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Abstract. The aim of this study is to identify simultaneously the thermal conductivity tensor and the heat
capacity per unit volume of a bimaterial, whose heat conduction obeys Fourier’s law. This approach is validated
by numerical simulation. The simulated temperature fields are obtained by the direct resolution of the heat
conduction equation solved numerically with the help of finite element method formulation. To identify the
parameters, an inverse method is developed by using the finite element model updating (FEMU) based on
the Levenberg-Marquardt algorithm. This inverse finite element method approach allowed us to estimate
the thermophysical parameters sought. We validated the numerical procedure by using noiseless temperature
fields at different time and space steps and two types of material: an homogeneous and a bimaterial one. To
be close to real conditions, the influence of the noise on the temperature fields is also studied and shows the
efficiency of the inverse method. The results of this procedure show that the identified parameters are very
less sensitive to the number of infra-red images varying from 40 to 80 and the number of elements ranging
from 20 to 50 for a specimen size equals to 36.6 x 36.6 mm?.

Keywords: Bimaterial / heat transfer / finite elements; thermal conductivity tensor / heat capacity / inverse

problem

1 Introduction

Heterogeneous materials, in particular composite and
multi-layer materials, have opened up a wide field of
research and application in many industrial sectors, and
are used in many areas. The knowledge of thermophysi-
cal properties especially the conductivity tensor and heat
capacity per unit volume is very important in the under-
standing of heat transfer and to study thermomechanical
couplings of material involving such materials [1,2]. There
are several methods dedicated to the identification of ther-
mophysical properties. These methods may have been
classified according to many criteria, as presented by
Rodiet [3] and El Rassy [4]: the estimated parameters
(conductivity, diffusivity, heat capacity), the measure-
ment technique (with or without contact), the estimation
regime (steady, transient, periodic), and the geometry of
the problem (1D, 2D, 3D), etc.

Among these methods, the calorimetric method is
the commonly accepted method for the quantitative
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determination of heat capacities and enthalpies of phase
transitions. The values reported in the literature of the rel-
ative uncertainty of heat capacity measurements by this
method are significant but lower than 20%, with values
ranging from 1300 Jkg='K~! to 2000 Jkg=*K~! [5,6].
The hot wire method and the hot plate method are used
to determine the thermal conductivity of isotropic mate-
rials. These methods can characterize the conductivity of
materials in the range of 0.1 Wm ™' K~ to 10 Wm ™' K~!
with an accuracy of 5% [7,8]. Another technique widely
used in the laboratory is the flash method. This method
allows the determination of thermal diffusivity. The uncer-
tainty of measurement of thermal diffusivity, regardless
of the material is not less than 3% [9,10]. These tech-
niques of measurement known as conventional allow the
knowledge of a single parameter at a time by identifica-
tion. To obtain several parameters with the same test,
an inverse problems have to be solved by using numerical
techniques and computational algorithms. For example,
the temperatures measured by the flash method can be
used to estimate thermal conductivity tensor and heat
capacity at the same time [11,12]. To solve the inverse
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problem, many works are rather oriented towards the use
of a conjugate gradient method and stochastic algorithms
[13,14]. The hybrid optimization strategy combining a
Particle Swarm Optimization (PSO) algorithm and a gra-
dient based method is used by El Rassy et al. [15] for
resolving such complex and non-linear inverse problem.
Many researchers, Kim et al. [16] and Kolesnik et al.
[17,18] have investigated the inverse method for finding
the linearly temperature-dependent thermophysical prop-
erties of orthotropic medium. Lesnic et al. [19] proposed a
method for simultaneous estimation of the space-varying
thermal conductivity tensor.

More recently, some works on thermal parameter iden-
tification have focused on characterizing the thermophysic
parameters of multilayer materials by using the flash
method to obtain experimental data. Thus Carr et al.
[20] determined the thermal diffusivity for a heteroge-
neous sample comprising two layers of different materials.
Tao et al. [21] developed a new method which is based on
the Pulsed Thermal Imaging—Multi-layer Analysis method
(PTI-MLA) that has been commonly used for measuring
the thermal effusivity (the square root of the product
of the thermal conductivity by the heat capacity per
unit volume) of bulk materials for testing of coating
materials. Ma et al. [22] have presented the exact ana-
lytical solutions of the fundamental problem of thermal
conduction in anisotropic multilayer media in the per-
mant regime. El Rassy et al. [23] have used a stochastic
optimization algorithm to estimate the thermal diffusiv-
ities of multilayer materials. Similarly Li et al. [24] used
the analytical integral transformation method for obtain-
ing temperatures to simultaneously estimate the spatially
variable thermal conductivity and thermal diffusivity in
one-dimensional heat conduction in heterogeneous media.
They have numerically solved in one-dimensional mul-
tilayer materials subjected to pulsed heating, based on
a hyperbolic heat conduction equation and taking into
account non-Fourier heat conduction effects. An implicit
difference scheme is presented and a stability analysis,
which shows that the implicit scheme for the hyperbolic
equation is stable. Najafi et al. [25] presents a solution for
the Inverse Heat Conduction Problem (IHCP) in a mul-
tilayer medium based on solutions from individual layers
separately. The approach allows for inclusion of known
contact resistances between the layers. The temperature
histories are assumed known at two points on the inner
layer and the heat transfer rate at the far end of the
outer layer is the desired unknown parameter. Gao et al.
[26] present a new inverse analysis approach the Complex-
Variable-Differentiation Method (CVDM) for identifying
material properties for multi-region problems using the
numerical Boundary Element Method (BEM) model to
obtain the temperature fields.

The objective of this work concerns the development of
an identification method allowing a simultaneous estima-
tion of the thermal conductivity tensors and heat capacity
per unit volume of a orthotropic bimaterial using an
experimental device constituted by an IR camera and
heat electric sources. This work follows previous works
[27] considering homogeneous orthotropic material. This
latter was sensitive to the noisy image, and a low-pass

filter was necessary. Performances of this method is about
5% in term of relative error on thermal conductivity tensor
and heat capacity per unit volume for noisy Infra-Red (IR)
image a noise with a standard deviation of 0.05°C. For this
study we have used FEniCs (Finite Element Computa-
tional software) a free library and software under Python
language [28]. The first part of this article is devoted to
the direct problem of calculating the temperature fields.
In the second part the identification process is presented.
The temperature fields obtained by the direct problem are
used to validate and to assess the identification approach.

2 Direct problem

2.1 Heat conduction equation

We consider an orthotropic bimaterial and we assume
that the conduction is the only mode of heat transfer.
The physical problem consists in solving the linear heat
conduction problem in the case of a bimaterial, with
e { ki 0

0 kyy
tivity and pc™ a scalar value of the heat capacity per
unit volume of each domain €,,, where m refers to the
two materials with m = 1, 2. For times ¢ > 0, two uni-
form heat fluxes ¢; and ¢ are respectively subjected to
the surfaces = 0 and y = 0, while the other surfaces
are supposed to be isolated (see Fig. 1). We assume that
the plate is a composite of small thickness and confined
in a rectangular region 0 <z < L, 0 <y <[, so we can
consider that the problem is 2D, where the temperature
distribution in the plate is given by the function T (x, y, t).
The domain Q = USQ,,, of the material is initially at tem-
perature Ty (2, y). The mathematical formulation is given
by the Fourier equation:

} a 2D tensor of the thermal conduc-

pcm% — div <k7”.WiT(x,y,t))

with boundary and initial conditions

q, forx=0,t>0
q2, fory=0,t>0 |

- }
km.gradT(w,y,t).ﬁm =
= N

E™.gradT (z,y,t). 7, =

—
k™ gradT (z,y,t). 7 =
T(.T, y,t = 0) =

0 elsewhere ,
TO (fﬂ, y) .
(2)

with 77, and %)y are respectively the normal at the
surfaces x = 0 and y = 0. We assume that the thermal
contacts between the different materials are perfect and
that the contact resistances are null.

2.2 Solving the conduction equation

To solve the problem described by equations (1) and (2),
we define bilinear and linear forms describing the Galerkin
discretization of the variational formulation in which
the test function. Using a temporal discretization with a
f—scheme [29], the spatio-temporal temperature profile
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Fig. 1. Geometry of the material.

T is reduced to a finite set of temperatures at regularly
spaced time increments, T¢ i € {0,1,..., N;} where Ny
the number of time steps of the simulation and i refers to
the time ¢; and At the time steps. The time discretization
process requires a specific study to assess numerically its
accuracy and stability [30]. In this work we set § = 2/3,
corresponding to a Garlerkin scheme. The problem is con-
verted to weak formulation by multiplying equation (1)
with a test function 1, following by a parts integration to
obtain the operators:

See equations (3) and (4) above:

with I" refers to all the boundary of domain €.
We presume T is be known, and find T%*! so that:

a(T™,4) = L(v) ()

for all ¥ in some family of functions. From the mathe-
matics literature, a(T%! 1) is known as a bilinear form
and L(1) as a linear form [30]. From the equation (5),
the discretization procedures of the element method are
used to transform equation into a linear one. According

to the finite element method and within the framework
of this study [31], we obtain equation (6) on the domain

Q=UQ,.

([C]+ ALK {T"} = [[C] — (1 — ) At [K]] {T*}
~At{f} =0 (6)

with [C], [K], {f} respectively the global matrices of
capacity, conductance and heat flux vector.

For the resolution of the heat conduction problem (6),
the FEniCS software [32] developed under python has
been chosen. This choice was made because of the wealth
libraries at our disposal for the resolution and for the mesh
definition.

3 Inverse problem

3.1 The principle

Equation (6) of the finite element method is used to
identify the thermophysical parameters of the bimaterial.
The methodology of this approach consists in solving an
inverse problem for which some input data of the direct
problem are deduced from the comparison between exper-
imental values and predicted data obtained by simulations
of the same problem. The definition of the cost func-
tion and the choice of the Levenberg-Marquardt method
allows to solve the identification problem formulated as
an optimization problem.
The inverse problem is an optimization problem to find
the vector parameters
P= [pcl, Kl

T

1 2 2 2
kyy’ pe kwm’ kyy]

that minimize the difference between the experimen-
tal temperatures Y;; and the predicted temperatures
(T;;(P)). The cost function is given by :

Nmes Ni

FP) =3 > Sy - Ty (P

=1 i=1

(7)

with index i refers to the time ¢; while the index j refers
to the measurement points (nodes number), where i =
1,....,N;y and j = 1,..., Npes, with Ny is the number of
time steps of the simulation and N,,.s the number of
measurement points (nodes) [33]. Y;; is the experimental
temperatures at the time ¢; for the node j.

3.2 Levenberg-Marquardt method

There are a variety of methods to carry out a function
minimization. In this study we explored Levenberg-
Marquardt iterative method. To minimize the least
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squares norm giving by equation (7), we have to reduce to
zero the derivatives of f(P) with respect to each unknown
parameters Py, that is:

0f®) _ o p_1

N
8}% 9 9 9 (8)
where N is the number of parameters to be estimated.
To solve the resulting system of algebraic equation (8),
the Levenberg-Marquardt iterative method is chosen. This
algorithm combines the steepest descent and Newton
methods. Starting the iterations with a large value of
the Levenberg-Marquardt parameter p, more emphasis
is given initially to the steepest descent method, since
a good initial guess is not required with this method;
but the convergence is slow. As the value of the param-
eter n is gradually reduced at each iteration step, the
weight is increasingly shifted to the Newton method which
converges faster [34,35].

The sensitivity coefficients, can be calculated from the
following finite difference formula:

g 9T (P) _ T;;(Pr +€Py) — T35 (Pr) (©)
ok 6Pk EPk ’

The parameters are obtained by the following equation:

Pl Pt = —[(J* T+ D] TY = T(P)]  (10)
I is the identity matrix, the exponent n is the iteration
index, J the sensitivity matrix and J* is the transpose
of the matrix J. The stopping criterion for the algorithm
can operate if the change in P is small:

PPt — P <e, k=1,...,N (11)
where ¢ is a value for the stopping criterion, k refers to
the number of parameters [35].

4 Results and analysis

For the numerical simulation, we have chosen a square-
shaped specimen with a length L = 36.6 mm and a width
I = 36.6 mm. The initial temperature is To(z,y) = 20°C
and the heat flux to which the plate is subjected is cho-
sen constant ¢; = g2 = 396.99 W/m?2. We used two types
of materials: a polyamide (PA) material and a carbon
fiber reinforced epoxy matrix composite (CFRP) whose
properties are summarized in Table 1.

In this study, three parameters has been assessed: M
the number of elements along X or Y directions (the hor-

izontal and vertical resolution of the IR images), dt = ]%
the time step (with t; the duration of the test and IV, the
number of recorded IR images) and the temperature noise
level in the IR images.

To be close to the experimental conditions, a random
Gaussian noise is added to the simulated temperature field
as follows

Yij =Tij +wj (12)

Table 1. Thermophysics parameters of the used materi-
als.

CFRP PA
pct =1.287286 x 106 JTm™3 K~ pc? =1.9038 x 108 Jm—3K~1!
kl,=051Wm™1K™! k2, =031Wm™ 1K1

kyy =3.33Wm~1K~! k2, =0314Wm~ 1K1

where T;; is the temperature obtained by the direct
approach at time ¢; and at node j, where w; is a random
number generated from a normal distribution with mean
zero and constant standard deviation o [36]. In order to
obtain statistical representative identified parameters, a
large number of identifications are carried out (n; = 20)
with different random series of noise which allows to eval-
uate for every identified parameter Py, the average value
defined:

_ 1 &L .
Pi=- > B (13)
=1

where P} is the estimation of parameter Py, for the random
series ny. The relative errors is computed by comparing
the estimated values g With imposed values .

relative error (%) = Sest 7 %imp | 100. (14)

Qimp

4.1 Identification of the parameters of a structure
made of one material

The validation of this approach was first done by con-
sidering that the part one (m = 1) and the part two
(m = 2) are similar. The chosen material is the polyamide.
This procedure allows us to compare this new approach
with the previous ones [27] developed for homogeneous
material.

4.1.1 Validation of the numerical procedure

To validated the numerical procedure, we simulated the
temperature fields without noise as input data to the
inverse algorithm to estimate the thermal conductivity
tensor and the heat capacity per unit volume. We have
a good agreement between the estimated parameters and
the simulation parameters. Regarding Figure 2, the accu-
racy in the results is highly satisfactory since the overall
of the identified parameters show an error under 0.1%,
except for the k7, (Fig. 2d), for with the relative error
has an order of magnitude of 2.5%. The relative errors of
the heat capacity per unit volume are around 0.05% to
0.15% for a time step dt = 1s. For time steps greater than
dt = 2s, the relative errors are very small and are around
0.05% (Fig. 3). These results show how well the algorithm
works.
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Fig. 3. Relative errors on pc without noise on temperature fields for PA material for several times steps (dt).

4.1.2 Influence of noisy infra-red images on the identified
parameters

To show the behaviour of the procedure with noisy
images (more realistic), we have added a noise (12) with
zero mean and constant standard deviation o = 0.4°C.
Figures 4 and 5 show that the measurement noise has
a direct effect on the results. The relative errors have
the same tendencies as those of the noiseless temperature
fields. For the number of elements higher than 20 and
the time step higher than dt = 2s, we have almost the
same relative errors values. The relative errors obtained
on the estimated parameters of the thermal conductivity
tensors are under 1% for kg, 4% for the case of the ky,
coefficient (Fig. 4) and 3% for the heat capacity per unit

volume pc! (Fig. 5a), and 0.8% for pc? (Fig. 5b). Thus
a number of elements along each axis (M = 30) and a
time step dt = 4 s seem to be a good compromise between
the number of elements and the computation time for the
identification.

4.1.3 Influence of the noise amplitude

According to the analysis done of the previous results
of Figures 4 and 5, the specimen is discretized with
M = 30 elements in X and Y directions and a time step
dt = 4s is chosen. Four levels of standard deviation noise
o = {0.1°C, 04°C, 1.2°C, 2°C } are used. However, the
higher the standard deviation of the noise, the relative
error increases (see (Fig. 6). A relative error of 0.8% is
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reached for a noise of 0.1°C and 2.2% for a noise of 0.4 °C.
Previous study [27] using a similar approach for an homo-
geneous material, gives an uncertainty of about 5% for the
two components of the conductivity tensor and 4% for the
heat capacity per unit volume for comparable conditions
(M = 31 and dt = 45s). Nevertheless a spatial median fil-
ter (3 x 3pixels) coupled with an average temporal filter
(on 3 images) have to be used to obtain simular results,
it is not the case in this procedure. The Figure 7 shows
the gap between a reference temperature field (7). ) with-
out noise and the temperature field (7;4) obtained from
the identified parameters. This difference represents the
residual in temperature space of the identified parame-
ters from noisy images of standard deviation ¢ = 0.4°C
at the time t = 80s (Fig. 7c). This difference is of the

order of 2 x 1072 °C and increases at the vertical border
about 0.08°C. The difference is not the same in the the
two parts because the identified parameters, theoretically
similar, are not the same in the two parts (several % of
differences).

4.2 Identification of the parameters of bimaterials

The procedure validated in the previous section is now
used for a bimaterial. The specimen used consists of two
materials with different properties. The first one is a car-
bon fiber reinforced epoxy matrix composite (CFRP) and
the second polyamide (PA) (see Tab. 1). The juxtapo-
sition of theses two materials CFRP-PA constitutes the
bimaterial.



Y. Koumekpo et al.: Mechanics & Industry 24, 4 (2023)

9
- pct
—~ 75 ——pc2
g\c, 6 Kixx
) == Klyy
E 45 =»—_K2XX
[ k2yy
= 3
o
[0)
x 15
0
0 0,5

1 15

Standard deviation of noise (°C)

Fig. 6. Relative errors as a function of noise standard deviations of PA material for M = 30 and dt = 4s.

Tref(°C)

20

10

15 20
X (mm)

)

(a) Temperature field obtained with
the reference parameters for o = 0°C

5

w15 20

X (mm)

Tid (°C)

20

10

15 20
X (mm)

)

(b) Temperatures obtained with the
identified parameters from noisy
temperature fields

Tref—TidDg’IC)

—0.02
-0.04
—0.06

-0.08

PR VI

(c) Difference between the identified
temperatures and the reference tem-

peratures

Fig. 7. Comparison between reference temperature field (a), the temperature field calculated with the identified parameters from

noisy temperature field (b) and gap between the two fields (c¢), obt
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4.2.1 Influence of space steps and time steps on the
identified parameters

The curves in Figures 8 and 9 are obtained by identify-
ing the parameters for a noise level of standard deviation
o = 0.4°C on the temperature fields. We observe the same
tendencies as the previous case of one material with a
decrease of relative errors versus number of elements and
time step. The relative errors are 2.5% for the coefficients

ained for PA materials at time ¢ = 80s for M = 30 and dt = 4s

of the thermal conductivity tensor k!, (Fig. 8a) and 22%
for k2, (Fig. 8d) for a small number of elements (M = 20).
The relative errors of the heat capacity per unit volume
are of the order of 1.2% (Fig. 9b) for a small time step
dt = 1s. Overall results for these estimations are satisfac-
tory. As noted before, the estimation of the heat capacity
per unit is precise when compared to that of the thermal
conductivity tensor.
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several number of elements (M) along X and Y directions.
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Fig. 9. Relative errors on the pc with noise (o = 0.4 °C) on the temperature fields for CRFP-PA material for several times steps.

4.2.2 Influence of the noise amplitude on the identified
parameters

In the case of these simulations, the number of elements
M = 30 and the time step dt = 4 s, have chosen. Four lev-
els of standard deviation o = {0.1°C,0.4°C,1.2°C,2°C}
are used. However, the higher the standard deviation of
the measurement noise, the relative error increases (see
(Fig. 10). A relative error of 0.5% is reached for a noise
of 0.1°C and 2% for a noise of 0.4°C. Figure 11 shows
the temperature fields with and without noise and the
difference of the residual in temperature space of the iden-
tified parameters from noisy images of standard deviation
0 =0.4°C at the time ¢ = 80s (Fig. 11c). This difference

is of the order of 1 x 1072 °C and increases at the vertical
border about 0.006 °C.

5 Conclusion

The developed procedure allowed us to have the good
estimates. For this purpose, the application of the finite
element method allowed to reduce the partial differential
equations of heat conduction into a system of ordinary
differential equations. The numerical integration of this
system of equations led to the simulation of tempera-
ture fields T'(z,y,t) in two dimensions. This algorithm
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from noisy (o0 = 0.4 °C) temperature field (b) gap between the two fields (c), of CRFP-PA materials at time ¢t = 80s and M = 30

elements.

offers a simple, fast and systematic identification of ther-
mal parameters of bimaterials from measured temperature
fields. For a number of elements M = 30 (Az = Ay =
1.18 mm) and the time step dt = 4s which corresponds a
number N; = 60 of temperature measurements, the rel-
ative error is around 2% for the thermal conductivity
tensor. This relative error is 0.3% for the heat capacity
per unit volume for standard noisy image (o = 0.4°C).
These relative error decrease to 0.03% for ¢ = 0.1°C. One
of the main results is the procedure that is almost insen-
sitive to temperature noise. This method is less sensitive

to noise than the previous works [27]. The continuation of
this work, in simulation, consists in studying other types
of more or less conductive materials in order to see the
influence on the accuracy of the parameters. Experimen-
tal test will be performed to assess the procedure with
real temperature fields.
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