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Abstract

Hydrocracking is a crucial refinery process that transforms heavy molecules (i.e. vac-

uum gas oil (VGO)) into lighter and highly-valued products such as naphtha, kerosene

and diesel. It is a two-step process. The hydrotreatment (HDT) reactor uses a more

robust catalyst, which essentially serves to remove heteroatoms from the VGO feed in

order to satisfy product quality constraints and avoid poisoning of the more delicate

zeolite-based HCK catalysts. The second, hydrocracking (HCK) reactor uses a com-

mercial zeolite catalyst with a carefully selected balance of acid and metallic sites. For

hydrotreatment simulation, the kinetic model is decomposed in several ODE (Ordinary

Differential Equation). Catalyst vendors develop more and more catalysts. For each

new catalyst (new generation), the kinetic parameters must be refitted. This task is

costly and time consuming.

In this paper, in order to reduce the required number of experimental points, a

Bayesian transfer approach is proposed to fit the parameters of catalyst (n+1), using

the past knowledge of catalyst (n) to add more information. A method for the choice of

the prior is proposed and can be used for any type of parametric model. This approach

is applied and shows an improvement in the prediction performance and robustness
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compared to a classical fitting method. In our case, only 10 pilot plant points on

catalyst (n+1) are requested to refit a HDN kinetic model.

1 Introduction

In a classical hydrocracker, a mixture of hydrocarbon feed and hydrogen is heated and in-

jected into a reactor vessel containing a hydrotreating catalyst. This catalyst accelerates

the reactions that remove sulfur and nitrogen from the hydrocarbon and open up and sat-

urate aromatics rings. The entire output from this reactor is then injected into a second

reactor containing a hydrocracking catalyst, which helps the reactions that crack apart the

hydrocarbons while saturating them with hydrogen. The resulting mix of converted and

unconverted hydrocarbon is then separated. Unconverted hydrocarbon can then be recy-

cled to the hydrocracking step for further conversion, sent to a second hydrocracking vessel,

or sent to another conversion unit as feed (e.g., an FCC). Diesel range material can also

be drawn off at the separation steps to maximize diesel production, or it can be processed

further (through recycling or second-step hydrocracking) to maximize naphtha production.

Some hydrocrackers are single-stage units with just one reactor that is usually filled with

hydrocracking catalyst, but the rest of the process is the same. The HCK is generally run at

high temperatures (up to 420°C) and at high hydrogen pressures (>90 bar) on a bi-functional

catalyst.

The hydrocracker is particularly valuable in a refinery that is trying to maximize diesel

production and reduce residual fuel oil. The hydrocracker yields a high volume of kerosene

and diesel of good quality (high cetane and low sulfur). However, its volume yield of naphtha

is low and of low quality (low RON).

Hydrotreating before the hydrocracking reactor ensures better operation of the hydroc-

racking catalyst because the catalyst is sensitive to these heteroatoms. For example, neutral-

isation of acid sites by basic nitrogen compounds or poisoning of metal sites by sulphur or
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metals. Without pretreatment, hydrocracking catalysts would deactivate quickly and would

have to be replaced more often.

The most widely used method for modeling hydrotreating problems are kinetic-rate mod-

els. These models provide a mathematical representation of the chemical reactions taking

place. They are commonly based on differential equations. Experimental data are used to

fit the model parameters. The advantage of this method is that it offers a good understand-

ing of the process. Many research has been carried out on kinetic model construction for

hydrotreating, and reviews1,2 on kinetic modeling for these processes are proposed. The

kinetic modeling can be divided in two different approaches: the detailed kinetic model-

ing and the lumping approach. Due to the many compounds that occur in the feedstock

and the very complex reactions in the process, a detailed kinetic model is very difficult to

develop. The lumping approach is the most used. It groups the oil mixture into different

components according to their chemical properties. Becker et al. 3,4 used continuous lumping

for hydrotreating and hydrocracking modeling. The authors reported that the model gives

good conversion and yield structure predictions. Sánchez et al. 5 proposed a kinetic model

for hydrocracking of heavy oils using the lumping approach. The products are defined as

5 different lumps which are unconverted residue (> 538 °C), vacuum gas oil (343-538 °C),

distillates (204-343 °C), naphtha (Initial Boiling Point-204 °C) and gases. The model is re-

ported to provide a good prediction with an average absolute error of less than 5 percents.

Sadighi et al. 6 developed a 6-lump kinetic model including a catalyst decay for a commercial

VGO hydrocracker. The 6 lumps are light naphtha (40-90 °C), heavy naphtha (90-150 °C),

kerosene (150-260 °C), diesel (260-380 °C), Vaccum Gas Oil and unconverted oil (> 380 °C).

Catalyst vendors develop more and more catalysts. For each new catalyst (new genera-

tion), the kinetic parameters must be refitted.

For each catalyst generation, the following workflow is used to fit the developed kinetic

models7:

1. Definition of an experimental design
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2. Execution of the pilot plant tests

3. Validation of the pilot plant tests

4. Kinetic parameters estimation

Overall, this is very time consuming and costly. The definition of an experimental design is

usually a function of the allocated experimental time and the project priorities. As for the

tests themselves, they can last for 4 to 6 weeks each, producing 4 to 8 experimental points. A

full campaign for a catalyst generation can involve 5 to 10 tests during 6 to 12 months. Once

the test is finished and the analytical results are available, a fine analysis (trend evolution,

outlier detection, comparison with previous tests, ...) is required to process and validate

the results. This may take up to 3 months. At the end of the line, the raw validated data

undergoes further treatment by the kinetic model engineer. A model is then defined and the

parameters are fitted. This stage normally requires 3 months of work. As a rule of thumb,

we consider that a new generation of catalysts arrives every couple of years.

The purpose of this article is to reduce the requested time for a catalyst of generation

(n+1) by using the information of catalyst of generation (n).

The aim of our work is then to improve the quality of our hydrodenitrogenation (HDN)

model using Transfer Learning. To define Transfer Learning, let’s start by defining a domain

as D = (X , P (X )) with X a feature space and P (X ) its probability distribution, and an

associated task T = (Y, f) with f the function used to predict y ∈ Y given x ∈ X . The

target data is the data from the phenomenon to be modeled, while the source dataset refers

to a linked dataset, used to improve the modeling of the target. We name Ds and Ts the

domain and task of source data and Dt and Tt the domain and task of the target data.

Transfer Learning is intended to improve the learning of the target predictive function ft

using the knowledge in Ds and Ts, where Ds ̸= Dt, or Ts ̸= Tt. Reviews8–10 on Transfer

Learning can be read for those interested in a complete analysis of the state of the art in

this domain.
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The work presented in this paper is an extension of the method proposed in a previous

work11 for the modeling of the density of the hydrocracking diesel cut using a kriging model

(gaussian process). The aim of the current paper is to use the information from the previous

generation catalyst (n) to reduce the required time to fit the current catalyst generation

(n+1) model. This method relies on Bayesian statistics,12 which is based on the Bayes rule

(Equation (1)):

π(θ|y) =
π(θ)f(y|θ)∫
π(θ)f(y|θ)dθ

, (1)

where f(y|θ) is a parametric model with parameters θ, π(θ) is the prior distribution and

π(θ|y) is the posterior distribution. Bayesian inference assumes external knowledge about

the parameters, without having seen the data. This external information is contained in the

prior distribution π(θ) and have to be chosen by the user. In this work, we propose to solve

the transfer learning problem by choosing a prior depending on the source model parameters.

Section 2 shows the material and the developed methods to tackle the problem.

Section 3 shows the obtained results.

Section 4 concludes the work.

2 Material and Methods

2.1 Data Presentation

In this paper, we focus on the hydrodenitrogenation (HDN) modeling. For our application,

two datasets are available. The first data set corresponds to the previous catalyst generation

(n). The second data set corresponds to the current catalyst generation (n+1). The aim is

to fit the denitrogenation model of catalyst(n+1).

The dataset from the pilot plants using a catalyst (n) is called the source dataset. A first

sorting is done in order to eliminate observations with values outside predefined intervals.
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In addition, an outlier detection is carried out using the Local Outlier Factor method.13 The

source dataset is then composed of 61 observations and will be used as a basis to obtain the

prior knowledge.

The dataset from the pilot plants using a new catalyst (n+1) is called the target dataset.

It is composed of 126 observations. The same methodology is applied to remove outliers.

The variable of interest is the nitrogen content (N) after the hydrotreating stage (Nslip).

In order to model its value, an ODE-based kinetic model with a structure showing to be

efficient for the modeling of hydrodenitrogenation14 is used and the influential features are

presented in Table 1. This model is very simple but enough to show the methodology.

These features are all quantitative variables, including the output to be predicted. The

features space is the same for both datasets, and the variability is similar for the source and

the target dataset.

Table 1: Features description Range.

Feature Description Range

LHSV
Liquid Hourly Space Velocity: the ratio of liquid
volume flow per hour to reactor volume (in h−1).
It is the inverse of the residence time.

[0.5;4 h-1]

T Temperature of the hydrotreating reactor (in ◦C). [350;410 °C]
ppH2 Hydrogen partial pressure (in bar). [80;160 bar]

TMP

Weighted average of the simulated distillation (in
◦C):
TMP = 1

7
(FEED_SimDis05 + 2 ×

FEED_SimDis50 + 4× FEED_SimDis95)

[400;650 °C]

N0

(FEED_NIT) Nitrogen content in feedstock (in ppm). [800;4000 ppm]

S0

(FEED_SULF) Sulfur content in feedstock (in mass percent). [0.5;3 %m/m]

Res0 Resines content in feedstock (in mass percent). [4;15 %m/m]

N (to be pre-
dicted)

Nitrogen content after hydrotreating (in ppm).
The variable of interest that we want to model
using other features.

[3;400ppm]

The experimentation to obtain the observations were carried out using 32 different feed-
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stocks for the source dataset and 20 for the target dataset. The features correlations are

quite similar for both datasets (Figure 1). The higher correlation between the feedstock

features for the target dataset than for the source dataset shows that the target feedstocks,

in addition to being fewer in number, are more similar to each other. Other features have low

correlations, with an absolute value of less than 0.4, and are comparable for both datasets.

(a) source dataset (b) target dataset

Figure 1: Correlation matrix for hydrotreating source and target datasets. The correlation
coefficient use is the Pearson’s product-moment coefficient. The size and color of the squares
both represent the value of the correlation coefficient. The larger the square the higher the
absolute value of the coefficient.

2.2 ODE-based kinetic modeling

An ODE-based kinetic model is considered and the model structure is obtained by solving

the following differential equation:

dy

dt
= −k0

exp(−Ea

Rg
( 1
T
− 1

Tref
))( ppH2

ppH2,ref
)myn

(1 + A0Res0)(1 +
C0N0

1+S0
)

× (2)

(1− u · exp(− b

Rg

(
1

T
− 1

Tref
))(

ppH2

ppH2,ref

)a(
WADT

WADTref

)vyr),
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where k0 and u are the kinetic pre-exponential rate constants, Ea and b are the Activation

Energies (cal) and Rg is the universal gas constant (cal/mol/cal). In our case, y stands for

nitrogen (ppm), t for the residence time (h), T for the temperature (K), ppH2 for the partial

pressure of Hydrogen, Res0 for the Feed Resin (% m/m), N0 for the Feed Nitrogen (ppm), S0

for the Feed Sulfur (% m/m) and WADT for the weighted average distillation temperature

of the feedstock (K).

This rate equation can be decomposed into two terms. The first one corresponds to the

removal of nitrogen-containing compounds whereas the second term takes into account the

reverse reactions that might occur. Indeed, in some conditions, the aromatics hydrogenation

thermodynamic equilibrium is reached. This leads to an inversion of the HDN reactions

which involve a hydrogenation step.

In this model, the direct kinetic term is composed of a pre-exponential rate constant k0,

an Arrhenius-type term (Ea/Rg/T ), a power law associated to hydrogen (m is the partial

reaction order) and to nitrogen (n is the partial reaction order) and two inhibitors, modeled

as Langmuir-type adsorption curves: resins (Res0) and nitrogen over sulfur content in the

feedstock N0

1+S0
. A0 and C0 are the inhibition adsorption constants to be fitted.

For the second term, the inverse kinetic term is composed of a pre-exponential rate

constant u, an Arrhenius-type term (b/Rg/T ), a power law associated to hydrogen (a is the

partial reaction order) and to nitrogen (r is the partial reaction order). An empirical term,

related to the feedstock composition (WADT ) was also added to the return term using a

power law: v.

The value of the reference terms are displayed in Table 2.

For a given value of the parameters, the resolution of the differential equation is done

numerically using a method of backward differentiation formula. Then, for each observation

(xi)i, a numeric estimation of the nitrogen content evolution over time is obtained. The

residence time of the feed in the reactor being known (LHSV −1), we obtain the prediction

of the nitrogen at the reactor outlet, which we note fθ(xi) for an observation i.
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Table 2: References values of the kinetic model.

Symbol Value
Rg 1.987215583 cal/mol/K
Tref 649.15 K

ppH2,ref 32.5 bar
WADTref 643.15 K

The objective is to optimize parameters θ = (k0, Ea,m, n, a, b, A0, C0, u, r, v) such that

the cost function
∑K

i=1
(fθ(xi)−yi)

2

yi
, with K the sample size, is minimal. Moreover, boundaries

are fixed for the parameters in order to keep a physical sense (Table 3).

Table 3: Boundaries of kinetic model parameters.

Param k0 Ea m n a b A0 C0 u r v
Min 0 1 · 104 0,3 0,3 -10 −4 · 104 0 -5 0 -10 -10
Max 103 8 · 104 10 10 0 0 10 5 3 10 10

Minimize the cost function in θ is equivalent to maximize the likelihood of the statistical

model (3):

yi = fθ(xi) + ϵi, (3)

ϵi ∼ N (0, σ2
i ),

σ2
i = σ · yi.
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Indeed, by noting Σ = diag(σ2
1, . . . , σ

2
Kt
), we obtain:

p(y|X,θ) ∼ N (fθ(X),Σ)

∝ exp(−1

2
(y − fθ(X))TΣ−1(y − fθ(X)))

θML = argmin
θ

1

2
(y − fθ(X))TΣ−1(y − fθ(X))

= argmin
θ

K∑
i=1

(yi − fθ(xi))
2

σ2
i

= argmin
θ

K∑
i=1

(yi − fθ(xi))
2

yi

Where θML is the maximum likelihood estimator of (3).

2.3 Model fitting

To perform the Bayesian inference to fit the target model, we need to choose the prior distri-

bution. The first step is therefore to fit a performing model on the source dataset to extract

the knowledge we have from it. The model (3) is considered. In order to have an estimation

of the parameters distribution, the optimisation of the parameters is done using a MCMC

algorithm. The MCMC algorithm used is a Metropolis Hastings within Gibbs algorithm15.

A flat prior is considered (constant over the parameter space), so no knowledge on the prior

distribution of the parameters is brought, and thus the likelihood is optimized. All available

source observations are used to fit and evaluate the model. The MCMC algorithm is used

(10000 iterations). After removing a burn-in period of 2000 observations, the estimation of

θ̂s and V ar(θ̂s) are obtained respectively as the mean and the covariance over the remaining

8000 iterations.

The structure for the target kinetic model is the same as for the source model (equation

(3)). The fitting is done by using the Bayesian transfer approach, by transferring the pa-

rameters knowledge using the prior. To build the prior distribution, it is assumed that the
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target parameters θt follow a multivariate Gaussian distribution:

π(θt) ∼ N (θ̂s, gV ar(θ̂s)), (4)

where θ̂s are the estimated source parameters.

Due to the structure of the model, the variances of the parameters are really distinct

from each other, which leads to a badly scaled covariance matrix. In order to avoid nu-

merical issues, as with the inversion of the covariance matrix, parameters are normalized.

The ODE is thus rewritten, modifying each θi by
√
V ar(θ̂i,s)θi, with θ = (θi)i=0,...,10 =

(k0, Ea,m, n, a, b, A0, C0, u, t, v) and V ar(θ̂i,s) the ith diagonal element of V ar(θ̂s). It should

be noted that this modification has no impact on the model and only affects the values taken

by the parameters. In the following, this structure for the model is considered and by doing

so, the diagonal of V ar(θ̂s) is composed of ones.

The main challenge with the Bayesian transfer approach is to choose a suitable g value

to adapt the prior’s impact. It should be noticed that θ̂t →
g→0

θ̂s and θ̂t →
g→+∞

θ̂t,ML, where

θ̂t,ML is the maximum likelihood estimator on the target sample only, without transfer. The

heuristic method to chose the g value proposed for Bayesian kriging transfer11 is not adapted

for this case. Indeed, the model is more complex and we cannot know the range in which

parameters will lead to a high value of the likelihood. Two effective methods to choose it are

then proposed.

Selection of the value of g by cross-validation The first method is to use leave-one-out

cross-validation to determine which value of g offers the best score. For a given sample of size

nt and for each g value tested, cross-validation is performed on the training set (the given

sample). nt model are thus fitted using nsample − 1 observations and the score is evaluated

on the remaining observations ( (ŷi−yi)
2

yi
where i is the observation not used to fit the model).

The mean of the nt test scores (scores on remaining observations) is calculated. Finally, the

value of g with the lowest averaged score is kept. The drawback of this approach is that
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several models have to be fitted, thus if the model is complex and the sample size is quite

large, it becomes time consuming.

Selection of the value of g by “bound on training score” The second approach to

chose the value of g, which we call “bound on training score”, is based on the score obtained

for the different g values on the training dataset. This method relies on the score we wish

to obtain on the whole dataset. With g near to 0, the model is close to the source model

and the score is far from expectation. With an high value of g, the model moves closer to

the target model without transfer and the score monotonically reaches the score without

transfer as the value of g increases. The aim is to keep a maximum of prior information

without getting a model leading to bad prediction on the training set. Then, we look for the

smallest g value among the tested value G for which the training score is lower than a fixed

value for the expectation score:

gselected =


min
g∈G

(g)∑
i∈Train

(ŷgi −yi)
2

yi
≤ Sexp

where Sexp is the chosen expectation score and ŷgi is the prediction obtained using gV ar(θ̂s)

as prior variance. In that way, it is ensured that the prior information does not degrade the

model quality, and maximum knowledge from the prior is kept. This method implies the

knowledge of the performance expectation, that is the score expected on the target dataset

with a good model. If we assumed that the target model will lead to similar performances

as the source model, the score obtained with the source model on the source dataset can be

a good estimation. For these reason, it was used for this particular application.

Once the prior is chosen, the target Bayesian model can be fitted. In order to compare

results with the current method, we also fit a model “without transfer”. To optimize the

parameters of the Bayesian transferred model, we first use a MCMC algorithm starting

from the prior mean, which is the source parameters estimation. However, the posterior
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distribution is non Gaussian, with multiple modality, and a good estimation of the posterior is

not attained with such an approach because the Markov Chain remains blocked in modalities

close to the initialization.

Therefore, another approach is considered to optimize the parameters values. A gradient

descent is performed, using the L-BFGS-B algorithm16, in order to find parameters θ̂t that

maximize the posterior (Equation (5)). By doing so, we do not obtain an estimate of the

posterior distribution, but an estimate of the posterior maximum, sufficient to fit the model

parameters.

π(θ|X,y) ∝ p(y|X,θ)π(θ), (5)

where p(y|X,θ), Σ = diag(σ2
1, . . . , σ

2
Kt
) with σ2

i = σt · max(5, yi) and σt supposed to be

known and equal to σ̂s.

Maximizing the posterior corresponds to solve the Equation (6):

θ̂t = argmax
θ

exp(−1

2
(y − fθ(X))TΣ−1(y − fθ(X)))exp(−1

2
(θ − θ̂s)

TgV ar(θ̂s)
−1
(θ − θ̂s))

= argmin
θ

1

2
(y − fθ(X))TΣ−1(y − fθ(X)) +

1

2
(θ − θ̂s)

TgV ar(θ̂s)
−1
(θ − θ̂s) (6)

To ensure that the global minimum (or at least a good local minimum) is found, several

initializations are considered. 100 distinct initializations are randomly sampled using the

distribution N (θ̂s, 10× gV ar(θ̂s)).

For the sake of calculation time, the same initializations are used for the “without transfer”

approach. As a consequence, we do not cover the space of possible values for the parameters.

Thus we indirectly constrain the “without transfer” model parameters to stay close to the

estimated source parameters values. It is possible that a combination of parameters far

from the initialization leads to an higher likelihood value. This option was not explored.

This would mean a better “without transfer” model on the training set, but it does not
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imply a better model for the test set, particularly with a small training set. Actually,

it provides beneficial information here. With few observations and initialization far from

source parameters estimation, we can build a “without transfer” model that perform better

on the training set but is worse on the test set compared to the “without transfer” model

we use. The comparison between the Bayesian transferred and the classical fitted model

therefore remains relevant.

3 Results and Discussion

3.1 Source modelling

Firstly, the model fitted on the source dataset is studied. The parity plots of the results are

presented in Figure 2. The fitted model offers satisfying results.
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Figure 2: Parity plot of the fitted source model with 61 observations. The dashed lines
represent the intervals for which the prediction error is less than 15% and 30% of the actual
value. On the right, a zoom for nitrogen values below 100 ppm is drawn.

An additional criterion used to evaluate the quality of the model is the Delta T error (Fig-

ure 3). It represents the difference in temperature of the hydrotreating reactor T needed to

14



obtain the experimental value of the nitrogen content (all the other inputs remain constant):

fθ̂s
(xi + (DeltaTi, 0, 0, 0, 0, 0, 0)) = yi, (7)

with the first element of xi being the temperature of the reactor. For example, a Delta T of

5◦C means that with a value of reactor temperature 5◦C higher than the actual value, the

nitrogen content estimation will be the actual value. It is an interesting measure because

the reactor temperature furnace is the only operating condition that can easily be changed

by the refiner. A similar conclusion to the analysis of parity graphs is reached: satisfying

results are obtained.
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Figure 3: Delta T for the fitted source model with the 61 observations. The dashed lines
represent the intervals for which the delta T is less than 5 and 2 and 1◦C.

The quantified summary of the performances obtained with the source model is as follows:

•
∑61

i=1
(fθ(xi)−yi)

2

yi
= 2.34,
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• 90% of the observations have an absolute Delta T lower than 5◦C,

• 54% of the observations have an absolute Delta T lower than 2◦C.

The model obtained is considered of satisfying quality and it will be considered as the

model to transfer to the target dataset.

Since it is not possible to plot the corresponding 12-dimensional Gaussian prior, Figure 4

shows the marginal histograms and the marginal distribution of each dimension of θ̂s. The

correlation between source parameters over the 8000 iterations is also plotted (Figure 5).

It can be noticed that for some parameters the Gaussian distribution does not represent

well the stationary distribution of the Markov Chain (parameters a, u and t for example)

and another prior might be more appropriate for these parameters. Furthermore, due to

the bounds, for some parameters there is a spike on the bar graph for the boundary values

(parameters m, a, b and v) and then the Gaussian prior does not fit perfectly once again.

However, the choice to maintain this Gaussian prior is made to conserve the covariance

information between all parameters.

Before fitting a new target model, we are interested in the results of the source model

applied to the target data. The results obtained are, as expected, not good and the Nitrogen

prediction is higher than the Nitrogen experiments because the catalyst (n+1) is more active

than the catalyst (n) (Figure 6).

Similar performance is obtained with a Delta T (defined in equation 7) higher than 10

degrees Celsius (Figure 7).
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Figure 4: Univariate chosen prior and MCMC sample for the different parameters. Values
are hidden for confidentiality reasons.
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Figure 5: Correlation between source parameters over the 8000 iterations of the MCMC
algorithm, burn in period being removed.
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Figure 6: Parity plot of source model applied to target dataset. The dashed lines represent
the intervals for which the prediction error is less than 15% and 30% of the actual value. On
the right, a zoom for nitrogen values below 100 ppm is drawn.
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lines represent the intervals for which the delta T is less than 1 and 2 and 5◦C.
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3.2 Target modelling

Different target samples of different sizes are considered, randomly sampled, in order to

evaluate the Bayesian transfer, to compare it to the “without transfer” approach, and to

study the impact of the scalar g. For each sample size nt ∈ {5, 10, 15, 20}, 10 samples are

drawn. A “without transfer” model and Bayesian transfer models with different value for g

(g ∈ {1, 10, 100, 1000, 10000}) are fitted for each sample.

Figure 8 illustrate the impact of the value of g. It shows, for a sample size nt = 15,

the averaged score obtained over the 10 samples, with different g value for the Bayesian

transfer, on the training and on the test set (continuous line). The dashed lines are the score

with a non transfer model fitted on the training data set (blue) and tested on the test set

(orange). Without transfer, the training score is very low (around 1.6) but the test score is

high (around 3.4) because no a priori information is added to the fit.

Due to the Bayesian definition, with an high g value the prior is neglected and the score

obtained with the Bayesian transfer and that obtained without transfer are similar. This

is the case on both the training set (the size 15 target sample in the example of Figure 8)

and the test set (the entire target dataset) (see for example g = 104). For the training set,

when the value of g decreases, the training score monotonously increases to tend to the score

using source model when g is near to zero. Concerning the test set, the evolution of the

score as a function of g is not monotonous. A well chosen g value increases model quality

and conversely a badly chosen g value decreases it. It is thus crucial to define a method to

chose a good g value which is a trade off between the train and the test score. In our case,

a g value around 10 is optimal.

To deepen the example of this sample, the parity plots for the "without transfer model"

and the Bayesian models with a bad value of g and a well chosen g value are plotted (Figure

9).

As 15 observations are sufficient to fit a satisfying model without transfer for this appli-

cation, similar results are obtained with the Bayesian transfer method as shown in Figure
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Figure 8: Example of g value impact for a random sample of size 15 (average). Blue
continuous line: Training set score with transfer, Orange continuous line: Test set score with
transfer, Blue dashed line: Training set score without transfer, Orange dashed line: Test set
score without transfer
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Figure 9: Parity plot for a random sample of size 15. On the right graphs, a zoom is
performed for the range [0ppm;100ppm]. Top: Without transfer, Center: Bayesian transfer
with g=10 (good choice), Bottom: Bayesian transfer with g=1000 (bad choice).
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9. Nevertheless, a slight improvement is obtained with Bayesian transfer with a good choice

for the g value (center graphs in Figure 9). If less observations are available from the target

dataset, the classical approach can lead to really bad models. For example, the size 10 ran-

dom sample presented in Figure 10 leads to poor results with the classical approach, but by

using the Bayesian transfer model with a well chosen g value, the results are satisfying and

thus a great improvement is provided.
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Figure 10: Parity plot for a random sample of size 10. Left: Without transfer, Right:
Bayesian transfer with g=10.

We see that the Bayesian transfer, with a correct choice of the g value, leads to an

improvement of the model’s prediction performance. Thus, two methods are proposed to

define the optimal g value to chose.

Selection of the g value by cross-validation The first method is to use leave-one-out

cross-validation to determine which value of g offers the best score.

In order to compare the Bayesian transfer models with the classical fitted models, this

method is tested on the different sample sizes and the averaged scores and the minimum-

maximum score interval (the minimum and the maximum score obtained over the 10 random

samples) are studied for each sample size (Figure 11). The method leads to an improvement
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of the score with the Bayesian transfer, especially for small designs, and thus to a good

choice for the g value. Moreover, the Bayesian transfer model is less affected by the design

quality, as it leads to a smallest maximum score even if the sample size is low. This method

is then more robust to a bad design choice than classical method. It shows that using only

10 pilot plant points is enough to refit the HDN model.

However, the main drawback of this method is that several models have to be fitted, thus

if the model is complex and the sample size is quite large, it may become time consuming.

Selection of the g value by “bound on training score” The second approach to chose

the value of g, which we call “bound on training score”, is based on the score obtained for

the different g values on the training dataset.

This method is tested on the different samples (Figure 12). As for the first method, it

leads to a good choice for the g value and thus to an improvement of the score with the

Bayesian transfer and a smallest maximum score. The scores are slightly less good than

those with the cross validation method (Figure 13), but has the advantage of being less time

consuming. Again only 10 pilot points are requested to fit the kinetic model.
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Figure 11: Comparison of classical fitted model and Bayesian model, g chosen with the
cross validation method, for different size of the training sample. The score

∑K
i=1

(ŷi−yi)
2

max(5,yi)

evolution is plot according to training sample size. The mean and the minimum-maximum
score range over the 10 samples are plotted. On the bottom, a zoom is applied on the score.
Blue continuous line: average score with Bayesian Transfer, Orange continuous line: average
score without transfer, Blue dashed line: Min/Max score with transfer, Orange dashed line:
Min/Max score without transfer 25
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Figure 12: Comparison of classical fitted model and Bayesian model, g chosen with the bound
on training score method, for different size of the training sample. The score

∑K
i=1

(ŷi−yi)
2

max(5,yi)

evolution is plot according to training sample size. The mean and the minimum-maximum
score range over the 10 samples are plotted. On the bottom, a zoom is applied on the
score. Green continuous line: average score with Bayesian Transfer, Orange continuous line:
average score without transfer, Green dashed line: Min/Max score with transfer, Orange
dashed line: Min/Max score without transfer26
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Figure 13: Comparison of the score evolution for the different methods. Mean, minimum
and maximum scores of the 10 samples are plot. Blue continuous line: average score with
Bayesian Transfer (Cross Validation), Green continuous line: average score with Bayesian
Transfer (Bound), Orange continuous line : average score without transfer, Blue dashed line
: Min/Max score with transfer (Cross Validation), Green dashed line : Min/Max score with
transfer (Bound), Orange dashed line : Min/Max score without transfer
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4 Conclusion

In this paper, a methodology to fit a kinetic model for the hydrotreating process for the

new catalyst generation (n+1) catalyst using few observations is proposed. To add some

information and then to decrease the number of requested pilot plant points, data of previous

catalyst generation (n) are used. A Bayesian transfer method, which leads to more robust

models, is proposed. It is less impacted by the design quality when compared to the classical

model. Also, the predictions performance is improved, especially for small designs where it

could not be possible to fit a satisfying model without such an approach. In our case, only 10

pilot points are enough to refit a HDN kinetic model. To obtain a good predictive model, a

good choice of the prior variance and thus of the g value is crucial. Two methods for choosing

it efficiently are proposed and tested. The cross-validation method is recommended for the

best performance, but it may be time consuming depending on the size of the training set.

The “bound on training score” method is a good alternative. This work is performed on a

particular application but the transfer method developed can be used for any kinetic or any

parametric model. It thus can be used in many other areas, enabling the valorization of past

knowledge for many applications.
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