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FLOW CURVATURE MANIFOLD AND ENERGY

OF GENERALIZED LIÉNARD SYSTEMS

JEAN-MARC GINOUX1∗, DIRK LEBIEDZ2, RICCARDO MEUCCI3 AND JAUME LLIBRE4

Abstract. In his famous book entitled Theory of Oscillations, Nicolas Mi-

norsky wrote: “each time the system absorbs energy the curvature of its tra-
jectory decreases and vice versa”. By using the Flow Curvature Method, we

establish that, in the ε-vicinity of the slow invariant manifold of generalized

Liénard systems, the curvature of trajectory curve increases while the energy
of such systems decreases. Hence, we prove Minorsky’s statement for the gen-

eralized Liénard systems. These results are then illustrated with the classical

Van der Pol and generalized Liénard singularly perturbed systems.

1. Introduction

At the end of the 1930s, a general equation of self-sustained oscillations (1) was
stated by the French engineer Alfred Liénard [25]. It encompassed the prototypical
equation of the Dutch physicist Balthasar Van der Pol [32] modelling the so-called
relaxation oscillations1.

(1)
d2x

dt2
+ ωf (x)

dx

dt
+ ω2x = 0.

Less than fifteen years later, a more general form was provided by the American
mathematicians Norman Levinson and his former student Oliver K. Smith [23]:

(2)
d2x

dt2
+ µf (x)

dx

dt
+ g (x) = 0.

At that time, the classical geometric theory of differential equations developed
originally by Andronov [1], Tikhonov [31] and Levinson [24] stated that such sin-
gularly perturbed systems possess invariant manifolds on which trajectories evolve
slowly, and toward which nearby orbits contract exponentially in time (either for-
ward or backward) in the normal directions. So, these manifolds have been called
asymptotically stable (or unstable) slow invariant manifolds. Their local invariance
has then been stated according to Fenichel [4, 5, 6, 7] theory2 for the persistence of
normally hyperbolic invariant manifolds.

Key words and phrases. Generalized Liénard systems, singularly perturbed systems, Flow
Curvature Method.

1For more details see J.-M. Ginoux [12].
2The theory of invariant manifolds for an ordinary differential equation is based on the work

of Hirsch, et al. [15]
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During the last century, various methods have been developed to approximate
the slow invariant manifold equation in the form of an asymptotic expansion in
power of ε. The seminal works of Wasow [33], Cole [3], O’Malley [27, 28] and
Fenichel [4, 5, 6, 7] to name but a few, gave rise to the so-called Geometric Singular
Perturbation Method. Fifteen years ago, a new approach of n-dimensional singularly
perturbed dynamical systems of ordinary differential equations with two time scales,
called Flow Curvature Method has been developed [10]. This method gives an
implicit non intrinsic equation, because it depends on the euclidean metric. A
’kinetic energy metric’ has been introduced in [19] for chemical kinetic systems and
an extremum principle for computing slow invariant manifolds has been formulated
[20, 21] which can be viewed as minimum curvature geodesics. In [14] a curvature-
based differential geometry formulation for the slow manifold problem has been used
for the purpose of a coordinate-independent formulation of the invariance equation.
In his famous book entitled Theory of Oscillations, the Russian mathematician
Nicolas Minorsky [29] wrote:

“each time the system absorbs energy the curvature of its trajectory
decreases and vice versa when the energy is supplied by the system
(e. g. braking) the curvature increases.”

Thus, according to Minorsky, energy and curvature of the trajectory are linked
by a relationship that he unfortunately didn’t give. So, the aim of this work is to
prove this statement in the ε-vicinity of the slow invariant manifold of generalized
Liénard systems and to establish this relationship for such systems. The paper is
organized as follows. In section 2, we present Liénard’s assumptions for which the
generalized Liénard systems has a unique stable limit cycle and so, a slow invariant
manifold. In section 3, we prove Minorsky’s statement for the generalized Liénard
systems. In section 4, we exemplify these results with the classical Van der Pol
and generalized Liénard singularly perturbed systems. Perspectives to this work are
presented in the discussion.

2. Generalized Liénard systems and its slow invariant manifold

2.1. Generalized Liénard systems. Starting from the generalized Liénard equa-
tion (2) which is a paradigm for self-sustained oscillations and by posing: t → µt
and µ = 1/

√
ε, we have:

(3)
εẋ = y − F (x) ,

ẏ = −g (x) .

where

G(x) =

∫ x

0

g(s) ds > 0 =⇒ G′(x) = g(x)

and,

F (x) =

∫ x

0

f(s) ds > 0 =⇒ F ′(x) = f(x).

Moreover, the generalized Liénard systems (3) is a well-known planar singularly
perturbed dynamical system [26].
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According to Lefschetz [22], under the following assumptions:

I. f (x) is even, g (x) is odd, xg (x) > 0 for all x ̸= 0; f (0) < 0;
II. f (x) and g (x) are continuous for all x; g (x) satisfies Lipschitz condition

for all x;
III. F (x) → ±∞ with x;
IV. F (x) has a single positive zero x = a and is monotone increasing for x > a,

the generalized Liénard systems (3) has a unique stable limit cycle and so, pos-
sesses a slow invariant manifold.

According to the previous assumptions I - II, g(x) is odd and continuous, so we
have g(0) = 0. Thus, at the crossings with the y-axis the tangents to the trajectory
curves are horizontal (ẏ/ẋ = 0 since g(0) = 0), and at the crossings with the curve
y = F (x) they are vertical (ẏ/ẋ = ∞ since y − F (x) = 0). Moreover, since this
gradient (ẏ/ẋ) is negative below the critical manifold (y = F (x)) and in the right
half part of the xy-plane, i.e., in the ε-vicinity of the slow invariant manifold, the
trajectory curve cannot leave its neighborhood and any tendency for it to move
away from it would be counteracted by a rapid growth in magnitude of this nega-
tive gradient. Then, according to Lefschetz [22]:

“We see from (3) that with increasing time:

• x(t) increases above the critical manifold,

• x(t) decreases below the critical manifold,

• y(t) increases to the left of the y axis,

• y(t) decreases to the right of the y axis.”

Reciprocally, if x(t) decreases and y(t) decreases below the critical manifold for
x ≥ a and in the right half part of the xy-plane, it follows that we have:

(4)
ẋ(t) < 0

ẏ(t) < 0.

2.2. Slow invariant manifold of the generalized Liénard systems. By apply-
ing the Geometric Singular Perturbation Method to the generalized Liénard systems
(3), we can find all functions Yn(x) involved in the perturbation expansion allowing
to build an approximation of the slow invariant manifold of such systems up to
suitable order in ε. We will show in the next Section that the suitable order must
be equal at least to three. So, we deduce for the generalized Liénard systems (3)
that at:

order ε0:

(5) Y0 (x) = F (x)
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where y = Y0 (x) = F (x) is called the critical manifold.

order ε1:

(6) Y1 (x) = − g (x)

f (x)

where, we recall that, f (x) = F ′ (x).

order ε2:

(7) Y2 (x) =
g (x)∆ (x)

f4 (x)

where

(8) ∆ (x) = f ′ (x) g (x)− f (x) g′ (x)

order ε3:

(9) Y3 (x) = −g (x)P (x)

f7 (x)

where

(10) P (x) = 5∆2 (x) + 3f (x) g′ (x)∆ (x)− f (x) g (x)∆′ (x) .

Thus, the approximation of the slow invariant manifold up to order three in ε
of the generalized Liénard systems (3) reads

(11) y = F (x)− ε
g (x)

f (x)
+ ε2

g (x)∆ (x)

f4 (x)
− ε3

g (x)P (x)

f7 (x)
+O

(
ε4
)

Remark 1. According to assumptions I - IV, it follows from (11) that y−F (x) < 0
in the right half part of the xy-plane and below the critical manifold for x ≥ a. This
implies that such approximation of the slow invariant manifold (11) is below the
critical manifold (5).
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3. Minorsky’s statement

In order to establish Minorsky’s statement for the generalized Liénard systems
(3), we introduce the following propositions.

Proposition 2. In the right half part of the xy-plane and below the critical man-
ifold for x ≥ a, the slow invariant manifold, i.e., the curvature of the flow of the
generalized Liénard systems (3) is positive provided that g′(x) > 0, ∆ > 0 and
under the assumptions (I − IV ).

Proof. According to the Flow Curvature Method developed by Ginoux et al. [8,
9, 10, 11, 13], the slow invariant manifold, i.e., the curvature of the flow of the
generalized Liénard systems (3) reads ϕ (x, y, ε) = ẍẏ− ÿẋ. So, to state Proposition
2, we have to prove that ẍẏ > 0 and ÿẋ < 0.

By replacing (11) in the right hand side of the first equation of (3) and dividing
by ε gives:

(12) ẋ = − g (x)

f (x)
+ ε

g (x)∆ (x)

f4 (x)
− ε2

g (x)P (x)

f7 (x)
+O

(
ε3
)

From (12), we deduce that:

(13) f (x) ẋ+ g (x) = ε
g (x)∆ (x)

f3 (x)
− ε2

g (x)P (x)

f6 (x)
+O

(
ε3
)

The time derivative of the first equation of (3) reads:

(14) εẍ = − (g (x) + f (x) ẋ) .

By replacing the right hand side of (14) by (13) provides:

(15) ẍ = −g (x)∆ (x)

f3 (x)
+ ε

g (x)P (x)

f6 (x)
+O

(
ε2
)

It follows that when ε → 0, i.e., when the slow invariant manifold (11) tends to
the critical manifold (5), we have:

(16) ẍ = −g (x)∆ (x)

f3 (x)
< 0

The time derivative of the second equation of (3) reads:

(17) ÿ = −g′ (x) ẋ.

By replacing the right hand side of (17) by (12) provides:

(18) ÿ = g′ (x)
g (x)

f (x)
− εg′ (x)

g (x)∆ (x)

f4 (x)
+ ε2g′ (x)

g (x)P (x)

f7 (x)
+O

(
ε3
)

It follows that when ε → 0, i.e., when the slow invariant manifold (11) tends to
the critical manifold (5), we have:
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(19) ÿ = g′ (x)
g (x)

f (x)
≥ 0.

Thus we have:

(20)
ẍ(t) < 0

ÿ(t) ≥ 0.

Taking into account Eqs. (4), the proof of Proposition 2 is stated.
�

Remark 3. Let’s notice that ∆ = 0 corresponds to the case f(x) = kg(x) what is
inconsistent with assumption I for which f(x) is even and g(x) is odd.

Now, to prove that the curvature of the flow increases, let’s state the following
proposition:

Proposition 4. In the right half part of the xy-plane and below the critical manifold
for x ≥ a, the time derivative of the slow invariant manifold, i.e., of the curvature
of the flow of the generalized Liénard systems (3) is positive provided that g′(x) > 0,
g′′(x) > 0, ∆ > 0 and under the assumptions (I − IV ).

Proof. The time derivative of the slow invariant manifold ϕ (x, y, ε) = ẍẏ − ÿẋ
reads:

(21)
dϕ

dt
=

...
x ẏ −

...
y ẋ.

So, to state Proposition 4, we have to prove that
...
x ẏ > 0 and

...
y ẋ < 0.

The second time derivative of the first equation of Eq. (3) reads:

(22) ε2
...
x = −εẋ (g′ (x) + f ′ (x) ẋ) + f (x) (g (x) + f (x) ẋ) .

By replacing the right hand side of (22) by Eqs. (12) and (13) and by dividing
by ε2 provides:

(23)
...
x = − g (x)

f5 (x)
Q (x) +O (ε) .

where Q (x) = P (x) − ∆2 (x) − g (x) f ′ (x)∆ (x). By taking into account the
expression (10) of P (x), we obtain:

(24) Q (x) = 3∆2 (x) + 2f (x) g′ (x)∆ (x)− f (x) g (x)∆′ (x) .

Let’s prove that Q(x) is positive. To this aim, we use Assumption I, according
to which f(x) is even and g(x) is odd. It follows that f ′(x) is odd and g′(x) is even.
From this obvious result, it is easy to prove on the one hand that ∆(x) is even and
so, that ∆′(x) is odd and, on the other hand that Q(x) is even. Then, by using a
famous theorem according to which any continuous odd function necessary passes
through the origin, we deduce that g(0) = 0 since g(x) is odd. So, we have:



FLOW CURVATURE MANIFOLD AND ENERGY OF GENERALIZED LIÉNARD SYSTEMS 7

∆(0) = f ′(0)g(0)− f(0)g′(0) = −f(0)g′(0).

Thus, let’s show that Q(0) is positive.

Q (0) = 3∆2 (0) + 2f (0) g′ (0)∆ (0)− f (0) g (0) = 3∆2 (0) + 2f (0) g′ (0)∆ (0) .

So, we have:

Q (0) = f2 (0) g′2 (0) > 0.

Thus, since Q(x) is even and only consists of continuous positive functions, it
follows that Q(x) is positive. So, when ε → 0, i.e., when the slow invariant mani-
fold (11) tends to the critical manifold (5),

...
x < 0.

The second time derivative of the first equation of Eq. (3) reads:

(25) ε
...
y = εg′′ (x) ẋ2 + g′ (x) (g (x) + f (x) ẋ) .

By replacing the right hand side of (25) by Eqs. (12) and (13) and by dividing
by ε provides:

(26)
...
y =

g (x)

f3 (x)
[f (x) g (x) g′′ (x) + g′ (x)∆ (x)] +O (ε) .

Since we have made the assumptions that g′(x) > 0, g′′(x) > 0, ∆(x) > 0, it
follows that when ε → 0, i.e., when the slow invariant manifold (11) tends to the
critical manifold (5),

...
y ≥ 0. Thus we have:

(27)

...
x (t) < 0
...
y (t) ≥ 0.

Taking into account Eqs. (21), the proof of Proposition 4 is stated.
�

Now, let’s prove Minorsky’s statement for the generalized Liénard systems (3).

Proposition 5. “each time the system absorbs energy the curvature of its trajectory
decreases and vice versa when the energy is supplied by the system (e. g. braking)
the curvature increases.”

Proof. According to Bergé et al. [2] a classical way to express the variation of
energy according to time in generalized Liénard equation (2) (in which we have
posed t → µt and µ = 1/

√
ε) is to multiply this equation by ẋ(t). By doing that,

we obtain:

(28) εẋẍ+ f (x) ẋ2 + g (x) ẋ = 0.

By taking G′(x) = g(x), we find that:
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(29)
d

dt

(
ε
ẋ2

2
+G(x)

)
= −f(x)ẋ2

But, from assumption IV, it follows that F (x) is monotone increasing for x > a.
So, F ′(x) = f(x) > 0. Let’s consider that the energy reads:

(30) E =
εẋ2

2
+G(x),

where, according to Lefschetz [22], “in the “spring” interpretation εẋ2/2 is the
kinetic energy and G(x) is the potential energy3”. So, we have:

(31)
dE

dt
= −f(x)ẋ2 < 0.

Thus, in the right half part of the xy-plane and below the critical manifold for
x ≥ a, the energy E of the generalized Liénard systems (3) decreases while from
Proposition 7, it follows that the slow invariant manifold, i.e. the curvature of
the flow ϕ(x, y, ε) of the generalized Liénard systems (3) increases. So Minorsky’s
statement is proved.

�

4. Applications

In this last section we apply the results established in this work to the classical
Van der Pol [32] and to the generalized Liénard [26] planar singularly perturbed
systems.

4.1. Van der Pol singularly perturbed system. In his original publication of
1926, Balthasar Van der Pol [32] provided the following prototypic ordinary differ-
ential equation for modeling the relaxation oscillations:

(32)
d2x

dt2
+ µ

(
x2 − 1

) dx
dt

+ x = 0.

By posing: t → µt and µ = 1/
√
ε, such equation (??) can be written as:

(33)
εẋ = y −

(
x3

3
− x

)
,

ẏ = −x.

Thus, we have: F (x) =
x3

3
− x, f(x) = F ′(x) = x2 − 1, g(x) = x and g′(x) = 1.

This gives: a =
√
3 and α = 1. From (31) it follows that:

(34)
dE

dt
= −

(
x2 − 1

)
ẋ2.

The function x2 − 1 > 0 for x ∈] − ∞,−1]
∪
[+1,+∞[, and so dE/dt < 0

within this interval which contains the curvature of the flow curvature ϕ(x, y, ε),

3In fact Lefschetz [22] provided for the energy E a different expression from the previous one

(30). However, it will established in the Appendix that they are exactly the same.
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i.e., the first order approximation in ε of the slow invariant manifold of Van der
Pol singularly perturbed system (33). But, since g′(x) = 1, this curvature of the
flow reads:

(35) ϕ(x, y, ε) = ẍẏ + ẋ2.

For the Van der Pol singularly perturbed system (33) we have:

(36)
g′(x) = 1 > 0, g′′(x) = 0 ≥ 0, ∆(x) = x2 + 1 > 0, ∆′(x) = 2x,

P (x) = 2(3x4 + 6x2 + 1) ≥ 0, Q(x) = 3x4 + 8x2 + 1 ≥ 0,

Thus, it follows from Proposition 2, 4 & 5, that in the right half part of the
xy-plane and below the critical manifold for x ≥ a, the curvature of the flow of
system (33) increases while its energy decreases. On Fig. 1, we have represented,
the trajectory curve, integral of Van der Pol singularly perturbed system (33), i.e.
the limit cycle (in red), the critical manifold y − F (x) = 0 with F (x) = x3/3− x,
i.e. the zero order approximation in ε of the slow invariant manifold equation of
this system (in green), the curvature of the flow of this system (in blue) and the
roots of the equation f(x) = x2 − 1 = 0 (in dot dashed black). We observe on Fig.
1, that the curvature of the flow which represents the first order approximation in
ε of the slow invariant manifold of Van der Pol singularly perturbed system (33) is

below the critical manifold for x ≥ 1 and so for x ≥
√
3. Numerical investigations

have enabled to show that in the right half part of the xy-plane and for x ≥ 1, both
critical manifold and slow invariant manifold, i.e., curvature of the flow belong a
time interval of duration less than 1 unit of time. On Fig. 2 and 3, we have plotted
both energy (34) and curvature of the flow (35) variations for t ∈ [97.3, 98.15]. We
observe on these figures (2 & 3), that energy is decreasing while curvature of the
flow is increasing.

4.2. Generalized Liénard singularly perturbed system. According to Llibre
et al. [26], an example of generalized Liénard system can be written as follows:

(37)

εẋ = y −
(
x5

5
+

x3

3
− x

)
,

ẏ = −
(
x3

3
+ x

)
.

Thus we have: F (x) =
x5

5
+

x3

3
−x, f(x) = F ′(x) = x4 +x2 − 1, g(x) =

x3

3
+x,

g′(x) = x2 + 1. From F (x) = 0 and f(x) = 0 we find that: a =

√√
205− 5

6
and

α =

√√
5− 1

2
. From (30) it follows that:

(38)
dE

dt
= −

(
x4 + x2 − 1

)
ẋ2.

The function x4 + x2 − 1 > 0 for x ∈] −∞,−α]
∪
[+α,+∞[ and so, dE/dt < 0

within this interval which contains the curvature of the flow ϕ(x, y, ε), i.e., the
first order approximation in ε of the slow invariant manifold of generalized Liénard
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Figure 1. Limit cycle and critical manifold of Van der Pol system (33).
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Figure 2. Energy of Van der Pol system (33) for t ∈ [97.3, 98.15].
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Figure 3. Curvature of the flow of Van der Pol system (33) for t ∈ [97.3, 98.15].

singularly perturbed systems (37). But, since g′(x) = x2 + 1, this curvature of the
flow reads:

(39) ϕ(x, y, ε) = ẍẏ +
(
x2 + 1

)
ẋ2.

For such singularly perturbed system (37) we have:

(40)

g′(x) = x2 + 1 > 0, g′′(x) = 2x ≥ 0,

∆(x) = (x6 + 8x4 + 6x2 + 3)/3 > 0,

∆′(x) = (6x5 + 32x3 + 12x)/3,

P (x) = (9 + 81x2 + 237x4 + 271x6 + 213x8 + 57x10 + 4x12)/9 ≥ 0,

Q(x) = (9 + 108x2 + 312x4 + 296x6 + 208x8 + 52x10 + 3x12)/9 ≥ 0,

Using the same considerations as previously, it follows from Proposition 2, 4 &
5, that in the right half part of the xy-plane and below the critical manifold for
x ≥ a, the curvature of the flow of system (37) increases while its energy decreases.

5. Conclusion

In this work, by using the Flow Curvature Method, we have stated that, in the
right half part of the xy-plane and below the critical manifold, the slow invariant
manifold of generalized Liénard systems, the curvature of the flow increases while
the energy of such systems decreases. Hence we proved Minorsky’s statement for
the generalized Liénard systems dating from half a century. Some perspectives to
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be given to this work should be on the one hand analyze how curvature and energy
could be related to the number of limit cycles of such planar singularly dynamical
systems. On the other hand, it should be interesting to investigate if these results
could be extended to higher dimensional singularly dynamical systems. It might
also be interesting to study the relation between energy considerations and entropy
concepts that have been used in the context of slow manifold computation, see e.g.
[17, 18], where it has been demonstrated that minimum entropy production and
minimum curvature are connected. This seems to be a conceptual analogy of clas-
sical thermodynamics with entropy characterizing the degree of energy dissipation.
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6. Appendix

Starting from (3) we have the following equation:

εẍ+ f (x) ẋ+ g (x) = 0.

By multiplying this equation by ẋ(t) and by considering that f(x) = F ′(x), g(x) =
G′(x) we obtain:

εẋẍ+ (F ′(x)ẋ) ẋ+ (G′(x)ẋ) = 0.

Since εẍ = ẏ − F ′(x)ẋ we have:

ẋẏ +G′(x)ẋ = 0.

But εẋ = y − F (x), and we find:

yẏ + εG′(x)ẋ = F (x)ẏ.

Finally we obtain:

d

dt

(
y2

2
+ εG(x)

)
= F (x)ẏ.

Then starting from y = εẋ+ F (x) we find that:
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ε
d

dt

(
ε
ẋ2

2
+G(x)

)
+

d

dt

(
εF (x)ẋ+

F 2(x)

2

)
= F (x)ẏ.

After simplifications we obtain the following equation:

d

dt

(
ε
ẋ2

2
+G(x)

)
= −f(x)ẋ2,

which is identical to Eq. (31).
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