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A BRAIN SIGNATURE OF DELAY DISCOUNTING 1 An fMRI-based brain marker of individual differences in delay discounting

Individual differences in delay discounting-how much we discount future compared to immediate rewards-are associated with general life outcomes, psychopathology, and obesity. Here, we use machine learning on fMRI activity during an intertemporal choice task to develop a functional brain marker of these individual differences in human adults. Training and cross-validating the marker in one data set (Study 1, N = 110 male adults) resulted in a significant prediction-outcome correlation (r = 0.49), generalized to predict individual differences in a completely independent data set (Study 2, N = 145 male and female adults, r = 0.45), and predicted discounting several weeks later. Out-of-sample responses of the functional brain marker, but not discounting behavior itself, differed significantly between overweight and lean individuals in both studies, and predicted fasting state blood levels of insulin, c-peptide, and leptin in Study 1.

Significant predictive weights of the marker were found in cingulate, insula, and frontoparietal areas, among others, suggesting an interplay among regions associated with valuation, conflict processing, and cognitive control. This new functional brain marker is a step towards a generalizable brain model of individual differences in delay discounting.

Future studies can evaluate it as a potential transdiagnostic marker of altered decisionmaking in different clinical and developmental populations.

Introduction

Many decisions in life have consequences at different points in time. For example, most people need to decide whether to put part of their paycheck towards a retirement fund or spend it on something fun, like a short vacation. These trade-offs between options that are immediately rewarding and those that will be more rewarding in the long run are hard, and people differ substantially in delay discounting-the degree to which they discount future compared to immediate rewards [START_REF] Kirby | Preference Reversals Due to Myopic Discounting of Delayed Reward[END_REF]. Greater delay discounting (i.e., greater impatience or higher preference for sooner rewards) is associated with obesity, addiction, and many psychiatric conditions [START_REF] Bickel | Impulsivity and cigarette smoking: delay discounting in current, never, and ex-smokers[END_REF][START_REF] Mackillop | Delayed reward discounting and addictive behavior: a meta-analysis[END_REF][START_REF] Mole | Impulsivity in disorders of food and drug misuse[END_REF][START_REF] Amlung | Steep discounting of delayed monetary and food rewards in obesity: a meta-analysis[END_REF]. It has therefore been proposed as a potential transdiagnostic marker of psychopathology [START_REF] Amlung | Delay Discounting as a Transdiagnostic Process in Psychiatric Disorders: A Meta-analysis[END_REF][START_REF] Lempert | Can delay discounting deliver on the promise of RDoC?[END_REF] and as a risk factor for short-sighted behaviors such as unhealthy diet, smoking, and excessive alcohol and drug use [START_REF] Audrain-Mcgovern | Does delay discounting play an etiological role in smoking or is it a consequence of smoking?[END_REF][START_REF] Fernie | Multiple behavioural impulsivity tasks predict prospective alcohol involvement in adolescents[END_REF]. The goal of the present study is to identify and validate an fMRI-based brain marker of individual differences in delay discounting.

Previous findings regarding the structural and functional brain bases of individual differences in delay discounting offer a mixed picture. Several studies suggest a role for areas involved in reward processing and valuation [START_REF] Bartra | The valuation system: a coordinate-based metaanalysis of BOLD fMRI experiments examining neural correlates of subjective value[END_REF][START_REF] Cooper | Brain activity in valuation regions while thinking about the future predicts individual discount rates[END_REF], and for areas central to cognitive control [START_REF] Hare | Activity in dlPFC and its effective connectivity to vmPFC are associated with temporal discounting[END_REF]. Brain areas associated with memory and prospection have also been found to contribute to individual differences in delay discounting [START_REF] Benoit | A neural mechanism mediating the impact of episodic prospection on farsighted decisions[END_REF][START_REF] Peters | The neural mechanisms of inter-temporal decision-making: understanding variability[END_REF][START_REF] Lebreton | A critical role for the hippocampus in the valuation of imagined outcomes[END_REF].

Studies using structural and functional connectivity measures suggested a role for frontostriatal and striatal-subcortical connections (van den [START_REF] Van Den Bos | Connectivity strength of dissociable striatal tracts predict individual differences in temporal discounting[END_REF]. The structure of midbrain dopaminergic nuclei and the ventral striatum has been associated with selfreported trait impulsivity [START_REF] Macniven | Medial forebrain bundle structure is linked to human impulsivity[END_REF].
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Individual differences in delay discounting may also emerge from the combined activity across multiple brain regions or functional networks. However, only a few studies [START_REF] Berman | Dimensionality of brain networks linked to life-long individual differences in selfcontrol[END_REF][START_REF] Li | Restingstate functional connectivity predicts impulsivity in economic decision-making[END_REF][START_REF] Pehlivanova | Diminished Cortical Thickness Is Associated with Impulsive Choice in Adolescence[END_REF] have investigated the distributed patterns associated with individual differences in delay discounting. Further, most previous studies used relatively small sample sizes to explore these individual differences, increasing the risk of both false-positive and false-negative results [START_REF] Poldrack | Scanning the horizon: towards transparent and reproducible neuroimaging research[END_REF]. Given the use of standard correlation or regression analyses that are typically not cross-validated on independent data samples, previous results are difficult to compare with each other and do not provide any formal model that could predict delay discounting in completely independent studies.

Here, we address these limitations by using a machine-learning-based 'brain model' approach [START_REF] Woo | Building better biomarkers: brain models in translational neuroimaging[END_REF][START_REF] Kragel | Representation, Pattern Information, and Brain Signatures: From Neurons to Neuroimaging[END_REF]. Brain models are trained to predict a mental process or individual variable (here, delay discounting) and can be applied to independent data [START_REF] Kragel | Representation, Pattern Information, and Brain Signatures: From Neurons to Neuroimaging[END_REF][START_REF] Scheinost | Ten simple rules for predictive modeling of individual differences in neuroimaging[END_REF]. As such, brain models go beyond reporting peak coordinates by identifying specific large-scale patterns of brain activity that can be replicated, validated, or falsified in a quantifiable way. This approach has been successfully applied to brain-based prediction of pain [START_REF] Wager | An fMRI-based neurologic signature of physical pain[END_REF], working memory [START_REF] Rosenberg | Behavioral and neural signatures of working memory in childhood[END_REF], and affective states [START_REF] Yu | A Generalizable Multivariate Brain Pattern for Interpersonal Guilt[END_REF], among others. The importance of independent validation and model generalizability has also been recognized for brain-based prediction of trait-like individual differences [START_REF] Gabrieli | Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience[END_REF][START_REF] Rosenberg | Prediction complements explanation in understanding the developing brain[END_REF][START_REF] Rosenberg | How to establish robust brain-behavior relationships without thousands of individuals[END_REF].

Here, we build on this approach to predict individual differences in delay discounting. If there is a consistent activity pattern associated with individual differences in delay discounting during intertemporal choices, then this pattern should be able to predict delay discounting in new data (hold-out subjects) and even completely independent data sets. Comparing the resulting pattern to meta-analysis-based masks A BRAIN SIGNATURE OF DELAY DISCOUNTING 6 allows us to assess the contribution of brain areas associated with valuation, cognitive control, and prospection.

Materials and methods

Overview

We used an established machine-learning algorithm, LASSO-PCR [START_REF] Tibshirani | Regression Shrinkage and Selection Via the Lasso[END_REF][START_REF] Wager | Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience[END_REF] and fMRI data from two independent studies, from different scanners, labs, and countries. Study 1 (N=110) was used for training and cross-validation of a predictive model of individual differences in delay discounting. Study 2 (existing data set from previously published study, see Kable et al., 2017, N=145) was used as an independent test data set to assess the validity and replicability of the predictive model.

Participants

For Study 1, participants were recruited in the context of a seven-week dietary intervention study at the University of Bonn in Germany (https://osf.io/rj8sw/?view_only=af9cba7f84064e61b29757f768a8d3bf). Due to the nature of this longitudinal intervention study, we recruited only male participants who further fulfilled the following inclusion criteria: age between 20 and 60 years, right-handedness, non-smoker, no excessive drug or alcohol use in the past year, no psychiatric or neurological disease, body mass index (BMI) between 20 and 34, no other chronic illness or medication, following a typical Western diet without dietary restrictions, and no MRI exclusion criteria (large tattoos, non-removable piercings, metal in the body, claustrophobia, etc.). N=116 male participants performed the intertemporal choice task in Study 1. Here, we focus on behavioral and fMRI data collected during a baseline session before the group assignment and dietary intervention (to be reported elsewhere) and use post-intervention behavioral data only for demonstrating the temporal stability of interindividual differences in delay discounting. The data of six participants had to be excluded for analysis due to the following reasons: technical problems with the scanner

(1), with the synchronization between stimulation software and scanner (3), and with the response box (1), and strong motion artifacts (>5mm) and participant quitting the task midscan (1). Therefore, 110 participants (mean age=31.7; 52 lean, 48 overweight, and 10 obese; BMIs ranging from 20.6 to 33.7) were included in the final analysis of Study 1.

There were no significant differences between lean and overweight-to-obese participants in age, education, or total brain volume (see Table 1). Data from 109 participants were available for the seven-week follow-up measurements (i.e., one participant did not return for the second session).

Study 2 was conducted in the context of a large cognitive training study at the University of Pennsylvania in the United States [START_REF] Kable | No Effect of Commercial Cognitive Training on Brain Activity, Choice Behavior, or Cognitive Performance[END_REF]. The goal was to examine whether commercial cognitive training software leads to significant changes in decision-making behaviors, including delay discounting. Participants completed two sessions of scans 10 weeks apart. As with Study 1, we focus on the baseline (preintervention) behavioral and fMRI data, and report post-intervention behavioral data only to assess the temporal (10-week) stability of interindividual differences in delay discounting. Of the 160 non-pilot participants who completed session 1, we excluded those with missing runs (N=6), frequent or significant head movement (any run with >5% of mean image displacements greater than 0.5mm; N=3), more than 3 missing trials per run for two or more runs (N=2), or lack of participant blinding (N=1, one subject expressed awareness of their experimental condition, i.e. cognitive training vs. control). Of the remaining 148, we excluded three more participants whose choice was entirely one-sided (i.e., choosing only immediate reward or delayed reward), resulting in a final sample of N=145 participants for Study 2 (88 male, 57 female, mean age=24.4; 81 lean, 39 overweight, and 25 obese; BMIs ranging from 16.5 to 40.9). There were no significant differences between lean and overweight-to-obese participants in sex, age, education, or total brain volume (see Table 1). Due to drop-out, data from 102 participants was available for the 10-week post-intervention measurement of log(k).

The study protocols were approved by the institutional review boards of Bonn University's Medical School (Study 1) and the University of Pennsylvania (Study 2). All participants provided written informed consent, and were paid for their time and participation in the study. The research reported here complies with all relevant ethical regulations.

Stimuli and task

In Study 1, participants performed 108 choices (trials) between varying amounts of smaller sooner (SS) and larger later (LL) options, presented on the left or right of the screen (position randomized; see Figure 1a). Participants were instructed that one of their choices might be paid out at the end of the experiment. Thus, participants' choices were non-hypothetical and incentive-compatible. During each trial, the two options were presented for 4s, during which participants could make their choice (left or right) by pressing the corresponding response key with their left or right index finger, respectively.

Once the choice had been made, a yellow frame highlighted the chosen option and remained on the screen for the remainder of the 4s. Intertrial intervals were jittered using an approximately geometric distribution (2-11s) SS options varied among €5, €10, and €20, and always had zero delay ('today').

LL options varied between €5 and €96.80 and had delays between 2 days and 8 months (~240 days, choice combinations are presented in Figure 1-1). Amounts and delays were chosen to allow fine-grained estimation of individual k's between 0 and 0.256. Trials were presented in randomized order.

The intertemporal choice task in Study 2 consisted of 120 trials, again with the same choice sets for all participants (see Figure 1-2). In contrast to Study 1, the SS amount was fixed at US$20. Thus, participants were presented with the LL option (with amount ranging from US$22 to US$85 and delays from 19 days to 180 days) and were instructed to press one of two keys to either accept and receive this LL offer, or to reject the LL offer and receive the SS offer ($20 today) instead. Participants were informed that one trial would be randomly chosen at the end of the experiment and their choices implemented (i.e., the chosen amount would be paid via wire transfer at the indicated time delay), resulting in incentive-compatible and mutually independent choices in each trial (as in Study 1).

Blood measures and body fat measures

In Study 1, blood samples in a fasted state were collected from participants' nondominant arm before they received a standardized breakfast. HOMA-IR (a marker of insulin resistance) was calculated as the product of fasting insulin and glucose levels, divided by 405 [START_REF] Lozano | Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study[END_REF]. Body weight and proportion of body fat were measured using a bioimpedance scale (Tanita Europe BV, Amsterdam, the Netherlands).

For technical reasons, this body fat measure was available for only 103 participants.

Experimental design and statistical analyses

Behavioral measures. For each participant, we calculated the proportion of SS choices (with respect to total number of non-misses) and the model-based discounting parameter k. Individual k's were log-transformed in both studies to obtain less skewed distributions of discounting parameters. This log(k)-parameter describes the steepness of discounting as modeled by the hyperbolic discounting function [START_REF] Kirby | Preference Reversals Due to Myopic Discounting of Delayed Reward[END_REF]. Higher log(k) parameters reflect steeper discounting and thus greater impatience;
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In Study 1 we computed k by calculating the proportion of SS choices for all target k's (i.e., the k-value for which SS and LL options of any given choice trial should theoretically be chosen at 50% each). We then used linear interpolation to identify the individual indifference point at which the proportion of SS and LL choices was equal (50% each).

In Study 2, we fit a logit utility model on choice data via maximum likelihood estimation. The logit of the probability of choosing the delayed reward was modeled as follows:

logit&p(Y ! = delayed)0 = σ 2 LL ! 1 + kD ! -20;
Where LLt is the LL amount in trial t and Dt is the delay in trial t. ! was included as a scaling parameter that controls the relationship between utility difference scale and choice.

MRI data acquisition.

Functional and structural brain imaging data for Study 1 were acquired using a Siemens Trio 3T scanner (Erlangen, Germany) at the Life & Brain Institute, Bonn University Hospital, Germany. Functional images used a T2* weighted EPI-GRAPPA sequence (TR=2.5s, TE=30ms, flip angle=90°, FOV=192mm, acceleration factor R=2, average of 400 volumes) and covered the whole brain in 37 slices (voxel size of 2 x 2 x 3mm, 10% interslice distance). Structural images were acquired using a T1

weighted MPRAGE sequence (1mm isomorphic voxels).

For Study 2, the functional and structural imaging data were acquired with a Siemens 3T Trio scanner with a 32-channel head coil. High-resolution T1-weighted anatomical images were acquired using an MPRAGE sequence (T1=1100ms; 160 axial slices, 0.9375 x 0.9375 x 1.000mm; 192 x 256 matrix). T2*-weighted functional images were acquired using an EPI sequence with 3mm isotropic voxels, 64 x 64 matrix, TR=3s, TE=25ms, 53 axial slices (no interslice gaps), 104 volumes. B0 fieldmap images were collected for distortion correction (TR=1270ms, TE=5 and 7.46ms).

Preprocessing and basic statistical analyses of fMRI data. Preprocessing for

Study 1 was performed in SPM12 and used a standard pipeline of motion correction, slice time correction, spatial normalization to MNI space, and spatial smoothing of images using an 8mm FWHM Gaussian kernel. Preprocessing for Study 2 was performed in FSL according to the original preprocessing pipeline [START_REF] Kable | No Effect of Commercial Cognitive Training on Brain Activity, Choice Behavior, or Cognitive Performance[END_REF]. This involved the standard pipeline of motion correction, b0 map unwarping, interleaved slice time correction, spatial smoothing with FWHM 9mm Gaussian kernel, and high-pass filtering (cutoff=104s).

For Study 1, we used SPM12 to fit a general linear model (GLM) for each participant's imaging data, with choice screen onset modeled as a stick function (0s duration) as the main regressor and mean-centered parametric modulators for delay, relative LL amount (LL amount divided by SS amount), SS amount, and reaction time. Six nuisance regressors were added to control for movement artifacts. For Study 2, FSL was used to fit an otherwise similar statistical model with a choice screen onset as main regressor and mean-centered parametric modulators for delay, LL amount, and reaction time. As in Study 1, six movement regressors were added to control for head movement.

Individual contrast images were calculated for the following three regressors of interest that were available for both studies: 1) choice screen onset versus implicit baseline (hereafter referred to as "Choice contrast"), 2) parametric modulation by (relative)

LL amount ("LL Amount"), and 3) parametric modulation by delay ("Delay"). Contrast images were gray matter-masked to remove voxels that were unlikely to contain
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Training and cross-validation.

Training and cross-validation were performed on data from Study 1 only (see Figure 1b). Individual differences in delay discounting may result from how participants respond to intertemporal choices overall, from how they process future rewards, and from how they process time delays. Thus, to capture a combination of functional processes that together determine delay discounting, we concatenated the contrast images for Choice, LL Amount, and Delay for each participant, resulting in a feature space that was triple the size of a single brain image. We then used LASSO-PCR (least absolute shrinkage and selection operator-principal component regression) [START_REF] Tibshirani | Regression Shrinkage and Selection Via the Lasso[END_REF]-a machine learning-based regression algorithm-to train a classifier to predict log(k) across all voxel weights of the concatenated contrast images. LASSO-PCR first performs data reduction using principal component regression, thus identifying brain regions and networks that are highly correlated with each other. It then performs the LASSO algorithm, which shrinks regression weights towards zero, thus reducing the contribution of less important and more unstable components. LASSO-PCR has been shown to be advantageous for brain images for several reasons (see [START_REF] Wager | Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience[END_REF][START_REF] Wager | An fMRI-based neurologic signature of physical pain[END_REF]: it is adequate for predictions based on thousands of voxels, it takes into account multicollinearity between voxels and brain regions, and it yields interpretable results by allowing reconstruction of voxel weight maps based on PCR results.

To assess the predictive accuracy of the classifier in new subjects, we used 10fold cross-validation. Thus, the training data was split up in 10 stratified combinations of training (90%) and test sets (10%), such that every subject's data was used for the training of the classifier in nine folds and held out in the remaining fold to independently assess the prediction-outcome correlation. Tenfold cross-validation was chosen a priori as a good compromise between maximizing the sample size in each training set and being within the range of recommended folds (between 5 and 10) [START_REF] Scheinost | Ten simple rules for predictive modeling of individual differences in neuroimaging[END_REF][START_REF] Poldrack | Establishment of Best Practices for Evidence for Prediction: A Review[END_REF]. A priori set default regularization parameters were used for all machine-learning analysis to avoid biasing the model parameters to the data and thereby generating overoptimistic accuracy scores. Permutation tests (5,000 iterations of randomly permuting the log(k) values) were used to generate null distributions and to assess the statistical significance of the prediction-outcome correlation and the mean absolute error. Out-ofsample predictions of log(k) were used for all correlational analysis (e.g., with BMI, age, blood markers).

Bootstrapping and thresholding. To identify the brain areas contributing the most reliable positive or negative weights, we performed a bootstrap analysis; 5,000 samples with replacements were taken from the paired brain and outcome data, and the LASSO-PCR was repeated for each bootstrap sample. Two-tailed, uncorrected p-values were calculated for each voxel based on the proportion of weights above or below zero [START_REF] Wager | Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience[END_REF][START_REF] Wager | An fMRI-based neurologic signature of physical pain[END_REF]. False discovery rate (FDR) correction was applied to p-values to correct for multiple comparisons across the whole feature space (three combined brain maps).

Independent test set.

Study 2 was used as an independent test set to assess the validity and generalizability of the brain pattern classifier developed based on Study 1 (i.e., the k-marker). For this purpose of testing its validity in an independent data set (and for all future use of this brain-based model), the k-marker was trained on the data of all participants of Study 1. To assess the response of the predictive marker in Study 2, we calculated the matrix dot product between the k-marker and the concatenated contrast images (Choice screen onset, LL Amount, and Delay) from each participant. The dot product reflects the pattern similarity between the classifier and each participant's set of contrast images and, in sum with the classifier's intercepts, provides a predicted value of log(k). Predictive accuracy of the marker was quantified by correlating the predicted value of log(k) with the actual log(k)'s of each participant and by calculating the mean absolute error for each prediction.

Other statistical analyses. All statistical tests were performed in Matlab, were two-tailed, and used a significance criterion of p=0.05. Statistical power calculations confirmed that the sample sizes in both studies were sufficiently powered (>80%) to detect correlations of r > 0.3 at a significance level of p=0.05 (two-sided tests).

Results

Individual differences in delay discounting

In Study 1 (Bonn University, N=110), participants chose the SS option in an average of 43.7% of all trials (median=48.1%) and had a fitted mean log(k) parameter of -5.70 (median log(k)=-5.28, corresponding to a k of 0.0051). Choice behavior was characterized by substantial individual differences, with %SS choices ranging from 5.6% to 88.8%, and log(k) ranging from -9.90 to -1.36 (see Figure 1c). Individual differences were very stable over a 7-week period (see Methods), with a test-retest reliability (correlation between baseline log(k)'s and second session) of r=0.86 (p<0.001, 95%confidence interval [CI]=[0.80, 0.90], Figure 1c).

On average, participants in Study 2 chose the SS option in 57.4% of trials (median=60.0%) and had an fitted log(k) of -4.08 (median log(k)=-3.95, corresponding to a k of 0.0193). Again, individuals varied substantially in their intertemporal preferences, with %SS ranging from 0.8% to 99.2%, and log(k) ranging from -7.08 to -2.12 (see Figure 1c). As in Study 1, these individual differences were stable over time, with a test-retest reliability between baseline and post-intervention (10 weeks later) measures of log(k) of r=0.74 (Pearson correlation, p<0.001, 95%-CI=[0.63, 0.82], see Figure 1c). Thus, our data confirm both the substantial variability in delay discounting known from previous work [START_REF] Kable | The neural correlates of subjective value during intertemporal choice[END_REF][START_REF] Pehlivanova | Diminished Cortical Thickness Is Associated with Impulsive Choice in Adolescence[END_REF] and the stability of these individual differences over time [START_REF] Kirby | One-year temporal stability of delay-discount rates[END_REF][START_REF] Anokhin | Long-term test-retest reliability of delayed reward discounting in adolescents[END_REF][START_REF] Lempert | The Malleability of Intertemporal Choice[END_REF], allowing us to investigate the neurofunctional bases of these individual differences.

Significant cross-validated prediction of delay discounting based on fMRI

Training (using LASSO-PCR) and cross-validating (10-fold) the predictive marker (termed k-marker, see Figure 2a) in Study 1 resulted in a cross-validated predictionoutcome correlation (i.e., correlation between predicted and actual log(k)) of r=0.49

(permutation test: p<0.001), a mean squared error of 2.84 (permutation test: p<0.001), and a mean absolute error for predicted log(k) of 1.32 (permutation test: p<0.001; see 

Validation of the k-marker in an independent test data set (Study 2)

Brain markers of individual differences become more meaningful if they can be validated in different and completely independent data [START_REF] Kragel | Representation, Pattern Information, and Brain Signatures: From Neurons to Neuroimaging[END_REF]. The validity of the marker should not depend on study-specific parameters such as the type of scanner used for data acquisition, preprocessing software, or other aspects of the data [START_REF] Woo | Building better biomarkers: brain models in translational neuroimaging[END_REF][START_REF] Kragel | Representation, Pattern Information, and Brain Signatures: From Neurons to Neuroimaging[END_REF][START_REF] Scheinost | Ten simple rules for predictive modeling of individual differences in neuroimaging[END_REF].

We therefore tested whether the k-marker-developed and cross-validated The training and cross-validation data set (Study 1) consisted of male participants only, which might limit the validity of the k-marker in females. We therefore assessed the accuracy of the k-marker in Study 2 separately in male and female participants (see Figure 2c). In male participants (N=88), the prediction-outcome correlation was r=0 2d). This shows that variability in k-marker responses is driven largely by stable individual differences and their underlying neurophysiological processes.

Response of the k-marker differs between lean and overweight participants

Given previous findings of higher delay discounting in overweight and obese people [START_REF] Jarmolowicz | Robust relation between temporal discounting rates and body mass[END_REF][START_REF] Amlung | Steep discounting of delayed monetary and food rewards in obesity: a meta-analysis[END_REF] 3b).

Thresholded activation patterns of the k-marker

Activation patterns across the whole brain gray matter and across all three contrasts are used for prediction and cross-validation. To identify the areas that contributed the most strongly with positive or negative weights, we used a bootstrapping procedure (5,000 samples). Bootstrapped weights were thresholded at q=0.05 FDR corrected across the whole weight map of the combined feature space (see Figure 2a and Figures 2-1, 2-2, and2-3).

Our results revealed a distributed network of areas that jointly contributed to individual differences in delay discounting, including the vmPFC, ventral striatum, anterior midcingulate cortex (aMCC), hippocampus, frontoparietal, and visual areas (see Figure 2). Predictive activity patterns differed for the processes captured by the three different contrast images. Of note, some regions showed negative weights (i.e., predicted less discounting) for one contrast but positive weights (i.e., predicted more discounting) for another. For the Choice (versus implicit baseline) contrast, activity in the striatum, the anterior insula, and lateral prefrontal areas contributed positive weights for more discounting, whereas activity in visual, premotor, and motor areas contributed negative Training predictive patterns on the three contrasts separately resulted in lower predictive accuracies (see Figure 5).

Similarity of k-marker brain patterns to meta-analytic maps

We next compared the predictive maps of the k-marker with term-based metaanalytic images [START_REF] Yarkoni | Large-scale automated synthesis of human functional neuroimaging data[END_REF] for processes that may contribute to intertemporal decision-making. We computed the spatial correlation (Pearson's r) between the k-marker and meta-analytic maps for 1) affective-and value-related, 2) conflict-and cognitive control-related, and 3) memory-related terms (see Figure 6). While these spatial correlations are descriptive (c.f., [START_REF] Koban | Different brain networks mediate the effects of social and conditioned expectations on pain[END_REF], they can inform us quantitatively whether and in which direction (positive or negative) previously identified functional networks contribute to individual differences in delay discounting.

Value-and affect-related maps (especially 'affect' and 'emotion') showed consistent positive correlations (r's > 0.05) with the Choice-related pattern of the k-marker, in line with the idea that more affect-related activity during intertemporal choices leads to more impatient decisions. However, stronger engagement of affective and especially 'reward'-and 'value'-related activity for increasing LL Amount (and, to a lesser extent, for increasing delays) was associated with less discounting. This suggests that lower discounting is associated with greater sensitivity of valuation-related signals to the amount of LL rewards.

In contrast to our initial hypothesis, more activity in cognitive control-related areas was not associated with lower discounting. Instead, there were positive correlations (r's from 0.05 to 0.19) of the Choice pattern with meta-analytic maps for 'attention', 'cognitive control', 'conflict', and 'executive' (i.e., more positive weights predicting greater discounting). Further, stronger activation of control-related maps by greater LL Amount was associated with greater discounting, whereas stronger activation of control-related activity for longer delays was associated with less discounting.

Finally, we assessed the contribution of brain systems related to memory and prospection. While the term 'memory' (which also includes working-memory studies)

showed a similar pattern as control-related maps, more specific terms such as 'episodic memory', 'imagery', and 'planning' were not substantially positively or negatively correlated with any of the k-marker patterns (r's around 0.05 and smaller).

Parallel findings were obtained when testing whether activity in non-overlapping meta-analytic maps [START_REF] Yarkoni | Large-scale automated synthesis of human functional neuroimaging data[END_REF] (for value-related, cognitive control-related, or episodic memory-related activity) could separately predict log(k) (see Figure 7). Whereas 

Local prediction of log(k)

Finally, we assessed whether activity patterns in smaller, more local brain areas could predict out-of-sample log(k) in Study 1 and whether such predictions would accurately transfer to Study 2. For this purpose, we used an established multi-modal cortical parcellation [START_REF] Glasser | A multi-modal parcellation of human cerebral cortex[END_REF] in combination with several other, subcortical parcellations, resulting in a total of 485 regions (publicly available at https://github.com/canlab/Neuroimaging_Pattern_Masks/tree/master/Atlases_and_parcel lations/2018_Wager_combined_atlas). We trained and cross-validated a separate classifier for each region (combining functional activity across all three contrasts). For each region we then tested whether the pattern trained on Study 1 data was predictive of individual differences in Study 2. Activity patterns that consistently predicted delay discounting in both studies were found in mid-and posterior cingulate cortex, right insula, and lateral frontal and parietal areas (see Figure 8 and Table 2), in line with the contributions of these areas in the whole-brain predictive pattern. In addition, activity patterns in amygdala, hippocampus, basal ganglia and brainstem areas (periaqueductal gray) also predicted individual differences in delay discounting in both studies.

Discussion

A major goal of neuroscience and psychiatry is to identify neuromarkers of transdiagnostic processes that are altered across different diseases or predispose individuals to such diseases [START_REF] Insel | Medicine. Brain disorders? Precisely[END_REF]. Delay discounting-how much people prefer sooner compared to future rewards-has been proposed as such a transdiagnostic process across obesity and various forms of psychopathology, especially addiction and eating disorders [START_REF] Bickel | Using crowdsourcing to compare temporal, social temporal, and probability discounting among obese and non-obese individuals[END_REF][START_REF] Amlung | Delay Discounting as a Transdiagnostic Process in Psychiatric Disorders: A Meta-analysis[END_REF][START_REF] Lempert | Can delay discounting deliver on the promise of RDoC?[END_REF]. In this paper, we advanced our understanding of the brain processes that drive variability in decision-making by identifying a distributed pattern of functional brain activity that predicts individual differences in delay discounting. We first used a cross-validation procedure to develop a novel functional brain marker of delay discounting (k-marker) based on whole-brain, gray matter-masked fMRI data (N1=110). We then validated the kmarker (trained on Study 1 data only) in an independent second fMRI data set (N2=145), sampled in a cohort with different socio-demographic characteristics, on a different fMRI scanner, and employing a different delay discounting task. Prediction-outcome correlations were 0.49 (Study 1) and 0.45 (Study 2), as large or larger than prediction of individual differences in other domains reported in previous studies [START_REF] Rosenberg | A neuromarker of sustained attention from whole-brain functional connectivity[END_REF][START_REF] Beaty | Robust prediction of individual creative ability from brain functional connectivity[END_REF][START_REF] Han | Effect sizes and test-retest reliability of the fMRI-based Neurologic Pain Signature[END_REF]. In both studies, individual differences in discounting were stable over time, and k-marker responses measured at baseline significantly predicted behavior several weeks later.

Recent findings have questioned the utility of brain imaging in predicting individual differences, especially for structural and resting-state fMRI data and for univariate, voxelwise-associations [START_REF] Marek | Reproducible brain-wide association studies require thousands of individuals[END_REF]. An important advance of the present study is that it overcomes many of the limitations of previous studies by providing an independently cross-validated and multivariate 'brain model' [START_REF] Kragel | Representation, Pattern Information, and Brain Signatures: From Neurons to Neuroimaging[END_REF] of stable individual differences in impatient decision-making, in line with recent recommendations on studying brain-based prediction of individual differences [START_REF] Rosenberg | How to establish robust brain-behavior relationships without thousands of individuals[END_REF]. As such, this brain model can be directly tested, validated, or refined in other existing or future fMRI data sets acquired during an intertemporal choice task. Its predictive performance can also be tested in clinical populations, such as patients with severe obesity, eating or substance use disorders, and other types of psychopathology.

Our results also inform the debate regarding the contributions of specific brain regions and functional networks to individual differences in delay discounting. Among the brain areas that contributed with positive and/or negative weights were the vmPFC, striatum, and other regions associated with valuation and reward [START_REF] Levy | Comparing apples and oranges: using reward-specific and reward-general subjective value representation in the brain[END_REF][START_REF] Bartra | The valuation system: a coordinate-based metaanalysis of BOLD fMRI experiments examining neural correlates of subjective value[END_REF][START_REF] Clithero | Informatic parcellation of the network involved in the computation of subjective value[END_REF]. This finding is in line with previous, univariate findings [START_REF] Cooper | Brain activity in valuation regions while thinking about the future predicts individual discount rates[END_REF][START_REF] Pehlivanova | Diminished Cortical Thickness Is Associated with Impulsive Choice in Adolescence[END_REF][START_REF] Macniven | Medial forebrain bundle structure is linked to human impulsivity[END_REF].

The present results add to this emergent picture by showing that greater sensitivity of reward-and value-related areas to the amount of the LL reward is linked to more patient decision-making.

Significant weights were found most consistently in the frontoparietal areas, midcingulate cortex, and anterior insula. Activity in these areas also allowed for significant prediction based on local activity alone (see Figure 8, ROI analysis). The dorsolateral prefrontal cortex has been theorized to implement self-control and far-sighted decision-making [START_REF] Mcclure | Separate neural systems value immediate and delayed monetary rewards[END_REF][START_REF] Hare | Activity in dlPFC and its effective connectivity to vmPFC are associated with temporal discounting[END_REF]). Yet the present results are surprising as they draw a more complex picture of these areas' contribution to delay discounting, with modulation of these areas by greater LL rewards being positively associated with discounting and modulation by delay being negatively associated with discounting. Thus, areas meta-analytically associated with cognitive control were more recruited for long delays and small LL amounts for low discounters, and for shorter delays and larger LL amounts for high discounters. These are the cases in which decisions are most difficult (closer to the indifference point) and therefore require resolution of response conflict [START_REF] Botvinick | Conflict monitoring and cognitive control[END_REF][START_REF] Kool | Neural and behavioral evidence for an intrinsic cost of self-control[END_REF][START_REF] Shenhav | The expected value of control: an integrative theory of anterior cingulate cortex function[END_REF][START_REF] Hutcherson | Evidence accumulation, not" self-control[END_REF], or integration of expected value and risk of future rewards [START_REF] Tobler | Risk-dependent reward value signal in human prefrontal cortex[END_REF].

These findings have implications for models of delay discounting and self-control in cognitive neuroscience. First, they speak against the idea of a simple dual process account of intertemporal choice and self-control [START_REF] Mcclure | Separate neural systems value immediate and delayed monetary rewards[END_REF], joining previous work that has suggested more complex neural processes at play [START_REF] Kable | The neural correlates of subjective value during intertemporal choice[END_REF][START_REF] Ballard | Dissociable neural representations of future reward magnitude and delay during temporal discounting[END_REF][START_REF] Hare | Activity in dlPFC and its effective connectivity to vmPFC are associated with temporal discounting[END_REF][START_REF] Berkman | Self-Control as Value-Based Choice[END_REF]. Second, it also speaks against the idea that more frontoparietal activity is related to higher individual levels of self-control. Instead, it suggests that for which choice options control-related areas are activated is more informative than their overall level of activation. This finding is in line with value-based choice models of self-control [START_REF] Berkman | Self-Control as Value-Based Choice[END_REF] and with recent evidence that high and low discounters differ in how much attention they allocate to amount versus delay information [START_REF] Amasino | Amount and time exert independent influences on intertemporal choice[END_REF]. It also fits with the idea that low discounters may not need 'control' to discount less [START_REF] Lempert | Can delay discounting deliver on the promise of RDoC?[END_REF], and that high discounters may employ cognitive control for different types of decisions.

In line with the importance of prospection and self-projection in intertemporal decision-making, the hippocampus and adjacent midtemporal areas have been associated with individual differences in discounting [START_REF] Benoit | A neural mechanism mediating the impact of episodic prospection on farsighted decisions[END_REF][START_REF] Peters | The neural mechanisms of inter-temporal decision-making: understanding variability[END_REF] A BRAIN SIGNATURE OF DELAY DISCOUNTING 25

Büchel, 2011; [START_REF] Lebreton | A critical role for the hippocampus in the valuation of imagined outcomes[END_REF]. The k-marker has significant weights in parahippocampal areas and in occipital areas, but the weight maps were not strongly associated with broader meta-analysis-based activation maps of episodic memory or prospection, possibly because those masks also include many areas that are involved in processes other than memory and prospection. In agreement with the k-marker results

and the literature described above, our ROI-based results showed significant local prediction of individual differences in delay discounting in hippocampus, amygdala and the memory-related anteromedial thalamus.

Our findings highlight the importance of investigating distributed brain activity patterns, confirming the notion that delay discounting depends on the interactions among different functional processes and networks in the brain. In addition to frontoparietal areas, midcingulate, and hippocampus, several other cortical and subcortical areas also allowed for cross-validated local prediction of individual differences in delay discounting, across both data sets. Consistent with the whole-brain results, these included several areas in the mid and posterior insula, which is involved in interoception [START_REF] Craig | How do you feel--now? The anterior insula and human awareness[END_REF], salience [START_REF] Bartra | The valuation system: a coordinate-based metaanalysis of BOLD fMRI experiments examining neural correlates of subjective value[END_REF], and exploration [START_REF] Zhen | To learn or to gain: neural signatures of exploration in human decision-making[END_REF]-processes which may all be involved in delay discounting. Local prediction was also found in subcortical areas associated with affect and visceromotor control, including the amygdala and the periaqueductal gray.

Previous work has related individual differences in delay discounting with obesity, substance use disorders, and psychiatric diseases [START_REF] Peters | The neural mechanisms of inter-temporal decision-making: understanding variability[END_REF][START_REF] Amlung | Delay Discounting as a Transdiagnostic Process in Psychiatric Disorders: A Meta-analysis[END_REF][START_REF] Lempert | Can delay discounting deliver on the promise of RDoC?[END_REF]. In the two samples presented here, log(k) values based on participants' choices themselves were not significantly associated with BMI or overweight. However, the two studies were not designed to include a large range of BMI or many obese participants, and obesity-related alterations in discounting might be more pronounced for food than monetary rewards. In contrast to discounting behavior, responses to the k-marker did significantly differ between lean and overweight participants and predicted out-of-sample blood markers related to glucose and fat metabolism. These findings suggest that this functional brain marker reflects variance in neurophysiology that is related to stable long-term patterns in decision-making and health. The k-marker even seemed more sensitive to individual differences than the behavioral measures it was trained on, potentially because it is a closer reflection of the neurophysiological underpinnings that drive both discounting behavior and more distal health outcomes, in line with previous evidence that brain-based can outperform behavior-based prediction [START_REF] Genevsky | When brain beats behavior: neuroforecasting crowdfunding outcomes[END_REF]. Of note, our approach is cross-sectional and remains agnostic regarding potential causal links among brain function, behavior, and body weight. While higher discounting is typically considered a causal or predisposing factor for weight gain, an alternative hypothesis is that overweight and changes in metabolism lead to changes in brain physiology and subsequent behavioral outcomes [START_REF] Cornil | Obesity and responsiveness to food marketing before and after bariatric surgery[END_REF][START_REF] Schmidt | Resting-state connectivity within the brain's reward system predicts weight loss and correlates with leptin[END_REF]. Future work can test the k-marker in larger numbers of participants with obesity and other health conditions.

In conclusion, the k-marker-a novel fMRI-based brain signature-predicts individual differences in intertemporal decision-making in neurotypical, healthy adults across different populations, scanners, and analysis pipelines. It can be quantitatively tested in any other fMRI study on delay discounting for which contrast images for Choice, LL Amount, and Delay can be computed, including in other delay discounting paradigms, such as those that involve non-monetary rewards such as food or social discounting tasks [START_REF] Jones | Social discounting[END_REF][START_REF] Strombach | Social discounting involves modulation of neural value signals by temporoparietal junction[END_REF]. Future work could test the generalizability of the k-marker in children, adolescents, the elderly, or clinical populations.

Most importantly, future work will show whether the k-marker prospectively predicts clinical 

Table 2. ROI-based prediction of individual differences in log(k). This analysis used

an existing atlas of the brain, including 485 regions based on several different previous parcellations [START_REF] Diedrichsen | A probabilistic MR atlas of the human cerebellum[END_REF][START_REF] Shen | Groupwise whole-brain parcellation from resting-state fMRI data for network node identification[END_REF][START_REF] Bär | Functional connectivity and network analysis of midbrain and brainstem nuclei[END_REF][START_REF] Glasser | A multi-modal parcellation of human cerebral cortex[END_REF] regions based on a combination of studies [START_REF] Shen | Groupwise whole-brain parcellation from resting-state fMRI data for network node identification[END_REF][START_REF] Bär | Functional connectivity and network analysis of midbrain and brainstem nuclei[END_REF] 
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 2b Figure 2b-c for additional results and random cross-validation folds). The explained variance of the prediction compared to a hypothetical mean model (prediction R 2 ) was R 2 =0.23. Individual differences in head motion (mean absolute framewise displacement) were neither related to log(k) (Pearson correlation: r=-0.05, p=0.58) nor predicted log(k) (Pearson correlation: r=0.01, p=0.92). Statistically controlling for age, education, head

  entirely on Study 1-could predict discounting in a completely independent data set. The validation data set (Study 2) was acquired on a different scanner, in a different lab and country, and using a different participant sample and different task characteristics, and was preprocessed and analyzed using different MRI analysis software. Evaluating the performance of the k-marker in Study 2 is therefore an even stronger test than crossvalidation in Study 1 alone.For this purpose, we computed the pattern expression of the k-marker using the matrix dot product for each participant's data (contrast images for Choice, parametric modulation for LL Amount, and Delay) in Study 2. The resulting predicted log(k) values were significantly correlated with actual log(k) values (Figure2c), Pearson correlation: r=0.45, p<0.001, 95%-CI=[0.31, 0.57], mean absolute error of 1.68) demonstrating the replicability of the k-marker in a completely independent data set. For the transfer test to Study 2, prediction R 2 was -3.2, indicating that, while the k-marker was very accurate in identifying the rankings among individuals, the absolute prediction values were less accurate than a hypothetical mean model.

  Figure4). At FDR-corrected level, voxels with significant weights in both directions

  areas associated with 'cognitive control' showed significant prediction in Study 1 and transfer to Study 2, areas associated with 'value' predicted discounting in Study 1 but no significant transfer to Study 2. Areas associated with 'episodic memory' showed only marginal prediction in Study 1 and no significant transfer to Study 2.
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 21 Figure 2-1. Significant positive and negative weights contributing to the k-marker duringChoice screen onset (FDR corrected q < 0.05 across the whole feature space, i.e., three
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 22 Figure 2-2. Significant positive and negative weights contributing to the k-marker for the
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 23 Figure 2-3. Significant positive and negative weights contributing to the k-marker for the parametric modulation by Delay (FDR corrected q < 0.05 across the whole feature space,

  While in Study 1 participants' height and A BRAIN SIGNATURE OF DELAY DISCOUNTING 26 weight were measured by the experimenters, these values were self-reported in Study 2, which might explain the lower associations with BMI in Study 2.

Table 1 . Person-level characteristics of lean (BMI <= 25) and overweight-to-obese (BMI > 25) participants in Study 1 and Study 2.

 1 A BRAIN SIGNATURE OF DELAY DISCOUNTING 27 status and health outcomes in conditions related to abnormal discounting, such as eating disorders, substance use, and other psychiatric disorders. Except for body mass (by definition) and k-marker responses, none of the variables differed significantly between the two groups.
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  The table below shows only brain parcels that had significant prediction in both data sets (p-values are uncorrected for multiple comparisons). Note that each parcel contains many voxels, each of which may contribute with positive and/or negative weights to delay discounting for each of the three contrast images.
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