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ROBUST NON-PARAMETRIC REGRESSION VIA MEDIAN-OF-MEANS

ANNA BEN-HAMOU AND ARNAUD GUYADER

Abstract. In this paper, we apply the median-of-means principle to derive robust versions
of local averaging rules in non-parametric regression. For various estimates, including nearest
neighbors and kernel procedures, we obtain non-asymptotic exponential inequalities, with
only a second moment assumption on the noise. We then show that these bounds cannot be
significantly improved by establishing a corresponding lower bound on the tail probabilities.

Index Terms: Non-parametric regression, Median of Means, Sub-Gaussian estimators.
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1. Introduction

1.1. Setting and main results. Let (X,Y ) be a pair of random variables, where X has
distribution µ on Rd, for d ≥ 1, and Y is real-valued and satisfies E[Y 2] <∞. The regression
function is defined for µ-almost every x ∈ Rd, as

r(x) := E[Y
∣∣X = x] .

1
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The pair (X,Y ) can be written as

Y = r(X) + ε ,

where the random variable ε, called the noise, satisfies E[ε
∣∣X] = 0. Note that

E
[
(Y − r(X))2

]
= inf

g
E
[
(Y − g(X))2

]
,

where the infimum is taken over all measurable functions g : Rd → R such that E[g(X)2] <∞.
In other words, the regression function is an optimal approximation of Y by a square-integrable
function of X, with respect to the L2 risk.

When the distribution of the pair (X,Y ) is unknown, one cannot predict Y using r(X).
However, assuming that one has access to an i.i.d. sample

Dn := ((X1, Y1), . . . , (Xn, Yn))

with the same distribution as (X,Y ), then one can use the data Dn in order to construct
an estimate of the function r. In this respect, a local averaging estimate of the regression
function is an estimate that can be written as

∀x ∈ Rd , r̂n(x) := r̂n(x,Dn) =
n∑
i=1

Wi(x)Yi ,

where for all i ∈ J1, nK, Wi(x) is a Borel measurable function of x and X1, . . . , Xn (but not of
Y1, . . . , Yn), with values in [0, 1], and such that

∑n
i=1Wi(x) = 1. This class includes nearest

neighbors, kernel, and partitioning estimates.
The goal of this paper is to design robust versions of r̂n(x), which exhibit good concentration

properties even if the noise ε does not have exponential moments. More in detail, we only
assume that ε has a finite second moment. To do so, we use the median-of-means (MoM)

technique: for m ∈ J1, nK, we consider m disjoint subsets D(1), . . . ,D(m) of Dn, each of length
N = bn/mc (if n is not a multiple of m, we simply discard some observations). For each
j ∈ J1,mK and all x ∈ Rd, let

r̂(j)(x) := r̂N (x,D(j)) ,

for some estimate r̂N , called the base estimate. Note that, for a given x ∈ Rd, the variables
r̂(1)(x), . . . , r̂(m)(x) are i.i.d., with the same distribution as r̂N (x) := r̂N (x,DN ). The median-
of-means regression estimate is then defined as

r̂mom
n (x) := median

(
r̂(1)(x), . . . , r̂(m)(x)

)
,

where median(r1, . . . , rm) = r(dm/2e) corresponds to the smallest value r ∈ {r1, . . . , rm} such
that

|{j ∈ J1,mK , rj ≤ r}| ≥
m

2
and |{j ∈ J1,mK , rj ≥ r}| ≥

m

2
.

Throughout the article, Rd is equipped with the Euclidean distance, and for x ∈ Rd and
ε > 0, B(x, ε) denotes the Euclidean closed ball of center x and radius ε. In all what follows,
we will be interested in the following model (see Section 1.2 for comments on this set of
hypotheses).

Assumption 1. The class F = Fρ,σ, with ρ, σ > 0, is the class of distributions (X,Y )
satisfying:

(i) The support S of µ is bounded with diameter D > 0 and for all x ∈ S and ε ∈ (0, D],
we have

µ (B(x, ε)) ≥ ρεd . (1)

(ii) For all x ∈ S, we have Var(ε
∣∣X = x) ≤ σ2.

(iii) The function r is Lipschitz with constant 1.
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For a variety of base estimates, including nearest neighbors and kernel estimates, we show
that, when (X,Y ) ∈ F , and when σ and ρ are known, the median-of-means estimate satisfies
the following concentration inequality: for all δ ∈ [e−ncF+1, 1[, and for all x ∈ S, when the
number of blocks m is chosen as m = dln(1/δ)e, we have

P

(
|r̂mom
n (x)− r(x)| ≥ a

(
σ2 dln(1/δ)e

ρn

) 1
d+2

)
≤ δ , (2)

where a > 0 is an explicit numerical constant, possibly depending on d, and where cF > 0 is
a constant that depends on ρ, σ and d only. Roughly speaking, this means that, in a large

domain, the tail of |r̂mom
n (x)− r(x)| is upper-bounded by that of Z

2
d+2 , where Z ∼ N (0, σ

2

ρn).

In fact, if for each x ∈ S, one has access to a local ρx such that (1) is satisfied, then (2) is
fulfilled with ρx instead of ρ. Nevertheless, since (2) is valid for all x ∈ S, it implies that if
X ∼ µ independent of Dn, then

P

(
|r̂mom
n (X)− r(X)| ≥ a

(
σ2 dln(1/δ)e

ρn

) 1
d+2

)
≤ δ .

Furthermore, we show that this bound is optimal in the following sense: for all d ≥ 1, there
exists ρ > 0 such that for all n ≥ 1 and all σ2 > 0, for all δ ∈]0, 2−(d+3)], for any regression
estimate r̂n, there exists a distribution in F = Fρ,σ such that, when X ∼ µ is independent of
Dn, we have

P

|r̂n(X)− r(X)| ≥ b

(
σ2 ln

(
1

2d+3δ

)
ρn

) 1
d+2

 ≥ δ , (3)

for some explicit numerical constant b > 0 depending only on the dimension d.
In addition to exhibiting concentration properties, the estimate r̂mom

n also stands out
through its strong robustness to outliers: as shown in Section 5, as soon as the number of
outliers is less than m/4, the upper bound (2) still holds, modulo a slight modification of the
constants a and cF .

1.2. Related work. The median-of-means principle was first introduced in works of Alon
et al. [1], Jerrum et al. [22], Nemirovskij and Yudin [38], in order to obtain sub-Gaussian
estimators for the mean of a heavy-tailed random variable, or when outliers may contaminate
the data (see also Catoni [9] for a different but related approach). Some variants that do not
require any knowledge on the variance have also been proposed recently, see for example Lee
and Valiant [28], Minsker and Ndaoud [37], or Gobet et al. [13].

One caveat of the MoM-estimator of the mean is its dependence on the confidence thresh-
old δ. However, under stronger assumptions on the distribution, Minsker [36] showed that it

is in fact adaptive to δ up to δ ≈ e−
√
n. In the same vein, Devroye et al. [12] proposed a way

to design δ-independent sub-Gaussian estimators up to δ ≈ e−n.
The MoM principle was also generalized to multivariate settings by Hsu and Sabato

[19], Lerasle and Oliveira [29], Lugosi and Mendelson [34], Minsker [35], and applied to a large
variety of statistical problems, including linear regression (Audibert and Catoni [2]), empirical
risk minimization (Brownlees et al. [7], Lecué and Lerasle [25], Lugosi and Mendelson [33]),
classification (Lecué et al. [27]), bandits (Bubeck et al. [8]), least-squares density estimation
(Lerasle and Oliveira [29]), and kernel density estimation (Humbert et al. [20]). We refer the
reader to Lecué and Lerasle [26] or Lugosi and Mendelson [32] for more references on all of
these subjects.

To our knowledge, there are only very few concentration results in non-parametric regression,
at the exception of Jiang [23] for the k-nn estimate. However, in the latter, the noise is
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assumed sub-Gaussian. Hence, the first contribution of the present paper is to derive
estimators satisfying (2), with only a second moment assumption on the noise. Our second
contribution is to show that this bound on the tail probability cannot be significantly improved,
by constructing scenarios where it is tight in the sense of (3).

Let us mention that, except for inequality (1), all points of Assumption 1 (i.e. bounded
support, bounded variance and Lipschitz property) are standard to obtain L2 rates of
convergence in nonparametric regression estimation, see for example Chapters 4, 5, and 6
in Györfi et al. [17] for, respectively, partitioning, kernel, and nearest neighbors estimates.
Concerning (1), the proof of Theorem 1 in Penrose and Yukich [39] (see in particular (13.1))
ensures that it is satisfied if S is a finite union of convex bounded sets and X has a density f
that is bounded away from zero. Such an assumption is also made by Jiang [23]. Comparable
assumptions are the so-called cone-condition in Korostelev and Tsybakov [24, Chapter 5]
and the notion of standard support in Cuevas and Fraiman [11]. As will become clear in the
remainder of the article, equation (1) allows us to obtain inequality (2) for all x ∈ S, and not
only in average for X with law µ (see also Remark 1).

Finally, note that the variance factor in inequality (2), given by σ
4
d+2 (ρn)−

2
d+2 , is the

minimax rate of convergence for the L2 risk E[(r̂n(X)− r(X))2] in this model. Usually, this
minimax rate is written with respect to D−d instead of ρ, where D is the diameter of S.
Those two quantities are clearly related by the inequality ρ ≤ D−d, which comes from (1)
applied to ε = D. Still, one may check that lower bounds for the L2 risk are actually obtained
in situations where equation (1) is satisfied, namely with X ∼ µ = Unif([0, 1]d), see Stone
[43] and Györfi et al. [17, Chapter 3]. Thus, roughly speaking, we recover this minimax rate
jointly with an exponential upper-bound for the tail of the error |r̂mom

n (x)− r(x)|.

1.3. Organization of the paper. Section 2 contains two key lemmas and provides a
guideline for proving bounds like (2). In the next two sections, inequality (2) is established for
various choices of local averaging procedures, namely nearest neighbor methods in Section 3,
and kernel and partitioning methods in Section 4. Let us point out that, for partitioning
estimates (Section 4.2), we are able to obtain a uniform control on supx∈S |r̂mom

n (x)−r(x)|. In
Section 5, we show that the estimator r̂mom

n achieves robustness in a very generic contamination
scheme. The lower bound (3) is established in Section 6. In Section 7, we mention how r̂mom

n

may be turned into a δ-independent estimator, using a strategy introduced by Devroye et al.
[12]. Finally, Section 8 gathers the proofs of several technical results.

2. Preliminary results

This section exposes two generic results that will be of constant use throughout the paper.
The first lemma relates deviation probabilities for the median-of-means estimate r̂mom

n with
deviation probabilities of the base estimate r̂N . We point out that this result is valid for any
base estimate r̂N , not only for local averaging rules.

Lemma 1. Let r̂mom
n be the median-of-means estimate of r constructed on m blocks with base

estimate r̂N . For all x ∈ Rd and all t ≥ 0, we have

P (|r̂mom
n (x)− r(x)| ≥ t) ≤ 2mpt(x)m/2 ,

where
pt(x) := P (|r̂N (x)− r(x)| ≥ t) .

Let us now turn to the specific context of this article, meaning that the base estimate
takes the form

∀x ∈ Rd , r̂N (x) = r̂N (x,DN ) =
N∑
i=1

Wi(x)Yi , (4)
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where for all i ∈ J1, NK, Wi(x) is a Borel measurable function of x and X1, . . . , XN (but not

of Y1, . . . , YN ), with values in [0, 1], and such that
∑N

i=1Wi(x) = 1. Our second lemma gives
a bias–variance decomposition for deviation probabilities of local averaging estimates.

Lemma 2. Assume that (ii) and (iii) in Assumption 1 are satisfied. Then, for all x ∈ Rd,
we have

|r̂N (x)− r(x)| ≤

∣∣∣∣∣
N∑
i=1

Wi(x)εi

∣∣∣∣∣+
N∑
i=1

Wi(x)‖Xi − x‖ , (5)

where εi = Yi − r(Xi). In addition, for all s, t > 0, we have

pt+s(x) ≤
σ2E

[∑N
i=1Wi(x)2

]
t2

+ P

(
N∑
i=1

Wi(x)‖Xi − x‖ ≥ s

)
, (6)

with pt+s(x) as defined in Lemma 1.

In the next two sections, we investigate several instances of local averaging procedures for
the base estimate r̂N . In each case, we first use Lemma 2 in order to determine t and s such
that pt+s(x) ≤ 1

4e2
. Lemma 1 then entails that

P (|r̂mom
n (x)− r(x)| ≥ t+ s) ≤ e−m .

The number of blocks m can then be chosen as dln(1/δ)e, for some target confidence threshold
δ ∈ [e−n, 1[, so that the probability above is less than δ. Next, provided σ and ρ are known,
a tuning parameter of the base estimate (e.g., the number k of neighbors for k-nn estimates,
the bandwidth h for kernel estimates) can then be optimized to get a bound in the flavor
of (2), imposing additional constraints on δ.

3. Nearest neighbors estimation

For x ∈ Rd, let (
X(1)(x), Y(1)(x)

)
, . . . ,

(
X(N)(x), Y(N)(x)

)
a reordering of the data DN according to increasing values of ‖Xi − x‖, that is

‖X(1)(x)− x‖ ≤ · · · ≤ ‖X(N)(x)− x‖ ,

where, if necessary, distance ties are broken by simulating auxiliary random variables
(U1, . . . , UN ) i.i.d. with uniform law on [0, 1] and sorting them. The weighted nearest
neighbors estimate is defined as

r̂N (x) :=
N∑
i=1

viY(i)(x) , (7)

where (v1, . . . , vN ) is a deterministic vector in [0, 1]N satisfying
∑N

i=1 vi = 1. Note that this
estimate is of the form (4), with Wi(x) = vσ(i), where σ is a random permutation (depending
on x) such that Xi = X(σ(i))(x). We refer the interested reader to Biau and Devroye [4,
Chapter 8] or Samworth [42] and references therein for more information on this topic.

In this context, the variance term of Lemma 2 reduces to

E

[
N∑
i=1

Wi(x)2

]
=

N∑
i=1

v2σ(i) =
N∑
i=1

v2i · (8)
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As for the bias term, letting D(i)(x) := ‖X(i)(x)− x‖, we rewrite it as

N∑
i=1

Wi(x)‖Xi − x‖ =

N∑
i=1

viD(i)(x) . (9)

The following lemma, whose proof is housed in Section 8, allows us to control the expected
nearest neighbor distances (see Remark 1 below for a comment on this result).

Lemma 3. Under Assumption 1(i), for all x ∈ S and i ∈ J1, NK, one has

E
[
D(i)(x)

]
≤ 2

(
i

ρ(N + 1)

)1/d

.

According to (9), we then deduce from Markov’s inequality that, for all x ∈ S,

P

(
N∑
i=1

Wi(x)‖Xi − x‖ ≥ s

)
≤ 2

s

N∑
i=1

vi

(
i

ρ(N + 1)

)1/d

. (10)

Combining (8) and (10), and applying Lemma 2 with

t = 2eσ

√√√√2

N∑
i=1

v2i and s = 16e2
N∑
i=1

vi

(
i

ρ(N + 1)

)1/d

, (11)

we see that, for all x ∈ S,

pt+s(x) ≤ 1

4e2
,

which entails, by Lemma 1, that

P (|r̂mom
n (x)− r(x)| ≥ t+ s) ≤ e−m . (12)

We first propose to illustrate this result on two specific examples of nearest neighbors rules:
the uniform k-nearest neighbors estimate (Section 3.1) and the bagged 1-nearest neighbor
estimate (Section 3.2). As we will see, both satisfy the concentration inequality (2). Next,
Section 3.3 details the mutual nearest neighbors estimate, which is not a weighted nearest
neighbor rule, but still a local averaging procedure. The concentration inequality we obtain in
this case is not exactly of the form (2) for the constant a depends on some extra parameter.

Remark 1. The fact that the upper bound of Lemma 3 is valid for all d ≥ 1 and, more
importantly, for all x ∈ S, is due to inequality (1) in Assumption 1. If one only supposes that
the support of X is bounded, then [5, Corollary 2.1] for d = 1 or d ≥ 3 and a consequence of
[30, Theorem 3.2] when d = 2, only ensure that there exists a constant cd depending on the
dimension d and the size of the support such that, for all d ≥ 2,

E
[
D(i)(X)2

]
≤ cd

⌊
N

i

⌋−2/d
,

whereas for d = 1 one has E
[
D(i)(X)2

]
≤ c1 i

N .

3.1. The k Nearest Neighbors estimate. Let us focus on the case of uniform k-nearest
neighbors (k-nn). Namely, we now set

r̂N (x) :=
1

k

k∑
i=1

Y(i)(x) ,
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for some k ∈ J1, NK. Then, for all x ∈ S, (11) becomes

t = 2eσ

√
2

k
and s =

16e2

k

k∑
i=1

(
i

ρ(N + 1)

)1/d

≤ 16e2
(
km

ρn

)1/d

,

where we used that N =
⌊
n
m

⌋
≥ n

m − 1. We thus deduce from (12) that

P

(
|r̂mom
n (x)− r(x)| ≥ 2eσ

√
2

k
+ 16e2

(
km

ρn

)1/d
)
≤ e−m . (13)

When σ and ρ are known, one may then choose k as the largest integer such that σ
√

2
k ≥

8e
(
km
ρn

)1/d
, i.e.

k? =

⌊(
σ2

32e2

) d
d+2 (ρn

m

) 2
d+2

⌋
,

which belongs to J1, NK = J1,
⌊
n
m

⌋
K provided

1 ≤
(
σ2

32e2

) d
d+2 (ρn

m

) 2
d+2 ≤ n

m
,

i.e.
m

n
≤ ρ

(
σ

4e
√

2

)d
∧ 32e2

σ2ρ2/d
.

In this case, using that buc ≥ u/2 for u ≥ 1, we get

4eσ

√
2

k?
≤ 8eσ

√(
32e2

σ2

) d
d+2
(
m

ρn

) 2
d+2

≤ 32e2
√

2

(
σ2m

ρn

) 1
d+2

.

In view of (13), we have, for the optimal choice k?,

P

(
|r̂mom
n (x)− r(x)| ≥ 32e2

√
2

(
σ2m

ρn

) 1
d+2

)
≤ e−m .

Finally, we arrive at the following result.

Proposition 4. Under Assumption 1, let

c = ρ

(
σ

4e
√

2

)d
∧ 32e2

σ2ρ2/d
∧ 1 , δ ∈ [e−cn+1, 1[ , and m = dln(1/δ)e ,

ensuring that 1 ≤ m ≤ cn. Then the estimator r̂mom
n constructed on m blocks with k?-nn base

estimators, where

k? =

⌊(
σ2

32e2

) d
d+2 (ρn

m

) 2
d+2

⌋
,

satisfies

P

(
|r̂mom
n (x)− r(x)| ≥ 32e2

√
2

(
σ2 dln(1/δ)e

ρn

) 1
d+2

)
≤ δ .

Hence, when k?-nn is chosen as base estimate, inequality (2) is satisfied with a = 32e2
√

2
and cF = c.
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Remark 2. One may notice that the optimal value for k has the same dependency with

respect to σ2 and n, that is k? = O(σ
2d
d+2n

2
d+2 ), as the one that balances bias and variance

when minimizing the L2 risk, see [17] Theorem 6.2. In a different setting, the conclusion is
the same in the work of Jiang, see Remark 1 in [23].

3.2. Bagging and Nearest Neighbors. We now turn to the bagged 1-nn estimate with
replacement. Bagging (for bootstrap aggregating) is a simple way to combine estimates in
order to improve their performance. This method, suggested by Breiman in 1996 [6], proceeds
by resampling from the original data set, constructing a predictor from each subsample,
and decide by combining. By bagging an N -sample, the crude nearest neighbor regression
estimate is turned into a consistent weighted nearest neighbor regression estimate, which
is amenable to statistical analysis. In particular, one may find experimental performances,
consistency results, rates of convergence, and minimax properties in [3, 5, 18], to cite just a
few references.

Without going into details, it turns out that bagged 1-nn estimates, with or without
replacement, can easily be reformulated as weighted nearest neighbor rules (see for example
[3]). For sampling without replacement, the weights in (7) are, for some k ∈ J1, NK,

vi :=

(
N−i
k−i
)(

N
k

) 1i∈J1,N−k+1K ,

while for sampling with replacement, we get

vi :=

(
1− i− 1

N

)k
−
(

1− i

N

)k
.

From now on, let us focus on sampling with replacement. Concerning the variance term in
(11), Proposition 2.2 in [5] and the fact that k ≤ N yield

N∑
i=1

v2i ≤
2k

N

(
1 +

1

N

)2k

≤ 2e2k

N
≤ 4e2km

n
,

where for the last inequality, we used that N =
⌊
n
m

⌋
≥ n

2m . For the bias term in (11), we
have to upper bound the quantity

N∑
i=1

vi

(
i

N + 1

)1/d

.

This is the purpose of the upcoming result, whose proof is detailed in Section 8.4.

Lemma 5. For all d ≥ 1, one has

N∑
i=1

vi

(
i

N + 1

)1/d

≤ 2ek−1/d .

In view of (11), we are led to

t ≤ 4e2σ

√
2km

n
and s ≤ 32e3

(ρk)1/d
,

and, by Lemma 1, for all x ∈ S,

P

(
|r̂mom
n (x)− r(x)| ≥ 4e2σ

√
2km

n
+

32e3

(ρk)1/d

)
≤ e−m .
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As for the k-nn case, when σ and ρ are known, the integer k may be chosen as the largest

integer such that 8e
(ρk)1/d

≥ σ
√

2km
n , that is

k? =

⌊(
32e2n

ρ2/dσ2m

) d
d+2

⌋
,

which belongs to J1, NK = J1,
⌊
n
m

⌋
K if

m

n
≤ ρ

(
σ

4e
√

2

)d
∧ 32e2

σ2ρ2/d
.

In this case, using that buc ≥ u/2 for u ≥ 1, we get after some simplification

P

(
|r̂mom
n (x)− r(x)| ≥ 128e3

(
σ2m

ρn

) 1
d+2

)
≤ e−m .

Putting all pieces together gives the following statement.

Proposition 6. Under Assumption 1, let

c = ρ

(
σ

4e
√

2

)d
∧ 32e2

σ2ρ2/d
∧ 1 , δ ∈ [e−cn+1, 1[ , and m = dln(1/δ)e ,

ensuring that 1 ≤ m ≤ cn. Then the estimator r̂mom
n constructed on m blocks with k?-bagged

1-nn base estimators, where

k? =

⌊(
32e2n

ρ2/dσ2m

) d
d+2

⌋
,

satisfies

P

(
|r̂mom
n (x)− r(x)| ≥ 128e3

(
σ2 dln(1/δ)e

ρn

) 1
d+2

)
≤ δ .

In summary, the result for the bagged 1-nn estimate is the same as for the k-nn estimate
as established in Proposition 4, that is inequality (2) with this time a = 128e3 and exactly
the same expression for cF = c.

3.3. Mutual Nearest Neighbors. The term of mutual nearest neighbors (mnn) seems to
date back to Gowda and Krishna in the context of clustering [14, 15]. Since then, it has
raised interest in image analysis for object retrieval (see, e.g., Jégou et al. [21] and Qin et
al. [41]) as well as for classification purposes (see Liu et al. [31]). Some theoretical results
(consistency, rates of convergence) can be found in Guyader and Hengartner [16].

Denote Nk(x) the set of the k nearest neighbors of x in DN , N ′k(Xi) the set of the k nearest
neighbors of Xi in (DN \ {Xi}) ∪ {x}, and

Mk(x) := {Xi ∈ Nk(x) : x ∈ N ′k(Xi)}

the set of the mutual nearest neighbors of x. Its cardinal Mk(x) := |Mk(x)| is a random
variable with values between 0 and k. The mutual nearest neighbors regression estimate is
defined as

r̂N (x) :=
1

Mk(x)

∑
i:Xi∈Mk(x)

Yi ,
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with the understanding that 0/0 = 0. Setting Wi(x) := 1
Mk(x)

1Xi∈Mk(x) if Mk(x) > 0, and 0

otherwise, we can also write

r̂N (x) :=
N∑
i=1

Wi(x)Yi .

However, notice that it does not admit formulation (7) since the weights are not determin-
istically linked to the order statistics X(1)(x), . . . , X(N)(x). Hence, stricto sensu, the mnn
estimator does not enter into the framework of weighted nearest neighbors rules. Nonetheless,
it is locally averaging and equation (6) combined with Markov’s inequality gives

pt+s(x) ≤
σ2E

[∑N
i=1Wi(x)2

]
t2

+
E
[∑N

i=1Wi(x)‖Xi − x‖
]

s
. (14)

In the latter, we can reformulate the first term as

E

[
N∑
i=1

Wi(x)2

]
= E

[
1Mk(x)>0

Mk(x)

]
. (15)

Now, according to equation (2.1) in [16], we have

Mk(x) ≥
∣∣∣∣{i ∈ J1, NK , ‖Xi − x‖ <

‖X(k+1)(x)− x‖
2

}∣∣∣∣ .
Then, conditionally on D(k+1)(x) = ‖X(k+1)(x) − x‖, it can be shown (see for instance
Lemma A.1 in [10]) that Mk(x) is stochastically larger than a Binomial random variable with
parameters k and

µ
(
B̊(x,D(k+1)(x)/2)

)
µ
(
B(x,D(k+1)(x))

) ,

where B̊(x, r) stands for the open ball with center x and radius r. In light of this, a convenient
way to control E

[
Mk(x)−1

]
in (15) is to add the assumption that the measure µ is “doubling”

in the following sense: there exists a constant α > 0 such that for all x ∈ S and all ε > 0,

µ
(
B̊(x, ε/2)

)
µ (B(x, ε))

≥ α · (16)

Let us mention that, in the standard definition of a doubling measure, the denominator in
(16) is µ(B̊(x, ε)). However, under this additional assumption, Mk(x) is stochastically larger
than a Binomial random variable with parameters k and α, and by Györfi et al. [17, Lemma
4.1], we can finally upper bound the variance term (15) by

E

[
N∑
i=1

Wi(x)2

]
= E

[
1Mk(x)>0

Mk(x)

]
≤ 2α

k + 1
·

Concerning the bias term in (14), simply notice that any mutual nearest neighbors of x
belongs to the k nearest neighbors of x. By Lemma 3, this implies

E

[
N∑
i=1

Wi(x)‖Xi − x‖

]
≤ E

[
D(k)(x)

]
≤ 2

(
km

ρn

)1/d

.

By the same reasoning as before, if we set

t = 4eσ

√
α

k
and s = 16e2

(
km

ρn

)1/d
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then Lemma 1 yields P (|r̂mom
n (x)− r(x)| ≥ t+ s) ≤ e−m. Therefore, one may carry out

the optimization exactly as in the k-nn case but with σ replaced by σ
√

2α, and obtain a
proposition akin to Proposition 4, with σ modified accordingly.

Proposition 7. Suppose that Assumption 1 and (16) are satisfied. Let

c = ρ
(σα

4e

)d
∧ 16e2

ασ2ρ2/d
∧ 1 , δ ∈ [e−cn+1, 1[ , and m = dln(1/δ)e ,

ensuring that 1 ≤ m ≤ cn. Then the estimator r̂mom
n constructed on m blocks with k?-mnn

base estimators, where

k? =

⌊(
ασ2

16e2

) d
d+2 (ρn

m

) 2
d+2

⌋
,

satisfies

P

(
|r̂mom
n (x)− r(x)| ≥ 64e2α1/3

(
σ2 dln(1/δ)e

ρn

) 1
d+2

)
≤ δ .

In summary, the mnn estimate does not exactly satisfy inequality (2), since a = 64e2α1/3

depends on the extra parameter α.

4. Kernel and partitioning estimation

4.1. Kernel estimates. Let 0 < h ≤ D and consider the kernel estimator

r̂N (x) :=
1

Nh(x)

N∑
i=1

Yi1‖Xi−x‖≤h ,

where

Nh(x) :=

N∑
i=1

1‖Xi−x‖≤h ,

with the convention 0/0 = 0. Observe that this is again of the form (4) with

Wi(x) = Nh(x)−11‖Xi−x‖≤h .

By inequality (5), we get

|r̂N (x)− r(x)| ≤

∣∣∣∣∣
N∑
i=1

Wi(x)εi

∣∣∣∣∣+

N∑
i=1

Wi(x)‖Xi − x‖ .

In this case, we have, deterministically,

N∑
i=1

Wi(x)‖Xi − x‖ =
1

Nh(x)

N∑
i=1

‖Xi − x‖1‖Xi−x‖≤h ≤ h .

Hence, for all t > 0 and all x ∈ S, Markov’s inequality yields

pt+h(x) = P(|r̂N (x)− r(x)| ≥ t+ h) ≤ P

(∣∣∣∣∣
N∑
i=1

Wi(x)εi

∣∣∣∣∣ ≥ t
)
≤
σ2E

[∑N
i=1Wi(x)2

]
t2

,

so that

pt+h(x) ≤
σ2E

[
1Nh(x)>0

Nh(x)

]
t2

·
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Since Nh(x) is distributed as a Binomial random variable with parameters N and µ (B(x, h)),
we have, by Györfi et al. [17, Lemma 4.1] and Assumption 1,

E
[
1Nh(x)>0

Nh(x)

]
≤ 2

(N + 1)µ (B(x, h))
≤ 2m

ρnhd
.

Hence, we obtain

pt+h(x) ≤ 2σ2m

ρnhdt2
,

Since the right-hand side equals 1/4e2 for t = 2e
√

2σ2m
ρnhd

, Lemma 1 implies

P

(
|r̂mom
n (x)− r(x)| ≥ 2e

√
2σ2m

ρnhd
+ h

)
≤ e−m .

When σ and ρ are known, the bandwidth h can then be optimized: taking h such that

2e
√

2σ2m
ρnhd

= h, i.e.

h? =

(
8e2σ2m

ρn

) 1
d+2

,

we see that if m ≤ ρDd+2n
8e2σ2 , ensuring h? ≤ D, we have

P

(
|r̂mom
n (x)− r(x)| ≥ 2

(
8e2σ2m

ρn

) 1
d+2

)
≤ e−m .

All in all, we arrive at the following proposition.

Proposition 8. Under Assumption 1, let

c =
ρDd+2

8e2σ2
∧ 1 , δ ∈ [e−cn+1, 1[ , and m = dln(1/δ)e ,

ensuring that 1 ≤ m ≤ cn. Then the estimator r̂mom
n constructed on m blocks with h?-kernel

base estimators, where

h? =

(
8e2σ2m

ρn

) 1
d+2

,

satisfies

P

(
|r̂mom
n (x)− r(x)| ≥ 4e2/3

(
σ2 dln(1/δ)e

ρn

) 1
d+2

)
≤ δ .

In other words, inequality (2) is fulfilled with a = 4e2/3 and cF = c.

4.2. Partitioning estimates. To simplify the presentation, let us here assume that S =
[0, 1]d. For some integer K ≥ 1, let P = {A1, A2, . . . , AKd} be a cubic partition of [0, 1]d by
Kd cubes with side length 1/K. For k ∈ J1,KdK, if x ∈ Ak, the partitioning estimate of the
regression function takes the form

r̂N (x) =
N∑
i=1

Wi(x)Yi :=
1

Nk

N∑
i=1

Yi1Xi∈Ak ,

where

Nk :=
N∑
i=1

1Xi∈Ak ,
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with the usual convention 0/0 = 0. The reasoning is mutatis mutandis the same as for kernel
estimates. Here again, the bias term can indeed be deterministically bounded:

N∑
i=1

Wi(x)‖Xi − x‖ =
1

Nk

N∑
i=1

1Xi∈Ak‖Xi − x‖ ≤
√
dK−1 . (17)

Hence, for all t > 0 and x ∈ Ak, we are led to

pt+
√
dK−1(x) ≤

σ2E
[
1Nk>0

Nk

]
t2

≤ 2σ2

(N + 1)µ(Ak)t2
≤ 2d+1Kdσ2m

ρnt2
, (18)

where we used that, if ak denotes the center of Ak, then by assumption (1)

µ(Ak) ≥ µ
(
B(ak, (2K)−1)

)
≥ ρ(2K)−d .

Again, by Lemma 1, we get

P

|r̂mom
n (x)− r(x)| ≥ 2e

√
2d+1Kdσ2m

ρn
+
√
dK−1

 ≤ e−m .
One may then choose K as the largest integer such that

√
dK−1 ≥ 2e

√
2d+1Kdσ2m

ρn , i.e.

K? =

⌊(
ρdn

2d+3e2σ2m

) 1
d+2

⌋
,

which belongs to N \ {0} as soon as

m

n
≤ ρd

2d+3e2σ2
.

Once again, using that buc ≥ u/2 for u ≥ 1, we obtain

2
√
dK−1? ≤ 4

√
d

(
2d+3e2σ2m

ρdn

) 1
d+2

≤ 16e2/3
√
d

(
σ2m

ρn

) 1
d+2

,

which yields

P

(
|r̂mom
n (x)− r(x)| ≥ 16e

√
d

(
σ2m

ρn

) 1
d+2

)
≤ e−m .

Putting all things together gives the upcoming result, which shows that inequality (2) is

fulfilled with a = 16e
√
d and cF = c.

Proposition 9. Under Assumption 1 with S = [0, 1]d, let

c =
ρd

2d+3e2σ2
∧ 1 , δ ∈ [e−cn+1, 1[ , and m = dln(1/δ)e ,

ensuring that 1 ≤ m ≤ cn. Then the estimator r̂mom
n on [0, 1]d constructed on m blocks with

partitioning base estimators on Kd
? hypercubes, where

K? =

⌊(
ρdn

2d+3e2σ2m

) 1
d+2

⌋
,

satisfies

P

(
|r̂mom
n (x)− r(x)| ≥ 16e

√
d

(
σ2 dln(1/δ)e

ρn

) 1
d+2

)
≤ δ .
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One enjoyable feature of partitioning estimates is that uniform bounds for x ∈ S can easily
be obtained. Indeed, for all t > 0, we have

P
(

sup
x∈S
|r̂mom
n (x)− r(x)| > t+

√
dK−1

)
≤ P

sup
x∈S

m∑
j=1

1{|r̂(j)(x)−r(x)|>t+
√
dK−1} ≥

m

2

 .

Then, by inequality (5) of Lemma 2 and the deterministic bound (17) on the bias term, it
comes

P
(

sup
x∈S
|r̂mom
n (x)− r(x)| > t+

√
dK−1

)
≤ P

sup
x∈S

m∑
j=1

1{∣∣∣∑N
i=1W

(j)
i (x)ε

(j)
i

∣∣∣>t} ≥ m

2

 ,

where ε
(j)
1 , . . . , ε

(j)
N stand for the noise variables in block j, and where

W
(j)
i (x) :=

Kd∑
k=1

1x∈Ak
1

N
(j)
k

1
X

(j)
i ∈Ak

,

with X
(j)
1 , . . . , X

(j)
N the features in block j, and N

(j)
k the number of features in block j falling

into Ak. Noticing that W
(j)
i (x) does not depend on the exact position of x but only on the

cube Ak in which it lies, we obtain, with the notation B
(j)
i,k := 1{

X
(j)
i ∈Ak

},

P
(

sup
x∈S
|r̂mom
n (x)− r(x)| > t+

√
dK−1

)
≤ P

 sup
1≤k≤Kd

m∑
j=1

1{∣∣∣∣∣ 1

N
(j)
k

∑N
i=1B

(j)
i,kε

(j)
i

∣∣∣∣∣>t
} ≥ m

2


≤

Kd∑
k=1

P

 m∑
j=1

1{∣∣∣∣∣ 1

N
(j)
k

∑N
i=1B

(j)
i,kε

(j)
i

∣∣∣∣∣>t
} ≥ m

2


=

Kd∑
k=1

P

 m∑
j=1

B
(j)
k ≥

m

2

 ,

thanks to the union bound and with the notation

B
(j)
k := 1{∣∣∣∣∣ 1

N
(j)
k

∑N
i=1B

(j)
i,kε

(j)
i

∣∣∣∣∣>t
}.

Clearly, for each k ∈ J1,KK, the Bernoulli random variables (B
(j)
k )1≤j≤m are i.i.d. with

parameter

pk := P

(∣∣∣∣∣ 1

N
(j)
k

N∑
i=1

B
(j)
i,k ε

(j)
i

∣∣∣∣∣ > t

)
≤ 2d+1Kdσ2m

ρnt2
,

where the upper bound, which does not depend on k, comes from (18). We may now apply
inequality (24) in the proof of Lemma 1 to deduce that

P
(

sup
x∈S
|r̂mom
n (x)− r(x)| > t+

√
dK−1

)
≤ Kd · 2m

(
2d+1Kdσ2m

ρnt2

)m/2
.
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Choosing t appropriately, we get

P

sup
x∈S
|r̂mom
n (x)− r(x)| > e

√
2d+3σ2Kd+ 2d

mm

ρn
+
√
dK−1

 ≤ e−m .
In particular, we see that if K → +∞, and if there exists ε > 0 such that n−1Kd+ε → 0,

then, choosing m such that n−1mKd+ 2d
m → 0 and e−m is summable (e.g. , m = (log n)2),

Borel–Cantelli Lemma entails that

sup
x∈S
|r̂mom
n (x)− r(x)| −→

n→+∞
0 almost surely.

5. Robustness to outliers

In this section, we consider the contamination scheme introduced by Lecué and Lerasle
[25]. We assume that the index set {1, . . . , n} is divided into two disjoint subsets: the subset
I of inliers, and the subset O of outliers. The sequence (Xi, Yi)i∈I is i.i.d. with the same law
as (X,Y ) ∈ F . No assumption is made on the variables (Xi, Yi)i∈O. We denote by PO∪I the
distribution corresponding to such a contaminated sample.

Let r̂mom
n be the median-of-means estimate of r constructed on m blocks, with base estimate

r̂N . Assume that m ≥ 4|O|, where |O| is the number of outliers. Then, letting B be the set
of blocks that do not intersect O, we have, for all s, t > 0,

PO∪I (|r̂mom
n (x)− r(x)| ≥ t+ s) ≤ PO∪I

 m∑
j=1

1{|r̂(j)(x)−r(x)|≥t+s} ≥
m

2


≤ PO∪I

|Bc|+∑
j∈B

1{|r̂(j)(x)−r(x)|≥t+s} ≥
m

2

 .

Observing that |Bc| ≤ |O| ≤ m/4, we get

PO∪I (|r̂mom
n (x)− r(x)| ≥ t+ s) ≤ P

 m∑
j=1

1{|r̂(j)(x)−r(x)|≥t+s} ≥
m

4

 .

Now, a quick inspection of the proof of Lemma 1 reveals that

P

 m∑
j=1

1{|r̂(j)(x)−r(x)|≥t+s} ≥
m

4

 ≤ ( 4

33/4

)m
pt+s(x)m/4 ,

which is less than e−m for pt+s(x) ≤ 27
(4e)4

. Hence, provided m ≥ 4|O| and modulo some minor

changes in the constants, the same strategy as the one described just after the statement of
Lemma 2 can be applied to the contaminated setting. Namely, multiplying t by 23e/

√
27

and (if necessary) s by 43e2/27, all the preceding results hold for contaminated samples.

6. Lower bound

For some h > 0 to be specified later, let

S =
[
0 , h

⌈
h−1

⌉]d
.

We consider the model
Y = r(X) + ε ,

where X ∼ µ = Unif(S), the noise ε ∼ N (0, σ2) is independent of X, and r is a 1-Lipschitz
function on S. Notice that this model satisfies Assumption 1, meaning that (X,Y ) ∈ F .
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Indeed, the support S is bounded with diameter D = h
⌈
h−1

⌉√
d and, for all x ∈ S and

ε ∈ (0, D], one has

µ (B(x, ε)) ≥ µ
(
B(x, ε/

√
d)
)
≥ µ

(
B(0, ε/

√
d)
)

=
πd/2

2ddd/2Γ(1 + d/2)
εd =: ρεd .

Let us stress that ρ depends on d but not on h. Our purpose is to show that the concentration
properties we have obtained so far are optimal in the sense of inequality (3).

Proposition 10. For all δ ∈]0, 2−(d+3)], for any regression estimate r̂n, there exists a
1-Lipschitz mapping r = rn : S → R such that, when X ∼ µ independent of Dn, we have

P

|r̂n(X)− r(X)| ≥ 1

4

(
σ2 ln

(
1

2d+3δ

)
n

) 1
d+2

 ≥ δ . (19)

Proof. This lower bound is established using the same idea as in the proof of Theorem 3.2

in Györfi et al. [17] (see also Section 2 in Stone [43]). Namely, let C :=
[
−1

2 ,
1
2

]d
and ∂C its

frontier, then define

g(x) := dist(x, ∂C) 1x∈C = inf{‖x− y‖, y ∈ ∂C} 1x∈C .

Clearly, g is 1-Lipschitz and one can check that∫
g(x)2dx =

1

2(d+ 1)(d+ 2)
. (20)

Consider a partition of S by K :=
⌈
h−1

⌉d
hypercubes Aj of sidelength h and with centers aj ,

and let the functions g1, . . . , gK be defined by

∀j ∈ J1,KK , gj(x) := hg
(
h−1 (x− aj)

)
.

Hence the support of gj is Aj =
[
aj − h

2 ; aj + h
2

]d
and∫

gj(x)2dx =
hd+2

2(d+ 1)(d+ 2)
.

The set of regression functions we consider in what follows is

R :=

r(c) =

K∑
j=1

cjgj , c ∈ {−1, 1}K
 .

The proof in Györfi et al. [17] ensures that each r(c) is 1-Lipschitz. Our goal is to show

that for all δ ∈]0, 2−(d+3)], and for all regression estimate r̂n taking as input i.i.d. couples
Dn = ((X1, Y1), . . . , (Xn, Yn)) with the same law as (X,Y ), we have

sup
c∈{−1,1}K

P
(∣∣∣r̂n(X)− r(c)(X)

∣∣∣ ≥ h

4

)
≥ δ , (21)

with

h :=

(
πσ2(d+ 1)(d+ 2) ln

(
1

2d+3δ

)
n

) 1
d+2

. (22)

For this, let δ ∈]0, 2−(d+3)], h defined by (22), and r̂n denote a regression estimate. For
j ∈ J1,KK, and for x ∈ Aj , we start by defining

r̃n(x) := sign (r̂n(x)) gj(x) .
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Note that for all x ∈ S, and c ∈ {−1, 1}K , we have∣∣∣r̂n(x)− r(c)(x)
∣∣∣ ≥ 1

2

∣∣∣r̃n(x)− r(c)(x)
∣∣∣ .

We proceed by designing estimated signs c̃j as follows: for all j ∈ J1,KK, define the hypercube

A′j :=
[
aj − h

4 ; aj + h
4

]d ⊂ Aj
and set

c̃j :=

{
+1 if P

(
r̃n(X) = gj(X)

∣∣X ∈ A′j) ≥ 1
2

−1 otherwise

In other words, for each hypercube Aj , we take a majority vote, but only on A′j . Observe

that if X falls in the subset A′j of a bad hypercube Aj , i.e. such that c̃j 6= cj , then∣∣r̃n(X)− r(c)(X)
∣∣ ≥ h/2 with probability at least 1/2. Combining those observations and

the fact that P(X ∈ A′j) = (2dK)−1, we have

P
(∣∣∣r̂n(X)− r(c)(X)

∣∣∣ ≥ h

4

)
≥ P

(∣∣∣r̃n(X)− r(c)(X)
∣∣∣ ≥ h

2

)
≥ 1

2d+1K

K∑
j=1

P(c̃j 6= cj) .

We are now left to show that

sup
c∈{−1,1}K

1

2d+1K

K∑
j=1

P(c̃j 6= cj) ≥ δ .

To do so, consider a uniform random vector (C1, . . . , CK) ∈ {−1, 1}K (that is, i.i.d. Rademacher
random variables with parameter 1/2). Clearly,

sup
c

1

2d+1K

K∑
j=1

P(c̃j 6= cj) ≥
1

2d+1K

K∑
j=1

P(c̃j 6= Cj) .

Now, for each j ∈ J1,KK, the estimated sign c̃j might be seen as a decision rule on Cj , based
on the data Dn. The minimal error probability is attained by the Bayes decision rule:

C?j := 1P(Cj=1|Dn)≥1/2 − 1P(Cj=1|Dn)<1/2 .

Hence,
P(c̃j 6= Cj) ≥ P(C?j 6= Cj) = E

[
P(C?j 6= Cj

∣∣X1, . . . , Xn)
]
.

Let Xi1 , . . . , Xi` be the variables Xi that fall in the hypercube Aj . Conditionally on
X1, . . . , Xn, the Bayesian rule for Cj based on Y1, . . . , Yn only depends on Yi1 , . . . , Yi` , and the
problem comes down to the Bayesian estimation of C ∼ Rad(1/2) in the model Y = Cu+W ,
where u is a fixed vector of R` and W is a centered Gaussian vector with covariance matrix
σ2I`, independent of C. In this situation, Györfi et al. [17, Lemma 3.2] ensures that

P(C?j 6= Cj
∣∣X1, . . . , Xn) = Φ

−
√∑`

s=1 gj(Xis)
2

σ

 = Φ

(
−
√∑n

i=1 gj(Xi)2

σ

)
.

By Jensen’s Inequality, we have

P(C?j 6= Cj) ≥ Φ

(
−
√∑n

i=1 E [gj(Xi)2]

σ

)
= Φ

(
−
√
nE [gj(X)2]

σ

)
.

Since, by (20),

E
[
gj(X)2

]
=

∫
gj(x)2dx =

hd+2

2(d+ 1)(d+ 2)
,
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we are led to

sup
c

1

2d+1K

K∑
j=1

P(c̃j 6= cj) ≥
1

2d+1
Φ

(
− 1

σ

√
nhd+2

2(d+ 1)(d+ 2)

)

≥ 1

2d+1
Φ

(
−

√
π

2
ln

(
1

2d+3δ

))
,

by definition of h in (22). We now use the following lower bound on the Gaussian tail (see
for instance Pólya [40, equation (1.5)]):

∀x ≥ 0, Φ(−x) ≥ 1

2

(
1−

√
1− e−

2
π
x2
)
≥ 1

4
e−

2
π
x2 ,

where the second inequality is by
√

1− u ≤ 1− u/2 for u ∈ [0, 1]. Hence,

sup
c

1

2d+1K

K∑
j=1

P(c̃j 6= cj) ≥
1

2d+3
e
− ln

(
1

2d+3δ

)
= δ ,

as desired. Returning to (21), there exists r = r(c) such that

P

|r̂n(X)− r(X)| ≥ 1

4

(
πσ2(d+ 1)(d+ 2) ln

(
1

2d+3 δ
)

n

) 1
d+2

 ≥ δ
with, for all d ≥ 1,

(π(d+ 1)(d+ 2))
1
d+2 ≥ 1 ,

which concludes the proof. �

7. From δ-dependent to δ-independent estimators

One feature of r̂mom
n (x) is that it depends on m, the number of blocks, and thus on the

pre-chosen confidence threshold δ = e−m. In this section, we give an argument due to Devroye
et al. [12], allowing to turn r̂mom

n (x) into an estimator satisfying (2) simultaneously for an
infinity of δ. Let us first recall that, when σ and ρ are known, then for all integer m between
1 and bcnc (for some constant c depending only on ρ, σ and d), one is able to construct a

confidence interval Îm for r(x) with level 1− e−m. Now let

m̂ := min

1 ≤ m ≤ bcnc ,
bcnc⋂
j=m

Îj 6= ∅

 ,

and define the estimator r̃n(x) as the midpoint of the interval
⋂bcnc
j=m̂ Îj . Let δ ∈

[
e−bcnc

1−e−1 , 1
[

and let mδ be the smallest integer m ∈ J1, bcncK such that δ ≥ e−m

1−e−1 . Then r̃n(x) satisfies

P
(
|r̃n(x)− r(x)| > |Îmδ |

)
≤ δ . (23)

Indeed, by a union bound, we have

P

 bcnc⋂
j=mδ

{
r(x) ∈ Îj

} ≥ 1−
bcnc∑
j=mδ

e−j ≥ 1− e−mδ

1− e−1
≥ 1− δ .
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Now, on the event
⋂bcnc
j=mδ

{
r(x) ∈ Îj

}
, one has

⋂bcnc
j=mδ

Îj 6= ∅, hence m̂ ≤ mδ. But if m̂ ≤ mδ,

then r̃n(x) also belongs to
⋂bcnc
j=mδ

Îj , and in particular

|r̃n(x)− r(x)| ≤ |Îmδ | ,
which establishes (23).

For instance, for k-nn base estimates, one may combine Proposition 4 and this method to

construct an estimator r̃n(x) which is such that, for all δ ∈
[
e−cn+1

1−e−1 , 1
[
,

P

|r̂mom
n (x)− r(x)| ≥ 64e2

√
2

σ2
⌈
ln
(

1
(1−e−1)δ

)⌉
ρn


1
d+2

 ≤ δ ,
with

c = ρ

(
σ

4e
√

2

)d
∧ 32e2

σ2ρ2/d
∧ 1 .

8. Proofs of technical results

8.1. Proof of Lemma 1. By definition of the median, we have

P (|r̂mom
n (x)− r(x)| ≥ t) ≤ P

 m∑
j=1

1{|r̂(j)(x)−r(x)|≥t} ≥
m

2

 .

The variables 1{|r̂(j)(x)−r(x)|≥t} are i.i.d. Bernoulli variables with parameter pt(x). Now, if

B1, . . . , Bm are i.i.d. Bernoulli random variables with parameter p ∈ [0, 1], then

P

 m∑
j=1

Bj ≥
m

2

 ≤ e− supλ≥0

{
λm
2
−lnE

[
e
λ
∑m
j=1 Bj

]}
= e−m supλ≥0{λ2−ln(peλ+1−p)} .

Noticing that the supremum is obtained for λ = ln
(
1−p
p

)
, we get

P

 m∑
j=1

Bj ≥
m

2

 ≤ e−m{ 1
2
ln
(

1−p
p

)
−ln(2(1−p))

}
=
(

2
√
p(1− p)

)m
≤ 2mpm/2 , (24)

as desired.

8.2. Proof of Lemma 2. For a given x ∈ Rd, the difference r̂N (x)−r(x) can be decomposed
as

r̂N (x)− r(x) =
N∑
i=1

Wi(x)εi +
N∑
i=1

Wi(x) (r(Xi)− r(x)) ,

where εi = Yi − r(Xi). By the triangle inequality and the fact that r is 1-Lipschitz, we have∣∣∣∣∣
N∑
i=1

Wi(x)r(Xi)− r(x)

∣∣∣∣∣ ≤
N∑
i=1

Wi(x)‖Xi − x‖ ,

which establishes inequality (5). Next, for t, s > 0, a union bound gives

pt+s(x) ≤ P

(∣∣ N∑
i=1

Wi(x)εi
∣∣ ≥ t)+ P

(
N∑
i=1

Wi(x)‖Xi − x‖ ≥ s

)
,
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By Markov’s inequality, we have

P

(∣∣∣∣∣
N∑
i=1

Wi(x)εi

∣∣∣∣∣ ≥ t
)
≤

E
[(∑N

i=1Wi(x)εi

)2]
t2

,

and the assumption on the conditional variance of ε implies that

E

( N∑
i=1

Wi(x)εi

)2
 =

N∑
i,j=1

E
[
Wi(x)Wj(x)E

[
εiεj

∣∣X1, . . . , Xn

]]
=

N∑
i=1

E
[
Wi(x)2E

[
ε2i
∣∣Xi

]]
≤ σ2E

[
N∑
i=1

Wi(x)2

]
,

which concludes the proof of (6).

8.3. Proof of Lemma 3. We have

E
[
D(i)(x)

]
=

∫ D

0
P
(
D(i)(x) > ε

)
dε ≤ a+

∫ D

a
P
(
D(i)(x) > ε

)
dε ,

for some a ≥ 0 to be specified later. Observe that D(i)(x) > ε if and only if there are strictly
less than i observations in B(x, ε). Since the number of observations in B(x, ε) is distributed
as a Binomial random variable with parameters N and µ (B(x, ε)) ≥ ρεd, we have

P
(
D(i)(x) > ε

)
≤

i−1∑
j=0

(
N

j

)
(ρεd)j(1− ρεd)N−j . (25)

Applying [5, Lemma 3.1] gives, for all p ∈ [0, 1],

i−1∑
j=0

(
N

j

)
pj(1− p)N−j ≤ i

p(N + 1)
·

Hence,

E
[
D(i)(x)

]
≤ a+

i

N + 1

∫ D

a

1

ρεd
dε .

For d ≥ 2, we obtain

E
[
D(i)(x)

]
≤ a+

i

ρ(N + 1)
· a

1−d

d− 1
≤ a

(
1 +

ia−d

ρ(N + 1)

)
.

Taking a =
(

i
ρ(N+1)

)1/d
, we get

E
[
D(i)(x)

]
≤ 2

(
i

ρ(N + 1)

)1/d

.
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For d = 1, we set a = 0 and use (25) to deduce that

E
[
D(i)(x)

]
≤
∫ D

0

i−1∑
j=0

(
N

j

)
(ρε)j(1− ρε)N−jdε

=
1

ρ

i−1∑
j=0

(
N

j

)∫ ρD

0
uj(1− u)N−jdu

≤ 1

ρ

i−1∑
j=0

(
N

j

)∫ 1

0
uj(1− u)N−jdu .

Recognizing the Beta function∫ 1

0
uj(1− u)N−jdu = B(j + 1, N − j + 1) =

j!(N − j)!
(N + 1)!

,

we obtain

E
[
D(i)(x)

]
≤ 1

ρ

i−1∑
j=0

(
N

j

)
j!(N − j)!
(N + 1)!

=
i

ρ(N + 1)
·

8.4. Proof of Lemma 5. Our objective here is to prove that, for all d ≥ 1, and for all
k ∈ J1, NK,

N∑
i=1

vi

(
i

N + 1

)1/d

≤ 2ek−1/d ,

where

vi =

(
1− i− 1

N

)k
−
(

1− i

N

)k
.

If d = 1, we can simply apply Proposition 2.3 in [5] to deduce

N∑
i=1

vi

(
i

N + 1

)
≤ 2

k

(
1 +

1

N

)k
≤ 2e

k
.

If d ≥ 2, since

vi =

k∑
j=1

(
k

j

)
1

N j

(
1− i

N

)k−j
,

we may write

N∑
i=1

vi

(
i

N + 1

)1/d

≤
N∑
i=1

vi

(
i

N

)1/d

=

N∑
i=1

 k∑
j=1

(
k

j

)
1

N j

(
1− i

N

)k−j( i

N

)1/d

=

k∑
j=1

(
k

j

)
1

N j−1

(
1

N

N∑
i=1

(
i

N

)1/d(
1− i

N

)k−j)
.

In the latter, we can compare the Riemann sum to the associated integral thanks to the next
inequality (see Section 8.5 for its justification).



22

Lemma 11. For all d ≥ 2 and 1 ≤ j ≤ k ≤ N ,we have

1

N

N∑
i=1

(
i

N

)1/d(
1− i

N

)k−j
≤ 2

∫ 1

0
x1/d(1− x)k−jdx = 2B(1/d+ 1, k − j + 1) .

This yields

N∑
i=1

vi

(
i

N + 1

)1/d

≤ 2

k∑
j=1

(
k

j

)
1

N j−1B(1/d+ 1, k − j + 1)

= 2

k∑
j=1

(
k

j

)
1

N j−1
Γ(1/d+ 1)(k − j)!
Γ(1/d+ k − j + 2)

.

Next, notice that

Γ(1/d+ k − j + 2) = Γ(1/d+ 1)(k − j + 1)!

k−j+1∏
`=1

(
1 +

1

d`

)
,

so that

N∑
i=1

vi

(
i

N + 1

)1/d

≤ 2
k∑
j=1

(
k

j

)
1

N j−1(k − j + 1)
∏k−j+1
`=1

(
1 + 1

d`

)
= 2

k∑
j=1

(
k

j − 1

)
1

N j−1j
∏k−j+1
`=1

(
1 + 1

d`

)
= 2

k−1∑
j=0

(
k

j

)
1

N j(j + 1)
∏k−j
`=1

(
1 + 1

d`

) .
To go further, we need the following technical result (see Section 8.6 for the proof).

Lemma 12. For all d ≥ 2, k ≥ 1, and j ∈ J0, k − 1K, we have

1

(j + 1)
∏k−j
`=1

(
1 + 1

d`

) ≤ k−1/d .
Accordingly, we get

N∑
i=1

vi

(
i

N + 1

)1/d

≤ 2k−1/d
k−1∑
j=0

(
k

j

)
1

N j
,

so that, finally, for all d ≥ 2, we are led to

N∑
i=1

vi

(
i

N + 1

)1/d

≤ 2

(
1 +

1

N

)k
k−1/d ≤ 2ek−1/d ,

and the proof of Lemma 5 is complete.

8.5. Proof of Lemma 11. We have to show that for all d ≥ 2 and 1 ≤ j ≤ k ≤ N ,we have

1

N

N∑
i=1

(
i

N

)1/d(
1− i

N

)k−j
≤ 2

∫ 1

0
x1/d(1− x)k−jdx .
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To lighten the notation, set m := k− j so that 0 ≤ m ≤ N − 1, and we want to establish that

1

N

N∑
i=1

(
i

N

)1/d(
1− i

N

)m
≤ 2

∫ 1

0
x1/d(1− x)mdx = 2B(1 + 1/d, 1 +m) .

If m = 0, since the mapping x 7→ x1/d is increasing, we get

1

N

N∑
i=1

(
i

N

)1/d

≤ 1

N
+

∫ 1

0
x1/ddx =

1

N
+

d

d+ 1
≤ 2

d

d+ 1
= 2

∫ 1

0
x1/ddx .

Therefore, from now on we can safely assume that d ≥ 2 and 1 ≤ m ≤ N − 1. Let us denote
ϕ(x) = x1/d(1− x)m for 0 ≤ x ≤ 1, and notice that if we set x? := (1 +md)−1, the function
ϕ is increasing on [0, x?] and decreasing on [x?, 1]. With this in mind, it is readily seen that

1

N

N∑
i=1

ϕ(i/N)−
∫ 1

0
ϕ(x)dx =

N∑
i=1

∫ i
N

i−1
N

(ϕ(i/N)− ϕ(x))dx =

N∑
i=1

∫ i
N

i−1
N

(∫ i
N

x
ϕ′(y)dy

)
dx

=
N∑
i=1

∫ i
N

i−1
N

(∫ y

i−1
N

ϕ′(y)dx

)
dy =

N∑
i=1

∫ i
N

i−1
N

(
y − i− 1

N

)
ϕ′(y)dy

≤
N∑
i=1

∫ i
N

i−1
N

(
y − i− 1

N

)
min(0, ϕ′(y))dy

≤ 1

N

N∑
i=1

∫ i
N

i−1
N

min(0, ϕ′(y))dy =
ϕ(x?)

N
.

Consequently, taking into account that N ≥ m+ 1, it suffices to show that

ϕ(x?)

m+ 1
≤ B(1 + 1/d, 1 +m) .

For this, we write

B(1 + 1/d, 1 +m) =
Γ(1 + 1/d)Γ(m+ 1)

Γ(m+ 1/d+ 2)
=

Γ(1 + 1/d)Γ(m+ 1)

(m+ 1/d+ 1)(m+ 1/d)Γ(m+ 1/d)
.

Since d ≥ 2, Gautschi’s inequality then implies that

Γ(m+ 1/d)

Γ(m+ 1)
≤ m1/d−1 .

Since

ϕ(x?) =
(1/d)1/dmm

(m+ 1/d)m+1/d
,

we deduce that

ϕ(x?)

(m+ 1)B(1 + 1/d, 1 +m)
≤ (1/d)1/d(1 + 1/m+ 1/(md))

Γ(1 + 1/d)(1 + 1/m)(1 + 1/(md))m+1/d−1 .

To conclude the analysis, we distinguish between two cases. First, if m ≥ 2, then

(1 + 1/(md))m+1/d−1 ≥ 1 + 1/(md) ,

and remarking that

(1 + 1/m)(1 + 1/(md))m+1/d−1 ≥ (1 + 1/m)(1 + 1/(md)) ≥ 1 + 1/m+ 1/(md) ,

we get
ϕ(x?)

(m+ 1)B(1 + 1/d, 1 +m)
≤ (1/d)1/d

Γ(1 + 1/d)
=: ψ(1/d) .
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and it is easy to check numerically that, for all u ∈ (0, 1/2], one has ψ(u) ≤ 1, hence the
desired inequality when m ≥ 2. Finally, when m = 1, we have

ϕ(x?)

(m+ 1)B(1 + 1/d, 1 +m)
=

ϕ(x?)

2B(1 + 1/d, 2)
≤ (1/d)1/d(2 + 1/d)

2Γ(1 + 1/d)(1 + 1/d)1/d
=: φ(1/d) ,

and one can again numerically verify that, for all u ∈ (0, 1/2], one has φ(u) ≤ 1. This
concludes the proof.

8.6. Proof of Lemma 12. If we set p = j and q = k − j, this amounts to show that, for all
p ≥ 0 and q ≥ 1,

1

(p+ 1)
∏q
`=1

(
1 + 1

d`

) ≤ (p+ q)−1/d ,

or, equivalently,

ϕq(p) :=
1

d
ln(p+ q) ≤ ln(p+ 1) +

q∑
`=1

ln

(
1 +

1

d`

)
=: ψq(p) .

In this aim, note that

0 ≤ ϕ′q(p) =
1

d(p+ q)
≤ 1

p+ 1
= ψ′q(p) ,

and ϕq(0) := 1
d ln(q) while

ψq(0) =

q∑
`=1

ln

(
1 +

1

d`

)
.

Thus, the lemma holds true if and only if, for all d ≥ 2 and q ≥ 1,

1

d
ln(q) ≤

q∑
`=1

ln

(
1 +

1

d`

)
.

Taking into account that ln(1 + x) ≥ x− x2/2 for all x ≥ 0, we may write

q∑
`=1

ln

(
1 +

1

d`

)
≥ 1

d

q∑
`=1

1

`
− 1

2d2

q∑
`=1

1

`2
.

Now, if γ stands for Euler’s constant, we know that

q∑
`=1

1

`
≥ ln(q) + γ ,

whereas
q∑
`=1

1

`2
≤ π2

6
.

Putting all pieces together, we have shown that

q∑
`=1

ln

(
1 +

1

d`

)
− 1

d
ln(q) ≥ 1

d

(
γ − π2

12d

)
.

Since the right-hand side is positive for all d ≥ 2, the proof is complete.

Acknowledgments. The authors wish to thank Julien Reygner for his help with the proof
of Lemma 11.
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[17] L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A distribution-free theory of nonpara-
metric regression. Springer Series in Statistics. Springer-Verlag, New York, 2002. 4, 8,
10, 12, 16, 17

[18] P. Hall and R. J. Samworth. Properties of bagged nearest neighbour classifiers. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 67(3):363–379, 2005.
8

[19] D. Hsu and S. Sabato. Heavy-tailed regression with a generalized median-of-means. In
International Conference on Machine Learning, pages 37–45. PMLR, 2014. 3

[20] P. Humbert, B. Le Bars, and L. Minvielle. Robust kernel density estimation with
median-of-means principle. In International Conference on Machine Learning, pages
9444–9465. PMLR, 2022. 3

https://hal.science/hal-03631879
https://hal.science/hal-03631879


26

[21] H. Jégou, C. Schmid, H. Harzallah, and J. Verbeek. Accurate image search using the
contextual dissimilarity measure. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(1):2–11, 2008. 9

[22] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical computer science, 43:169–188, 1986.
3

[23] H. Jiang. Non-asymptotic uniform rates of consistency for k-nn regression. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pages 3999–4006, 2019. 3,
4, 8

[24] A. P. Korostelev and A. B. Tsybakov. Minimax theory of image reconstruction, volume 82.
Springer Science & Business Media, 2012. 4
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