
HAL Id: hal-03957504
https://hal.science/hal-03957504

Submitted on 26 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Rust Implementation of the Web Audio API
Otto Rottier, Benjamin Matuszewski

To cite this version:
Otto Rottier, Benjamin Matuszewski. A Rust Implementation of the Web Audio API: Decoupling
the Web Audio API from the web. Web Audio Conference (WAC), Université Côte d’Azur, Jul 2022,
Cannes, France. �10.5281/zenodo.6767674�. �hal-03957504�

https://hal.science/hal-03957504
https://hal.archives-ouvertes.fr

A Rust Implementation of the Web Audio API

Decoupling the Web Audio API from the web

Otto Rottier
Utrecht, The Netherlands
ottorottier@gmail.com

Benjamin Matuszewski
STMS Ircam-CNRS-Sorbonne Université

Paris, France
benjamin.matuszewski@ircam.fr

ABSTRACT
In this paper we present a novel implementation of the Web Au-
dio API specification written in Rust. While still in its early stage,
the library already proposes a stabilized API and an important sub-
set of the specification. We think this novel implementation has
the potential to fill two complementary gaps. From a Web Au-
dio API perspective, it proposes to decouple the API from the web
(and web browsers), potentially opening new application areas and
helping to widen its community of users. From a Rust perspec-
tive, it could provide an intermediary and extensible solution for
audio applications that is not yet available in the ecosystem. This
paper describes the general design of the library, expliciting and
justifying the trade-offs that have been made to the specification
in regards to the specificities of the Rust language. This general
picture is completed with some examples of usage of the library
and a discussion on its current performance. Additionally, a related
JavaScript package that proposes Node.js bindings to the core Rust
library is introduced. The project is open-source and released under
the MIT License.

CCS Concepts
•Applied computing → Sound and music computing; •Software
and its engineering → Software libraries and repositories;
•Information systems → World Wide Web;

Keywords
Web Audio API, Rust

1. INTRODUCTION
In the last decade, the Web Audio API first proposed by Chris

Rogers in 2011 and released as a W3C Recommendation in
2021 [12], has gained increasing attention by developers, artists
and researchers. Indeed the possibility of doing advanced audio
processing and synthesis natively on the Web platform has un-
folded a number of novel possibilities in different domains such as
music performance and creation, gaming or online conferencing.
As of today, the Web Audio API appears to have reached a
point where its growing community of users, number of existing
applications and amount of documentation and tutorials makes it

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2022, July 6–8, 2022, Cannes, France.

© 2022 Copyright held by the owner/author(s).

an interesting alternative for someone willing to develop an audio
application. Despite this interest and the large application do-
mains, we believe adoption of the Web Audio API is limited by the
sandboxed and constrained environments that are Web browsers.
With its stable specification and comprehensive documentation,
the Web Audio API could offer an interesting alternative for native
applications. In this paper we present web-audio-api-rs1, a
novel implementation of the Web Audio API written in the Rust
language [20] that we think could fill this gap.

The choice of the Rust language has been motivated by several
reasons. Primarily, Rust is a low-level, memory-efficient language
much like C++. There is no runtime and no garbage collector
which means we can build real-time audio components with
predictive timing and high performance. Unlike higher level lan-
guages such as Python or JavaScript, Rust allows us to use memory
efficient primitives (float, double, atomic, reference-counted etc),
to choose between stack and heap allocation and to define custom
memory allocators. Compared to C++, Rust introduces the concept
of data ownership which prevents the entire class of race conditions
and concurrency issues that may arise in multi-threaded execution.
This gives us two advantages when implementing audio systems:
we can eliminate some needless copies of audio buffers and it
gives us a compile-time guarantee that the concurrent execution
of the control thread and render thread is free of data races.
Moreover, the Rust ecosystem (compiler toolchain, dependency
management, error messages, auto-generated documentation) is
modern, easy-to-use and beginner-friendly, potentially opening
the domain of low level audio processing to developers that are
primarily invested in web programming [5]. As such, our project
also welcomes contributors that are well versed in using the Web
Audio API and want to get their hands dirty in low level audio
processing.

Beyond the personal learning experience of implementing such
an API from scratch, our objectives for the library are twofold.
First, we aim for full compliance with the specification and,
for deviating from it only in specific, justified and therefore
predictable cases. Second, and deriving from this first point, our
goal is to provide an API that is both easy to use when coming
from a JavaScript background with only a few adaptations to the
Rust coding style and specificities, and inversely, can leverage on
existing JavaScript documentation and tutorials for Rust users.
As such, the library could open interesting perspectives in several
application domains. In artistic contexts, it could open novel
possibilities in several areas such as distributed music systems or
digital musical instruments (DMI). For start-ups and industry, it

1https://github.com/orottier/web-audio-api-rs

https://github.com/orottier/web-audio-api-rs

could provide a novel tool to support the path from prototyping to
production (e.g. simple prototyping in JavaScript easily ported to
Rust for performance) in many domains such as game development
or embedded devices creation.

After a presentation of the related works (Section 2), we will
present in Section 3 the main design and implementation aspects
of the library. This general presentation will be followed in Sec-
tion 4 by a few examples of its usage and by a discussion about its
performances in Section 5. Finally, we will introduce in Section 6
a related JavaScript package that provides Node.js bindings to the
core library.

2. RELATED WORKS
Few attempts have been made over the years to implement the

Web Audio API as an autonomous library that could be used out-
side Web browsers. For example, the LabSound project [7] pro-
poses an open-source C++ library originally forked from the Webkit
implementation. However, while the library appears to be main-
tained, the authors state themselves in the README of the project
that they do not aim at maintaining full compatibility with the spec-
ification. Furthermore, they state that “LabSound has deliberately
deviated from the spec for performance or API usability reasons”,
which is “expected to continue into the future as new functionality
is added to the engine.” Derived from this project, the node-audio
library [8] proposed Node.js bindings built on top of Labsound.
However, the project is presented by its author as in an “extremely
experimental state” and does not seem to be maintained (i.e. last
commit 4 years ago).

The web-audio-engine project [13] proposed an alternative ap-
proach by proposing an implementation of the Web Audio API
written in pure JavaScript, and could therefore be used within
Node.js applications. Despite this amusing and didactical ap-
proach, the project is obviously tied to the threading limitations
of JavaScript and could not have reached any serious performance
comparison with low-level implementations. Additionally, the
project has been archived by its author and will not receive any
further support.

Finally, we can cite the servo-media component [9] created in
the context of the Servo project backed-up by Mozilla and imple-
mented in Rust. While much larger in scope, the library proposed
a low-level implementation of the Web Audio API. However, we
can observe that the public API differs in many regards with the
JavaScript API, preventing reuse of acquired knowledge or to
easily port code from one language to the other. Additionally, since
the abandonment of the Servo project by Mozilla in August 2020,
the library appears unmaintained and hasn’t received any updates.

In the growing Rust ecosystem, a number of audio libraries with
different scopes and goals have also been proposed. For example,
the dasp project [3] offers a number of components that provide
low-level abstractions for working with digital audio signals. Inside
this suite, the dasp-graph component aims at creating modular and
dynamic audio graphs. However, the component is very general
purpose and low-level, and does not provide higher-level building
blocks as in the Web Audio API.

On the other side of the spectrum, the Kira project [6] provides
a high-level “audio library designed to help create expressive
audio for games”. The library appears to be well maintained and
is even recommended as a community plugin alternative for the
Bevy game engine. However, this focus on game development
also means the library may be not suited for more general purpose
audio processing such as the Web Audio API.

Inside this frame, we consider that our library has therefore the
potential of filling two gaps. First, from a Web Audio API perspec-
tive, it provides a native solution decoupled from Web browsers,
potentially opening new application areas and helping to widen its
community of users. Second, from a Rust perspective, it proposes
an intermediary and extensible solution for advanced audio appli-
cations that is not yet available in the ecosystem.

3. DESIGN & IMPLEMENTATION
On multi-core processor systems, dynamic audio libraries typi-

cally split up work between a control thread and a render thread.
This approach can be seen as a variation of the client / server
architecture widely implemented in computer music oriented
languages and platforms [17, 22, 23]. The Web Audio API,
constrained also by the specifics of the JavaScript language, makes
no exception and requires the implementation of this pattern2. In
such an architecture, the render thread has the sole responsibility
of rendering the audio graph and shipping the samples to the OS
so they can be played by the hardware. This thread therefore has
hard real-time constraints: if it is unable to serve up the next block
of audio samples in time (128 in the case of the Web Audio API),
users will hear catastrophic clicks and pops. The control thread on
the other hand, is user-facing and orchestrates all changes to the
audio graph. It allows the user of the library to add and remove
nodes and change their settings. Additionally, other threads can
be spawned to handle tasks that could block the control thread for
too long. For example, the specification requires a media decoder3

thread. Our implementation follows this model and uses lock-free
message passing for cross thread communication.

It is important to realize that the objects we colloquially call au-
dio nodes are distinct from the objects that are placed inside the
render thread, which we call audio processors. As in figure 1, the
audio node and the audio processor are therefore always created as
a pair.

AudioNode
User facing object that implements the AudioNode interface
from the W3C spec. It does not perform any audio process-
ing, but allows the user to mutate the audio graph, by adding
or removing connections or changing the settings of its re-
lated AudioProcessor.

AudioProcessor
Object that is placed on the render thread, which produces
the actual audio frames. It cannot be directly manipulated
by the user and relies on instructions received from its corre-
sponding AudioNode to change its own behavior.

3.1 Control thread
On the control thread, audio nodes are created, mutated and

(dis-)connected. Method calls on the audio context, audio nodes
or audio params typically spin off a control message to be handled
by the render thread. Hence these methods operate synchronously
and do not block, they are therefore safe to use on a UI thread.

In our implementation, following both the specification and the
JavaScript behavior, an AudioNode can go out of scope (i.e. to
Drop in Rust idiom) in the control thread, while its processing
2https://www.w3.org/TR/webaudio/#control-thread-and-rendering-thread
3https://www.w3.org/TR/webaudio/#dom-baseaudiocontext-decoding-thread

https://www.w3.org/TR/webaudio/#control-thread-and-rendering-thread
https://www.w3.org/TR/webaudio/#dom-baseaudiocontext-decoding-thread

Control thread Render thread

User space application

Message bus

AudioBuffer
SourceNode

GainNode

Destination
Node

Audio
Context

HardwareCPAL
callback

~1k quanta/sAudio graph

AudioBuffer
Renderer

Gain
processor

Destination
mixer

web-audio-api-rs lib

Figure 1: Architecture of the library, showing the components living
in the control thread (audio nodes and the audio context) and com-
ponents that live in the render thread (the audio graph and the audio
processors).

counterpart continues to run inside the render thread. In such a
case, the renderer will be released only when it has finished pro-
cessing (governed by the tailTime behavior). On the contrary, if
the AudioContext itself is dropped in the control thread, the cor-
responding render thread is immediately halted and all resources
are released.

3.2 Render thread
Our implementation makes use of the cpal library [2] as the

audio backend. This library will set up a real-time high priority
OS thread to collect the audio samples. This is the thread in which
the AudioProcessors run. The entry point of cpal is a callback
that expects us to fill an array of float or integer interleaved audio
samples (i.e. a FnMut(&mut [f32|u16|i16]) in Rust idiom).
While the desired size of the output array can be specified (e.g. 128
samples per channel in the Web Audio API specification), in prac-
tice this value is not always available or allowed by the underlying
system. In such case we still render the audio graph piecewise in
blocks of 128 samples (maintaining therefore the accuracy and
regularity of the audio time), but perform internal buffering to align
the buffer sizes. For example, if the cpal callback data size is 192,
two buffers of size 128 will be rendered on one over two cpal calls.

The AudioGraph is responsible to store the AudioProcessors
and to ensure that they are rendered in the right order by per-
forming a topological sort of the audio nodes as defined in the
specification4. This algorithm ensures that when node A has an
outgoing connection to node B, the processor of A is called before
B. Therefore, when A has rendered, its resulting samples are
copied and mixed appropriately to serve as input for processor B.
Each time a node is added or removed from the graph, or when
the connections between them are altered, the previous ordering
is cleared and recalculated. Additionally, during this topological
sort, a cycle detection is performed to mute every node that is
part of the cycle unless a DelayNode is present. To implement
the dynamic lifetime of the audio nodes described in Sec. 3.1,
the AudioGraph will also keep track of the processors that have
finished their rendering and will consequently clean up branches
4https://www.w3.org/TR/webaudio/#rendering-loop. Note that there are subtle differ-
ences in our implementation because we are storing edge information in a different
way. The resulting sort order conforms to the specification though.

of the audio graph that will no longer emit output.

The design of the AudioProcessor interface is very much in-
spired by the AudioWorkletProcessor interface as defined in the
specification [16]. An AudioProcessor is therefore a stateful ob-
ject that will execute on every render tick a callback of the follow-
ing form:

callback AudioWorkletProcessCallback = boolean (
FrozenArray < FrozenArray < Float32Array >> inputs ,
FrozenArray < FrozenArray < Float32Array >> outputs ,
object parameters

);

Here, inputs[n][m] and outputs[n][m] follow a planar lay-
out where arrays of audio samples are stored in the mth channel
of the nth input or output. The parameters object contains the
computed values for each AudioParam of the AudioProcessor
for this rendering quantum. The return value corresponds to the
tailTime behavior, which allows the AudioProcessor to be
dropped by the AudioGraph when it has finished rendering (i.e.
when returning false) and has no input connections. In our Rust
implementation, this IDL has been adapted to:

fn process (
&mut self ,
inputs: &[AudioRenderQuantum],
outputs: &mut [AudioRenderQuantum],
params: AudioParamValues ,
scope: & RenderScope ,

) −> bool;

The AudioRenderQuantum type is a specialized container type
for the sample frames, which uses fixed sized, reference counted
arrays with copy on write semantics. This allows for very efficient
implementation of up/down-mixing, fan-in/out of channels and, in
a general way, for moving input and output buffers around without
making copies and allocating memory.

The RenderScope reference is modeled after the specification
of the AudioWorkletGlobalScope. It contains the current time,
sample frame and sample rate, and in the future it will allow pro-
cessors to share code and data (such as a wavetable or impulse re-
sponse) within the render thread.

3.3 Message passing
A single, asynchronous communication channel is established

from the control thread to the render thread. Following the Web
Audio API specification, this is called the control message queue.
The queue is a FIFO queue where items are ordered by time of in-
sertion, the oldest message being at the front of the queue. The
reason a single message bus is used instead of multiple ones, for
example from every node to its corresponding processor, is to en-
sure that audio graph updates cannot be applied out of order. This
is best shown with an example:

// create a new OscillatorNode
let osc = context.create_oscillator ();
// set the frequency to 500 Hz (mutate renderer)
osc.frequency (). set_value (500.) ;
// connect oscillator to destination (mutate graph)
osc.connect (& context.destination);

We can see here that if the audio graph topology messages are
handled out of order with the audio node processor setting mes-
sages, it could be possible for the OscillatorNode to play at the
wrong frequency (i.e. 440 Hz) for a single render quantum.

https://www.w3.org/TR/webaudio/#rendering-loop

3.4 Tradeoffs Between Spec and Language
While an important goal for our library is to adhere to the

specification as much as possible, some differences are impossible
to avoid in translating an API targeted at JavaScript to Rust. The
most obvious deviations are that we chose to 1. implement all
AudioNodes in a thread-safe way and 2. to conform to the Rust
code style standard, which enforce the use of snake_case for
methods and of CamelCase for enum variants. 5

The most important differences lie in the implementation of
some object-oriented programming concepts, which are very
common in the specification but that are not supported by the
language. First, Rust does not allow us to override property
getters and setters. Therefore, instead of directly exposing the
AudioBufferSourceNode::buffer attribute, we offer two meth-
ods: AudioBufferSourceNode::buffer() -> AudioBuffer and
AudioBufferSourceNode::set_buffer(buffer: AudioBuffer)6.
Second, Rust is strongly designed toward composition rather than
inheritance. Therefore to model inheritance, we decided to use
Traits for parent / extendable interfaces such as AudioNode,
AudioScheduledSourceNode or BaseAudioContext. For
dictionaries, we decided to use composition of Structs to model
inheritance, for example for the AudioNodeOptions. Third,
Rust does not provide any mechanism for method overloading. In
such cases, rather than providing a single method with Option
parameters, we chose to expose several specialized methods. For
example AudioScheduledSourceNode::start([time]) is derived
as start() and start_at(time: f64).

A concept that is very specific to Rust is the concept of data
ownership. Ownership is a mechanism to prevent concurrency
bugs and data races that is enforced at compile time so there
is no runtime overhead. This means we can avoid needless
copies of data because the language can guarantee us we have
a non-aliased, mutable reference of data. For example, the
AudioBufferSourceNode takes an AudioBuffer by value so
we do not need to implement the idea of "acquiring the content"
as described in the specification7. Of course, it is still possible
to reference and reuse an AudioBuffer but the user needs to be
explicit and clone the data before feeding it into the source node.
Note that such clones are generally cheap in terms of memory
because the buffers are reference counted containers implementing
a copy-on-write semantics, and will therefore be lazily copied only
if mutated through copyToChannel.

Finally, the Web Audio API is relatively isolated from
other web standards which makes it quite simple to decou-
ple it from the Web. However, this does not hold for some
nodes such as the MediaStreamAudioSourceNode (input) or the
MediaStreamAudioDestinationNode (output) nodes. We con-
sider these I/O possibilities to be essential for building rich apps
such as video conferencing or online gaming. Therefore, we tried
to come up with an API boundary interface as simple and flex-
ible as possible to tackle this question, and hence modeled the
media streams as a Rust style iterator of fallible buffer items: the
MediaStream trait.

5Fortunately, the search function of the auto-generated documentation is not sensi-
tive to these discrepancies, meaning users should have no issue in finding the right
spelling of a method or enum.

6Some attribute names such as type and loop are reserved keyword in
Rust, in these cases we decided to append an underscore to the getter, e.g.
OscillatorNode::type_

7https://www.w3.org/TR/webaudio/#acquire-the-content

3.5 AudioWorklet and Extensibility
The question of extensibility is an important aspect that has

been handled in the specification with the introduction of the
AudioWorklet interface [16]. Such an interface is required in
JavaScript because of the particular nature of the language and of
the necessity to run arbitrary code in the high-priority audio thread.
In a Rust context, this question is however posed differently as
these limitations and constraints do not hold anymore.

As our implementation of audio processors closely resem-
bles the signature of the AudioWorkletProcessor callback (see
Section 5.1), we have thus decided to not implement the en-
tirety of the AudioWorklet interface. Instead, we expose our
AudioProcessor trait in the public API of our library and users
are advised to use it to build their own custom nodes. Over time
we may decide to still implement a spec compliant interface for
worklets if such a feature appears important for users. However,
the performances will remain suboptimal compared to implement-
ing the lower level interface.

3.6 Current Known Limitations
Two important concepts of the Web Audio API are currently

missing in our implementation: asynchronous functions (meth-
ods that return a Promise) and event handling (attributes of type
EventHandler).

The Rust equivalent of a function returning a Promise is an
async function. The async execution model landed in the core
language in 2019 [1]. This opened the possibility for libraries
that perform I/O to offer asynchronous versions of their function-
ality. Users should bring in their own executor of choice (typi-
cally tokio [10]) which will poll the pending I/O operation con-
currently. Our implementation currently only offers a synchronous
version of the async functions in the specification. Our progress
on this point is also dependent on downstream libraries (mainly the
media decoder) as they must support asynchronous execution be-
fore we can tap into it.

The concept of event handling has no equivalent in the Rust lan-
guage, so we will have to come up with our own adaptation. Anal-
ogous to decisions made regarding the interface of other web stan-
dards discussed in 3.4, we will eventually come up with a simplified
interface that allows us to hook a callback into the event targets.
Event propagation and cancellation are probably not meaningful in
our context.

Besides these general questions, a few limitations of our im-
plementation at time of writing are worth mentioning. First, the
ConvolverNode and DynamicsCompressorNode are not yet im-
plemented, as well as some important features of the PannerNode
such as HRTF support. Second, the OscillatorNode does not
fully adhere to the specification: the built-in oscillators are not
based on PeriodicWave and only applies rudimentary strategy to
prevent aliasing (i.e. polyBLEP). Finally, the DelayNode does not
yet allow sub-quantum delays when not in a cycle.

4. EXAMPLE USE
In this section, we present two examples illustrating the current

state of the public API and some possibilities already offered by the
library8.

4.1 Feedback Delay
The example in Figure 2 shows a simple implementation

of a feedback delay implemented with our library. The
8A number of examples are available in the examples directory of the repository

https://www.w3.org/TR/webaudio/#acquire-the-content

example also highlights different automation methods of the
AudioParam, as well as the use of the scheduling methods of the
AudioScheduledSourceNode interface.

1 use std:: {thread , time };
2 use web_audio_api::context:: { AudioContext , BaseAudioContext };
3 use web_audio_api::node:: {AudioNode , AudioScheduledSourceNode };
4
5 fn main () {
6 let audio_context = AudioContext::new (None);
7
8 // feedback delay chain
9 let delay = audio_context.create_delay (1.);

10 delay.delay_time (). set_value (0.3) ;
11 delay.connect (& audio_context.destination ());
12
13 let feedback = audio_context.create_gain ();
14 feedback.gain (). set_value (0.85) ;
15 feedback.connect (& delay);
16 delay.connect (& feedback);
17
18 // trigger an osc with an envelop
19 let now = audio_context.current_time ();
20
21 let env = audio_context.create_gain ();
22 env.connect (& audio_context.destination ());
23 env.connect (& feedback);
24 env.gain ()
25 . set_value (0.)
26 . linear_ramp_to_value_at_time (0.5 , now)
27 . exponential_ramp_to_value_at_time (0.0001 , now + 1.);
28
29 let osc = audio_context.create_oscillator ();
30 osc.connect (& env);
31 osc.frequency (). set_value (200.) ;
32 osc.start_at (now);
33 osc.stop_at (now + 1.);
34
35 thread::sleep (time::Duration::from_secs (15));
36 }

Figure 2: Example code of a simple feedback delay

4.2 Granular Scrub
The example in Figure 3 presents a scrubbing effect realized us-

ing a granular synthesis approach. The example also shows how a
given File can be decoded into an AudioBuffer that is then con-
sumed by AudioBufferSourceNodes scheduled to read back and
forth the AudioBuffer at half speed.

5. PERFORMANCE
Audio processing systems typically face hard real-time con-

straints: when the production of new sample frames lags behind
the actual playback, users will be faced with catastrophic clicks
and pops. Therefore the performance of the render thread must
be optimized. If the overhead of the audio processing library is
low, users can build richer audio graphs without running into is-
sues. The performance of the control thread operations is of lesser
concern because it will have no influence on audio playback. UI
thread operations should never take more than a few milliseconds
though.

The web-audio-api-rs library currently has not been profiled
for performance extensively. Some initial results are presented in
this section but we expect them to change significantly over time.

5.1 Render Thread Considerations
So far we have invested in three classes of performance opti-

mizations.
The first and foremost goal is to prevent allocator calls in the ren-

der loop by reusing heap allocated objects. Allocator calls in Rust
acquire a program-wide lock on the system allocator and are unpre-
dictable in their timing, especially in contended use cases. To deal
with this, we have built a custom allocator on top of the default Rust
allocator in order to reuse channel sample vectors as they propagate
through the audio graph. More work is still to be done: whenever
nodes are added or removed, or audio param automation events are
handled, (de)allocations may still occur. Eventually we will add

1 use std::fs::File;
2 use std:: {thread , time };
3 use web_audio_api::buffer::AudioBuffer;
4 use web_audio_api::context:: { AudioContext , BaseAudioContext };
5 use web_audio_api::node:: {AudioNode , AudioScheduledSourceNode };
6
7 fn trigger_grain (
8 audio_context: & AudioContext ,
9 audio_buffer: & AudioBuffer ,

10 position: f64 ,
11 duration: f64 ,
12) {
13 let start_time = audio_context.current_time ();
14
15 let env = audio_context.create_gain ();
16 env.connect (& audio_context.destination ());
17 env.gain ()
18 . set_value (0.)
19 . set_value_at_time (0. , start_time)
20 . linear_ramp_to_value_at_time (1. , start_time + duration / 2.)
21 . linear_ramp_to_value_at_time (0. , start_time + duration);
22
23 let src = audio_context.create_buffer_source ();
24 src.set_buffer (audio_buffer.clone ());
25 src.connect (& env);
26 src.start_at_with_offset (start_time , position);
27 src.stop_at (start_time + duration);
28 }
29
30 fn main () {
31 let audio_context = AudioContext::new (None);
32 // grab an AudioBuffer from file
33 let file = File::open (" samples / sample.wav "). unwrap ();
34 let audio_buffer = audio_context.decode_audio_data_sync (file). unwrap ();
35 // launch granular scrub process
36 let period = 0.05;
37 let duration = 0.2;
38 let mut position = 0.;
39 let mut incr = period / 2.;
40
41 loop {
42 trigger_grain (& audio_context , & audio_buffer , position , duration);
43
44 if position + incr > audio_buffer.duration () − (duration ∗ 2.)
45 || position + incr < 0.
46 {
47 incr ∗= −1.;
48 }
49 position += incr;
50 thread::sleep (time::Duration::from_millis ((period ∗ 1000.) as u64));
51 }
52 }

Figure 3: Example code of a scrubbing effect realized with a granular
synthesis approach.

a constructor for the AudioContext that can specify its required
capacity upfront and will run guaranteed allocation-free.

Second we avoid operations that block, such as acquiring a lock
on a mutex. When high-priority render thread blocks on a resource
that is held by a lower priority thread, priority inversion [18] may
occur on some systems. This will lead to non permissible delays in
producing the next sample frames. Instead of utilizing mutexes to
share state between threads, we use lock-free message passing and
atomic primitive types (e.g. AtomicU64).

Last, we attempt to write all audio processor code in such a way
that the compiler can apply auto-vectorization of transformations
of the sample vectors. This means that the following simplified
snippet for applying a volume gain will be compiled to SIMD in-
structions:

pub fn apply_gain (
input: &[f32],
output: &mut [f32],
gain: f32 ,

) {
input

.iter ()

.zip(output.iter_mut ())

. for_each (|(i, o)| ∗o = i ∗ gain)
}

We can verify this optimization takes place with the Godbolt com-
piler explorer using the right optimization flags (-C opt-level=3
-C target-cpu=native) [4]. We are also working on an opti-
mization that detects if all channels in an audio buffer are equal.
This is very common in Web Audio API programs because the de-
fault behavior of almost all nodes is to upmix their input to a 2-

channel speaker output. For example, when a mono signal is fed to
a GainNode with default settings, the mono signal will be upmixed
to stereo and the gain will be applied to both identical channels. In
our implementation, upmixed buffers will only apply the transfor-
mation once.

5.2 Benchmarks
To evaluate current performances of the library, we ported the

benchmarks developped by P. Adenot from [15] into Rust. The
main idea of these benchmarks is to calculate an AudioBuffer
(generally of 120 seconds) using an OfflineAudioContext, mea-
sure the time needed to calculate the buffer (i.e. between the start
and the end of the rendering) and compare this value to the duration
of the buffer, giving therefore an estimation of the performances ac-
cording to real-time. From the available benchmarks, we could port
all of them except the one regarding the ConvolverNode which is
not yet implemented in our library. We consider this approach in-
teresting as it should minimize the JavaScript overhead in browsers
and therefore allow us to almost compare against the bare-bone
C++ implementations.

The benchmarks have been run on two different computers: a
MacBook Pro 2019 with a 2,3 GHz 8-Core Intel Core i9 processor
and 16 GB of 2400 MHz DDR4 RAM, and a MacBook Pro 2020
with a Apple M1 processor (ARM) and 8 GB of LPDDR4X-4266
MHz RAM. For each tested platform (Google Chrome, Firefox,
and our library) the benchmarks have been run 5 times. Reported
results are the mean of these 5 runs and are the speed-up compared
to real-time (i.e. duration/processingT ime), so the higher the
better.

As shown in the results presented in Table 1 and 2 in the ap-
pendix, we can consider that our library has room for improvement
compared to these state of the art implementations, but is not com-
pletely out of the game: 2.8 slower than Chrome and 5,7 times
slower than Firefox on the MacBook Pro 2019.

We think these results, while not completely fair for all cases (see
in particular Section 3.6) are quite encouraging, especially consid-
ering that our work so far has been focused on compliance and
API stabilization rather than performance. Moreover, while devel-
oping the library we have not heavily studied the source code of
the Firefox and Chrome implementations. These implementations
have been optimized for years and will allow us to cherry pick rel-
evant improvements, such as node pre-assignment and pooling, for
our own codebase.

6. NODE.JS BINDINGS
In this section, we present node-web-audio-api-rs9,

a related npm package that provides Node.js bindings to
web-audio-api-rs. We present first the general goals and the
technical approach we followed, and then illustrate its usage with
an example. The library is still in its early developments and does
not yet cover all the features implemented in web-audio-api-rs.

6.1 General Approach and Goals
Our main goal in developing this bindings is to propose a per-

spective we could call Isomorphic Web Audio. We believe such an
approach could prove to be interesting contribution in several areas
such as distributed music systems [21] or more generally for the
field of Internet of Musical Things [25]. Indeed, it could allow to
seamlessly develop JavaScript audio components able to run both
in the browser and on headless nano-computers such as the Rasp-
berry PI. Another potential of the package is to enable the testing of
9https://github.com/b-ma/node-web-audio-api-rs

the core web-audio-api-rs library against the official Web Au-
dio test suite [14], therefore contributing back to its development
and compliance.

The package is build using napi-rs10, which propose Rust to
Node-API bindings, and should therefore garantuee forward com-
patibility with Node.js. The approach we choose to follow is to
derive and generate most of bindings code from specification IDL,
using JavaScript as a parser and a template engine for the Rust
code. While still in its early stage of development, we hope this
approach will help to maintain the package up-to-date according to
the core library. Finally, we took care of hiding the specifities of
the Rust API described in Section 3.4 to provide an interface that
is exactly similar to the one exposed in Web browser. Such an ap-
proach could, at least in theory, allow to simply reuse a whole set
of existing higher-level libraries [24] [19] in a Node.js context.

6.2 Example Use

1 const path = require ('path ');
2 const { Scheduler } = require ('waves − masters ');
3 const { AudioContext , load } = require ('node −web −audio −api −rs ');
4
5 const audioContext = new AudioContext ();
6 const scheduler = new Scheduler (() => audioContext.currentTime);
7 const file = load(path.join (__dirname , 'sample.wav '));
8 const buffer = audioContext.decodeAudioData (file);
9

10 const period = 0.05;
11 const duration = 0.2;
12 let incr = period / 2;
13 let position = 0;
14
15 const engine = {
16 advanceTime (currentTime) {
17 if (
18 position + incr > buffer.duration − 2 ∗ duration ||
19 position + incr < 0
20) {
21 incr ∗= −1;
22 }
23
24 const env = audioContext.createGain ();
25 env.connect (audioContext.destination);
26 env.gain.value = 0;
27 env.gain.setValueAtTime (0, currentTime);
28 env.gain.linearRampToValueAtTime (1, currentTime + duration / 2);
29 env.gain.linearRampToValueAtTime (0, currentTime + duration);
30
31 const src = audioContext.createBufferSource ();
32 src.connect (env);
33 src.detune.value = Math.random () ∗ 2 ∗ detune − detune;
34 src.buffer = buffer;
35 src.start (currentTime , position);
36 src.stop (currentTime + duration);
37
38 position += incr;
39
40 return currentTime + period;
41 }
42 }
43
44 scheduler.add (engine);

Figure 4: Example code of the granular scrub example rewritten back
to JavaScript.

The example code in Figure 4 shows the granular scrub example
presented in Section 4.2, rewritten back in JavaScript. The exam-
ple also highlights how an existing component, i.e. the lookahead
Scheduler provided by the waves-masters library [11], can be
simply reused in this context.

7. CONCLUSION
In this paper we have presented web-audio-api-rs, a novel

implementation of the Web Audio API specification implemented
in the Rust language. We first described the general design of
the library, expliciting and justifying the trade-offs that have been
made to the specification in regards to the specificities of the Rust
language. We then completed this general presentation with some
examples and a picture of its current performance. Finally, we
introduced a related JavaScript package that proposes Node.js
10https://napi.rs/

https://github.com/b-ma/node-web-audio-api-rs
https://napi.rs/

bindings to the core library.

While still in its early stage, the library already proposes a stabi-
lized API and implements an important subset of the specification.
We think this novel implementation has the potential to provide an
interesting solution in several directions: open new application ar-
eas for the Web Audio API community by decoupling the library
from the Web, and provide an intermediary and extensible solution
for audio applications that is not yet available in the Rust ecosys-
tem. We hope that future evolutions of the library, backed by new
and diverse contributors, will allow us to mitigate the limitations
described in this paper and offer a worthy alternative to the in-
browser implementations.

8. ACKNOWLEDGMENTS
We would like to thank our contributors, especially Jerboas86

for his precious contributions to the project. We would also like to
thank our colleagues at IRCAM for their support on this project.

9. REFERENCES
[1] Announcing rust 1.39.0.

https://blog.rust-lang.org/2019/11/07/Rust-1.39.0.html.
[2] CPAL - Cross-Platform Audio Library.

https://github.com/rustaudio/cpal.
[3] dasp - digital audio signal processing in rust.

https://github.com/RustAudio/dasp.
[4] Godbolt compiler explorer - simd optimization.

https://rust.godbolt.org/z/qv3YfToW9.
[5] JetBrains - the state of developer ecosystem 2021 - rust.

https://www.jetbrains.com/lp/devecosystem-2021/rust/.
[6] Kira - expressive audio library for games.

https://github.com/tesselode/kira.
[7] Labsound - graph-based audio engine.

https://github.com/LabSound/LabSound.
[8] node-audio - graph-based audio api for node.js based on

labsound and juce.
https://github.com/ramirezd42/node-audio.

[9] Servo Media. https://github.com/servo/media.
[10] Tokio - a runtime for writing reliable asynchronous

applications with rust. https://tokio.rs/.
[11] waves-masters - low level components for transport and

scheduling. https://github.com/wavesjs/waves-masters.
[12] Web Audio API Specification.

https://www.w3.org/TR/webaudio/.
[13] web-audio-engine - pure js implementation of the web audio

api. https://github.com/mohayonao/web-audio-engine.
[14] The web-platform-tests project - webaudio. https:

//github.com/web-platform-tests/wpt/tree/master/webaudio.
[15] webaudio-benchmark.

https://github.com/padenot/webaudio-benchmark.
[16] H. Choi. AudioWorklet: The future of web audio. In

Proceedings of the International Computer Music
Conference, Daegu, South Korea, 2018.

[17] F. Déchelle, R. Borghesi, M. De Cecco, E. Maggi, R. Butch,
and N. Schnell. jMax: An Environment for Real-Time
Musical Applications. Computer Music Journal,
23(3):50–58, 1999.

[18] J. Kacur. Realtime kernel for audio and visual application. In
Proceedings of the Linux Audio Conference 2010, Utrecht,
The Netherlands, 2010.

[19] Y. Mann. Interactive Music with Tone.js. In Proceedings of
the 1rst Web Audio Conference, Paris, 2014.

[20] N. D. Matsakis and F. S. Klock. The rust language. ACM
SIGAda Ada Letters, 34(3):103–104, Oct. 2014.

[21] B. Matuszewski and F. Bevilacqua. Toward a Web of Audio
Things. In Proceedings of the 2018 Sound and Music
Computing Conference, Limassol, Cyprus, 2018.

[22] J. McCartney. Rethinking the Computer Music Language:
SuperCollider. Computer Music Journal, 26(4):61–68, Dec.
2002.

[23] M. Puckette. FTS: A Real-time Monitor for Multiprocessor
Music Synthesis. Computer Music Journal, 15(3):58–67,
1991.

[24] N. Schnell, V. Saiz, K. Barkati, and S. Goldszmidt. Of Time
Engines and Masters An API for Scheduling and
Synchronizing the Generation and Playback of Event
Sequences and Media Streams for the Web Audio API. In
Proceedings of the 1rst Web Audio Conference, Paris,
France, 2015.

[25] L. Turchet, C. Fischione, G. Essl, D. Keller, and M. Barthet.
Internet of Musical Things: Vision and Challenges. IEEE
Access, 6, 2018.

https://blog.rust-lang.org/2019/11/07/Rust-1.39.0.html
https://github.com/rustaudio/cpal
https://github.com/RustAudio/dasp
https://rust.godbolt.org/z/qv3YfToW9
https://www.jetbrains.com/lp/devecosystem-2021/rust/
https://github.com/tesselode/kira
https://github.com/LabSound/LabSound
https://github.com/ramirezd42/node-audio
https://github.com/servo/media
https://tokio.rs/
https://github.com/wavesjs/waves-masters
https://www.w3.org/TR/webaudio/
https://github.com/mohayonao/web-audio-engine
https://github.com/web-platform-tests/wpt/tree/master/webaudio
https://github.com/web-platform-tests/wpt/tree/master/webaudio
https://github.com/padenot/webaudio-benchmark

APPENDIX

Benchmark Chrome Firefox Rust
Empty testcase 4377.6 15685.8 4178
Simple source test without resampling (120s) 3348.6 5885.6 944.6
Simple source test without resampling (Stereo) (120s) 2635.6 4029.4 734,2
Simple source test without resampling (Stereo and positional) (120s) 1252.8 2959 370.8
Simple source test with resampling (Mono) (120s) 1935.4 2958.2 986,6.4
Simple source test with resampling (Stereo) (120s) 1490 1667 732,6
Simple source test with resampling (Stereo and positional) (120s) 903 1474.8 357
Upmix without resampling (Mono -> Stereo) (120s) 2715 3924.2 869.2
Downmix without resampling (Stereo -> Mono) (120s) 3162.2 3046.2 811.2
Simple mixing (100x same buffer) (30s) 32.6 49.4 10.6
Simple mixing (100 different buffers) (30s) 31.8 46.4 11
Simple mixing with gains (120s) 548.6 1202.4 251.6
Granular synthesis (7.5s) 7 32 1.5
Synth (120s) 82.8 307.6 21.3
Substractive synth (120s) 408.2 639 217.2
Stereo Panning (120s) 1928.2 3707.2 549.6
Stereo Panning with Automation (120s) 1826.4 1349.2 546.6
Periodic Wave with Automation (120s) 1511.6 1001.8 1488.2

Table 1: Benchmark results for the MacBook Pro Intel 2019. The values denote the speedup compared to live audio playback, higher is better.
Standard deviation never exceeded 7.5%

Benchmark Chrome Firefox Rust
Empty testcase 10209.8 22400 7058.8
Simple source test without resampling (120s) 7235.4 12266.6 1807.9
Simple source test without resampling (Stereo) (120s) 5714.0 8835 1562.7
Simple source test without resampling (Stereo and positional) (120s) 2765.4 5828.4 548.0
Simple source test with resampling (Mono) (120s) 4286.0 3516 2166.2
Simple source test with resampling (Stereo) (120s) 3046.2 2055.2 1524.7
Simple source test with resampling (Stereo and positional) (120s) 1929.0 1829.4 551.1
Upmix without resampling (Mono -> Stereo) (120s) 6000.0 7703.4 1945.3
Downmix without resampling (Stereo -> Mono) (120s) 6667.0 2299.4 1666.9
Simple mixing (100x same buffer) (30s) 73.0 45.6 23.6
Simple mixing (100 different buffers) (30s) 70.0 42 23.3
Simple mixing with gains (120s) 1138.6 1481.2 379.5
Granular synthesis (7.5s) 12.0 44.2 2.1
Synth (120s) 123.0 419.8 27.5
Substractive synth (120s) 513.0 1111 473.2
Stereo Panning (120s) 4084.6 7914.2 1043.9
Stereo Panning with Automation (120s) 3898.4 2371.8 1010.3
Periodic Wave with Automation (120s) 1968.4 1667.4 1987.3

Table 2: Benchmark results for the MacBook Pro M1 2020. The values denote the speedup compared to live audio playback, higher is better.
Standard deviation never exceeded 5%

	Introduction
	Related Works
	Design & Implementation
	Control thread
	Render thread
	Message passing
	Tradeoffs Between Spec and Language
	AudioWorklet and Extensibility
	Current Known Limitations

	Example Use
	Feedback Delay
	Granular Scrub

	Performance
	Render Thread Considerations
	Benchmarks

	Node.js Bindings
	General Approach and Goals
	Example Use

	Conclusion
	Acknowledgments
	References

