MOUSE ARTERIAL WALL IMAGING AND ANALYSIS FROM SYNCHROTRON X-RAY MICROTOMOGRAPHY

Xiaowen Liang ${ }^{1,2}$, Aïcha Ben Zemzem², Sébastien Almagro ${ }^{2}$, Jean-Charles Boisson³, Luiz-Angelo Steffenel ${ }^{3}$, Timm Weitkamp ${ }^{4}$, Laurent Debelle ${ }^{2}$, Nicolas Passat ${ }^{1}$

${ }^{1}$ Université de Reims Champagne Ardenne, CReSTIC EA 3804, 51100 Reims, France ${ }^{2}$ Université de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, 51100 Reims, France
${ }^{3}$ Université de Reims Champagne Ardenne, LICIIS/LRC CEA DIGIT, 51100 Reims, France
${ }^{4}$ Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France

Introduction

The Structure of an Artery Wall

Introduction

- Elastic lamellae remodelling are related to vascular diseases
which can be precipitated by metabolic disorders, e.g. diabetes

Source: Blausen medical

Introduction

- Elastic lamellae remodelling are related to vascular diseases which can be precipitated by metabolic disorders, e.g. diabetes
- Early identification of the very first stages of these diseases is

Source: Blausen medical extremely important to avoid irreversible damages on vessels

Introduction

- Elastic lamellae remodelling are related to vascular diseases which can be precipitated by metabolic disorders, e.g. diabetes - Early identification of the very first stages of these diseases is

Source: Blausen medical extremely important to avoid irreversible damages on vessels

- High-resolution synchrotron X-ray microtomography images of mice aortae are used

Acquisition of images

- Tomographic image data acquired on the ANATOMIX beamline of the SOLEIL synchrotron

Acquisition of images

- Tomographic image data acquired on the ANATOMIX beamline of the SOLEIL synchrotron
- Mice aortae divided into 2 groups: normal (healthy) and ill (diabetic)

Acquisition of images

- Tomographic image data acquired on the ANATOMIX beamline of the SOLEIL synchrotron
- Mice aortae divided into 2 groups: normal (healthy) and ill (diabetic)
- Volume: 2048^{3} voxels of size $(0.65 \mu m)^{3}$
- 32 GB per stack

Image of an aorta

Comparison of 2 groups

Observation

Normal

Diabetic

Analysis of the waviness

Material

3D view

Segmented image

Segmented (based on Otsu method) and skeletonized fragments of elastic lamellae

Normal mice

Diabetic mice

Analysis of the waviness

Measurement

Analysis of the waviness

Measurement

Ratio: $\rho=\frac{L_{E u c}}{L_{g e o}} \quad \begin{aligned} & \text { Euclidean distance: } L_{E u c}=\sum_{0 \leq j<L_{\text {geo }} \sigma(j+1) \sigma \leq L_{g e o}}\left\|V_{e_{j+1) \sigma}}-V_{e_{j_{\sigma}}}\right\|_{2} \\ & \text { where } \sigma \text { is the sampling rate of geodesic distance, } j \text { are subsampled indices }\end{aligned}$
where k is the number of pixels and V_{i} are vertices of the curve

Analysis of the waviness

Geodesic distance

All the pixels

[^0]
Analysis of the waviness

Geodesic distance

| s | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| α | 1.0551 | 1.0128 | 1.0046 | 0.9999 | 0.9955 | 0.9939 | 0.9907 | 0.9890 | 0.9842 |

We chose $s=4$ as the ratio of subsampling

We also tested s with straight lines and $s=4$ makes $L_{\text {geo }}$ close enough to the real length

Analysis of the waviness

Euclidean distance

3 different cases depending on their geodesic lengths

$300<L_{\text {geo }}$

\square
$L \approx 30$ pixels

Analysis of the waviness

Result

	Normal	Thoracic (6 samples)						Abdominal (4 samples)				
	$\bar{\rho}$	0.8929	0.8993	0.7578	0.8324	0.8557	0.7968	0.7701	0.83	9 0.	830	0.8303
	Diabetic Thoracic (6 samples)							Abdominal (5 samples)				
Mann-Whitney U test	$\bar{\rho}$	0.8815	0.8769	0.8864	0.9310	0.9268	0.9236	0.8965	0.9303	0.8621	0.8804	0.8749
	p-value	Thoracic (normal vs. diabetic) :0.06555						Abdominal (normal vs. diabetic) :0.01996				
	p-value	Thoracic \& Abdominal (normal vs. diabetic) : 0.003474										

2000 ~ 3000 fragments for each sample (= a 3D image of a mouse from 6 to 6.5 months)
The measurement ρ is calculated for each fragment and is averaged in each group

Analysis of the waviness

Result

Mann-Whitney U test : $p-$ value $=0.0035 \ll 0.05$
A significant difference between healthy and diabetic mice in terms of elastic lamellae waviness

Segmentation

In order to perform a more comprehensive analysis

Segmentation

Extraction of high density regions

Agarose mixed during the process of acquiring images

Segmentation

Extraction of high density regions

Agarose mixed during the process of acquiring images

Segmentation

Extraction of high density regions

Using spheres to extract non-agarose regions

Segmentation

Extraction of high density regions

Segmentation

Extraction of high density regions

Segmentation

Extraction of lumen

Using concentric spheres to improve the robustness

Segmentation

Extraction of lumen

Segmentation

Extraction of lumen

Segmentation

Normal field

Segmentation

Straightening elastic lamellae

Segmentation
 Problem

The border between 2 textures : elastic lamellae and adventitia

Segmentation
 A 2D implementation

- Distance map: the distance between any pixel and the contour of the lumen

Segmentation
 A 2D implementation

- Normal vector field

$$
\vec{n}(x)=\frac{\sum_{y \in R \cap B\left(x, p_{1}\right)} \vec{n}(y)}{\left|\sum_{\left.y \in R \cap B(x,)_{1}\right)} \vec{n}(y)\right|}
$$

Segmentation
 A 2D implementation

- It enables us to get normal vectors of any pixel at any distance

Segmentation
 A 2D implementation

- Rotating and cutting patches with the help of the normal vector field

Segmentation
 A 2D implementation

Segmentation
 A 2D implementation

- Structure

Segmentation
 A 2D implementation

- Loss function

- $\mathscr{L}\left(d_{i j}, d_{k l}\right)=\alpha \cdot \delta_{i k} \cdot \Delta^{T} \cdot \Delta+\beta \cdot\left(1-\delta_{i k}\right) \cdot\left[\max \left\{0, m_{p}-\left(\Delta^{T} \cdot \Delta\right)^{1 / 2}\right\}\right]^{2}$ where $\Delta=d_{i j}-d_{k l}, \delta$ is the Kronecker symbol, $\alpha=2, \beta=1, m_{p}=2$

Segmentation
 A 2D implementation

- Training
- $14572 D$ slices generate 47118 image patches of size 64^{2}
- 80% for training, 20% for validation

A prediction is considered correct if:

$$
\left\|d_{A}-d_{B}\right\|_{2}<\min \left\{\left\|d_{A}-d_{C}\right\|_{2},\left\|d_{A}-d_{D}\right\|_{2}\right\}
$$

Segmentation
 A 2D implementation

- Training: 5 epochs, 164s
- Validation:

A prediction is considered correct if:

$$
\left\|d_{A}-d_{B}\right\|_{2}<\min \left\{\left\|d_{A}-d_{C}\right\|_{2},\left\|d_{A}-d_{D}\right\|_{2}\right\}
$$

Accuracy: 99.14%

Segmentation
 A 2D implementation

- Compare d_{12} and d_{13}

Segmentation
 A 2D implementation

Segmentation
 A 2D implementation

Dice score:

0.921

0.933

0.917

Current work

- Classifying elastic lamellae by their orders (from 1 to 5)
- Implementing the 2D texture classification method in 3D

A stack of straightened 2D images (50 frames)

Thank you!

[^0]: Selected pixels with $s=2 \quad$ Selected pixels with $s=3$

