MOUSE ARTERIAL WALL IMAGING AND ANALYSIS FROM SYNCHROTRON X-RAY MICROTOMOGRAPHY

Xiaowen Liang^{1,2}, Aïcha Ben Zemzem², Sébastien Almagro², Jean-Charles Boisson³, Luiz-Angelo Steffenel³, Timm Weitkamp⁴, Laurent Debelle², Nicolas Passat¹

> ¹Université de Reims Champagne Ardenne, CReSTIC EA 3804, 51100 Reims, France ²Université de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, 51100 Reims, France ³Université de Reims Champagne Ardenne, LICIIS/LRC CEA DIGIT, 51100 Reims, France ⁴Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France

> > 02/02/2023

Smooth muscle-

External elastic membrane

Source: Blausen medical

The Structure of an Artery Wall

 Elastic lamellae remodelling are related to vascular diseases which can be precipitated by metabolic disorders, e.g. diabetes The Structure of an Artery Wall

Source: Blausen medical

- Elastic lamellae remodelling are related to vascular diseases which can be precipitated by metabolic disorders, e.g. diabetes
 - Early identification of the very first stages of these diseases is extremely important to avoid irreversible damages on vessels

Source: Blausen medical

- Elastic lamellae remodelling are related to vascular diseases which can be precipitated by metabolic disorders, e.g. diabetes
 - Early identification of the very first stages of these diseases is extremely important to avoid irreversible damages on vessels
- High-resolution synchrotron X-ray microtomography images of mice aortae are used

Acquisition of images

synchrotron

Tomographic image data acquired on the ANATOMIX beamline of the SOLEIL

Source: https://fr.wikipedia.org/wiki/SOLEIL

Acquisition of images

- synchrotron
- Mice aortae divided into 2 groups: normal (healthy) and ill (diabetic)

Tomographic image data acquired on the ANATOMIX beamline of the SOLEIL

Source: https://fr.wikipedia.org/wiki/SOLEIL

Acquisition of images

- synchrotron
- Mice aortae divided into 2 groups: normal (healthy) and ill (diabetic)
- Volume: 2048^3 voxels of size $(0.65\mu m)^3$
 - 32 GB per stack

Tomographic image data acquired on the ANATOMIX beamline of the SOLEIL

Source: https://fr.wikipedia.org/wiki/SOLEIL

Image of an aorta

E: Elastic lamellae

Comparison of 2 groups Observation

Normal

Diabetic

Analysis of the waviness Material

3D view

Segmented image

Segmented (based on Otsu method) and skeletonized fragments of elastic lamellae

Normal mice

Diabetic mice

Analysis of the waviness Measurement

Analysis of the waviness Measurement

where k is the number of pixels and V_i are vertices of the curve

$$\sum_{0 \leq j < L_{geo}/\sigma, (j+1)\sigma \leq L_{geo}} \|V_{e_{(j+1)\sigma}} - V_{e_{j\sigma}}\|_{2}$$

where σ is the sampling rate of geodesic distance, j are subsampled indices

$$= \sum_{0 \le i < k} \left\| V_{g_{i+1}} - V_{g_i} \right\|_2$$

Analysis of the waviness Geodesic distance

All the pixels

Selected pixels with s = 2

Selected pixels with s = 3

Analysis of the waviness Geodesic distance

S	1	2	3	4	5	6	7	8	9
α	1.0551	1.0128	1.0046	0.9999	0.9955	0.9939	0.9907	0.9890	0.9842

We chose s = 4 as the ratio of subsampling

We also tested s with straight lines and s = 4 makes L_{geo} close enough to the real length

Analysis of the waviness Euclidean distance

3 different cases depending on their geodesic lengths

$$100 < L_{geo} \leq$$

$$\Box$$

L $\approx 30 \ pixels$

$$L_{geo} \le 100$$

 $L \approx 30 \ pixels$

300

$$300 < L_{geo}$$

 $L \approx 30 \ pixels$

Analysis of the waviness Result

	Normal	Thoracic (6 samples)						Abdominal (4 samples)				
	$\bar{ ho}$	0.8929	0.8993	0.7578	0.8324	0.8557	0.7968	0.7701	0.8379	0.8380	0.8303	
	Diabetic	Thoracic (6 samples)						Abdominal (5 samples)				
	$\bar{ ho}$	0.8815	0.8769	0.8864	0.9310	0.9268	0.9236	0.8965	0.9303 0.8	621 0.880	0.8749	
Mann-Whitney U test	p-value	Thoracic (normal vs. diabetic) : 0.06555						Abdominal (normal vs. diabetic) : 0.01996				
	p-value	Thoracic & Abdominal (normal vs. diabetic) : 0.003474										

- 2000 ~ 3000 fragments for each sample (= a 3D image of a mouse from 6 to 6.5 months)
 - The measurement ρ is calculated for each fragment and is averaged in each group

Analysis of the waviness Result

- Mann-Whitney U test : $p value = 0.0035 \ll 0.05$
- A significant difference between healthy and diabetic mice in terms of elastic lamellae waviness

11

Segmentation In order to perform a more comprehensive analysis

2D fragments

3D arterial wall

Agarose mixed during the process of acquiring images

Agarose mixed during the process of acquiring images

Using spheres to extract non-agarose regions

15

Segmentation Extraction of lumen

Using concentric spheres to improve the robustness

Segmentation Extraction of lumen

$$\sum_{\substack{p \in \mathcal{N}(p(x_0, y_0, z_0), R_2) \\ p \notin \mathcal{N}(p(x_0, y_0, z_0), R_1) \\ I(p) > 0}} I(p) < \frac{1}{16} (V(R_2) - V(R_1))$$

$$\sum_{\substack{p \in \mathcal{N}(p(x_0, y_0, z_0), R_2) \\ p \notin \mathcal{N}(p(x_0, y_0, z_0), R_1) \\ I(p) > 0}} I(p) \ge \frac{1}{16} (V(R_2) - V(R_1)) \\ and \sum_{\substack{p \in \mathcal{N}(p(x_0, y_0, z_0), R_3) \\ p \notin \mathcal{N}(p(x_0, y_0, z_0), R_2) \\ I(p) > 0}} I(p) < \frac{1}{16} (V(R_3) - V(R_2)) \\ (V(R_3) - V(R_2)) \\ (V(R_3) - V(R_2)) \\ (V(R_3) - V(R_3) - V(R_3)) \\ (V(R_3) - V(R_3) - V(R_3) - V(R_3)) \\ (V(R_3) - V(R_3) - V(R_3)) \\ (V(R_3) - V(R_3) - V(R_3)) \\ (V(R_3) - V(R_3) - V(R_3) - V(R_3)) \\ (V(R_3) - V(R_3) - V(R_3) - V(R_3) - V(R_3) \\ (V(R_3) - V(R_3) - V(R_3$$

Segmentation Extraction of lumen

Segmentation Normal field

Segmentation Straightening elastic lamellae

Binary image

Segmentation Problem

The border between 2 textures : elastic lamellae and adventitia

• Distance map: the distance between any pixel and the contour of the lumen

Normal vector field

• It enables us to get normal vectors of any pixel at any distance

Rotating and cutting patches with the help of the normal vector field

Tunica media

Tunica adventitia & Other structures

Siamese neural network

Loss function

where $\Delta = d_{ii} - d_{kl}$, δ is the Kronecker symbol, $\alpha = 2, \beta = 1, m_p = 2$

• $\mathscr{L}(d_{ii}, d_{kl}) = \alpha \cdot \delta_{ik} \cdot \Delta^T \cdot \Delta + \beta \cdot (1 - \delta_{ik}) \cdot [\max\{0, m_p - (\Delta^T \cdot \Delta)^{1/2}\}]^2$

- Training
 - 1457 2D slices generate 47118 image patches of size 64^2
 - 80% for training, 20% for validation

A prediction is considered correct if: $||d_A - d_B||_2 < \min\{||d_A - d_C||_2, ||d_A - d_D||_2\}$

- Training: 5 epochs, 164s
- Validation:

A prediction is considered correct if: $\|d_A - d_B\|_2 < \min\{\|d_A - d_C\|_2, \|d_A - d_D\|_2\}$ Accuracy: 99.14 %

• Compare d_{12} and d_{13}

Dice score:

0.926

0.921

0.933

0.917

Current work

- Classifying elastic lamellae by their orders (from 1 to 5)
- Implementing the 2D texture classification method in 3D

A stack of straightened 2D images (50 frames)

Thank you!