In 4 months 5 5.6 0.001 

120 In 4 months 5 6.2 0.002 

120 In 4 months 5 7.4 0.004 



120 In 4 months 5 9.8 0.008 

120 In 4 months 5 14.6 0.016 

120 In 4 months 5 24.2 0.032 

240 In 8 months 5 5.0 0 

240 In 8 months 5 5.3 0.00025 

240 In 8 months 5 5.6 0.0005 

240 In 8 months 5 6.2 0.001 

240 In 8 months 5 7.4 0.002 

240 In 8 months 5 9.8 0.004 

2 In 2 days 10 15.1 0.256 

7 In 7 days 10 19.0 0.128 

7 In 7 days 10 27.9 0.256 

14 In 14 days 10 19.0 0.064 

14 In 14 days 10 27.9 0.128 

14 In 14 days 10 45.8 0.256 

30 In 1 month 10 12.2 0.008 

30 In 1 month 10 14.5 0.016 

30 In 1 month 10 19.0 0.032 

30 In 1 month 10 27.9 0.064 

30 In 1 month 10 45.8 0.128 

60 In 2 months 10 10.0 0 

60 In 2 months 10 10.2 0.00025 

60 In 2 months 10 10.3 0.0005 

60 In 2 months 10 10.6 0.001 

60 In 2 months 10 11.2 0.002 

60 In 2 months 10 12.4 0.004 

60 In 2 months 10 14.8 0.008 

60 In 2 months 10 19.6 0.016 

60 In 2 months 10 29.2 0.032 

60 In 2 months 10 48.4 0.064 

120 In 4 months 10 10.0 0 



120 In 4 months 10 10.3 0.00025 

120 In 4 months 10 10.6 0.0005 

120 In 4 months 10 11.2 0.001 

120 In 4 months 10 12.4 0.002 

120 In 4 months 10 14.8 0.004 

120 In 4 months 10 19.6 0.008 

120 In 4 months 10 29.2 0.016 

120 In 4 months 10 48.4 0.032 

240 In 8 months 10 10.0 0 

240 In 8 months 10 10.6 0.00025 

240 In 8 months 10 11.2 0.0005 

240 In 8 months 10 12.4 0.001 

240 In 8 months 10 14.8 0.002 

240 In 8 months 10 19.6 0.004 

2 In 2 days 20 30.2 0.256 

7 In 7 days 20 37.9 0.128 

7 In 7 days 20 55.8 0.256 

14 In 14 days 20 37.9 0.064 

14 In 14 days 20 55.8 0.128 

14 In 14 days 20 91.7 0.256 

30 In 1 month 20 24.5 0.008 

30 In 1 month 20 29.0 0.016 

30 In 1 month 20 37.9 0.032 

30 In 1 month 20 55.8 0.064 

30 In 1 month 20 91.7 0.128 

60 In 2 months 20 20.0 0 

60 In 2 months 20 20.3 0.00025 

60 In 2 months 20 20.6 0.0005 

60 In 2 months 20 21.2 0.001 

60 In 2 months 20 22.4 0.002 

60 In 2 months 20 24.8 0.004 



60 In 2 months 20 29.6 0.008 

60 In 2 months 20 39.2 0.016 

60 In 2 months 20 58.4 0.032 

60 In 2 months 20 96.8 0.064 

120 In 4 months 20 20.0 0 

120 In 4 months 20 20.6 0.00025 

120 In 4 months 20 21.2 0.0005 

120 In 4 months 20 22.4 0.001 

120 In 4 months 20 24.8 0.002 

120 In 4 months 20 29.6 0.004 

120 In 4 months 20 39.2 0.008 

120 In 4 months 20 58.4 0.016 

120 In 4 months 20 96.8 0.032 

240 In 8 months 20 20.0 0 

240 In 8 months 20 21.2 0.00025 

240 In 8 months 20 22.4 0.0005 

240 In 8 months 20 24.8 0.001 

240 In 8 months 20 29.6 0.002 

240 In 8 months 20 39.2 0.004 

 

 

 



Figure 1-2 
 

LL delay  

(in days) 

Display of  

LL delay 

SS amount  

(in Dollars) 

LL amount  

(in Dollars) 

Indifference k 

19 19 days 20 43 0.0605 

21 21 days 20 22 0.0048 

22 22 days 20 54 0.0773 

23 23 days 20 30 0.0217 

23 23 days 20 54 0.0739 

23 23 days 20 67 0.1022 

24 24 days 20 77 0.1188 

26 26 days 20 45 0.0481 

27 27 days 20 41 0.0389 

27 27 days 20 22 0.0037 

36 36 days 20 30 0.0139 

36 36 days 20 58 0.0528 

37 37 days 20 63 0.0581 

38 38 days 20 43 0.0303 

38 38 days 20 24 0.0053 

39 39 days 20 80 0.0769 

41 41 days 20 75 0.0671 

41 41 days 20 50 0.0366 

41 41 days 20 67 0.0573 

42 42 days 20 23 0.0036 

43 43 days 20 34 0.0163 

44 44 days 20 73 0.0602 

44 44 days 20 29 0.0102 

52 52 days 20 74 0.0519 

53 53 days 20 58 0.0358 

55 55 days 20 58 0.0345 

55 55 days 20 41 0.0191 



57 57 days 20 32 0.0105 

58 58 days 20 81 0.0526 

58 58 days 20 29 0.0078 

58 58 days 20 66 0.0397 

59 59 days 20 50 0.0254 

59 59 days 20 28 0.0068 

60 60 days 20 75 0.0458 

61 61 days 20 23 0.0025 

70 70 days 20 25 0.0036 

71 71 days 20 66 0.0324 

72 72 days 20 58 0.0264 

72 72 days 20 45 0.0174 

73 73 days 20 58 0.0260 

74 74 days 20 67 0.0318 

74 74 days 20 25 0.0034 

74 74 days 20 82 0.0419 

74 74 days 20 32 0.0081 

74 74 days 20 31 0.0074 

75 75 days 20 29 0.0060 

76 76 days 20 31 0.0072 

76 76 days 20 71 0.0336 

77 77 days 20 23 0.0019 

78 78 days 20 33 0.0083 

87 87 days 20 24 0.0023 

88 88 days 20 71 0.0290 

89 89 days 20 57 0.0208 

89 89 days 20 24 0.0022 

89 89 days 20 64 0.0247 

91 91 days 20 27 0.0038 

92 92 days 20 79 0.0321 

92 92 days 20 44 0.0130 



93 93 days 20 56 0.0194 

95 95 days 20 72 0.0274 

95 95 days 20 39 0.0100 

103 103 days 20 33 0.0063 

103 103 days 20 67 0.0228 

104 104 days 20 39 0.0091 

105 105 days 20 83 0.0300 

107 107 days 20 45 0.0117 

107 107 days 20 55 0.0164 

108 108 days 20 25 0.0023 

108 108 days 20 78 0.0269 

108 108 days 20 70 0.0231 

110 110 days 20 23 0.0014 

111 111 days 20 32 0.0054 

114 114 days 20 36 0.0070 

120 120 days 20 43 0.0096 

121 121 days 20 74 0.0223 

123 123 days 20 28 0.0033 

124 124 days 20 60 0.0161 

125 125 days 20 24 0.0016 

126 126 days 20 54 0.0135 

128 128 days 20 48 0.0109 

129 129 days 20 50 0.0116 

129 129 days 20 85 0.0252 

129 129 days 20 78 0.0225 

129 129 days 20 41 0.0081 

130 130 days 20 27 0.0027 

132 132 days 20 28 0.0030 

134 134 days 20 23 0.0011 

137 137 days 20 65 0.0164 

139 139 days 20 24 0.0014 



139 139 days 20 52 0.0115 

140 140 days 20 36 0.0057 

140 140 days 20 49 0.0104 

141 141 days 20 25 0.0018 

141 141 days 20 61 0.0145 

142 142 days 20 77 0.0201 

142 142 days 20 27 0.0025 

143 143 days 20 44 0.0084 

145 145 days 20 66 0.0159 

145 145 days 20 80 0.0207 

145 145 days 20 42 0.0076 

156 156 days 20 65 0.0144 

157 157 days 20 45 0.0080 

159 159 days 20 40 0.0063 

159 159 days 20 65 0.0142 

161 161 days 20 77 0.0177 

161 161 days 20 76 0.0174 

161 161 days 20 39 0.0059 

163 163 days 20 55 0.0107 

163 163 days 20 28 0.0025 

163 163 days 20 33 0.0040 

171 171 days 20 35 0.0044 

172 172 days 20 49 0.0084 

172 172 days 20 69 0.0142 

172 172 days 20 56 0.0105 

174 174 days 20 41 0.0060 

176 176 days 20 71 0.0145 

176 176 days 20 34 0.0040 

176 176 days 20 23 0.0009 

176 176 days 20 25 0.0014 

180 180 days 20 62 0.0117 



 



Figure 2-1 
 
 

Positive weights 

Atlas label  

Volume 

(voxels) 

MNI Coordinates 

max(z) Name X Y Z 

Orbitofrontal cortex Ctx_a47r_L 29 -34 40 -12 4.49 

Anterior insula Ctx_FOP5_R 114 32 24 4 4.45 

Midtemporal gyrus Ctx_PHT_R 18 68 -48 4 4.43 

Frontal pole/vmpFC Ctx_10pp_L 29 -8 60 -12 4.42 

Midtemporal gyrus Ctx_TE1a_R 6 66 -4 -24 4.24 

Temporal operculum Ctx_LBelt_L 32 -42 -28 2 4.21 

Other No_label 9 -2 -28 14 4.13 

Visual cortex Ctx_V2_R 18 20 -100 0 4.04 

Orbitofrontal cortex Ctx_a47r_L 11 -44 38 -12 4.03 

Ventrolateral prefrontal cortex Ctx_45_L 72 -50 28 -2 4.03 

Striatum V_Striatum_R 38 18 26 0 3.99 

Striatum V_Striatum_L 22 0 4 -2 3.96 

Orbitofrontal cortex Ctx_11l_L 13 -18 42 -14 3.95 

Retrosplenial cortex Ctx_RSC_R 15 2 -46 8 3.94 

Temporal operculum Ctx_PoI1_L 20 -38 -4 -16 3.89 

Visual cortex Ctx_V4_R 3 30 -92 22 3.86 

Other No_label 3 66 -54 8 3.84 

Visual cortex Ctx_V3_L 3 -22 -94 24 3.82 

Midtemporal gyrus Ctx_TE1a_L 14 -64 -10 -14 3.79 

Amygdala Ctx_PeEc_R 5 20 6 -26 3.75 

Caudate Cau_L 3 -26 -32 20 3.72 

Precentral gyrus Ctx_4_L 9 -12 -26 70 3.71 

Temporal pole/amygdala Ctx_TGd_R 7 34 12 -24 3.65 

Visual cortex Ctx_V2_L 4 -14 -102 14 3.62 

Midtemporal gyrus Ctx_TGd_R 4 52 4 -26 3.59 

Orbitofrontal cortex Ctx_13l_L 4 -28 28 -14 3.48 



  
     

Negative weights 

Atlas label 

Volume 

(voxels) X Y Z max(z) Name 

Midcingulate cortex Ctx_24dv_R 58 8 0 36 -5.03 

Cerebellum Cblm_CrusII_L 130 -24 -76 -40 -4.87 

Superior frontal gyrus Ctx_SFL_L 106 -8 10 70 -4.83 

Visual cortex Ctx_ProS_R 79 24 -52 4 -4.81 

Inferior parietal lobule Ctx_PF_L 338 -54 -30 42 -4.75 

Precuneus Ctx_7Am_L 67 -2 -56 60 -4.63 

Posterior cingulate cortex Ctx_23c_R 51 8 -24 40 -4.35 

Parietal cortex Ctx_PGs_R 17 38 -70 52 -4.28 

Parahippocampal cortex Ctx_VMV2_L 7 -32 -50 -6 -4.06 

Midcingulate cortex Ctx_p24pr_L 20 -6 2 36 -4.00 

Parahippocampal cortex Ctx_ProS_L 13 -20 -48 -2 -3.99 

Intraparietal sulcus Ctx_7PC_L 11 -44 -42 60 -3.94 

Cerebellum Cblm_CrusI_R 6 50 -48 -28 -3.88 

vmPFC Ctx_9m_L 8 -8 50 16 -3.87 

Cerebellum Cblm_CrusI_L 6 -46 -64 -42 -3.87 

Midcingulate cortex Ctx_33pr_L 6 -2 22 20 -3.84 

Inferior parietal lobule Ctx_PF_R 13 54 -34 46 -3.83 

Inferior frontal cortex Ctx_6r_L 3 -54 4 16 -3.80 

Dorsolateral prefrontal cortex Ctx_9_46d_R 4 20 48 26 -3.68 

 



Figure 2-2 
 
 

Positive weights 

Atlas label 

Volume 

(voxels) 

MNI Coordinates 

max(z) Name X Y Z 

Medial frontal gyrus Ctx_8BM_R 386 -2 26 36 5.86 

Dorsolateral prefrontal cortex Ctx_6a_R 199 26 8 52 5.80 

Intraparietal Sulcus Ctx_PFm_R 288 48 -36 52 5.72 

Orbitofrontal cortex Ctx_11l_R 50 16 30 -24 5.55 

Inferior parietal lobule Ctx_PGs_R 298 38 -74 36 5.40 

Dorsolateral prefrontal cortex Ctx_SCEF_L 131 -14 14 52 5.12 

Precuneus Ctx_POS2_R 177 12 -66 38 5.12 

Cingulate cortex Ctx_d32_R 114 10 34 22 4.93 

Inferior frontal cortex Ctx_IFJa_L 134 -44 8 26 4.88 

Ventromedial prefrontal cortex Ctx_p32_L 24 -12 44 4 4.80 

Cerebellum Cblm_IX_R 18 4 -50 -34 4.75 

Orbitofrontal cortex Ctx_11l_L 37 -24 44 -18 4.66 

Dorsolateral prefrontal cortex Ctx_p9_46v_L 67 -46 28 22 4.66 

Visual cortex Ctx_V1_R 29 18 -76 12 4.66 

Intraparietal Sulcus Ctx_AIP_L 24 -38 -44 42 4.61 

Inferior parietal lobule Ctx_IP1_L 58 -32 -72 32 4.57 

Posterior cingulate cortex Ctx_23d_R 56 -2 -28 36 4.56 

Anterior insula Ctx_AVI_L 58 -32 20 2 4.55 

Ventrolateral prefrontal cortex Ctx_a9_46v_R 66 42 46 10 4.47 

Ventrolateral prefrontal cortex Ctx_a9_46v_L 35 -36 44 6 4.40 

Ventromedial prefrontal cortex Ctx_p32_R 47 8 42 0 4.27 

Anterior insula Ctx_AVI_R 16 32 20 2 4.19 

Posterior cingulate cortex Ctx_RSC_R 7 6 -16 32 4.06 

Ventromedial prefrontal cortex Ctx_10r_L 13 -12 38 -8 4.05 

Parahippocampal cortex Ctx_PeEc_R 5 26 -22 -30 4.04 

Cerebellum Cblm_VI_R 11 34 -50 -28 4.02 

Thalamus/Pulvinar Thal_Pulv 10 -12 -32 0 4.00 



Medial temporal cortex Ctx_PreS_R 11 14 -36 0 3.99 

Cerebellum Cblm_CrusI_R 10 40 -40 -38 3.99 

Orbitofrontal cortex Ctx_OFC_L 3 -8 50 -24 3.98 

Dorsolateral prefrontal cortex Ctx_p9_46v_R 9 46 34 24 3.72 

Precuneus Ctx_POS2_R 8 14 -60 24 3.70 

Ventrolateral thalamus Thal_VL 7 -12 -12 14 3.65 

Cerebellum Cblm_VI_L 6 -34 -56 -26 3.61 

Precuneus Ctx_POS2_L 3 -12 -68 36 3.55 

  
     

Negative weights 

Atlas label 

Volume 

(voxels) X Y Z max(z) Name 

Visual cortex Ctx_V2_L 142 -8 -80 -10 -5.51 

Visual cortex Ctx_V4t_L 70 -42 -82 0 -4.99 

Cerebellum Cblm_CrusI_L 148 -28 -80 -30 -4.93 

Cerebellum Cblm_CrusI_R 64 24 -84 -30 -4.85 

Superior frontal cortex Ctx_SFL_R 47 4 6 68 -4.85 

Paracentral lobule Ctx_4_R 37 6 -30 60 -4.83 

Superior parietal lobule Ctx_7AL_L 158 -20 -40 64 -4.63 

Parahippocampal cortex Ctx_VMV1_R 59 20 -44 -10 -4.60 

Visual cortex Ctx_V3A_L 94 -12 -86 24 -4.51 

Superior temporal sulcus Ctx_STSdp_L 78 -50 -32 -6 -4.49 

Cerebellum Cblm_V_L 16 -22 -34 -30 -4.49 

Midcingulate cortex Ctx_24dv_L 21 -8 -2 40 -4.40 

Parahippocampal cortex Ctx_VMV1_L 32 -18 -60 -8 -4.36 

Superior frontal cortex Ctx_8BL_R 35 2 50 46 -4.28 

Visual cortex Ctx_V4t_R 48 44 -78 -2 -4.23 

Visual cortex Ctx_V3_R 41 16 -72 -8 -4.22 

Superior frontal cortex Ctx_8BL_R 15 4 30 62 -4.20 

Superior parietal lobule Ctx_7AL_R 14 18 -44 70 -4.13 

Putamen Putamen_Pp_R 3 28 -12 10 -4.10 



Putamen Putamen_Pp_L 10 -30 -22 10 -4.06 

Superior frontal cortex Ctx_9a_L 24 -10 62 26 -4.05 

Paracentral lobule Ctx_SCEF_L 11 -8 -6 66 -4.05 

Visual cortex Ctx_V3A_R 31 20 -90 18 -4.00 

Frontal pole Ctx_10d_R 7 12 68 16 -3.90 

Temporal pole Ctx_PeEc_L 4 -28 -4 -34 -3.87 

Visual cortex Ctx_MT_R 9 48 -68 4 -3.83 

Superior temporal gyrus Ctx_PSL_L 17 -56 -36 16 -3.80 

Precuneus Ctx_5L_R 6 12 -48 66 -3.80 

Visual cortex Ctx_V4_R 8 32 -78 -10 -3.79 

Superior temporal gyrus Ctx_A4_L 4 -60 -30 10 -3.70 

Temporal pole Ctx_TE1a_L 4 -52 -6 -32 -3.70 

Superior temporal sulcus Ctx_STV_R 6 50 -42 10 -3.68 

Superior temporal gyrus Ctx_PSL_R 5 54 -32 22 -3.56 

 



Figure 2-3 
 
 

Positive weights 

Atlas label 

Volume 

(voxels) 

MNI Coordinates 

max(z) Name X Y Z 

Visual cortex Ctx_V3A_R 131 12 -86 20 5.30 

Ventromedial prefrontal cortex Ctx_10v_R 160 2 42 -20 5.14 

Precuneus Ctx_PCV_L 102 -10 -54 46 4.75 

Superior temporal sulcus Ctx_STSdp_L 63 -54 -34 4 4.71 

Superior temporal gyrus Ctx_TA2_R 59 52 -8 -2 4.66 

Precentral gyrus Ctx_3b_L 214 -34 -26 62 4.62 

Angular gyrus Ctx_PGi_R 27 40 -60 22 4.61 

Ventromedial prefrontal cortex Ctx_9m_R 37 16 48 6 4.58 

Putamen Putamen_Pp_L 35 -32 -14 2 4.43 

Caudate Cau_L 36 -22 22 2 4.35 

Superior temporal gyrus Ctx_TPOJ1_R 29 50 -30 8 4.34 

Angular gyrus Ctx_PGi_L 43 -48 -54 22 4.34 

Precentral gyrus Ctx_4_L 5 -32 -16 44 4.33 

Cingulate sulcus Ctx_24dd_L 49 -6 -10 48 4.29 

Subgenual cingulate cortex Ctx_s32_L 17 -10 26 -12 4.24 

Paracentral lobule Ctx_5L_R 28 10 -40 62 4.16 

Midcingulate cortex Ctx_24dv_R 9 10 -4 44 4.15 

Cerebellum Cblm_CrusII_L 3 -12 -84 -44 4.04 

Caudate Cau_R 7 6 26 -4 3.99 

Superior frontal gyrus Ctx_9m_R 21 4 56 38 3.97 

Midtemporal gyrus Ctx_MT_R 9 46 -68 12 3.96 

Visual cortex Ctx_V1_L 14 -14 -82 -4 3.94 

Cerebellum Cblm_CrusII_R 7 28 -84 -44 3.93 

Posterior insula/temporal operculum Ctx_52_R 16 40 -22 -2 3.91 

Superior temporal sulcus Ctx_A5_L 8 -58 2 -10 3.90 

Paracentral lobule Ctx_5mv_R 4 18 -32 44 3.83 

Cerebellum Cblm_CrusI_R 10 40 -74 -34 3.82 



Midtemporal gyrus Ctx_A5_L 4 -62 -12 -10 3.80 

Superior parietal lobule No_label 4 -22 -44 50 3.78 

Paracentral lobule Ctx_5m_L 11 -10 -44 64 3.77 

Paracentral lobule Ctx_5mv_R 7 16 -24 44 3.72 

Inferior frontal cortex Ctx_45_L 5 -54 26 14 3.72 

Precentral gyrus Ctx_6d_L 3 -26 -18 62 3.72 

Superior parietal lobule Ctx_7Am_L 5 -4 -66 62 3.70 

Visual cortex Ctx_V2_L 8 -6 -86 18 3.69 

Visual cortex Ctx_IP0_R 6 30 -70 22 3.68 

Caudate Cau_L 4 -18 8 18 3.68 

Posterior cingulate cortex Ctx_24dd_R 7 10 -20 44 3.66 

Superior parietal lobule Ctx_2_L 3 -18 -38 60 3.63 

Superior temporal sulcus Ctx_STV_R 3 58 -34 8 3.57 

  
     

Negative weights 

Atlas label 

Volume 

(voxels) X Y Z max(z) Name 

Dorsolateral prefrontal cortex Ctx_a9_46v_L 76 -40 50 14 -5.20 

Brain stem Bstem_Ponscd 54 2 -28 -36 -4.78 

Intraparietal sulcus Ctx_7PC_L 34 -40 -46 48 -4.70 

Dorsolateral prefrontal cortex Ctx_8C_R 26 40 12 30 -4.57 

Brain stem Bstem_Ponscd_L 69 -12 -38 -36 -4.54 

Paracentral lobule Ctx_4_R 12 6 -30 78 -4.41 

Inferior parietal lobule Ctx_PFm_R 23 54 -44 52 -4.39 

Cerebellum Cblm_Dentate_R 39 18 -42 -36 -4.25 

Cerebellum Cblm_IX_L 51 -6 -54 -36 -4.23 

Medial frontal gyrus Ctx_8BM_R 45 0 22 42 -4.17 

Orbitofrontal cortex Ctx_a10p_R 5 22 58 -10 -4.16 

Visual cortex Ctx_V4_R 19 30 -86 -10 -4.11 

Paracentral lobule Ctx_SFL_R 10 4 -2 76 -4.10 

Thalamus Thal_Pulv 13 -4 -30 4 -4.08 

Orbitofrontal cortex Ctx_11l_R 17 22 32 -18 -4.07 



Visual cortex Ctx_LO2_L 3 -46 -82 -6 -4.07 

Anterior insula/frontal operculum Ctx_AVI_R 3 36 26 -4 -4.06 

Dorsolateral prefrontal cortex Ctx_p9_46v_R 52 44 36 16 -3.99 

Cerebellum Cblm_CrusII_R 3 8 -86 -28 -3.92 

Frontal pole Ctx_a10p_R 9 28 66 -6 -3.85 

Thalamus Thal_Pulv 19 6 -26 8 -3.85 

Orbitofrontal cortex Ctx_pOFC_R 8 16 10 -16 -3.84 

Midcingulate cortex Ctx_a32pr_L 4 -8 34 24 -3.84 

Visual cortex Ctx_V4_L 10 -34 -90 -6 -3.80 

Frontal pole Ctx_a10p_L 3 -20 60 -10 -3.80 

Visual cortex Ctx_V3CD_L 9 -44 -86 12 -3.79 

Superior parietal lobule No_label 3 28 -38 76 -3.79 

Posterior cingulate cortex Ctx_31a_L 9 0 -32 44 -3.74 

Inferior parietal lobule Ctx_PFm_L 4 -50 -48 52 -3.69 

Frontal pole Ctx_p10p_L 3 -30 66 0 -3.65 

Visual cortex Ctx_VVC_R 4 30 -62 -14 -3.63 

Nucleus accumbens NAC_L 6 -10 4 -18 -3.57 

Nucleus accumbens NAC_L 3 -8 12 -10 -3.52 

 


