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A B S T R A C T   

Memory consolidation has been mainly investigated for extended periods, from hours to days. Recent studies 
focused on memory consolidation occurring within shorter periods, from seconds to minutes. Yet, these studies 
focused on explicit sequence learning with fixed rest periods. Our study aimed at determining whether short rest 
periods enhance implicit probabilistic sequence learning and whether the length of rest duration influences such 
offline changes. Participants performed an implicit probabilistic sequence learning task throughout 45 blocks. 
Between blocks, participants were allowed to rest and then to continue the task at their pace. The results show 
that probabilistic sequence knowledge decreased from pre-to post-rest periods, and this decrement was not 
related to the length of rest duration. These results suggest that probabilistic sequence knowledge decays during 
short rest periods and that such forgetting is not time-dependent. Overall, our findings highlight that ultra-fast 
consolidation differently affects distinct cognitive processes.   

1. Introduction 

Taking a break during a learning period may facilitate the acquisition 
of new perceptual and motor skills (e.g., perceptual discrimination or 
finger tapping) and also benefit more complex cognitive skills, such as 
solving mathematical problems (e.g., Fischer et al., 2002; Stickgold 
et al., 2000; Stickgold and Walker, 2004; Walker et al., 2002). During 
rest periods (i.e., between two learning sessions), our brain strengthens 
memories through consolidation, potentially leading to performance 
improvements (e.g., Robertson, Pascual-Leone and Miall, 2004). So far, 
consolidation processes have been mainly investigated on extended 
periods following learning, such as days or hours (Squire et al., 2015 for 
a review). Recent studies showed that shorter rest periods, within a 
single learning session, also benefit performance (Bönstrup et al., 2019; 

Du et al., 2016; Hotermans et al., 2006, Quentin et al., 2021). This 
phenomenon was referred to as ultra-fast offline improvement (Rob-
ertson, 2019). These studies focused on the acquisition of new motor 
skills. In the present study, we aimed to test whether and how short rest 
periods affect implicit probabilistic sequence learning. 

Empirical evidence for ultra-fast offline improvements was provided 
for explicit sequence learning of deterministic sequences during10 s rest 
periods (Bönstrup et al., 2019). In that study, participants learned a 
finger-tapping sequence, alternating between 10 s of practice and 10 s of 
rest. Performance improvements over practice and rest periods were 
separately measured. Increases in performance over rest periods 
considerably contributed to the overall learning of the sequence, sug-
gesting the strengthening of just-practiced skills during rest periods. 
Concomitant magnetoencephalographic measures further highlighted 
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modulation in beta-band frequency during rest periods. Beta-band os-
cillations are associated with reactivation of previous practice-related 
activity (Maquet et al., 2000; Ramanathan et al., 2015; see also Spit-
zer and Haegens, 2017 for a review), also referred to as memory replay 
(Cohen et al., 2015). It has since been confirmed that neural replay of the 
learned sequence occurred during short rest periods (Buch et al., 2021). 

As consolidation processes seem to vary depending on the awareness 
of learning (Robertson, Pascual-Leone and Press, 2004), it is not clear 
whether ultra-fast offline improvements could extend to implicit prob-
abilistic sequence learning. This type of learning can be described as the 
development of knowledge about regularities embedded in the envi-
ronment without awareness nor intention of learning (e.g., Cleeremans 
and Jiménez, 1998; Howard et al., 2004). This sort of learning is 
involved in the acquisition of motor, cognitive and social skills (Lie-
berman, 2000; Nemeth et al., 2011; Romano Bergstrom et al., 2012; 
Ullman, 2016). Recently, it has been shown that probabilistic knowl-
edge, measured with reaction times, was acquired online during the 
practice itself and not during short breaks (Quentin et al., 2021). 

In the present study, we aimed to test whether the length of rest 
duration influences ultra-fast offline changes in implicit acquisition of 
probabilistic sequence knowledge. To address this question, we used the 
Alternating Serial Reaction Time (ASRT) task (e.g., Howard et al., 2004; 
Song et al., 2007). In this paradigm, an array of four positions was 
presented on the screen, and each position was mapped to a specific 
response key. On each trial, one of the positions was filled, and the 
participant had to press the corresponding key as fast and accurately as 
they could. Importantly, without the participant’s awareness, the 
sequence of events followed a predictable pattern that was embedded in 
noise (i.e., presented among random positions). Participants were 
offered to rest after each block (corresponding to 85 trials) and resumed 
the task whenever ready. So far, previous studies have used fixed rest 
periods of either 10 s (Bönstrup et al., 2019) or 2 min (Du et al., 2016). 
Our experimental design with self-paced rest periods granted more 
spontaneous and natural rest duration, thus allowing us to directly 
measure how the length of rest periods affected learning performance. A 
previous study by Du et al. (2016) investigated general reaction times in 
deterministic and probabilistic sequences to differentiate the two types 
of learning. However, solely the average reaction times of high transi-
tional probabilities were used, without using information from low 
transitional probabilities, which is required to disentangle general skill 
learning from probabilistic learning. In contrast, in our study, probabi-
listic sequence knowledge was evaluated by comparing the speed and 
accuracy of responses depending on the items’ probability of occurrence 
(high-probability or low-probability) and was measured before and after 
each rest period. We investigated whether rest duration could influence 
ultra-fast offline improvements. If ultra-fast offline improvements occur 
over rest periods, then longer rest periods could lead to greater offline 
improvement. On the contrary, if memory decay occurs during rest pe-
riods, we expected rest periods to impact the amount of memory decay. 

2. Methods 

2.1. Participants 

One hundred and eighty healthy young adults participated in this 
study (Mage = 21.64 years, SDage = 4.11, Meducation = 14.69 years, 
SDeducation = 2.16, 152 females). All participants had normal or 
corrected-to-normal vision, and none of them reported a history of any 
neurological and/or psychiatric condition. Participants provided 
informed consent to the procedure before enrollment as approved by the 
institutional review board of the local research ethics committee. The 
study was approved by the United Ethical Review Committee for 
Research in Psychology (EPKEB) in Hungary (Approval number: 30/ 
2012) and by the research ethics committee of Eötvös Loránd University, 
Budapest, Hungary. The study was conducted in accordance with the 
Declaration of Helsinki. Participants received course credits for taking 

part in the experiment. The dataset was previously used in Kóbor et al. 
(2017), Török et al. (2017) and Quentin et al. (2021). Results consti-
tuting the present paper were not tested nor reported before. 

2.2. Alternating Serial Reaction Time task 

The Alternating Serial Reaction Time (ASRT) task was used to induce 
implicit probabilistic sequence learning (Howard et al., 2004; Song 
et al., 2007). Four empty circles were horizontally arranged on the 
screen. A stimulus (a drawing of a dog’s head) appeared in one of four 
circles (Fig. 1A) (Nemeth et al., 2013). Participants were instructed to 
press the corresponding key (Z, C, B, or M on a QWERTY keyboard) as 
quickly and accurately as possible after the appearance of the stimulus. 
Participants used their left and right middle and index fingers to respond 
to the targets. The serial order of the four possible positions (coded as 1, 
2, 3, and 4 in a horizontal arrangement from left to right) in which target 
stimuli could appear was determined by an eight-element sequence. In 
this sequence, every second element appeared in the same order as the 
task progressed, while the other elements’ position was randomly cho-
sen (e.g., 2 – r – 1 – r – 3 – r – 4 – r; where numbers refer to a pre-
determined location in one of the four locations and r’s refer to 
randomly chosen locations out of the four possible, Fig. 1A). Six 
different sequences of predetermined elements were created, and one 
sequence was assigned to each subject in a permutated order. 

Due to the alternating sequence structure, some patterns of three 
consecutive elements (henceforth referred to as triplets) occurred with a 
greater probability than other ones (Fig. 1A). Each element was catego-
rized as either the third element of a high- or a low-probability triplet. 
High-probability triplets could be either formed by predetermined (P) 
elements or random (r) ones. For instance, 2 – r – 1, if the item 2 was the 
first triplet element, the item 1 had a 50% probability of occurring 
because it was a predetermined element (i.e., the third element of the 
triplet 2 – r – 1) plus 12.5% of chances to occur as a random element (i.e., 
the third element of the triplet 2 – P – 1). The third element of less 
probable triplets (e.g., 1 – P – 3 and 4 – P – 2) could have only been 
random and was thus less predictable (e.g., if the first triplet element 
was the item 1, item 3 had 12.5% of chances to occur). Low-probability 
triplets forming repetitions (e.g., 222) or trills (e.g., 232) were discarded 
from analyses as participants often show preexisting response ten-
dencies to them. By eliminating these triplets, we could ascertain that 
any high-versus low-probability differences were due to learning and 
not to preexisting tendencies. 

During the task, participants usually become faster and more accu-
rate for the high-probability triplets compared to the low-probability 
ones. Therefore, the task allows us to separate pure implicit probabi-
listic sequence learning (i.e., the difference between high- and low- 
probability triplets) from general skill learning (Song et al., 2007). Gen-
eral skill learning refers to changes in accuracy and response times 
independently from the probability of occurrence of the events (Hallgató 
et al., 2013). 

2.3. Procedure 

The ASRT task was administered in three sessions, each containing 
15 blocks (45 blocks in total). Each block consisted of 85 trials, corre-
sponding to five warm-ups, i.e., random trials followed by the eight- 
element sequence repeated ten times (Fig. 1B). Accuracy and response 
time (RT) were recorded for each element. Between each block, a rest 
was proposed, and participants resumed the task whenever they were 
ready. Between sessions, participants filled questionnaires. Because (1) 
between-sessions breaks were not self-paced, in the sense that partici-
pants would start after filling questionnaires instead of deciding when 
they felt rested enough, and (2) the present study focused on ultra-fast 
consolidation, only very short breaks and task-free breaks (i.e., 
between-block rest periods) were included in the following analyses. 
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2.4. Quantification and statistical analyses 

To assess the impact of rest duration on probabilistic sequence 
learning, we measured the length of between-blocks rest periods as well 
as various indices of learning. We measured probabilistic sequence 
knowledge acquired across the whole experiment as well as at the 
beginning and the end of each block. We further provided a measure of 
micro-offline gain in probabilistic sequence knowledge during each rest 
period. 

Between-blocks rest periods measure. The amount of time elapsed be-
tween the last response of block N and the key-press that started block 
N+1 was computed for each between-block rest period (M = 18.75 s, SD 
= 10.70 s, range = 15.39–507 s). This procedure resulted in 42 measures 
of between-blocks rest durations for each participant. Median between- 
blocks rest durations were computed for each participant. To account for 
possibly erroneous procedures (e.g., participant had to leave the room 
during a break), participants whose median between-blocks rest dura-
tions that were below or above the conventional exclusion threshold of 2 

Fig. 1. Schematic representation of (A) an ASRT sequence and (B) the overall structure of the task. Each sequence was composed of eight elements alternating 
between predetermined (P) and random (r) elements. The experiment was divided into three sessions, each composed of 15 blocks. A rest period was offered after 
each block (arrows). Between-sessions breaks (dotted arrows) were discarded from analyses because participants filled questionnaires during this time. Only self- 
paced between-blocks rest periods (bold arrows) were included in the analyses. Each block was composed of five warm-up random trials (5r), followed by ten 
eight-element sequences (Seq). Brackets flag the two first and the two last sequences from which micro-offline improvement scores were computed. 

Fig. 2. Raw measures for reaction times (A) accuracy (B), for all trials including the beginning random elements and separately for high- and low- probability 
triplets. See Supplementary Figs. 2 and 3 for the within-block learning dynamics. 
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SD above the mean were removed from the sample. We decided to 
exclude these participants because we considered that unusual long 
breaks could affect not only the following block but also the next ones. 
Nevertheless, all conclusions of this study are unchanged without this 
exclusion procedure. Therefore, the following statistical analyses 
included 173 participants aged between 17 and 48 years (Mage = 21.65 
years, SDage = 4.16, Meducation = 14.70 years, SDeducation = 2.17, 147 
females). 

Probabilistic sequence knowledge. Probabilistic sequence knowledge 
was considered as the difference in performance depending on triplets’ 
probability of occurrence. To compute an index of probabilistic 
sequence knowledge, we first calculated mean accuracy and median RT 
for low- and high-probability triplets separately (Fig. 2). Probabilistic 
sequence knowledge score consisted of the difference between the score 
for low-probability triplets and the score for high-probability triplets for 
RT measures and the difference between the score for high-probability 
triplets and the score for low-probability triplets for accuracy mea-
sures. For both measures, higher scores indicated larger probabilistic 
sequence knowledge. Following this procedure, we measured (1) the 
probabilistic sequence knowledge acquired at the beginning and the end of 
each block and (2) the probabilistic sequence knowledge acquired at the 
end of the experiment, further referred to as final probabilistic sequence 
knowledge. To measure the probabilistic sequence knowledge at the 
beginning and the end of each block, we first computed mean accuracy 
and median RT for correct responses for the two first sequences (i.e., the 
first 14 trials after the five warm-up trials) and the two last sequences (i. 
e., last 16 trials) of each block and each triplet probability. For the first 
two sequences, 14 and not 16 trials were used because the first 2 ele-
ments on each sequence cannot be predicted using preceding trials. This 
method resulted in eight scores for each block: median RT and mean 
accuracy for the low-probability triplets and high-probability triplets of 
the first two sequences and the last two sequences. Four scores of 
probabilistic sequence knowledge were computed for each block: ac-
curacy and RT indices for the first two sequences of each block and the 
last two sequences of each block. Then, probabilistic sequence knowl-
edge for both RT and accuracy was separately averaged for all first and 
last sequences of the block for each participant. To measure the final 
probabilistic sequence knowledge, we first computed median RT and 
mean accuracy of the last five blocks of the experiment for each triplet 
probability. The difference between the score for high-probability trip-
lets and the score for low-probability triplets provided a measure of the 
final probabilistic sequence knowledge. 

Micro-offline modulations. Offline modulations in probabilistic 
sequence knowledge consisted of the difference of RT or accuracy 
indices of probabilistic knowledge (i.e., the difference between high- 
and low-probability triplets) between the first two sequences of a block 
(after warm-up trials) and the last two sequences of the previous block. 
For offline modulations, a negative difference shows a decrease of 
probabilistic sequence knowledge. The calculation of offline modula-
tions resulted in 42 offline scores that were averaged for each 
participant. 

Linear relationship between offline modulations and rest duration. We 
assessed the relationship between the ultra-fast offline modulations in 
probabilistic sequence knowledge and the duration of the between- 
blocks rest periods. For between-participants analyses, mean offline 
modulations in probabilistic sequence knowledge were calculated for 
both RT and accuracy for each participant. We tested their correlation 
with median rest duration using frequentist Pearson’s and Bayesian 
correlations. To account for the intra-individual variability, we also 
conducted within-participant analyses. Beforehand, outlier data points 
were removed: between-block rest durations that were 2 SD above the 
participant’s median rest duration were excluded from the sample. We 
removed 2 ± 0.81 between-block rest duration (range: 0–4) for each 
participant (i.e., 4.76% of the total amount of data points). For both RT 
and accuracy measures, we computed Pearson’s correlations between 
between-blocks rest duration and offline modulation in probabilistic 

sequence knowledge separately for each participant. The resulting cor-
relation coefficients (Pearson’s r) were considered as an individual 
measure of the relationship between between-blocks rest duration and 
offline modulation in probabilistic sequence knowledge for RT and ac-
curacy. Frequentists and Bayesian one-sample t-tests contrasting corre-
lation coefficients to zero were conducted separately for RT and 
accuracy measures. 

Bayesian statistical analyses and guidelines for interpretation. In addi-
tion to classical frequentist statistics, Bayesian factors were computed. A 
Bayes factor can give evidence towards the alternative hypothesis (H1) 
or the null hypothesis (H0). BF10 between 3 and 10 and above 10 is 
considered as moderate support and strong support for the alternative 
hypothesis, respectively (Lee and Wagenmakers, 2014). BF10 values 
between 1/3 and 1/10 and below 1/10 are considered as moderate 
support and strong support for the null hypothesis, respectively. BF10 
values between 1/3 and 3 are regarded as ambiguous information (Etz 
et al., 2017; Lee and Wagenmakers, 2014; Wagenmakers, 2007). All 
statistical analyses were performed using JASP 0.11.1 (JASP Team, 
2019) with the default settings. 

3. Results 

3.1. Did between-block rest periods influence probabilistic sequence 
knowledge? 

As the task progressed, participants became faster (blocks x element 
probability interaction in repeated measure ANOVA F(44, 7876) = 12.9, 
p < .001) and more accurate (F(44, 7876) = 5.1, p < .001) for high-vs. 
low-probability elements. To test whether ultra-fast offline improve-
ments in implicit probabilistic sequence knowledge occurred during 
between-block rest periods, one-way repeated-measures ANOVAs were 
run with Block (Last sequences of block n vs. First sequences of block 
n+1) as a within-participants factor. Frequentists and Bayesian ANOVAs 
were conducted on RT and accuracy measures (Fig. 3). 

The main effect of Block was significant and associated with strong 
evidence in favor of the effect for RT and accuracy, F(1, 172) = 41.36, p 
< .001, η2p = .19, BF10 = 1.30 × 107 and F(1, 172) = 13.86, p < .001, 
η2p = .08, BF10 = 87.15, respectively. RT and accuracy measures 
decreased over between-block rest periods, suggesting an offline decay 
in probabilistic sequence knowledge. Follow-up analyses were per-
formed to investigate whether the duration of rest periods influenced 
offline decay of probabilistic sequence knowledge. 

3.2. Is there a linear relationship between between-block rest durations 
and offline modulations of probabilistic sequence knowledge? 

Between-participant analysis of offline modulations. For RT, correlation 
was not significant and associated with moderate evidence in favor of 
the null hypothesis, r(171) = 0.04, p = .57, BF10 = 0.11 (Fig. 4A). For 
accuracy, correlation was significant and positive but associated with 
ambiguous information, r(171) = 0.15, p = .04, BF10 = 0.76 (Fig. 4B). 
These results suggest no linear relationship between median between- 
blocks rest duration and offline decay in probabilistic sequence 
knowledge. 

Within-participant analysis of offline modulations. The absence of a 
relationship between ultra-fast offline modulations and between-blocks 
rest duration at the group level could be due to high intra-participants 
variability that would be hindered by the averaging of break dura-
tions. To account for this variability, we further inspected the strength of 
the relationship between offline modulation of probabilistic sequence 
knowledge and between-blocks rest duration for each participant. Cor-
relation coefficients did not significantly differ from zero, and BF10 
showed strong evidence for the null hypothesis for RT measures, t(172) 
= 0.167, p = .87, BF10 = 0.09 (Fig. 4C) and moderate evidence for the 
null hypothesis for accuracy measures, t(172) = 1.61, p = .11, BF10 =

0.30 (Fig. 4D). These results strengthen the lack of a linear relationship 
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between offline decay in probabilistic sequence knowledge and 
between-blocks rest duration, even at an individual level. 

Between-blocks rest durations and probabilistic sequence knowledge ac-
quired at the end of the experiment. To test whether between-blocks rest 
duration had a more general influence on probabilistic sequence 
learning throughout the course of the experiment, we investigated the 
relationship between between-blocks rest duration and probabilistic 
sequence knowledge acquired at the end of the experiment. Probabilistic 
sequence learning acquired by the end of the experiment, further 
referred to as final probabilistic sequence knowledge, was computed based 
on the mean accuracy difference and median RT difference between 
high- and low-probability triplets for correct responses during the last 
five blocks for each participant (see the Methods section). 

Beforehand, we ran one-sample frequentists and Bayesian t-tests 
comparing probabilistic sequence learning to zero to ensure that par-
ticipants indeed learned probabilistic properties of the sequences during 
the experiment. Both RT and accuracy scores for final probabilistic 
sequence knowledge showed significant knowledge at the end of the 
experiment and were associated with strong evidence in favor of the 
alternative hypothesis (for RT: t(172) = 19.91, p < .001, Cohen’s d =
1.51, BF10 = 1.26 × 1043; for accuracy: t(172) = 13.02, p < .001, 
Cohen’s d = 0.99, BF10 = 1.67 × 1024). 

Then, frequentist Pearson’s correlations and Bayesian correlations 
between the median between-blocks rest duration over the task and the 
final probabilistic sequence knowledge scores were computed. Corre-
lations were not significant for RT nor for accuracy and were associated 
with strong evidence for the null hypothesis for RT, r(171) = − 0.02, p =
.77, BF10 = 0.10, and moderate evidence for null hypothesis for accu-
racy, r(171) = 0.07, p = .34, BF10 = 0.15. These results show that while 
participants have learned the probabilistic structure of the sequences 
during the experiment, the amount of probabilistic sequence knowledge 
at the end of the task was not related to between-blocks rest duration. 

To sum up, our results showed decrements in probabilistic sequence 
knowledge over between-blocks rest periods. Between-block rest dura-
tion was not related to offline decrements in probabilistic sequence 
knowledge, neither at group nor individual level. No relationship be-
tween rest duration and probabilistic sequence knowledge was observed 
despite the fact that probabilistic sequence knowledge was acquired 
during the experiment. 

4. Discussion 

The present study investigated whether short rest periods influence 
implicit probabilistic learning (also referred to as statistical learning). 
Participants were allowed to rest after each block before triggering the 
next block by pressing a button, producing a self-paced fluctuation in the 
duration of rest periods. The performance was assessed before and after 
each rest period, granting measures of ultra-fast offline modulation in 
probabilistic sequence knowledge. We wondered (1) whether ultra-fast 
offline improvements in probabilistic sequence learning can emerge 
during between-block rest periods and (2) whether the duration of 
between-block rest period affects offline modulations in implicit prob-
abilistic sequence knowledge. In other words, can longer rest periods 
lead to better (or worse) learning performance? We observed that rest 
periods led to a between-block decrease in probabilistic sequence 
knowledge. Decrements in probabilistic sequence knowledge were not 
linked to rest duration, neither at the group nor at the individual level. 

First of all, our results highlight a decrement in probabilistic 
sequence knowledge during rest periods. This result seems to oppose a 
previous study suggesting that memory consolidation of probabilistic 
information benefit from 2-min rest periods (Du et al., 2016). Du et al. 
(2016) showed that offline learning drove the fast acquisition of prob-
abilistic sequences, whereas online learning did not contribute to 
probabilistic sequence acquisition. This suggested that implicit 

Fig. 3. Offline modulations in probabilistic 
sequence knowledge for RT (A) and accu-
racy (B) measures. In each panel, the plot on 
the left corresponds to measures of proba-
bilistic sequence knowledge as a function of 
Block (Block n: Last sequences of block n, 
Block n+1: First sequences of block n+1). 
The plot on the right corresponds to offline 
modulation measures, that is the difference 
in probabilistic sequence knowledge mea-
sures (RT or accuracy) between the first se-
quences of block n+1 and the last sequences 
of block n. To visualize learning in the same 
direction for RTs and accuracy, offline 
modulation in RTs was computed as low 
minus high-probability triplets and offline 
modulation in accuracy was computed as 
high- minus low-probability triplets. Thus, 
negative offline modulations over between- 
block rest periods for both RT and accuracy 
represent an offline decay in probabilistic 
sequence knowledge. Violin plots represent 
data distribution; black horizontal lines 
represent the mean across participants. 
Vertical error bars represent the standard 
error of the mean (SEM). *** stands for p <
.001.   
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probabilistic sequence learning could not develop without offline 
learning. Yet, in our study, probabilistic sequence knowledge was ac-
quired over the experiment despite any evidence for ultra-fast offline 
improvements, suggesting that implicit probabilistic sequence knowl-
edge can develop without offline learning. Several aspects differed be-
tween our study and the Du et al.’s (2016): the implementation of 
probabilistic sequences (a predetermined sequence hidden in random 
elements in ours, a sequence based on a Markov chain transitional ma-
trix in Du et al.‘s), the number of blocks of trials containing the 
to-be-learned probabilistic events (45 blocks in our study, four blocks in 
Du et al.‘s study), the duration of rest periods (self-paced and lasting 
18.35 ± 9.40 s in ours, fixed at 2 min in Du et al.‘s), and the assessment 
of the probabilistic sequence knowledge (difference between high- and 
low-probability events in ours, RT measures for the more probable 
events without comparing them to the less probable ones in Du et al.‘s). 
The latter aspect can plausibly explain the discrepant results between 
our and Du et al.‘s study. In Du et al. offline improvements in probabi-
listic knowledge were not completely distinguished from improvements 
in general skills. An offline improvement in general skills (as observed in 
our study, see Supplementary materials, and in Bönstrup et al., 2019) 
might have influenced the measure of offline learning in probabilistic 
sequence knowledge. In our ASRT task, the measure of probabilistic 
sequence learning (i.e., difference score between high- and 
low-probability events) enabled us to disentangle probabilistic knowl-
edge from general skills (Hallgató et al., 2013; Nemeth et al., 2010; Song 
et al., 2007). Measures of probabilistic sequence knowledge used in our 
study thus reflected processes involved in pure probabilistic learning, 
distinct from those underlying general skill learning. 

Differences in the duration of rest periods between the Du et al. 
(2016) study and our studymight suggest that (1) a crucial parameter 
might be the duration of rest periods, and (2) a minimum amount of time 
might be necessary for memory consolidation to take place. Fortunately, 
our design allowed us to test this hypothesis directly. Beyond the 
between-blocks rest periods, the experimental design contained two 
between-session rest periods (mean = 4.30 min, SD = 1.66, range =
2.38–17.11 min) during which participants filled questionnaires. Even 
though these rest periods were longer, no significant offline learning in 
probabilistic sequence knowledge emerged following these rest periods 
(see Supplementary materials). Thus, overall, the duration of rest pe-
riods does not seem crucial for offline improvements in probabilistic 
sequence knowledge. To determine in which conditions do offline 
learning during implicit probabilistic sequence learning emerge and test 
the hypothesis of a critical period that is essential for offline learning to 
emerge, future studies should directly manipulate the duration of rest 
periods, from seconds to a few minutes. 

Secondly, we tested whether offline decrements in probabilistic 
sequence knowledge depend on the duration of between-block rest pe-
riods. Consistently at the between-participants and within-participants 
level, ultra-fast offline decrements were not related to the between- 
block rest duration. In other words, longer averaged offline periods 
did not lead to more pronounced forgetting. This result raises the 
question of what causes forgetting in probabilistic knowledge during 
short rest periods. Forgetting can be due to two processes: time-based 
decay and interference. Decay theory posits that memory traces fade 
away with the mere passage of time (Brown, 1958), but this theory is 
still widely debated (Ricker et al., 2014). Other studies suggest that in 

Fig. 4. Offline modulation in probabi-
listic sequence knowledge as a function 
of between-blocks rest duration. Distri-
bution on mean offline modulation 
depending on mean between-blocks rest 
duration is represented for RT (A) and 
accuracy (B) measures. Solid black lines 
represent linear trends. The density of 
Pearson’s r coefficients resulting from 
the correlation between between-blocks 
rest duration and offline modulation for 
each participant are represented for RT 
(C) and accuracy (D) measures. Dashed 
lines represent the mean of Pearson’s r 
coefficients across participants. Dotted 
lines mark the value to which Pearson’s 
r coefficients are compared (i.e., zero). 
No linear relationship between offline 
modulation in probabilistic sequence 
knowledge and between-blocks rest 
duration emerged, neither at the 
between-participants level nor at the 
within-participant level. This was true 
for both RT and accuracy measures. 
Bayes factors are reported for non- 
significant effects. BF10 < 1/3 shows 
evidence for the null hypothesis (see the 
Methods section for more details).   
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implicit probabilistic learning studies, interference contributes to 
forgetting to a great extent because events are typically generated by 
recombining a small number of features, thus strongly interfering with 
each other (Perruchet and Pacton, 2006). In ASRT tasks, random ele-
ments are based on the same features as pattern elements (i.e., spatial 
location and its mapping to the response keys) and are likely to interfere 
with pattern elements. Forgetting over the rest periods observed in the 
present study thus seems more likely to come from interference, which 
might explain the absence of time-based decay. Future studies will need 
to disentangle the contribution of time and interference in forgetting 
during implicit probabilistic learning. To do so, we suggest to orthogo-
nally manipulate the rest period duration and the amount of interference 
between target and not-target event. 

Previous studies suggested that explicit sequence learning improves 
over a short period (Bönstrup et al., 2019). Our present study shows that 
implicit probabilistic sequence knowledge, however, is prone to 
forgetting rather than offline learning over short periods within a single 
training session. Forgetting of probabilistic sequence knowledge does 
not seem to depend on time and might rather be due to interference. 
Because of the shortness of rest periods, our results raise the question of 
a critical time period for consolidation to occur and compensate or 
overcome forgetting of implicit probabilistic knowledge. Our present 
study explored the time-dependency of offline processes in a passive 
way, and future studies should investigate this question by manipulating 
the duration of rest periods. Future studies should carefully distinguish 
processes underlying general visuomotor learning, task adaptation, and 
fatigue/inhibition release from those specifically linked to the acquisi-
tion of probabilistic sequence knowledge. 
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