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IMPROVED FRACTAL WEYL UPPER BOUND IN OBSTACLE SCATTERING

LUCAS VACOSSIN

Abstract. In this paper, we are interested in the problem of scattering by strictly convex
obstacles in the plane. We provide an upper bound for the number N(r, γ) of resonances in the
box {r ≤ Re(λ) ≤ r + 1; Im(λ) ≥ −γ}. It was proved in the work of [NSZ14] that N(r, γ) =

Oγ(rdH ) where 2dH + 1 is the Hausdorff dimension of the trapped set of the billiard flow. In
this article, we provide an improved upper bound in the band 0 ≤ γ < γcl/2, where γcl is the
classical decay rate of the flow. This improved Weyl upper bound is in the spirit of the ones of
[Nau12] and [Dya19] in the case of convex co-compact surfaces, and of [DJ17] in the case of open
quantum baker’s maps.

1. Introduction

1.1. An improved fractal upper bound.
Scattering by convex obstacles. In this paper, we are interested in the problem of scattering
by strictly convex obstacles in the plane. We assume that

O =

J⋃
j=1

Oj

where Oj are open, strictly convex obstacles in R2 having smooth boundary and satisfying the
Ikawa condition : for i 6= j 6= k, Oi does not intersect the convex hull of Oj ∪ Ok. Let

Ω = R2 \ O.

It is known that the resolvent of the Dirichlet Laplacian in Ω continues meromorphically to the

Figure 1. Scattering by three obstacles in the plane

logarithmic cover of C (see for instance [DZ19], Theorem 4.4 in Chapter 4). More precisely, suppose
that χ ∈ C∞c (R2) is equal to one in a neighborhood of O.

Rχ(λ) := χ(−∆− λ2)−1χ : L2(Ω)→ L2(Ω)

is holomorphic in the region {Imλ > 0} and it continues meromorphically to the logarithmic
cover of C. Its poles are the scattering resonances. We are interested in the distribution of these
scattering resonances in the first sheet of the logarithmic cover (i.e. C \ iR−), or more precisely,
in a conic neighborhood of R.
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The multiplicity of a (non-zero) resonance λ0 is given by

m(λ0) = rank
1

2iπ

∫
γ

Rχ(λ)dλ , γ(t) = λ0 + ε2iπt , 0 ≤ t ≤ 1 , 0 < ε� 1

We are interested in counting resonances in strips and in this paper we focus on an upper bound
for the quantities

N(r, γ) =
∑

r≤Reλ≤r+1
Imλ≥−γ

m(λ)

The depth γ of the strip being fixed, we are interested by upper bounds as r → +∞.

Fractal Weyl bounds. In this regime, it becomes a high-frequency problem and justifies the
introduction of a small parameter h = r−1. Under this rescaling, it becomes a semiclassical
problem. In the semiclassical limit, that is h → 0, the classical dynamics associated with this
quantum problem is the billiard flow ϕt in Ω × S1, that is to say, the free motion outside the
obstacles with normal reflection on their boundaries. A relevant dynamical object is the trapped
set K corresponding to the points (x, ξ) ∈ Ω × S1 that do not escape to infinity in the backward
and forward direction of the flow. In the case of two obstacles, it is a single closed geodesic. As
soon as more obstacles are involved, the structure of the trapped set becomes complex and exhibits
a fractal structure. This is a consequence of the hyperbolicity of the billiard flow. The structure of
the trapped set plays a crucial role in the spectral properties of −∆. In particular, its Hausdorff
dimension appears when estimating N(r, γ). In [NSZ14], the authors proved a Fractal Weyl upper
bound involving this fractal dimension.

Theorem 1. Fractal Weyl upper bound [NSZ14]
Assume that the obstacles Oj ⊂ R2 satisfy the conditions above. Assume that the trapped set of the
billiard flow has Hausdorff dimension 2dH + 1. Then, for every γ > 0, there exists Cγ > 0 such
that for all r ≥ 1,

N(r, γ) ≤ CγrdH

Remark. Their result holds in any dimension, but in dimension d > 2, one has to add an extra
loss of ε : for every ε > 0, for every γ > 0, there exists Cε,γ > 0 such that for all r ≥ 1,

N(r, γ) ≤ Cε,γrdH+ε

This bound is conjectured to be optimal for large values of γ (see [Zwo17], Conjecture 5).
However, as soon as a spectral gap exists, the exponent dH cannot be optimal for any γ. It always
exists in dimension 2, as proved in [Vac22] and it holds also in higher dimensions under some
pressure condition (see [Ika88]) on the billiard flow. Our Theorem 2 below gives a better bound in
dimension 2 for

γ < γcl/2

where γcl is the classical decay rate of the flow. γcl is equal to −P (−ϕu) where ϕu is defined
in (1.9) with the unstable Jacobian and P is the topological pressure for the billiard map on the
trapped set (see Definition 3.1). It is also given by the following formula (see [BR75], Proposition
4.4) :

(1.1) − γcl = lim
ε→0

lim sup
T→+∞

1

T
logLeb

Ñ⋃
ρ∈K

Bρ(ε, T )

é
where

Bρ(ε, T ) = {(x, ξ) ∈ Ω× S1,∀t ∈ [0, T ], d(ϕt(x, ξ), ϕt(ρ)) ≤ ε}
are Bowen balls.

The theorem we prove in this article is

Theorem 2. Assume that the obstacles Oj ⊂ R2 satisfy the conditions above. Then, there exists
a non increasing function σ : R+ → R+ satisfying

• σ(γ) > 0 for 0 ≤ γ < γcl/2 ;
• σ(γ) = 0 for γ ≥ γcl/2
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and such that for all γ > 0 and for all ε > 0 there exists Cγ,ε > 0 such that

∀r ≥ 1, N(r, γ) ≤ Cγ,εrdH−(σ(γ)−ε)+

Remark. A rather explicit value of σ in term of topological pressure is given by the formula (6.2).
Here, we can take (σ(γ)− ε)+ = max(σ(γ)− ε, 0) due to the result of [NSZ14]. When γ ≥ γcl/2,
we always have (σ(γ)− ε)+ = 0. When γ < γcl/2, we can find ε > 0 such that the bound given by
Theorem 2 improves the one of Theorem 1.

More on obstacle scattering. The problem of wave scattering by obstacles has a long history in
the physics and mathematics literature. The case of two obstacles is particularly well-understood
(see [Gé88], [Ika82]), so is the diffraction by one convex obstacle (see for instance [BLR87], [HL94]).
As soon as 3 or more obstacles are involved, the underlying classical flow - in this case, the billiard
flow - becomes highly chaotic. A particularly interesting model is the n-disk system, which has
been intensively studied both numerically and experimentally (see for instance [GR89],[BWP+13])
and the fractal upper bound has been successfully tested in [PWB+12] or [LSZ03]. A recent result
concerning a spectral gap has been proved in [Vac22], improving the previous result of [Ika88] (see
also [NZ09]).

Related results in open hyperbolic systems. The problem of scattering by obstacles falls
into the wider class of spectral problems for open hyperbolic systems, that is scattering systems
where most trajectories escape to infinity, so that the trapped set has Liouville measure zero, and
supports a hyperbolic flow. We refer the reader to the article of review [Non11] for a survey on these
open chaotic systems. Among the problems which widely interest mathematicians and physicists,
resonance counting and spectral gaps are on the top of the list (see for instance [Zwo17] for results
and open problems concerning resonances). An important example is given by the semiclassical
scattering by a potential (see 1.2.2), with particular dynamical assumptions on the Hamiltonian
flow.

Convex co-compact hyperbolic surfaces. Another class of open hyperbolic systems exhibiting a
fractal trapped set consists of the convex co-compact hyperbolic surfaces, which can be obtained
as the quotient of the hyperbolic plane H2 by Schottky groups Γ. The spectral problem concerns
the Laplacian on these surfaces and its classical counterpart is the geodesic flow on the cosphere
bundle, which is known to be hyperbolic due to the negative curvature of these surfaces. In this
context, it is common to write the energy variable λ2 = s(1 − s) and study the meromorphic
continuation of

s ∈ C 7→ (−∆− s(1− s))−1

The trapped set, and more particularly its dimension, influences the spectrum (see for instance
[Bor16] for an introduction to this theory).

Weyl upper bounds. The first Fractal Weyl upper bound for the counting function in strips
appeared in the work of Sjöstrand [Sjö90] (see Section 5, Theorem 5.7) for Schrödinger operators
−h2∆ + V in the analytic case. The author estimated the number of resonances in larger boxes
{|Re z| ≤ δ,−γh ≤ Im z ≤ 0} in the limit h → 0. More precise upper bounds O(h−dH ) for
smaller boxes {|Re z| ≤ Ch,−γh ≤ Im z ≤ 0}, which correspond, under the rescaling r = h−1

to the boxes we consider, were obtained in different smooth situations : for convex co-compact
hyperbolic surfaces ([Zwo99]), in scattering by a potential ([SZ07]), in obstacle scattering ([NSZ14]),
for asymptotically hyperbolic manifold ([DD12]). It has been conjectured (see [Zwo17], Conjecture
5) that the bound N(r, γ) = O(rdH ) is optimal when the strip is sufficiently large. However,
numerical experiments (see for instance the appendix of [Dya19] for the case of convex co-compact
surfaces) show that it should be possible to improve this bound for strips of width smaller than
some threshold. These numerical results lead [Zwo17] to conjecture that

lim
r→+∞

N(r, γ)r−dH = 0 when 0 ≤ γ < γcl
2

First results in this direction were obtained in the case of convex co-compact hyperbolic surfaces :
• In [Nau12], the author showed a bound similar to the one in Theorem 2 (without the loss

of ε), with a function σ having the same properties ;
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Figure 2. Example of an open baker’s map.

• In [Dya19], the author obtained the same result with an explicit function σ given by
σ(γ) = 1 − dH − 2γ, which satisfies the same properties as the one in Theorem 2 (since
in this context γcl = 1− dH). His result can be generalized to higher dimensional convex
co-compact hyperbolic manifold.

Theorem 2 gives a positive answer to this conjecture in obstacle scattering in dimension 2. There
is also a stronger conjecture, due to Jakobson-Naud ([JN12]) in the case of convex co-compact
surfaces, which states that for every γ < γcl/2, N(r, γ) = 0 for r � 1. Our work is still far from
proving this conjecture.

Toy models and open quantum maps. To test these conjectures, it is useful to work on toy
models where numerical and theoretical computations are sometimes easier. A very appreciated toy
model in the study of open hyperbolic systems is the open baker’s map (see for instance [Non11],
section 6.1.1). The classical map is a piecewise affine open map Fa,A on the torus T2, associated
with an alphabet A ⊂ {0, . . . , a− 1} (a is called the base) (see Figure 2).

It quantization is given by a matrix MN ∈ MN (R) where N plays the role of (2πh)−1. In this
context, one wants to count the number of eigenvalues of the matrix MN ∈MN (R) in the annulus
{|z| ≥ ν} in the limit N → +∞.

These toy models are what we call open quantum maps. There is a heuristic correspondence
between open quantum maps and open quantum systems. These quantized open maps have to be
interpreted as propagators at time t = log a of an open quantum system with constant unstable
Jacobian Ju = a, so that, to a resonance λ of the open quantum system, it corresponds an
eigenvalue e−itλ of the open quantum map, with t = log a. In fact, [NSZ11] and [NSZ14] have
shown that the study of the resonances in obstacle scattering can be reduced to the study of a
family of more general open quantum maps. This reduction is the starting point of the proof of
Theorem 2.

Concerning the quantized open baker’s map, there are convincing numerical and theoretical
results. In [NR07], the authors gave numerical evidence of Weyl upper bounds of the type

# (Spec (MN ) ∩ {|z| ≥ ν}) ≤ CνNdH

In [DJ17], the author proved an even more precise upper bound, when N = ak :

# (Spec (Mak) ∩ {|z| ≥ ν}) ≤ Cν(ak)dH+ε−Σ(ν) , ∀k ∈ N ; Σ(ν) = σ

Å
− log ν

log Ju

ã
where Ju = a is the unstable Jacobian of the system and σ(γ) = max(1−dH−2γ, 0). In particular,
σ shares the same properties as the one in Theorem 2, since the classical decay rate of the baker’s
map is 1− dH . The link between Σ(ν) and σ(γ) comes from the heuristic interpretation above.

1.2. Statement of the main theorem. Our proof of Theorem 2 relies on previous results of
[NSZ14]. Their Theorem 5 reduces the study of the scattering resonances λ ∈]1/h − R, 1/h +
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Figure 3. A schematic example of open hyperbolic map with J = 3 in a case
where Dii = ∅ for i = 1, 2, 3.

R[+i]−R,R[ to the study of the cancellation of

z ∈]−R,R[+i]−R,R[ 7→ det(I−M(z;h))

where

(1.2) M(z) = M(z;h) : L2(∂O)→ L2(∂O)

is a family of open quantum hyperbolic maps (see below Section 1.2.1). The family z 7→ M(z)
depends holomorphically on z ∈] − R,R[+i] − R,R[ for some arbitrary R > 0 and is sometimes
called a hyperbolic quantum monodromy operator. The zeros z and the resonances are related by
the relation hλ = 1+z. The notion of monodromy comes from the fact that the outgoing solutions
of the equation −∆u = λ2u must satisfy the equation M(z)u = u, which dictates the behavior of
u on the boundary of the obstacles. We now introduce some definitions required to state the main
theorem of this paper. We show how Theorem 3 implies Theorem 2 using the results of [NSZ14]
in 6.1.

1.2.1. Open quantum hyperbolic maps and statement on the main theorem. The following long def-
inition is based on the definitions in the works of Nonnenmacher, Sjöstrand and Zworski in [NSZ11]
and [NSZ14] specialized to the 2-dimensional phase space. Consider open intervals Y1, . . . , YJ of J
copies of R and set :

Y =

J⊔
j=1

Yj ⊂
J⊔
j=1

R

and consider

U =

J⊔
j=1

Uj ⊂
J⊔
j=1

T ∗R ; where Uj b T ∗Yj are open sets

The Hilbert space L2(Y ) is the orthogonal sum
⊕J

i=1 L
2(Yi).

For j = 1, . . . , J , consider open disjoint subsets ‹Dij b Uj , 1 ≤ i ≤ J , the departure sets, and
similarly, for i = 1, . . . , J consider open disjoint subsets Ãij b Ui, 1 ≤ j ≤ J , the arrival sets (see
Figure 3). We assume that there exists smooth symplectomorphisms, with smooth inverse,

(1.3) Fij : ‹Dij → Fij
Ä‹Dij

ä
= Ãij

We note F for the global smooth map F : ‹D → Ã where Ã and ‹D are the full arrival and departure
sets, defined as

Ã =

J⊔
i=1

J⊔
j=1

Ãij ⊂
J⊔
i=1

Ui‹D =

J⊔
j=1

J⊔
i=1

‹Dij ⊂
J⊔
j=1

Uj
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We define the outgoing (resp. incoming) tail by T+ := {ρ ∈ U ;F−n(ρ) ∈ U,∀n ∈ N} (resp.
T− := {ρ ∈ U ;Fn(ρ) ∈ U,∀n ∈ N}). We assume that they are closed subsets of U and that the
trapped set

(1.4) T = T+ ∩ T−

is compact. We also assume that
T is totally disconnected.

Remark. It is possible that for some values of i and j, ‹Dij = ∅. For instance, when dealing with
the billiard map (see subsection 6.1), the sets ‹Dii are all empty.

We then make the following dynamical assumption.

(1.5) T is a hyperbolic set for F

Namely, for every ρ ∈ T , we assume that there exist stable/unstable tangent spaces Es(ρ) and
Eu(ρ) such that :

• dimEs(ρ) = dimEu(ρ) = 1
• TρU = Es(ρ)⊕ Eu(ρ)
• there exists λ > 0, C > 0 such that for every v ∈ TρU and any n ∈ N,

v ∈ Es(ρ) =⇒ ||dρFn(v)|| ≤ Ce−nλ||v||(1.6)

v ∈ Eu(ρ) =⇒ ||dρF−n(v)|| ≤ Ce−nλ||v||(1.7)

where || · || is a fixed Riemannian metric on U .
The decomposition of TρU into stable and unstable spaces is assumed to be continuous. It allows to
define stable and unstable Jacobians Jun (ρ) and Jsn(ρ) (see Definition 3.3 for the precise definition).
We define the maximal Lyapounov exponent λmax as

(1.8) λmax = sup
ρ∈T

lim sup
n→+∞

1

n
log Jun (ρ)

We also note

(1.9) ϕu(ρ) = log Ju1 (ρ)

Remark.

- The definition is valid for any Riemannian metric on U and we can of course suppose that
is it the standard Euclidean metric.

- It is a standard fact (See [Mat68]) that there exists a smooth Riemannian metric on U ,
which is said to be adapted to the dynamic, such that (1.6) and (1.7) hold with C = 1.

Here ends the description of the classical map. It encompasses the case of the billiard map,
useful when dealing with obstacle scattering (see subsection 6.1). We then associate to F open
quantum hyperbolic maps, which are its quantum counterpart. The definition of such operators is
presented in detail in 2.2.3. An open quantum hyperbolic map T : L2(Y )→ L2(Y ) is an operator-
valued matrices (Tij)ij where Tij : L2(Yj)→ L2(Yi) is a Fourier integral operator associated with
Fij (see Definition 2.4 for a precise definition).

We now come to the statement of the main theorem of this paper.

Assumptions of Theorem 3. We consider a family (Mh(z))z = (M(z;h))z of open hyperbolic
quantum maps, associated with F , as defined in Definition 2.4, and depending holomorphically on
a parameter z ∈ Ω = ΩR =] − R,R[+i] − R,R[ with R fixed (but in practice, for applications, it
can be chosen arbitrarily large). We suppose that there exists L > 0 and a ∈ C∞c (T ∗Y ) such that
supp(a) is contained in a compact neighborhood W of T , W ⊂ ‹D, a = 1 in a neighborhood of T
and uniformly in Ω,

Mh(z)(1−Oph(a)) = O(hL)L2→L2
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Let’s note αh(z) the amplitude of Mh(z) (as defined after definition 2.4). We make the following
assumption on αh : there exists a neighborhood V ⊂ U of T and a smooth function tret : V → R+

1

such that infV tret > 0, supV tret < +∞ and for all z ∈ Ω and ρ ∈ V ,

αh(z)(ρ) = exp(−i Im ztret(ρ)) +O(h1−)S0+

that is, there exists χ ∈ C∞c (U) supported in a larger neighborhood of T with χ ≡ 1 on V , such
that for every η > 0, χ (αh(z)− exp(−iztret)) is in h1−ηSη uniformly for z ∈ Ω. The definition of
the symbol class Sη and S0+ are recalled in Section 2.

Remark. In particular, the principal part αz(ρ) = exp(−iztret(ρ)) of αh is independent of h in V .
This assumption, which may look strong at first glance, is in fact satisfied in the two applications
we consider (see 6.1 and 6.2). In fact, the works of [NSZ11] and [NSZ14] allow to work up to
Im z = C log h. For such z, α is clearly h dependent and lives in the symbol class S0+ .

We also assume that Mh(z) is uniformly bounded for z ∈ Ω and for all h small enough

||Mh(z)||L2→L2 ≤ C.
Let us now define the following quantity :

(1.10) p(β) = − 1

6λmax
P (−ϕu + 2βtret)

where P denotes the topological pressure of ϕ : ρ ∈ T 7→ −ϕu+2βtret with respect to the dynamics
of F on T . It is defined as (see also 3.1)

P (ϕ) = lim
ε→0

lim sup
n→+∞

1

n
logP0(ϕ, n, ε)

where

P0(ϕ, n, ε) = sup

{∑
x∈E

exp

(
n−1∑
i=0

ϕ(F i(x))

)
; E is (n, ε) separated

}
(a subset E ⊂ T is said to be (n, ε) separated if for every x, y ∈ E, x 6= y, there exits 0 ≤ i ≤ n−1,
d(F i(x), F i(y)) > ε). The quantity

∑n−1
i=0 ϕ(F i(x)) is called a Birkhoff sum. The map β 7→ p(β) is

a non increasing function of β and at β = 0, we have

p(0) = − 1

6λmax
P (−ϕu) > 0.

For Ω′ ⊂ Ω, we note mM (Ω′) =
∑
z∈Ω′,fh(z)=0m(z) where m(z) stands for the multiplicity of z

as a zero of fh(z) = det(1−Mh(z)). Note that this determinant is well-defined since the operators
Mh(z) are constructed trace-class (see the 2.2.3). In this paper, we prove

Theorem 3. For every ε > 0, γ > 0 and 0 < R′ < R, there exist C = Cε,γ,R′ > 0 and h0 > 0
such that

mM

(
{|Re z| < R′, Im z ∈ [−γ, 0]}

)
≤ Ch−dH+max(p(γ+ε)−ε,0) , ∀0 < h ≤ h0

where 2dH is the Hausdorff dimension of T .

1.2.2. Application in semiclassical scattering by a potential. The reduction from an open quantum
system to an open quantum hyperbolic map, proved in [NSZ14] for the case of obstacle scattering,
is also proved in the case of potential scattering in [NSZ11]. As a consequence, we can prove a
bound similar to the one given by Theorem 2 in potential scattering. The following theorem is
proved in 6.2 using Theorem 3.

Theorem 4. Let V ∈ C∞c (R2), E0 > 0 and consider the semiclassical pseudodifferential operator
Ph = −h2∆ + V − E0. Let’s note p(x, ξ) = ξ2 + V − E0 and assume that

dp 6= 0 on p−1(0)

Let’s note Hp the Hamiltonian vector field associated with p and Φt = exp(tHp) the corresponding
Hamiltonian flow. Let’s note K0 the trapped set of p at energy 0 and let’s assume that

(i) Φt is hyperbolic on K0 ;
(ii) K0 is topologically one dimensional.

1In the applications, tret is a return time function.
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Let γcl be the classical escape rate of the system at energy 0 and 2dH+1 be the Hausdorff dimension
of K0. Let N(R, γ;h) be the number of resonances of Ph/h in {|Re z| < R, Im z ∈ [−γ, 0]}, counted
with multiplicity. Then, there exists a non increasing function σ : R+ → R+ satisfying

• σ(γ) > 0 for 0 ≤ γ < γcl/2 ;
• σ(γ) = 0 for γ ≥ γcl/2

and such that for all R, γ > 0 and for all ε > 0 there exists CR,γ,ε > 0 and h0 > 0 such that

∀0 < h ≤ h0 , N(R, γ;h) ≤ CR,γ,εh−dH+σ(γ)−ε.

Remark. We are interested in resonances of a Schrödinger operator Ph = −h2∆ + V − E0 in a
neighborhood of 0 of size h. To keep notations consistent with the spectral parameter z appearing
in Theorem 3, we renormalize to study the resonances of Ph/h in a fixed neighborhood of 0.

Remark. The theorem could be extended to a wider class a perturbations of the Laplacian in
manifolds with Euclidean ends. We refer the reader to [NSZ11] (Section 2.1) for more general
assumptions

1.2.3. Skecth of proof of Theorem 3. In [NSZ14], to prove the Fractal Weyl upper bound, the
author modify the monodromy operator M(z;h) and replace it by

MtG(z;h) = e−tGM(z;h)etG

where G = Oph(g) with g an escape function in the critical symbol class S̃1/2, constructed such
that the Fourier integral operator MtG has a small amplitude outside a neighborhood T (h1/2−) of
T , and t is a fixed parameter. Here, to avoid the critical symbol class S̃1/2, we will work in the
symbol class Sδ for some δ = 1/2 − ε, so that the interesting neighborhood of T becomes T (hδ),
which has a volume comparable to hδ(2−2dH).

Since the zeros of z 7→ det(1−MtG(z;h)) coincide (with multiplicity) with the zeros of det(1−
M(z;h)), we wish to count the zeros of det(1−MtG(z;h)). Jensen’s formula and standard spectral
inequalities on spectral determinants reduce the estimates on the zeros of det(1−MtG(z;h)) to a
control on the Hilbert-Schmidt norm of MtG(z;h). In [NSZ14], the author show that MtG is close
to an operator having a rank comparable to h−dH , which lead them to a bound of the form

||MtG(z;h)||2HS ≤ ||MtG(z;h)||2L2→L2 × rank ≤ Ch−dH

To improve the fractal upper bound of [NSZ14] and prove Theorem 3, we start with the simple
observation that the zeros of det(1−MtG(z;h)) are among the zeros of det(1−Mn

tG(z;h)), for any
n ∈ N∗. We use this fact with an exponent n = n(h) depending on h : n(h) ∼ ν log 1/h for some
ν > 0. A priori, when n(h) grows logarithmically, Mn

tG becomes "nasty" (i.e. no more a Fourier
Integral Operator in a suitable class; recall that essentially g ∈ Sδ), and in particular, it becomes
impossible to use Egorov’s theorem as soon as n ≥ ε log 1/h, for some small ε (essentially 1/2−δ

λmax
).

However, the action of the operator MtG(z) on coherent states ϕρ will remain under control for a
sufficiently long logarithmic time. We will be able to obtain good estimates up to

n(h) ∼ 1

6λmax
log 1/h

To use these estimates, we use the representation of the trace in terms of coherent states :

(1.11) ||MtG(z;h)n||2HS =
1

2πh

∫
U

||MtG(z;h)nϕρ||2dρ

The main new ingredient in the present paper will consist in controlling precisely the evolved states
Mn
tGϕρ for such logarithmic times. The behavior of this state will depend on the initial point ρ

(see Proposition 4.2 for a precise and rigorous statement)
• If ρ is not in an hδ neighborhood of T , we will show that for any L > 0, we can find t = t(L)

such that the norm ofMn
tGϕρ is O(hL). As a consequence, the mass in the integral in (1.11)

is essentially contained in an hδ neighborhood of T . In particular, by simply estimating
||MtG(z;h)n||2 ≤ C in a hδ neighborhood of T , we find that

||MtG(z;h)n||2HS ≤ Ch−1hδ(2−2dH) ≤ Ch−dH+O(ε)

This gives the previous upper bound of [NSZ14]
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• For states sufficiently close to T , ϕρ will evolve into a squeezed coherent state, aligned
along the unstable leaves of T+. This phenomenon can be understood as a delocalization
of the coherent state. In the unstable direction, the components of this squeezed state far
from T− (that it at distance bigger that hδ) will experience a strong damping due to the
escape function. For such state, we are able to control the squared L2-norm

wz(ρ) := ||MtG(z;h)nϕρ||2

by (again, see Proposition 4.2 for the rigorous statement)

(1.12) wz(ρ) ≤ C

(
n−1∏
i=0

αz(F
i(ρ))

)2

Jun (ρ)dH−1

where αz(ρ) = exp(−(Im z)tret(ρ)). This is the crucial estimate of this paper.
Plugging this bound into the integral in (1.11), we are able to prove the following upper bound

||MtG(z;h)n||2HS ≤ Cεh−dH+σ̃(z)−O(ε) ; σ̃(z) = − 1

6λmax
P (−ϕu + 2 logαz)

(see Proposition 4.1). The link between the pressure and (1.12) appears when one writes

wz(ρ) ≤ CJun (ρ)dH exp

(
n−1∑
i=0

(−2 Im ztret − ϕu) ◦ F i(ρ)

)
The factor Jun (ρ)dH disappears after integrating (see the proof of Proposition 4.1). It finally gives
Theorem 3 (see Section 4).

The crucial estimate (1.12) is the main novelty of this paper. It relies on propagation of coherent
states and a subtle interaction of the evolved state with the escape function (see Figure 4). The
proof of (1.12) relies on the following ideas :

• The term

(1.13) πα,n(ρ) :=

n−1∏
i=0

αz(F
i(ρ))

comes from the repeated action of M(z) on ϕρ.
• The initial state ϕρ is a wavepacket of size h1/2. M(z)nϕρ is a squeezed coherent state,

microlocalized near Fn(ρ). This is due to the fact that we will work with n = n(h) ≤
1−η

6λmax
log(1/h) for some η > 0. Nevertheless, it is no more microlocalized in a h1/2 neigh-

borhood of this point. It will be more convenient to write it as a Lagrangian state, asso-
ciated with a local unstable leaf Wu(ρn), for some ρn ∈ T close to Fn(ρ) : if ψu(x) is a
generating function for Wu(ρn), that is, if we can write Wu(ρn) = {(x, ψ′u(x)}, the state
will be written

ah(x)e
i
hψu(x)

The size of this Lagrangian state along the unstable manifold is controlled by the local
Jacobian near ρ and is O(h1/2Jun (ρ)) : we will see that

|x| � h1/2Jun (ρ) =⇒ ah(x) = O(h∞)

• Finally, we need to understand the interaction of the escape function with this evolved
state. The action of the escape function damps the part of the state at distance larger
that hδ of T . Since such a state is very close to an unstable manifold, the only relevant
damping on this state comes from the components at distance larger that hδ from T−.
Roughly speaking, to obtain the bound we want, we prove that if d((x, ψ′u(x)), T−) ≤ hδ,
then

(1.14) ah(x) ≤ Cπα,n(ρ) (Jun (ρ))
−1/2

h−1/4

and we prove that we can neglect the remaining points x such that d((x, ψ′u(x)), T−) ≥ hδ
(see Proposition 5.6). It gives

||MtG(z)nϕρ||2L2 ≤ Cπα,n(ρ)2Jun (ρ)−1h−1/2Len(X−(ρ, ρn))

where

X−(ρ, ρn) = {x ∈ R, |x| ≤ CJun (ρ)h1/2, d((x, ψ′u(x)), T−) ≤ hδ}
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(a) A coherent state of size h1/2 ... (b) ...evolved into a squeezed coherent
state.

(c) The escape function damps the region
far from the trapped set...

(d) ... and is responsible of a damping for
the evolved coherent state.

Figure 4. We show the evolution in phase space of a coherent state in an open
hyperbolic system, associated with an open baker’s map. The color is related to
the intensity of the Wigner distribution of the state. The damping due to the
escape function is shown in (4c). The initial coherent state is shown in (4a), and
the evolved state, without damping in (4b). When we apply the damping, the
evolved state loses part of its mass (4d)

.

• It remains to control the length of X−(ρ, ρn). We use the fact that T− ∩Wu(ρn) has box
dimension dH . In fact, we are interested by a piece of Wu(ρn) of size h1/2Jun (ρ) and we
show that such a piece can be covered by Nh balls of radius hδ with (see Lemma 3.6)

Nh ≤ C
Ç

hδ

h1/2Jun (ρ)

å−dH
so that

Len(X−(ρ, ρn)) ≤ CNhhδ ≤ Ch1/2Jun (ρ)dHh−O(ε)

• Putting the pieces together, we obtain (1.12).

Plan of the paper. The paper is organized as follows :
• We start with preliminaries in Section 2 and Section 3. Section 2 is devoted to semiclassi-

cal results concerning pseudodifferential operators, Fourier integral operators, metaplectic
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operators and coherent states. Section 3 focuses on properties of hyperbolic dynamical
systems.

• Section 4 reduces the proof of Theorem 3 to the key proposition 4.2, concerning the behavior
of the propagated coherent states.

• Section 5 is devoted to the proof of Proposition 4.2.

Notations. Throughout the paper, we will use the same constant C at different places, with
different meaning. However, it will always have the same dependence on the dynamical system
and the family of operatorsMh(z) we work with. That is, we write f ≤ Cg instead of : there exists
C > 0 depending on F and Mh(z) such that f ≤ Cg. At some point, we will fix a partition of
unity of U , associated with local charts, depending on parameters ε and ε0. The constants C will
also depend on these objects. If the constant C has other dependencies, we will make it precise it
or write it in subscript if necessary.

Finally, we write f ∼ g to mean C−1f ≤ g ≤ Cf .

Acknowledgment. The author would like to thank Frédéric Naud and Stéphane Nonnenmacher
to let him resume this project on an improved fractal upper bound, and Stéphane Nonnenmacher
for useful discussions, a fruitful help and a careful reading of a first version of this article.

2. Semiclassical preliminaries

2.1. Pseudodifferential operators and Weyl quantization. We recall some basic notions and
properties of the Weyl quantization on Rn. We refer the reader to [Zwo12] for the proofs of the
statements and further considerations on semiclassical analysis and quantizations.

Definitions. We start by defining classes of h-dependent symbols. In the following definitions, m
is a positive functions defined on T ∗Rn of the form 〈ρ〉N , for some N ∈ Z, where 〈ρ〉 =

√
1 + |ρ|2

and ρ = (x, ξ) is a point in phase space T ∗Rn = R2n. m is called an order function (in the sense
of [Zwo12], 4.4.1)

Definition 2.1. Let 0 ≤ δ < 1
2 . We say that an h-dependent family a := (a(·;h))0<h61 ∈ C∞(R2n)

is in the class Sδ(m) (and simply Sδ if m = 1) if for every α ∈ N2n, there exists Cα > 0 such that :

∀0 < h ≤ 1 , sup
ρ∈R2n

|∂αa(ρ;h)| ≤ Cαh−δ|α|m(ρ)

We will use the notation S0+(m) =
⋂
δ>0 Sδ(m).

We write a = O(hN )Sδ(m) to mean that for every α ∈ N2n, there exists Cα,N such that

∀0 < h ≤ 1 , sup
ρ∈R2n

hδ|α|∂αa(ρ;h)| ≤ Cα,NhNm(ρ)

If a = O(hN )Sδ(m) for all N ∈ N , we’ll write a = O(h∞)Sδ(m). For a given symbol a ∈ Sδ, we say
that a has a compact essential support if there exists a compact set K such that2 :

∀χ ∈ C∞c (R2n), suppχ ∩K = ∅ =⇒ χa = O(h∞)S(R2n)

We say that a belongs to the class Scompδ and its essential support is then the intersection of all such
compact K’s. We denote it ess supp a ⊂ K. In particular, the class Scompδ contains all the symbols
supported in a h-independent compact set and these symbols correspond, modulo O(h∞)S(T∗R),
to all symbols of Scompδ . For this reason, we will adopt the following notation: if V b R2n is an
open set, we say that a ∈ Scompδ (V ) if a ∈ Scompδ (R2n) and ess supp a b V .

For a symbol a = a(·;h) ∈ Sδ(m), we’ll quantize it using Weyl’s quantization procedure. It is
informally written as :

(Oph(a)u)(x) =
1

(2πh)n

∫
R2n

a
(x+ y

2
, ξ;h

)
u(y)ei

(x−y)·ξ
h dydξ

2Here S denotes the Schwartz space and the notation O(h∞)S(R2n) means that every semi-norm is O(h∞).
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We will note Ψδ(m) the corresponding classes of pseudodifferential operators. By definition, the
wavefront set of A = Oph(a) is WFh(A) = ess supp a.

We say that a family u = u(h) ∈ D′(Rn) is h-tempered if for every χ ∈ C∞c (Rn), there exist
C > 0 and N ∈ N such that ||χu||H−Nn ≤ Ch−N . For a h-tempered family u, we say that a point
ρ ∈ T ∗Rn does not belong to the wavefront set of u if there exists a ∈ Scomp such that a(ρ) 6= 0
and Oph(a)u = O(h∞)C∞ . We note WFh(u) the wavefront set of u.

We say that a family of operators B = B(h) : C∞c (Rn2)→ D′(Rn1) is h-tempered if its Schwartz
kernel KB ∈ D′(Rn1 × Rn2) is h-tempered. We define the twisted wavefront set of B as

WFh
′(B) = {(x, ξ, y,−η) ∈ T ∗Rn1 × T ∗Rn2 , (x, ξ, y, η) ∈WFh(KB)}

Standard properties. Let us now recall standard results in semiclassical analysis concerning
the L2-boundedness of pseudodifferential operator and their composition. We’ll use the following
version of Calderon-Vaillancourt Theorem ([Zwo12], Theorem 4.23).

Proposition 2.1. There exists Cn > 0 such that the following holds. For every 0 ≤ δ < 1
2 , and

a ∈ Sδ, Oph(a) is a bounded operator on L2 and

||Oph(a)||L2(Rn)→L2(Rn) ≤ Cn
∑
|α|≤8n

h|α|/2||∂αa||L∞

As a consequence of the sharp Gärding inequality (see [Zwo12], Theorem 4.32), we also have
the precise estimate of L2 norms of pseudodifferential operator,

Proposition 2.2. Assume that a ∈ Sδ(R2n). Then, there exists Ca depending on a finite number
of semi-norms of a such that :

||Oph(a)||L2→L2 ≤ ||a||∞ + Cah
1
2−δ

We recall that the Weyl quantizations of real symbols are self-adjoint in L2. If m1 and m2 are
two order functions of the form 〈ρ〉Ni , i = 1, 2, the composition of two pseudodifferential operators
in Ψδ(m1) and Ψδ(m2) is a pseudodifferential operator in the class Ψδ(m1m2). More precisely
(see [Zwo12], Theorem 4.11 and 4.18), if (a, b) ∈ Sδ(m1) × Sδ(m2), Oph(a) ◦ Oph(b) is given by
Oph(a#b), where a#b is the Moyal product of a and b. It is given by

a#b(ρ) = eihA(D)(a⊗ b)|ρ=ρ1=ρ2

where a ⊗ b(ρ1, ρ2) = a(ρ1)b(ρ2), eihA(D) is a Fourier multiplier acting on functions on R4n and,
writing ρi = (xi, ξi),

A(D) =
1

2
(Dξ1 ◦Dx2 −Dx1 ◦Dξ2)

We can estimate the Moyal product by a quadratic stationary phase and get the following expansion
which holds in Sδ(m1m2) for all N ∈ N,

a#b(ρ) =

N−1∑
k=0

ikhk

k!
A(D)k(a⊗ b)|ρ=ρ1=ρ2 + rN

where for all α ∈ N2n, there exists Cα, independent of a and b, such that

||∂αrN ||∞ ≤ CαhN ||a⊗ b||C2N+4n+1+|α|

Weighted Sobolev spaces. We can also define the weighted Sobolev spaces Hh(m). In the case
m = 〈ρ〉N , we have

Hh

(
〈ρ〉N

)
= Oph

(
〈ρ〉−N

) (
L2(Rn)

)
⊂ S ′(Rn)

When N ≥ 0, Hh

(
〈ρ〉N

)
coincides with the space of functions u ∈ S ′(Rn) such that

∀α, β ∈ Nn with α+ β ≤ N , xα(h∂β)u ∈ L2(Rn)

and we have the following equivalence of norms :

||u||2Hh(〈ρ〉N ) ∼ sup
|α|+|β|≤N

||xα(h∂β)u||2L2

As a consequence of Calderon-Vaillancourt theorem, we have for symbols a ∈ Sδ(m) :
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Proposition 2.3. Let N ∈ Z. There exists M ∈ N and C > 0 such that the following holds : For
all a ∈ Sδ

(
〈ρ〉N

)
, Oph(a) : Hh

(
〈ρ〉N

)
→ L2 is uniformly bounded and

||Oph(a)||Hh(〈ρ〉N )→L2 ≤ C sup
|α|≤M

h|α|/2||〈ρ〉−N∂αa||∞

2.2. Fourier Integral Operators. We now review some aspects of the theory of Fourier integral
operators. We follow [Zwo12], Chapter 11 and [NSZ14]. We refer the reader to [GS13] for further
details on Lagrangian distributions and Fourier integral operators. We also introduce the material
needed to understand the definition 2.4 of open hyperbolic quantum maps. We also provide a
quantitative version of Egorov’s theorem.

2.2.1. Local symplectomorphisms and their quantization. We momentarily work in dimension n.
Let us note K the set of symplectomorphisms κ : T ∗Rn → T ∗Rn such that the following holds :
there exist continuous and piecewise smooth (in t) families of smooth functions (κt)t∈[0,1], (qt)t∈[0,1]

such that :
• ∀t ∈ [0, 1], κt : T ∗Rn → T ∗Rn is a symplectomorphism ;
• κ0 = IdT∗Rn , κ1 = κ ;
• ∀t ∈ [0, 1], κt(0) = 0 ;
• there exists K b T ∗Rn compact such that ∀t ∈ [0, 1], qt : T ∗Rn → R and supp qt ⊂ K ;
• d

dtκt = (κt)
∗
Hqt

If κ ∈ K, we note Gκ = Gr′(κ) = {(x, ξ, y,−η), (x, ξ) = κ(y, η)} the twisted graph of κ, which is
Lagrangian in T ∗Rn. We recall [Zwo12], Lemma 11.4, which asserts that local symplectomorphisms
fixing the origin can be seen as elements of K, as soon as we have some geometric freedom.

Lemma 2.1. Let U0, U1 be open and precompact subsets of T ∗Rn. Assume that κ : U0 → U1 is a
local symplectomorphism fixing 0 and which extends to V0 c U0 an open star-shaped neighborhood
of 0. Then, there exists κ̃ ∈ K such that κ̃|U0 = κ.

If κ ∈ K and if (qt) denotes the family of smooth functions associated with κ in its definition,
we note Q(t) = Oph(qt). It is a continuous and piecewise smooth family of operators. Then the
Cauchy problem

(2.1)
ß
hDtU(t) + U(t)Q(t) = 0

U(0) = Id

is globally well-posed.
Following [NSZ14], Definition 3.9, we adopt the definition (withGκ = Gr′(κ)):

Definition 2.2. Fix δ ∈ [0, 1/2). We say that T ∈ Iδ(Rn × Rn;Gκ) if there exist a ∈ Sδ(T ∗Rn)
and a path (κt) from Id to κ satisfying the above assumptions such that T = Oph(a)U(1), where
t 7→ U(t) is the solution of the Cauchy problem (2.1).

The class I0+(Rn × Rn, Gκ) is by definition
⋂
δ>0 Iδ(Rn × Rn, Gκ).

It is a standard result, known as Egorov’s theorem (see [Zwo12], Theorem 11.1) that if U(t)
solves the Cauchy problem (2.1) and if b0 ∈ Sδ, then U(1)−1 Oph(b0)U(1) is a pseudodifferential
operator in Ψδ and if b1 = b0 ◦ κ, then U(t)−1 Oph(b0)U(t)−Oph(b1) ∈ h1−2δΨδ.

Remark. Applying Egorov’s theorem and Beal’s theorem, it is possible to show that if (κt)
is a closed path from Id to Id, and U(t) solves (2.1), then U(1) ∈ Ψ0(Rn). In other words,
Iδ(R× R,Gr′(Id)) ⊂ Ψδ(Rn). But the other inclusion is trivial. Hence, this in an equality :

Iδ(Rn × Rn,Gr′(Id)) = Ψδ(Rn)

The notation I(Rn ×Rn, Gκ) comes from the fact that the Schwartz kernels of such operators are
Lagrangian distributions associated with Gκ, and in particular have wavefront sets included in C.
As a consequence, if T ∈ Iδ(Rn × Rn, Gκ), WFh

′(T ) ⊂ Gr(κ).

We also recall that the composition of two Fourier integral operators is still a Fourier integral
operator : if κ1, κ2 ∈ K and U1 ∈ Iδ(Rn × Rn,Gr′(κ1)), U2 ∈ Iδ(Rn × Rn,Gr′(κ1)), then,

U1 ◦ U2 ∈ Iδ(Rn × Rn,Gr′(κ1 ◦ κ2))
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2.2.2. An important example. Let us focus on a particular case of canonical transformations. Sup-
pose that κ : T ∗Rn → T ∗Rn is a canonical transformation such that

(x, ξ, y, η) ∈ Gr(κ) 7→ (x, η)

is a local diffeomorphism near (x0, ξ0, y0, η0). Then, there exists a phase function ψ ∈ C∞(Rn×Rn),
Ωx,Ωη open sets of Rn and Ω a neighborhood of (x0, ξ0, y0,−η0), such that

Gr′(κ) ∩ Ω = {(x, ∂xψ(x, η), ∂ηψ(x, η),−η), x ∈ Ωx, η ∈ Ωη}
One says that ψ generates Gr′(κ). Suppose that that a ∈ Scompδ (Ωx × Ωη). Then, the following
operator T is an element of Iδ(Rn × Rn,Gr′(κ)) :

(2.2) Tu(x) =
1

(2πh)n

∫
R2n

e
i
h (ψ(x,η)−y·η)a(x, η)u(y)dydη

and if T ∗T = Id microlocally near (y0, η0) - that is if (y0, η0) 6∈WFh(T ∗T − Id)- then |a(x, η)|2 =
|detD2

xηψ(x, η)| + O(h1−2δ)Sδ near (x0, ξ0, y0, η0). The converse statement holds : microlocally
near (x0, ξ0, y0, η0) and modulo a smoothing operator which is O(h∞), the elements of Iδ(Rn ×
Rn,Gr′(κ)) can be written under this form.

2.2.3. Open quantum hyperbolic maps. The aim of this part is to provide the precise definition of
open quantum hyperbolic maps in 2.4. Let us consider an open hyperbolic map F , as described
by the formalism in 1.2.1. We recall that this formalism relies on :

• open intervals Y1, . . . , YJ of R and Y =
⊔J
j=1 Yj ⊂

⊔J
j=1 R ;

• U =
⊔J
j=1 Uj ⊂

⊔J
j=1 T

∗Rd where Uj b T ∗Yj are open sets;
• For j = 1, . . . , J , open disjoint subsets ‹Dij b Uj , 1 ≤ i ≤ J , the departure sets, and for
i = 1, . . . , J open disjoint subsets Ãij b Ui, 1 ≤ j ≤ J , the arrival sets ;

• Smooth symplectomorphisms Fij : ‹Dij → Fij
Ä‹Dij

ä
= Ãij

Then, F is the global smooth map F : ‹D → Ã where Ã and ‹D are the full arrival and departure
sets, defined as

Ã =

J⊔
i=1

J⋃
j=1

Ãij ⊂
J⊔
i=1

Ui‹D =

J⊔
j=1

J⋃
i=1

‹Dij ⊂
J⊔
j=1

Uj

Finally, we recall that we note T ⊂ U the trapped set of F .
Our aim is to define open quantum maps associated with F . We fix a compact set W ⊂ Ã

containing some neighborhood of T . Our definition will depend on W . Following [NSZ14] (Section
3.4.2), we now focus on the definition of the elements of Iδ(Y × Y ; Gr(F )′). An element T ∈
Iδ(Y × Y ; Gr(F )′) is a matrix of operators

T = (Tij)1≤i,j≤J :

J⊕
j=1

L2(Yj)→
J⊕
i=1

L2(Yi)

Each Tij is an element of Iδ(Yi×Yj ,Gr(Fij)
′). Let’s now describe the recipe to construct elements

of Iδ(Yi × Yj ,Gr(Fij)
′).

We fix i, j ∈ {1, . . . , J}.
• Fix some small ε > 0 and two open covers of Uj , Uj ⊂

⋃L
l=1 Ωl, Ωl b Ω̃l, with Ω̃l star-

shaped and having diameter smaller than ε. We note L the sets of indices l such that
Ω̃l ⊂ ‹Dij ⊂ Uj and we require (this is possible if ε is small enough)

F−1(W ) ∩ Uj ⊂
⋃
l∈L

Ωl

• Introduce a smooth partition of unity associated with the cover (Ωl), (χl)1≤l≤L ∈ C∞c (Ωl, [0, 1]),
suppχl ⊂ Ωl,

∑
l χl = 1 in a neighborhood of Uj .

• For each l ∈ L, we denote Fl the restriction to Ω̃l of Fij . By Lemma 2.1, there exists
κl ∈ K which coincides with Fl on Ωl.
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• We consider Tl = Oph(αi)Ul(1) where Ul(t) is the solution of the Cauchy problem (2.1)
associated with κl and αi ∈ Scompδ (T ∗R).

• We set

(2.3) TR =
∑
l∈L

Tl Oph(χl) : L2(R)→ L2(R)

TR is a globally defined Fourier integral operator. We will note TR ∈ Iδ(R× R,Gr(Fij)
′).

Its wavefront set is included in Ãij × ‹Dij .
• Finally, we fix cut-off functions (Ψi,Ψj) ∈ C∞c (Yi, [0, 1])× C∞c (Yj , [0, 1]) such that Ψi ≡ 1

on π(Ui) and Ψj ≡ 1 on π(Uj)(here, π : (x, ξ) ∈ T ∗Y· 7→ x ∈ Y· is the natural projection)
and we adopt the following definitions :

Definition 2.3. We say that T : D′(Yj) → C∞(Yi) is a Fourier integral operator in the class
Iδ(Yi × Yj ,Gr(Fij)

′) if there exists TR ∈ Iδ(R× R,Gr(F )′) as constructed above such that
• T −ΨiTΨj = O(h∞)D′(Yj)→C∞(Yi)

;
• ΨiTΨj = ΨiT

RΨj

For U ′j ⊂ Uj and U ′i = F (U ′j) ⊂ Ui, we say that T (or TR) is microlocally unitary in U ′i × U ′j if
TT ∗ = Id microlocally in U ′i and T ∗T = Id microlocally in U ′j .

Remark. The definition of this class is not canonical since it depends in fact on the compact set
W through the partition of unity.

We can now state our definition for open quantum hyperbolic maps associated with F :

Definition 2.4. Fix δ ∈ [0, 1/2[. We say that T = T (h) is an open quantum hyperbolic map asso-
ciated with F , and we note T = T (h) ∈ Iδ(Y × Y,Gr(F )′) if : for each couple (i, j) ∈ {1, . . . , J}2,
there exists a semi-classical Fourier integral operator Tij = Tij(h) ∈ Iδ(Yj×Yi,Gr(Fij)

′) associated
with Fij in the sense of definition 2.3, such that

T = (Tij)1≤i,j≤J :

J⊕
i=1

L2(Yi)→
J⊕
i=1

L2(Yi)

In particular WFh
′(T ) ⊂ Ã× ‹D. We note I0+(Y × Y,Gr(F )′) =

⋂
δ>0 Iδ(Y × Y,Gr(F )′).

We will say that T ∈ I0+(Y × Y,Gr(F )′) is microlocally invertible near T if there exists a
neighborhood U ′ ⊂ U of T and an operator T ′ ∈ I0+(Y × Y,Gr(F−1)′) such that, for every
u = (u1, . . . , uJ) ∈ L2(Y )

∀j ∈ {1, . . . , J},WFh(uj) ⊂ U ′ ∩ Uj =⇒ TT ′u = u+O(h∞)||u||L2 , T ′Tu = u+O(h∞)||u||L2

Suppose that T is microlocally invertible near T and recall that T ∗T ∈ Ψ0+(Y ). Then, we can
write

T ∗T = Oph(ah)

where ah is a smooth symbol in the class S0+(U). We note αh =
√
|ah| and call it the amplitude

of T . Since T is microlocally invertible near T , |ah| > c2 near T , for some h-independent constant
c > 0, showing that αh is smooth and larger than c in a neighborhood of T .
Remark. If T has amplitude α, at first approximation, T transforms a wave packet uρ0 of norm
1 centered at a point ρ0 lying in a small neighborhood of T into a wave packet of norm α(ρ0)
centered at the point F (ρ0).

2.2.4. A precise version of Egorov’s theorem. We will need a more quantitative version of Egorov’s
theorem, similar to the one in [DJN21] (Lemma A.7). The result does not show that U(1)−1 Oph(a)U(1)
is a pseudodifferential operator (one would need Beal’s theorem to say that) but it gives a pre-
cise estimate on the remainder, depending on the semi-norms of a. We specialize to the case of
dimension 2. The statement is proved in [Vac22] (Proposition 3.3).

Proposition 2.4. Consider κ ∈ K and note U(t) the solution of (2.1). There exists a family of
differential operators (Dj)j∈N of order j such that for all a ∈ Sδ and all N ∈ N,

(2.4) U(1)−1 Oph(a)U(1) = Oph

Ñ
a ◦ κ+

N−1∑
j=1

hj(Dj+1a) ◦ κ

é
+Oκ

(
hN ||a||C2N+15

)
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By using local charts and composition results (see for instance [DZ19], Proposition E.10), it is
possible to build local Fourier integral operators, which, combined with the last proposition, gives

Proposition 2.5. Let V ⊂ R2 = T ∗R an open set and κ : V → U ⊂ R2 a symplectic map. Fix
ρV ∈ V . There exists W ⊂ V ′ ⊂ V , neighborhoods of ρV and a pair (B,B′) of Fourier integral
operators in I0(κ(V ′)×V ′,Gr′(κ))×I0(V ′×κ(V ′),Gr′(κ−1)) which satisfy : there exists differential
operator (Lj)j≥1 of order 2j and supported in V ′ such that for all a ∈ Sδ(R2) with supp a ⊂ W
and for all N ∈ N,

BOph(a)B′ = Oph(a ◦ κ−1) +

N−1∑
j=1

Oph
(
Lja) ◦ κ−1

)
+O

(
hN ||a||C2N+M

)
for some universal integer M .

Proof. It is enough to treat the case ρV = 0 = κ(ρV ). It suffices to consider sufficiently small
neighborhoods of 0 so that the restriction of κ can be seen as the restriction of an element of K.
Then, one uses Proposition 2.4. �

2.3. Metaplectic operator. Among the class of Fourier integral operators acting on L2(R), meta-
plectic operators are the one quantizing the linear symplectic transformations of T ∗R = R2. The
main advantage of metaplectic operators compared with general Fourier Integral operators is that
the Egorov property is exact (see definition 2.6 below). We recall here a few standard facts on
metaplectic operators. We refer the reader to [Zwo12] (Section 11.3) and [CR12] (Chapter 3) for
a more precise presentation and other references.

Definition 2.5. For ρ = (x0, ξ0) ∈ R2 = T ∗R, the phase space translation operator Th(ρ) is
defined as :

Th(ρ)u(x) = e−i
x0ξ0
2h ei

xξ0
h u(x− x0)

It is a unitary on L2(R) and Th(ρ)∗ = Th(−ρ). Moreover, Th(ρ)∗Oph(a)Th(ρ) = Oph(a(· − ρ)) for
any classical observable a ∈ S ′(R).

Proposition 2.6. (and Definition) Let κ : T ∗R → T ∗R be a symplectic linear map. There
exists a unitary operator Mh(κ) : L2(R) → L2(R) such that one of the two following equivalent
conditions hold :

(i) For every ρ ∈ T ∗R,Mh(κ)Th(ρ)Mh(κ)∗ = Th(κ(ρ)) ;
(ii) For all a ∈ S(R),Mh(κ) Oph(a)Mh(κ)∗ = Oph(a ◦ κ−1).

The operatorMh(κ) is unique up to multiplication by an element of U = {z ∈ C, |z| = 1}.

Most of the time we won’t precise that Th(ρ) andMh(κ) depend on h and we will simply write
T (ρ) andM(κ). We will write the index h (or h = 1) when needed. In fact, we can relateMh(κ)
andM1(κ) by the relation :

(2.5) Mh(κ)Λh = ΛhM1(κ)

where Λh is the unitary scaling operator :

(2.6) Λhu(x) = h−1/4u(h−1/2x)

A way to obtain metaplectic operators is by solving the Schrödinger equation associated with
quadratic Hamiltonians.

Proposition 2.7. Let S2(R) be the spaces of symmetric matrices of M2(R). Let t ∈ [0, 1] 7→
S(t) ∈ S2(R) be C1. We note

• the quadratic time dependent Hamiltonian H(t, ρ) = 1
2 (ρ, S(t)ρ) ;

• t ∈ [0, 1] 7→ κ(t) the classical flow for the Hamiltonian H(t), which solves the equation

κ̇(t) = JS(t)κ(t)

where J =

Å
0 1
−1 0

ã
. κ(t) is a symplectic linear map for all t ∈ [0, 1]

• U(t) the propagator of the Schrödinger equation
h

i

d

dt
u(t) + Oph(H(t))u = 0

U(t) is a unitary operator on L2(R) for all t ∈ [0, 1].
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Then, for all t ∈ [0, 1], U(t) is a metaplectic operator associated with the linear symplectic map
κ(t).

Note that for every κ1 ∈ Sp2(R), there always exists a (non unique) C1 curve κ : t ∈ [0, 1] →
Sp2(R) such that κ(0) = I2 and κ(1) = κ1. (see for instance [CR12], Proposition 31 in Chapter 3).
So that we can constructM(κ1) by use of the previous proposition.

Example. The unitary h-Fourier transform Fh, where

Fhu(ξ) =
1

(2πh)1/2

∫
R
u(y)e−

iyξ
h

is a metaplectic operator associated with J .

Example. Suppose that

κ =

Å
a b
c d

ã
with a 6= 0. Then, the following operator is a metaplectic operator associated with κ :

(2.7) M(κ)u(x) =

Å
1

2πh|a|

ã1/2 ∫
R
e
i
2h (ca−1x2+2a−1xξ−a−1bξ2)Fhu(ξ)dξ

2.4. Coherent states.

2.4.1. Definitions and notations. In this subsection, we introduce the notations and definitions we
will use for studying coherent states. We refer the reader to [CR12]. The semiclassical coherent
state (or Gaussian state) centered at zero will be denoted by

(2.8) ϕ0(x) =
1

(πh)1/4
e−

x2

2h

and the coherent state centered at ρ is simply

(2.9) ϕρ := T (ρ)ϕ0

We also write
ϕ0 = ΛhΨ0

where Λh is defined in (2.6) and Ψ0 is the renormalized coherent state

(2.10) Ψ0(x) =
1

π1/4
e−

x2

2

We recall that ϕ0 (resp. Ψ0) is the ground sate of the harmonic oscillator −h2∂2
x + x2 (resp.

−∂2
x+x2). The other eigenfunctions of this harmonic oscillator, called excited states, are obtained

from ϕ0 (resp. Ψ0) by applying the creation operator a = 1√
2h

(−h∂x + x) (resp. Λ∗haΛh =
1√
2
(−∂x + x)). For n ∈ N, we can note for instance

ϕ0,n = anϕ0; Ψn = Λ∗ha
nΛhΨ0

We recall that Ψn = hn(x)Ψ0 where hn is a hermite polynomial of degree n. In particular, if
P ∈ C[X], it is possible to decompose P (x)Ψ0(x) into a linear combination of excited states up to
order deg(P ).

We can also define squeezed coherent states :

Definition 2.6. Let γ ∈ C with Im γ > 0. The squeezed coherent state, deformed by γ and
centered at zero is

ϕ
(γ)
0 (x) = (aγπh)−1/4eiγ

x2

2h

where aγ = Im(γ)−1 makes the norm of this state equal to one. We also define the squeezed
coherent state centered at ρ ∈ T ∗R by

ϕ(γ)
ρ = T (ρ)ϕ

(γ)
0

and the squeezed renormalized coherent state at 0

Ψ
(γ)
0 (x) = (aγπ)−1/4eiγ

x2

2

We conclude this section by recalling a useful formula - a resolution of the identity - which is
the starting point of our analysis (see [CR12], Proposition 6 in Section 1.2). I
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Lemma 2.2. Let A : L2(R)→ L2(R) be a trace class operator. Then,

tr(A) =
1

2πh

∫
T∗R

< Aϕρ, ϕρ > dρ

where dρ denotes the Lebesgue measure of R2.

2.4.2. Action of metaplectic operators on coherent states. We recall here how metaplectic operators
act on coherent states. We refer the reader to [CR12] (Section 3.2) for a complete proof and a
general version in any dimension :

Proposition 2.8. Let κ =

Å
a b
c d

ã
be a symplectic linear map. Let M(κ) be a metaplectic

operator associated with κ, constructed by use of Proposition 2.7, following a path κt from I2 to
κ. Then, we have :

M(κ)ϕ0(x) = (πh)−1/4(a+ ib)−1/2eiγκ
x2

2h

where γκ = (c+ id)(a+ ib)−1.

Remark. The square root (a + ib)1/2 is determined by the path κt ((at + ibt)
1/2 has to be

continuous).
Since Im γκ = |a+ ib|−2, this proposition shows that for some λ ∈ U,

M(κ)ϕ0 = λϕ
(γ)
0

Since the metaplectic operators are defined modulo U, in the rest of this article, we will sometimes
omit to write the factor λ and and by abuse, we could writeM(κ)ϕ0 = ϕ

(γ)
0 . It won’t be specified

anymore. Anyway, we are concerned by the norm of such states.

We also give the following formula concerning the action of metaplectic operators on excited
coherent states (see [Hag98], Section 2) :

Proposition 2.9. Let κ =

Å
a b
c d

ã
be a symplectic linear map. Let M(κ) be a metaplectic

operator associated with κ, constructed by use of Proposition 2.7, following a path κt from I2 to
κ. Then,

M(κ)ϕ0,n = (|a+ ib|2πh)−1/4

Å
(a− ib)
(a+ ib)

ãn/2
hn

Å
x

h1/2|a+ ib|

ã
eiγκ

x2

2h

where γκ = (c+ id)(a+ ib)−1.

In the sequel, we will need to estimate the Hh(〈ρ〉N )-norm of squeezed coherent states in terms
of the squeezing parameter. Equivalently, we need to control this norm for a state of the form
M(κ)ϕρ in terms of κ. To do so, we start by fixing a norm || · || onM2(R) For convenience, let’s
assume that for all linear symplectic map, we have

(2.11) ||κ|| ≥ 1

For instance, let’s say that ||κ|| =
√

2 max(|κ|11, |κ|12, |κ|21, |κ|22). It is not hard to check that this
norm satisfies 2.11 since det(κ) = 1. The main interest of (2.11) is that ||κ||a ≤ ||κ||b if a ≤ b.

We have :

Lemma 2.3. There exists a family of universal constants (KN,k)(N,k)∈N2 such that the following
holds : let N ∈ N, k ∈ N and κ be a symplectic linear map. Then, there exists for all 0 < h ≤ 1,

||M(κ)(xkϕ0)||Hh(〈ρ〉N ) ≤ KN+k

N∑
l=0

h(l+k)/2||κ||l

Proof. Let’s write κ =

Å
a b
c d

ã
. For a state u ∈ Hh(〈ρ〉N ), we have

||u||2Hh(〈ρ〉N ) ∼
∑

α+β≤N

||Oph(xαξβ)u||2L2

Let α, β ∈ N such that α+ β ≤ N . We want to estimates ||Oph(xαξβ)M(κ)(xkϕ0)||2L2 . We have

Oph(xαξβ)M(κ)(xkϕ0) =M(κ) Oph
(
(ax+ bξ)α(cx+ dξ)β

)
(xkϕ0)
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SinceM(κ) is unitary on L2, it is enough to estimates the L2 norm of

Oph
(
(ax+ bξ)α(cx+ dξ)β

)
(xkϕ0) = Oph

Ñ ∑
l=(l1,l2)∈N2,l1+l2=α+β

Bl(κ)xl1ξl2

é
(xkϕ0)

where Bl is some l1 + l2 multilinear form in κ, whose coefficients depend on α and β. In particular,
|Bl(κ)| ≤ Cl||κ||l1+l2 for some universal Cl. Finally, we observe that ||Oph(xl1ξl2)(xkϕ0)||L2 :=
h(l1+l2+k)/2C(l1,l2,k), for some C(l1,l2,k) depending only on (l1, l2, k), and we find that

||Oph
(
(ax+ bξ)α(cx+ dξ)β

)
(xkϕ0)|| ≤ C(α,β,k)

α+β∑
p=0

||κ||ph(p+k)/2

we find the required inequality with KN,k depending on the the Cα,β,k with α+ β ≤ N . �

As a corollary, by specializing at h = 1, we obtain the following :

Corollary 2.1. There exists a family of constantsKN,d, d ∈ N, N ∈ N such that : for all P ∈ C[X],
for all symplectic linear map κ and for all N ∈ N,

||M1(κ)(PΨ0)||H1(〈ρ〉N ) ≤ KN,degPN∞(P )||κ||N

where N∞(P ) is the sup norm of the coefficients of P .

2.4.3. Action of pseudodifferential operators on coherent states. In this subsection, we give precise
results for the actions of semiclassical pseudodifferential operators on coherent states, when the
symbol of the pseudodifferential operator belong to the class Sδ.

Lemma 2.4. Suppose that a ∈ Sδ(T ∗R) with 0 ≤ δ < 1/2. Assume that ρ0 = (x0, ξ0) ∈ T ∗R.
Then, for every N ∈ N, there exists ρN (a, ρ0) ∈ L2 such that

Oph(a)ϕρ0 =

N−1∑
k=0

hk/2ψk(a, ρ0) + hN/2ρN (a, ρ0)

where

ψk(a, ρ0) = T (ρ0)ΛhOp1

Ñ ∑
α+β=k

∂αx ∂
β
ξ a(ρ0)

α!β!
xαξβ

é
Ψ0

and
||ρN (a, ρ0)||L2 ≤ CNh−δN sup

|γ|≤N+M

||hδ|γ|∂γa||∞

Remark. • M is a universal constant.
• The first term of the expansions is a(ρ0)ϕρ0 .
• It is effectively an expansion in power of h1/2−δ since a ∈ Sδ.
• We could also write Op1(xαξβ)Ψ0 in the form P (x)Ψ0 where P is a polynomial of degree
α+ β, or equivalently, it is a linear combination of the first |α|+ |β| excited states.

Proof. Let’s write ϕρ0 = T (ρ0)ΛhΨ0. We have

Oph(a)ϕρ0 = Oph(a)T (ρ0)ΛhΨ0

= T (ρ0)ΛhOp1(bh)Ψ0

where bh(ρ) = a(ρ0 + h1/2ρ). Let’s write the Taylor expansion of a around ρ0 :

bh(x, ξ) =
∑

α+β≤N−1

h(α+β)/2
∂αx ∂

β
ξ a(ρ0)

α!β!
xαξβ + hN/2RN (x, ξ)

where

RN (ρ) =
1

(N − 1)!

∫ 1

0

dN

dtN
a(ρ0 + th1/2ρ)(1− t)N−1dt

Applying Op1 to this expansion, we get the required asymptotic with

ρN (a, ρ0) = T (ρ0)ΛhOp1(RN )Ψ0

It remains to estimates the L2 norm of ρN . Since T (ρ0) is unitary, it is enough to evaluate

ΛhOp1(RN )Ψ0 = Oph(R̃N )ϕ0
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where R̃N (ρ) = RN (h−1/2ρ) = 1
(N−1)!

∫ 1

0
(1 − t)N−1dNa(ρ0 + tρ)(ρ⊗N )dt 3. Using that a ∈ Sδ, it

is not hard to see, after derivation under the integral that, for any γ ∈ N2 and ρ ∈ T ∗R,
|∂γR̃N (ρ)| ≤ CN sup

γ1≤N+|γ|
||∂γ1a||∞〈ρ〉N ≤ h−δ(N+|γ|)||hδ|γ|∂γa||∞〈ρ〉N

This shows that R̃N ∈ h−δNSδ(〈ρ〉N ) in the sense of [Zwo12] (Definition 4.4.3). Then, we find that

hδN Oph(R̃N ) : Hh(〈ρ〉N )→ L2(R)

is a uniformly bounded family of operators, with norm depending on a finite number of semi-norms
of R̃N in Sδ(〈ρ〉N ). We conclude by noting that for any N ∈ N, ϕ0 is in Hh(〈ρ〉N ), with a norm
bounded uniformly in h. Hence

||ρN ||L2 ≤ ||Oph(R̃N )||Hh(〈ρ〉N )→L2(R) × ||ϕ0||Hh(〈ρ〉N ) ≤ h−δNCN sup
|γ|≤N+M

||hδ|γ|∂γb||∞

�

As a simple corollary, we get :

Corollary 2.2. Assume that a vanishes at order k at ρ0. Then,

Oph(a)ϕρ0 = OL2

Ä
hk(1/2−δ)

ä
In particular, if a vanishes in a neighborhood of ρ0, we recover that Oph(a)ϕρ0 = O(h∞). This

is something well known since WFh(ϕρ0) = {ρ0}.

2.4.4. Action of Fourier integral operators on coherent states. In [CR12] (Chapter 4), the authors
study the quantum evolution of coherent states by the propagator of a Schrödinger equation with
a time-dependent Hamiltonian. We refer the reader to their work, and in particular to Theorem
21 in this book for this very general version of the evolution of coherent states. Here, we will
simply study the action of the particular type of Fourier integral operator of the form given in
equation (2.2) on states of the form T (ρ0)M(κ)ϕ0. In other words, we want to study the action of a
Fourier Integral Operator on these squeezed and translated states. More generally, we will consider
also squeezed excited states of the form T (ρ0)M(κ)Λh(P (x)Ψ0(x)). We will give an asymptotic
expansion of these evolved states with a controlled remainder. The dependence of this remainder
on κ will be crucial to use recursively the expansion.

Let’s describe the framework in which we want to work : we suppose that Ωx,Ωη are open
intervals of R, ψ ∈ C∞(Ωx × Ωη) is a phase function that generates the twisted graph of some
symplectic map F in some open set Ω0 ⊂ R4, that is

Gr′(F ) ∩ Ω0 =
{

(x, ∂xψ(x, η), ∂ηψ(x, η),−η), x ∈ Ωx, η ∈ Ωη
}

We suppose that a ∈ Scomp0+ (Ωx × Ωη) and we consider the Fourier integral operator :

Su(x) =
1

(2πh)

∫
R2

e
i
h (ψ(x,η)−y·η)a(x, η)u(y)dydη

We do not necessarily assume that S is microlocally unitary, but if it were the case, a would satisfy
|a(x, η)|2 = |∂2

xηψ(x, η)|+O(h1−ε) for any ε > 0. More generally, the amplitude α of S as a Fourier
integral operator is given, modulo O(h1−)S0+ , by

αS(y, η) =
a(x, η)

|∂2
xηψ(x, η)|1/2

, F (y, η) = (x, ξ)

Proposition 2.10. Assume that S satisfies the above assumptions. Let κ ∈ M2(R) be a sym-
plectic linear map and ρ0 ∈ T ∗R. Let’s note ρ1 = F (ρ0). Let P ∈ C[X]. Then, there exists a
family of polynomials Qk(P )k∈N such that

• Q0(P ) = αS(ρ0)P (up to multiplication by an element of U) ;
• Qk(P ) is a polynomial of degree degP + 3k and the map P 7→ Qk(P ) is linear, with

coefficients depending on κ and the derivatives of ψ and a at (x1, ξ0) up to the 3k-th order,
and we have

N∞(Qk(P )) ≤ C3k(ψ)||a||Ck ||κ||3kN∞(P )

Moreover, if (x1, ξ0) 6∈ supp a, then Qk = 0.

3Here, if f ∈ CN (R2,R), we note dNf(ρ)(h⊗N ) = dN

dtN

∣∣∣
t=0

f(ρ+ th).
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• for every N ∈ N,

(2.12) S
(
T (ρ0)M(κ)Λh[PΨ0]

)
= T (ρ1)M(dρ0F ◦ κ)Λh

[
N−1∑
k=0

hk/2Qk(P )Ψ0

]
+RN

with
||RN ||L2 ≤ hN/2C3N+M (ψ)||a||CN+M ||κ||3NKN,degPN∞(P )

Here,
• Ck(ψ) depends on the Ck norm of ψ
• M is a universal constant ;
• N∞(P ) is the sup norm on the coefficients of P ;
• (KN,d)(N,d)∈N2 is a family of universal constants.
• For every ε > 0 and k ∈ N, there exists Cε,k such that ||a||Ck ≤ Cε,kh−ε.

Remark. This proposition shows that a Fourier Integral operator transforms a wave packet cen-
tered at ρ0 into a wave packet centered at F (ρ0). However, this transformation squeezes the wave
packet according to the linearization of F at ρ0: this is the effect of M(dρ0F ). The control of
the error is important if we want to iterate this formula and apply it to squeezed coherent states
M(κh)ϕ0, with a symplectic linear map κh potentially depending of h. As soon as

||κh||3 � h−1/2

, the remainder stays smaller than the terms in the expansion. In particular, suppose that κh =
κn(h) . . . κ0 with ||κi|| ≤ eλ and n(h) ∼ ν log(1/h). Then, the approximation is valid as soon as

ν ≤ 1− ε
6λ

Proof. The following computations are performed modulo multiplication by an element of U.
Let’s note ρ0 = (x0, ξ0) and ρ1 = (x1, ξ1). Recall that, by definition of ψ,

(2.13) ξ1 = ∂xψ(x1, ξ0) ; x0 = ∂ηψ(x1, ξ0)

We have, for u ∈ L2(R),

(Λ∗hT (ρ1)∗ST (ρ0)Λhu) (x) = h1/4e
− ixξ1

h1/2 (ST (ρ0)Λhu) (h1/2x+ x1)

= e
− ixξ1

h1/2
1

2πh

∫
R2

e
i
h (ψ(h1/2x+x1,η)−y·η)a(h1/2x+ x1, η)e

iyξ0
h u(h−1/2y − x0)dydη

=
1

2π

∫
R2

eiψ̃h(x,η,y)a(h1/2x+ x1, h
1/2η + ξ0)u(y)dydη

after a change of variable, with

(2.14) ψ̃h(x, η, y) =
1

h
ψ(h1/2x+ x1, h

1/2η + ξ0)− yη − h−1/2 (xξ1 + x0η)

Let us write the Taylor expansion of ψ(h1/2x+ x1, h
1/2η + ξ0) at order N + 1 ∈ N :

(2.15) ψ(h1/2x+ x1, h
1/2η + ξ0) = ψ(x1, ξ0) + h1/2 (x∂xψ(x1, ξ0) + η∂ηψ(x1, ξ0))

+
h

2
(D2ψ(x1, ξ0)(x, η), (x, η)) +

N+1∑
k=3

hk/2ψk(x, η) + h(N+2)/2rψN+2(x, η;h)

where ψk is k-multilinear in (x, η) with coefficients depending on the derivatives of ψ of order k at
(x1, ξ0) and for α ∈ N2,

h(N+2)/2rψN+2(x, η;h) =
1

(N + 1)!

∫ 1

0

(1− t)N+1 d
N+2

dtN+2

(
ψ(x1 + th1/2x, ξ0 + th1/2η)

)
dt

In particular, we have the estimates

(2.16) |∂αrψN+2(x, η;h)| ≤ CN sup
N+2≤|β|≤N+2+|α|

h(|β|−N−2)/2||∂βψ||∞〈(x, η)〉N+2
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Recalling (2.13), we can write :

(2.17) (Λ∗hT (ρ1)∗ST (ρ0)Λhu) (x) =

1

2π

∫
T∗R

ei(
1
2 (D2ψ(x1,ξ0)(x,η),(x,η))−yη)eih

1/2rψ3 (x,η;h)a(h1/2x+ x1, h
1/2η + ξ0)u(y)dydη

Then, we write the Taylor expansion of eih
1/2rψ3 (x,η;h) at order N :

(2.18)

eih
1/2rψ3 (x,η;h) =

N−1∑
k=0

ikhk/2

k!
rψ3 (x, η;h)k +

iNhN/2

(N − 1)!
(rψ3 (x, η;h))N

∫ 1

0

eih
1/2srψ3 (x,η;h)(1− s)N−1ds︸ ︷︷ ︸

r̃N

Using (2.15), we write rψ3 =
∑N−k−1
j=0 hj/2ψ3+j + h(N−k)/2rψ3+N−k and we can expandÄ

rψ3
äk

=
∑

α1+···+αk<N−k

h(α1+···+αk)/2ψ3+α1 . . . ψ3+αk + h(N−k)/2 Remainder

where the remainder is a linear combination, with universal coefficients, of terms of the form

(2.19) rψ3+α1
. . . rψ3+αj

ψ3+αj+1
. . . ψ3+αk ; 0 ≤ j ≤ k , α1 + · · ·+ αk = N − k

Gathering all the terms of order hk/2 for k ≤ N − 1, together and gathering all the terms of order
hN/2 in a single remainder term, we have

eih
1/2rψ3 (x,η;h) =

N−1∑
k=0

hk/2P̃k(x, η;ψ) + hN/2rN,1 + r̃N

where
• P̃k(·;ψ) is a polynomial of order 3k in (x, η) with coefficients of the form q

(
(∂αψ(x1, ξ0))|α|≤3+k

)
,

where q is a universal polynomial of degree k;
• rN,1 is a linear combination of terms of the form (2.19) with 0 ≤ k ≤ N − 1, 0 ≤ j ≤ k

and α1, . . . , αk, with α1 + · · ·+ αk = N − k ;
• r̃N is defined in (2.18).

Similarly, we can Taylor expand a(h1/2x+ x1, h
1/2η + ξ0) to find that

(2.20) eih
1/2rψ3 (x,η;h)a(h1/2x+ x1, h

1/2η + ξ0) =

N−1∑
k=0

hk/2Pk(x, η;ψ, a)

+hN/2
N−1∑
k=0

P̃k(x, η;ψ)raN−k(x, η;h) + hN/2rN,1 × a(h1/2x+ x1, h
1/2η + ξ0)︸ ︷︷ ︸

first remainder term

+ r̃N × a(h1/2x+ x1, h
1/2η + ξ0)︸ ︷︷ ︸

second remainder term

where Pk(·;ψ, a) is a polynomial of degree 3k in (x, η), given by

Pk(x, η;ψ, a) =
∑

k1+k2=k

P̃k1(x, η;ψ)×
Å

1

k2!
dk2a(x1, ξ0)((x, η)⊗k)

ã
and for p ∈ N,

rap(x, η;h) =
h−p/2

p!

∫ 1

0

(1− t)p−1 d
p

dtp
a(x1 + th1/2x, ξ0 + th1/2η)dt

Plugging (2.20) in (2.17) with u = M1(κ)(PΨ0), we find an expansion in power of h1/2 for
Λ∗hT (ρ1)∗ST (ρ0)Λhu.
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Identification of the first term. The first term of the expansion is

1

2π

∫
R2

ei(
1
2 (D2ψ(x1,ξ0)(x,η),(x,η))−yη)a(x1, ξ0)u(y)dydη

Differentiating the relation

F (∂ηψ(x, η), η) = (x, ∂xψ(x, η))

it not hard to see that

dρ0F =
1

∂2
xηψ(x1, ξ0)

Ç
1 −∂2

ηηψ(x1, ξ0)

∂2
xxψ(x1, ξ0)

(
∂2
xηψ(x1, ξ0)

)2 − ∂2
ηηψ(x1, ξ0)∂2

xxψ(x1, ξ0)

å
As a consequence, comparing with (2.7), we observe that

v 7→ 1

2π
|∂xηψ(x1, ξ0)|1/2

∫
T∗R

ei(
1
2D

2ψ(x1,ξ0)(x,η)−yη)v(y)dydη

is a metaplectic operator associated with dρ0F , that we noteM1(dρ0F ), and hence, wee see that

ST (ρ0)M(κ)Λh[PΨ0] = T (ρ1)M(dρ0F ◦ κ)Λh

ï
a(x1, ξ0)

|∂xηψ(x1, ξ0)|1/2
PΨ0

ò
+ (smaller terms)

This gives the required form for Q0(P ).

Identification of higher order terms. For the term of order k in the expansion of (2.17), based
on (2.20), we have to understand

1

2π

∫
R2

ei(
1
2 (D2ψ(x1,ξ0)(x,η),(x,η))−yη)Pk(x, η;ψ, a)u(y)dydη

Hence, we focus on terms of the form

Sl,m(u) =
1

2π

∫
R2

ei(
1
2 (D2ψ(x1,ξ0)(x,η),(x,η))−yη)xlηmu(y)dydη

with l+m ≤ 3k. The term xl can be put in front of the integral. Concerning, the η term, repeated
integrations by part (or equivalently, using the usual properties of the Fourier transform), we find
that

Sl,m(u) = xlM1(dρ0F )((i∂y)mu))

Now, combining this with the standard commutations properties of metapletic operators we write

Sl,m(M1(κ)[PΨ0]) = Op1(xl)M1(dρ0F )Op1((−ξ)m)M1(κ)[PΨ0])

=M1(dρ0F ◦ κ)Op1

(
(x ◦ (dF (ρ0) ◦ κ)l

)
Op1 ((−ξ ◦ κ)m) [PΨ0])

Finally, the action of Op1

(
(x ◦ (dρ0F ◦ κ)l

)
Op1 ((−ξ ◦ κ)m) transforms PΨ0 into another state of

the form QΨ0 where Q is of degree degP + l +m, where the coefficients of Q depend linearly on
those of P , with coefficients in the linear combination depending on κ and on dρ0F . By developing
the powers

(
x ◦ (dρ0F ◦ κ)

)l and (−ξ ◦ κ)m, we see that the coefficients of Q are bounded by
Cl,m||dρ0F ||l||κ||l+m for some constant Cl,m.

As a consequence, we can write the entire term of order k in the form : T (ρ1)M(dρ0F ◦
κ)Λh(Qk(P )Ψ0)) where Qk(P ) is a polynomial of order degP + 3k, the map P 7→ Qk(P ) is linear
and its coefficients depend on κ, the derivatives of ψ and a at (x1, ξ0) up to the 3k-th order. This
gives the required polynomial. By putting the terms ||dρ0F ||l into C3k(ψ) and using the special
form of Pk, we obtain the required estimate

N∞(Qk(P )) ≤ C3k(ψ)||a||Ck ||κ||3kN∞(P ).
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Control of the remainders. The last step of the proof consists in proving that the remainder
term has the required bound. As already written with the underbrace in (2.20), this remainder
can be decomposed in two terms: they have different properties. Let us start with the first term,
and call it r̃N,1.

In the products of the form given by (2.19), gathering the factors rψ3+α into a single term and
the polynomials ψk into a single polynomial, we see that the term rN,1, appearing in r̃N,1, is a
sum of terms of the form Qψj (x, η)Rψj (x, η;h), for 0 ≤ j ≤ k, where Qψj is a polynomial of degree
3j and Rψj (x, η;h) satisfies for α ∈ N2,

|∂αRψj (x, η;h)| ≤ C3N−3j+|α|(ψ)〈(x, η)〉3N−3j

where C3N−3j+|α|(ψ) depends on the derivatives of ψ up to the order 3N − 3j + |α|.4 Using the
same kind of estimates for raN−k(x, η; a;h), we see that r̃N,1 satisfies :

(2.21) ∀α ∈ N2, (x, η) ∈ R2 , |∂αr̃N,1(x, η)| ≤ C3N+|α|(ψ)||a||CN+|α|〈(x, η)〉3N

We are now interested in controlling

R̃N,1u(x) :=
1

2π

∫
T∗R

ei(
1
2 (D2ψ(x1,ξ0)(x,η),(x,η))−yη)r̃N,1(x, η)u(y)dydη

We will use the following lemma, proved in the appendix A.1 :

Lemma 2.5. Let b̃ be a symbol in S(〈ρ〉N ). Then, there exists a symbol b ∈ S(〈ρ〉N ) such that
for all 0 < h ≤ 1,

1

2πh

∫
T∗R

e
i
h ( 1

2 (D2ψ(x1,ξ0)(x,η),(x,η))−yη)b̃(x, η)u(y)dydη =M(dρ0F ) Oph(b)u(x)

Moreover, there exists a universal integer M ′ ∈ N such that b satisfies : for all α ∈ N2,

〈ρ〉N |∂αb(ρ)| ≤ Cα sup
|β|≤|α|+M ′

sup
ρ∈T∗R

Ä
|∂β b̃(ρ)|〈ρ〉N

ä
where Cα depends on dρ0F .

By applying lemma 2.5 (in the case h = 1 in the lemma), we can find a symbol rN,h such that

R̃N,1 =M1(dρ0F )Op1(rN,h)

To conclude the treatment of the first part of the remainder, we compute :

||R̃N,1M1(κ)[PΨ0]||L2 = ||M1(dρ0F )Op1(rN,h)M1(κ)[PΨ0]||L2

≤ ||Op1(rN,h)||H1(〈ρ〉3N )→L2 × ||M1(κ)[PΨ0]||H1(〈ρ〉3N )

≤ CM (rN,h)||κ||3NKN,degPN∞(P )

by using Corollary 2.1, where CM (rN,h) depends on the first M semi-norms of rN,h in S(〈ρ〉3N ),
which, in turn depends on the first M +M ′ semi-norms of r̃N,h in S(〈ρ〉3N ) according to Lemma
2.5. By (2.21), this can be controlled by some constant C3N+M+M ′(ψ)||a||CN+M+M′ .

Let’s turn to the second remainder in (2.20). We want to control
1

2π

∫
R2

ei(
1
2 (D2ψ(x1,ξ0)(x,η),(x,η))−yη)r̃N (x, η)u(y)dydη

Recalling the precise description of r̃N in (2.18), we set, for s ∈ [0, 1] :

R̃su(x) =
1

2π

∫
R2

ei(
1
2 (D2ψ(x1,ξ0)(x,η),(x,η))+ish1/2rψ3 (x,η;h)−yη)rψ3 (x, η;h)Na(x1+h1/2x, ξ0+h1/2η)u(y)dydη

and we want to estimate ||R̃sM1(κ)[PΨ0]||L2 uniformly in s ∈ [0, 1]. The symbol

bN (x, η) := rψ3 (x, η;h)Na(x1 + h1/2x, ξ0 + h1/2η)

4These estimates comes from (2.16) and in fact, we can take

C3N−3j+|α|(ψ) = sup
3N−3j≤|β|≤3N−3j+|α|

h(|β|−3N+3j)/2||∂βψ||∞
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lies in the symbol class S(〈ρ〉3N ), with a control on its semi-norms due to (2.16). Let’s admit the
following lemma, whose proof is also put in the appendix A.1.

Lemma 2.6. For every s ∈ [0, 1], there exists Bs(·) ∈ S
(
〈ρ〉6N

)
such that :

• R̃∗sR̃s = Op1(Bs) ;
• There exists a universal M ∈ N such that for all α ∈ N2, for all s ∈ [0, 1], with some

universal constants Cα,

sup
ρ
|∂αBs(ρ)| ≤ Cα

Ç
sup

ρ,|β|≤|α|+M
dβbN (ρ)〈ρ〉−3N

å2

〈ρ〉6N

This lemma allows us to control

||R̃s||2H1(〈ρ〉3N )→L2 ≤ ||R̃∗sR̃s||H1(〈ρ〉3N )→H1(〈ρ〉−3N )

≤ ||Op1(Bs)||H1(〈ρ〉3N )→H1(〈ρ〉−3N )

≤ CN sup
|α|≤M

sup
ρ
| (∂αBs(ρ)) 〈ρ〉−6N |

≤ CN

Ç
sup
|β|≤2M

sup
ρ
dβbN (ρ)〈ρ〉−3N

å2

≤ (C3N+M ′(ψ)||a||CN+M′ )
2

We finally conclude as before for R̃N,1 by using Corollary 2.1. This concludes the proof of Propo-
sition 2.10. �

3. Dynamical preliminaries

3.1. Hyperbolic dynamics. We assumed that F is hyperbolic on the trapped set T . As already
mentioned, we can fix an adapted Riemannian metric on U such that the following stronger version
of the hyperbolic estimates are satisfied for some λ0 > 0 : for every ρ ∈ T , n ∈ N,

v ∈ Eu(ρ) =⇒ ||dρF−n(v)|| ≤ e−λ0n||v||(3.1)

v ∈ Es(ρ) =⇒ ||dρFn(v)|| ≤ e−λ0n||v||(3.2)

Notations. We now use the induced Riemannian distance on U and denote it d.

If ρ ∈ T , n ∈ Z, we use this Riemannian metric to define the unstable Jacobian Jun (ρ) and
stable Jacobian Jsn(ρ) at ρ by :

v ∈ Eu(ρ) =⇒ ||dρFn(v)|| = Jun (ρ)||v||(3.3)
v ∈ Es(ρ) =⇒ ||dρFn(v)|| = Jsn(ρ)||v||(3.4)

These Jacobians quantify the local hyperbolicity of the map. Since F is volume preserving,
Jun (ρ)Jsn(ρ) ∼ 1.

Remark. If we define unstable and stable Jacobian J̃un and J̃sn using another Riemannian metric,
then, for every n ∈ Z and ρ ∈ T ,

J̃un (ρ) ∼ Jun (ρ) ; J̃sn(ρ) ∼ Jsn(ρ)

From the compactness of T , there exists λ1 ≥ λ0 which satisfies

∀n ∈ N,∀ρ ∈ T ; enλ0 ≤ Jun (ρ) ≤ enλ1 and e−nλ1 ≤ Jsn(ρ) ≤ e−nλ0(3.5)

In particular, the following Lyapounov exponents are well-defined

λmax = sup
ρ∈T

lim sup
n

1

n
log Jun (ρ)

λmin = inf
ρ∈T

lim inf
n

1

n
log Jun (ρ) > 0
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We cite here standard facts about the stable and unstable manifolds (see for instance [HK95],
Chapter 6).

Lemma 3.1. For any ρ ∈ T , there exist local stable and unstable manifolds Ws(ρ),Wu(ρ) ⊂ U
satisfying, for some ε1 > 0 (only depending on F ) :

(1) Ws(ρ),Wu(ρ) are C∞-embedded curves, with the C∞ norms of the embedding uniformly
bounded in ρ.

(2) the boundaries of Wu(ρ) and Ws(ρ) do not intersect B(ρ, ε1) 5 and Wu/s(ρ) ⊂ B(ρ, 2ε1)
(these are local unstable/stable manifolds).

(3) Ws(ρ) ∩Wu(ρ) = {ρ}, TρWu/s(ρ) = Eu/s(ρ)

(4) F (Ws(ρ)) ⊂Ws (F (ρ)) and F−(Wu(ρ)) ⊂Wu

(
F−1(ρ)

)
(5) (a) For each ρ′ ∈Ws(ρ), d(Fn(ρ), Fn(ρ′))→ 0.

(b) For each ρ′ ∈Wu(ρ), d(F−n(ρ), F−n(ρ′))→ 0.
(6) Let θ > 0 satisfying e−λ0 < θ < 1. There exists C > 0 (independent of ε1) such that the

following holds :
(a) If ρ′ ∈ U satisfies d(F i(ρ), F i(ρ′)) ≤ ε1 for all i = 0, . . . , n then d (ρ′,Ws(ρ)) ≤ Cθnε1

and for 0 ≤ i ≤ n, d(F i(ρ), F i(ρ′)) ≤ Cε1θ
min(i,n−i).

(b) If ρ′ ∈ U satisfies d(F−i(ρ), F−i(ρ′)) ≤ ε1 for all i = 0, . . . , n then d (ρ′,Wu(ρ)) ≤
Cθnε1 and for 0 ≤ i ≤ n, d(F−i(ρ), F−i(ρ′)) ≤ Cε1θ

min(i,n−i).
(7) If ρ, ρ′ ∈ T satisfy d(ρ, ρ′) ≤ ε1, then Wu(ρ) ∩Ws(ρ

′) consists of exactly one point of T .

Below, we will require that Cε1 < 1. Up to making ε1 smaller, we assume this holds.
For our purpose, we will need a more precise version of these results. The following lemmas are

an adaptation of Lemma 2.1 in [DJN21] to our setting, appearing also in [Vac22], where they have
been partially proved.

Lemma 3.2. There exist constants ε1 > 0 and C > 0 depending only on (U,F ), such that for all
ρ, ρ′ ∈ U ,

(1) if ρ ∈ T and ρ′ ∈Ws(ρ) satisfy d(ρ, ρ′) ≤ ε1, then

(3.6) C−1Jsn(ρ)d(ρ, ρ′) ≤ d (Fn(ρ), Fn(ρ′)) ≤ CJsn(ρ)d(ρ, ρ′) , ∀n ∈ N
(2) if ρ ∈ T and ρ′ ∈Wu(ρ) satisfy d(ρ, ρ′) ≤ ε1, then

(3.7) C−1Ju−n(ρ)d(ρ, ρ′) ≤ d
(
F−n(ρ), F−n(ρ′)

)
≤ CJu−n(ρ)d(ρ, ρ′) , ∀n ∈ N

Proof. We prove (1). (2) is proved in a similar way by inverting the time direction. Let ρ ∈ T , ρ′ ∈
Ws(ρ). Since Tρ(Ws(ρ)) = Es(ρ) and dρF (Es(ρ)) = Es(F (ρ)), the Taylor development of F along
Ws(ρ) gives :

(3.8) d(F (ρ), F (ρ′)) = Js1 (ρ)d(ρ, ρ′) +O
(
d(ρ, ρ′)2

)
= Js1 (ρ)d(ρ, ρ′) (1 +O (d(ρ, ρ′)))

since Js1 ≥ e−λ1 . Applying this equality with F k(ρ) and F k(ρ′) instead of ρ and ρ′, and recalling
that, by lemma 3.1, d(F k(ρ), F k(ρ′)) ≤ Cθkd(ρ, ρ′), we can write,

(3.9) d(F k+1(ρ), F k+1(ρ′)) = Js1 (F k(ρ))d(F k(ρ), F k(ρ′))(1 +O(θkε1))

By this last inequality and the chain rule, we have

(3.10) Jsn(ρ)d(ρ, ρ′)

n−1∏
k=0

(1− Cθkε1) ≤ d(Fn(ρ), Fn(ρ′)) ≤ Jsn(ρ)d(ρ, ρ′)

n−1∏
k=0

(1 + Cθkε1)

We conclude by noting that
n−1∏
k=0

(1 + Cθkε1) ≤
+∞∏
k=0

(1 + Cθkε1) < +∞ ;

n−1∏
k=0

(1− Cθkε1) ≥
∞∏
k=0

(1− Cθkε1) ≥ C−1

(note that in the last inequality and in (3.10) , we need to ensure that ε1C < 1 so that the product
is effectively non zero). �

The following lemma gives a stronger version of (6) in Lemma 3.1 (it has been proved in [Vac22]
- Lemma 3.10-, as the following corollary - Corollary 3.11).

5in other words, there exists a smooth curve γ : [−δ, δ] → U such that γ(0) = ρ, ran(γ) ⊂ Wu/s(ρ) and
B(ρ, ε1) ∩Wi/s(ρ) = γ([−δ/2, δ/2]) : it means that the size of the unstable and stable manifolds is bounded from
below uniformly.
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Lemma 3.3. There exist C > 0 and ε1 > 0, depending only on (U,F ), such that for all ρ, ρ′ ∈ U
and n ∈ N : If ρ ∈ T and d

(
F i(ρ), F i(ρ′)

)
≤ ε1 for all i ∈ {0, . . . , n} then

(3.11) d (ρ′,Ws(ρ)) ≤ C

Jun (ρ)
d (Fn(ρ′),Ws(F

n(ρ)))

(3.12) d
(
Fn(ρ′),Wu(Fn(ρ))

)
≤ C

Jun (ρ)
d (ρ′,Wu(ρ))

and

(3.13) ||dFn(ρ′)F
−n||, ||dρ′Fn|| ≤ CJun (ρ)

As an immediate consequence of this lemma, we get :

Corollary 3.1. There exists C > 0 and ε1 > 0 (depending only on (U,F )) such that for all
ρ, ρ′ ∈ T and n ∈ N :

(1) if d
(
F i(ρ), F i(ρ′)

)
≤ ε1 for all i ∈ {0, . . . , n}, then

(3.14) C−1Jun (ρ) ≤ Jun (ρ′) ≤ CJun (ρ)

(2) if d
(
F−i(ρ), F−i(ρ′)

)
≤ ε1 for all i ∈ {0, . . . , n}, then

(3.15) C−1Js−n(ρ) ≤ Js−n(ρ′) ≤ CJs−n(ρ)

We also record the following fact (see for instance [DJN21] - Lemma 2.4).

Lemma 3.4. There exist ε1 > 0 and C > 0 such that the following holds : For every ρ ∈ T , there
exists a symplectic coordinate chart κρ : Vρ →Wρ ⊂ R2 such that

• B(ρ, ε1) ⊂ Vρ;
• κρ(ρ) = (0, 0)

• κρ (Wu(ρ) ∩ Vρ) = {(u, 0), u ∈ R} ∩Wρ

• dκρ(Es(ρ)) = R(0, 1)

• For any N ∈ N, the CN norm of κρ is bounded uniformly in ρ.

Finally, we conclude by a lemma concerning the linearized dynamics. If ρ ∈ T and ρ′ ∈Wu(ρ),
the tangent space Tρ′Wu(ρ) will naturally be denoted Eu(ρ′) and if v ∈ Tρ′U , we note d(v,Eu(ρ′))
the distance between v and Eu(ρ′) using the Riemanniann metric on Tρ′U .

Lemma 3.5. There exist ε1 > 0, γ ∈ (0, 1) and C > 0 such that the following holds. Assume that
ρ ∈ T , ρ′ ∈ Wu(ρ), v0 ∈ Tρ′U and n ∈ N satisfy : ∀i ∈ {0, . . . , n}, d(F i(ρ), F i(ρ′)) ≤ ε1. Assume
also that ||v0|| = 1 and that d(v0, Eu(ρ′)) ≤ γ. Let’s note

vn =
dρ′F

n(v0)

||dρ′Fn(v0)||
∈ TFn(ρ′)U

Then (see Figure 5),

d
(
vn, Eu(Fn(ρ′))

)
≤ CJun (ρ)−2d(v0, Eu(ρ′))

Remark. This is a form of inclination lemma : the tangent vectors are attracted toward the
unstable direction upon the evolution. We provided a quantitative statement. The assumption
d(v0, Eu(ρ′)) ≤ γ is a transversality assumption : it says that v0 has to be sufficiently transverse
to the stable direction.

Proof. First note that due to the assumption on ρ and ρ′ and Lemma 3.2,

d(F i(ρ), F i(ρ′) ≤ Cθn−id(Fn(ρ), Fn(ρ′)) ≤ Cθn−iε1

for some 0 < θ < 1 and for 0 ≤ i ≤ n. We use coordinates charts κi centered at F i(ρ) (for 0 ≤ i ≤
n), given by Lemma 3.4. Let’s note (ui, si) the coordinates in κi. Since κi(Wu(F i(ρ)) = {(ui, 0)},
the map F between the charts κi−1 and κi is given by :

κi ◦ F ◦ κ−1
i−1(ui−1, si−1) = (νiu

i−1 + αi(u
i−1, si−1), µis

i−1 + βi(u
i−1, si−1))

with βi(ui−1, 0) = 0, dαi(0, 0) = 0 and dβi(0, 0) = 0. Remark that ν1 . . . νi ∼ Jui (ρ) ∼ (µ1 . . . µi)
−1

for 1 ≤ i ≤ n.
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Figure 5. The linearized dynamics makes the vector closer and closer to the
tangent space of the unstable manifold. See Lemma 3.5. The vertical direction
corresponds the to the stable direction, in which the dynamics contracts.

Let us note w0 = dρ′κ0(v0) and w̃n = dFn(ρ′)κn(vn). Hence, we want to show that d(w̃n,Reu) ≤
CJun (ρ)−1d(w0,Reu) where Reu = {(u, 0)}. Here, to compute the distance, both between points
and tangent vectors, we can simply use the usual euclidean distance in R2. Let us also introduce
wi = dρ′(κi◦F i)(v0) and write wi = (wui , w

s
i ). With these notations, we have wn = ||dρ′Fn(v0)||w̃n

and

d(w̃n,Reu) =
wsn

||dρ′Fn(v0)||
Since ||dρ′Fn(v0)|| ∼ ||wn||, we are reduced to prove that

(3.16)
|wsn|
||wn||

≤ CJun (ρ)−2|ws0|

If γ is small enough, we can deduce from the transversality assumption on v0 that |wu0 | ≥ 1
2 |w

s
0|.

In particular, ||w0||2 ≥ 4
3 |w

s
0|2. Let us note (ui, 0) the coordinates of F i(ρ′) in the charts κi and

recall that |ui| ≤ Cθn−iε1. We have the relations

wui = νiw
u
i−1 + dαi(u

i−1, 0) · wi−1

wsi = µiw
s
i−1 + dβi(u

i−1, 0) · wi−1

Since βi(u, 0) = 0, dβi(ui−1, 0) · wi−1 = ∂siβi(u
i−1, 0)wsi−1. Moreover, dβi(0, 0) = 0, and hence,

|∂siβi(ui−1, 0)wsi−1| ≤ C|ui−1||wsi−1| ≤ Cθn+1−iε1|wsi−1|. this gives,

|wsi | ≤ (µi + Cθn+1−iε1) . . . (µ1 + Cθn)|ws0|

|wsi | ≤ µ1 . . . µi

i∏
k=1

Ç
1 +

Cε1θ
n+1−k

µk

å
|ws0|

Since µk ≥ c for some c > 0 and for all 1 ≤ k ≤ n, we can estimate
i∏

k=1

Å
1 +

Cε1θn+ 1− k
µk

ã
≤

i−1∏
k=0

(
1 + Cε1c

−1θk
)
≤
∞∏
i=0

(
1 + Cε1c

−1θi
)
< +∞

As a consequence, |wsi | ≤ CJui (ρ)−1|ws0|. We now turn to a lower bound for ||wn||. From wui =
νiw

u
i−1 +O(|ui−1|||wi−1||), we find that

|wui | ≥ νi|wui−1| − C|ui−1|||wi−1|| ≥ νi|wui−1| − Cθn+1−i||wi−1||

We observe that ||wi−1|| ≤ |wui−1|+ |wsi−1| ≤ |wui−1|+ CJui−1(ρ)−1|ws0|, which gives that

|wui | ≥ |wui−1|(νi − Cθn+1−i)− Cθn+1−iJui−1(ρ)−1|ws0|
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Recall that for θ1 = e−λ1 , we have Jui (ρ)−1 ≤ θi1, so that for some θ2 ∈] max(θ, θ1), 1[, θn+1−iJui (ρ)−1 ≤
Cθn2 . Iterating this formula, we find that

|wun| ≥ (ν1 − Cθn) . . . (νn − Cθ)|wu0 | −
n−1∑
i=1

(νn − Cθ) . . . (νi − Cθn+1−i)θn2 |ws0|

By similar arguments as in the case of |wsn|, we can show that (νn−Cθ) . . . (ν1−Cθn) ≥ C−1Jun (ρ)
and |(νn − Cθ) . . . (ν1 − Cθn)| ≤ ν1 . . . νn ≤ CJun (ρ). As a consequence, and using the fact that
|wu0 | ≥ 1/4||w0|| (by the transversality assumption), we find that

|wun| ≥ C−1(1− θn2 )Jun (ρ)||w0|| ≥ C−1Jun (ρ)||w0||.
We conclude that ||wn|| ≥ |wun| ≥ C−1Jun (ρ)||w0||, which gives (3.16). �

3.2. Topological pressure. Dimensions.

3.2.1. Topological pressure. We recall the definition and some formulas for the topological pressure
associated with a continuous function ϕ : T → R. The dynamical system we consider is the
restriction of F on T . We consider a distance function d on T . For n ∈ N and ε > 0, we say
that a subset E ⊂ T is (n, ε) separated if for every x, y ∈ E, x 6= y, there exists 0 ≤ i ≤ n − 1,
d(F i(x), F i(y)) > ε.

Definition 3.1. If ϕ is a continuous function on T , the topological pressure associated with
ϕ ∈ C(T ,R) is defined as

P (ϕ) = lim
ε→0

lim sup
n→+∞

1

n
logP0(ϕ, n, ε)

where

P0(ϕ, n, ε) = sup

{∑
x∈E

exp

(
n−1∑
i=0

ϕ(f i(x))

)
; E is (n, ε) separated

}
In this paper, we will use another formula for the pressure. To state it, let us introduce a few

notations : if Q is a finite open cover of T , we note diamQ = supA∈Q diamA and for n ∈ N, Q∧n is
the open cover of T by the sets

⋂n−1
i=0 f

−i(Ai) where A0, . . . , An−1 ∈ Q. For ϕ : T → R continuous,
n ∈ N and an open cover Q of T , we define

P1(ϕ, n,Q) = inf

{∑
A∈α

sup
x∈A

exp

(
n−1∑
i=0

ϕ(f i(x))

)
; α ⊂ Q∧n, T ⊂

⋃
A∈α

A

}
Proposition 3.1. [Wal75] (Theorem 1.6). The following formula holds: for any ϕ ∈ C(T ,R),

(3.17) P (ϕ) = lim
diamQ→0

lim
n→∞

1

n
logP1(ϕ, n,Q)

Note that in particular, it asserts that the limit in n exists for all open cover Q.

3.2.2. Dimensions. Let us recall the definition of the upper box dimension of a compact metric
space (X, d). We denote by NX(ε) the minimal number of open balls of radius ε needed to cover
X. Then, the upper box dimension of X is defined as :

(3.18) dimX := lim sup
ε→0

logNX(ε)

− log ε

In particular, if δ > dimX , there exists ε0 > 0 such that for every ε ≤ ε0, NX(ε) ≤ ε−δ.
We recall the following well known result (see for instance [Bar08], Theorem 4.3.2) :

Proposition 3.2. Let s0 be the unique root of the equation P (−sϕu) = 0 ; s ∈ R. Then, For
every ρ ∈ T , dim (T ∩Wu(ρ)) = dim (T ∩Ws(ρ)) = s0. Moreover, dimT = 2s0.

Remark. In fact, this holds also for the Hausdorff dimension and the lower-box dimension but
we will mainly use the upper-box dimension for practical and technical reasons. In the following,
we note s0 = dH .

We will need the slightly more precise following result, which allows to control NWu/s(ρ)∩T
uniformly in ρ :
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Proposition 3.3. There exists ε1 > 0 such that the following holds. For every ε > 0, there exists
Cε > 0 such that for every ρ ∈ T , if Xρ = Wu/s(ρ) ∩ T ,

NXρ(r) ≤ Cεr−(dH+ε); ∀r ≤ ε1

Proof. Obviously, this holds at every ρ ∈ T with Cε a priori depending on ρ. The uniformity is a
consequence of the fact that the holonomy maps are Lipschitz, with uniform Lipschitz norm due
to the compactness of T (see for instance [Vac22], Corollary 3.3). Then, due to the compactness
of T , one can estimate NWu/s(ρ)∩T (ε) by considering only a finite number of (un)stable leaves as
references and apply : Assume that (X, d), (Y, d′) are compact metric spaces and f : X → Y is
C-Lipschitz. Then, for every ε > 0,

Nf(X)(ε) ≤ NX(ε/C)

�

We finish by a lemma estimating the number of balls of size δ needed to cover T ∩Wu(ρ0) ∩ J
where J ⊂Wu(ρ0) is an interval of size l. The difference with Proposition 3.3 is that the size of J
can be much small that ε1.

Lemma 3.6. Let ρO ∈ T . Let κ : U0 → V0 ⊂ R be a smooth chart such that the image of the
local unstable manifold passing through ρ0 is given by a graph

κ(Wu(ρO) ∩ U0) = {(x, g(x)), x ∈ I}

for some open interval I. For J ⊂ I, let’s note

X(J) = {x ∈ J, κ−1(x, g(x)) ∈ T }

Then, for every ε > 0, there exists Cε > 0 depending only on ε, F and κ such that : for all J ⊂ I
interval of length l and for all δ ∈]0, l],

NX(J)(δ) ≤ Cε
Å
δ

l

ã−(dH+ε)

.

Proof. Let’s noteN = NX(J)(δ). IfN = 0, there is obviously nothing to prove. So let’s assume that
N 6= 0 and let’s fix a reference point x0 ∈ X(J) : to x0 corresponds a point ρ0 = κ−1(x0, g(x0)) ∈ T
and we are interested in a piece of unstable manifold of ρ0 of size l.

We know that the upper-box dimension of each T ∩Wu(ρ) is equal to dH . However, since here
we are interested by a small piece of an unstable manifold of size l, we will expand this piece to
reach a size of order 1. We note J0 = κ−1

(
{(x, g(x)), x ∈ J}

)
and for m ∈ N, we note ρm = Fm(ρ0)

and introduce
T := max{m ∈ N, Fm(J) ⊂Wu(ρm) and diamFm(J0) ≤ ε1}

In particular, the definition of T implies that for all ρ ∈ J0, Fm(ρ) is well-defined for 0 ≤ m ≤ T
and satisfies d(Fm(ρ), Fm(ρ0)) ≤ ε1.

Claim : We first claim that if J ′ ⊂ J is a subinterval with X(J ′) 6= ∅, then

diam J ′T ∼
diamJ ′

Ju−T (ρT )

where J ′T = FT (J ′0) for J ′0 = κ−1
(
{(x, g(x)), x ∈ J ′}

)
. In particular, it holds for J ′ = J .

Proof of the claim : Let’s prove this claim and suppose that J ′ ⊂ J is an interval of length
l′ and consider x′ ∈ X(J ′). Let’s note ρ′ = κ−1(x′, g(x′)) ∈ T . If x̂ ∈ J ′ and ρ̂ = κ−1(x̂, g(x̂)) ∈
Wu(ρ′), we have

d(FT (ρ′), FT (ρ̂)) ∼ d(ρ′, ρ̂)

Ju−T (FT (ρ′))
∼ |x′ − x̂|
Ju−T (FT (ρ′))

Since d(Fm(ρ′), Fm(ρ0)) ≤ ε1 for 0 ≤ m ≤ T , we have

Ju−T (FT (ρ′)) ∼ Ju−T (ρT )

In particular, if we choose x̂ such that |x′ − x̂| ≥ diam J ′/3, we have

diam J ′T ≥ C−1 |x′ − x̂|
Ju−T (ρT )

≥ C−1 diam J ′

Ju−T (ρT )
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For the converse inequality, assume that ρ1, ρ2 ∈ J ′0.

d(FT (ρ1), FT (ρ2)) ≤ d(FT (ρ1), FT (ρ′))+d(FT (ρ′), FT (ρ2)) ≤ C |x1 − x′|+ |x′ − x2|
Ju−T (ρT )

≤ C diam J ′

Ju−T (ρT )

which finally gives the required inequality by taking the supremum over ρ1 and ρ2.
End of proof. We have, Ju−T (ρT )diam JT ∼ diam J ∼ l. By definition of T ,

diam FT+1(J0) ≥ ε1

so that
diam FT (J0) ≥ C−1ε1

and hence, Ju−T (ρT ) ≤ Cl (this C also depends on ε1, which is not a problem since ε1 depends only
on F ). Let us fix k > 0, to be determined later. By Proposition 3.1, we can cover JT ∩ T by N
balls of diameter at most kδ with N ≤ Cε(kδ)−dH−ε. Let’s choose ρ1, . . . , ρN ∈ T ∩ JT such that

T ∩ JT ⊂
N⋃
i=1

B(ρi, kδ).

We note xi the point in J such that ρi = FT (ρi) with κ(ρi) = (xi, g(xi)). If x ∈ X(J), then
ρ := FT (κ−1(x, g(x))) ∈ T ∩ JT and there exists i ∈ {1, . . . , N} such that d(ρi, ρ) ≤ kδ. As a
consequence, |x−xi| ≤ CJu−T (ρT )d(ρi, ρ) ≤ C ′lkδ for some constant C ′ depending on F and κ. We
now fix k = (2C ′l)−1, so that X(J) can be covered by N intervals of length δ. As a consequence,

NX(J)(δ) ≤ N ≤ Cε
Å

δ

2C ′l

ã−dH−ε
= C ′ε

Å
δ

l

ã−dH−ε
�

3.3. Escape function. In this subsection, we record the construction of escape functions of
[NSZ14], specialized to our open map F : ‹D ⊂ U → Ã ⊂ U . We do not give the proof, since
it is entirely contained in [NSZ14] (Lemmata 4.1 - 4.4).

Lemma 3.7. Assume that V2 is a small neighborhood of T in which F is well defined. Then,
there exists C0 > 0 and a neighborhood V1 ⊂ V2 of T such that the following holds : For every
ε > 0, there exist functions ϕ̂± = ϕ̂±,ε ∈ C∞ (V1 ∪ F (V1) , [ε,+∞[) such that

ϕ̂±(ρ) ∼ d (ρ, T±)
2

+ ε;

± (ϕ̂±(ρ)− ϕ̂±(F (ρ)) + C0ε ∼ ϕ̂±(ρ);

ϕ̂+(ρ) + ϕ̂−(ρ) ∼ ε;

∂αϕ̂±(ρ) = O
Ä
ϕ̂±(ρ)1−|α|/2

ä
.

The constants in the ∼ and O are independent of ρ ∈ V1 ∪ F (V1) and ε.

Armed with these two functions, we construct the following escape function

(3.19) ĝε = log(Mε+ ϕ̂−)− log(Mε+ ϕ̂+)

where M � 1 is a constant independent of ε and sufficiently large so that the following lemma
holds :

Lemma 3.8. ForM large enough, there exists C1 > 0 such that, uniformly with respect to ε,

ρ ∈ V1 ∪ F (V1) , d(ρ, T ) ≥ C1ε =⇒ ĝε(F (ρ))− ĝε ≥ 1/C1.

Since we will be interested in the dynamics in a neighborhood of T , we fix a smooth cut-off
function χ̂ ∈ C∞c (V1 ∪ F (V1)), independent of ε, such that χ̂ = 1 in a neighborhood of T and we
set

(3.20) gε = χ̂ĝε

As a consequence of the construction of ϕ̂±, it is also possible to check that
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Lemma 3.9. gε satisfies the following estimates : there exist C > 0, µ > 0 and a family of
constants Cα > 0, α ∈ N2, independent of ε such that for all ρ, ζ ∈ U ,

|gε(ρ)| ≤ C| log ε|

|∂αgε(ρ)| ≤ Cα
Ä
ε−|α|/2

ä
exp(gε(ρ))

exp(gε(ζ))
≤ C

≠
ρ− ζ√

ε

∑µ
This last inequality makes egε an order function in the rescaled variable ρ/

√
ε.

We will specialize to ε = h2δ where δ = 1
2 −ε. For this reason, it is important that the constants

do not depend on ε.

4. Proof of Theorem 3

From now on, Mh(z) = M(z;h) is an open hyperbolic quantum map satisfying the assumptions
of Theorem 3. Recall that we note αh(z) the amplitude of Mh(z). Our aim is to understand the
zeros of the Fredholm determinants

det (Id−Mh(z))

Since the spectrum of Mh(z) doesn’t change by conjugation, we will instead study

(4.1) Mt(z;h) := e−tGMh(z)etG

where t will be chosen below and G = Oph(g) where g = gh2δ is the escape function constructed
(3.20), specialized in the case ε = h2δ where δ = 1/2 − ε, for some fixed ε. To alleviate the
notations, we now omit to write that Mt(z) depends on h. The role of this conjugation is to damp
the quantum map outside a small neighborhood of the trapped set so that it confers to the new
operator nicer microlocal properties. To exploit the hyperbolicity of F and the special structure of
the trapped set, we note that the zeros (repeated with multiplicity) of det (Id−Mt(z)) are among
the zeros of

det
(
Id−Mt(z)

2N
)

We will use this remark with an exponent N(h) depending on h in a controlled way and we will
assume that N(h) ≤ C log 1

h for some C > 0. A precise value of N(h) will be given later.

4.1. Application of a Jensen formula. The proof of Theorem 3 relies on the following Propo-
sition, whose proof will occupy the end of this section. Recall that Ω =]−R,R[+i]−R,R[ with R
fixed but large (in particular, R ≥ 4).

Proposition 4.1. Let ε > 0. Let g = gh2δ be the escape function defined in (3.20) (with 1/2−δ =
ε > 0)). Let’s note Mt(z) = e−tOph(g)Mh(z)etOph(g). Let us fix β ∈]0, R[. Then, there exist
t = tε > 0, C = Cε > 0 , νε > 0, ϑε > 0 and N = Nε(h) ∈ N such that

• When ε→ 0,

νε = dH +O(ε) ; ϑε =
1−O(ε)

6λmax

• at fixed ε, when h→ 0, Nε(h) ∼ ϑε log(1/h)
• for all h sufficiently small and for all z ∈ Ω with Im(z) ∈ [−β, 4],

(4.2) tr
Ä(
Mt(z)

N
)∗
Mt(z)

N
ä
≤ Ch−νεh−ϑεP (−2 Im ztret−ϕu)

Remark. Since Im z ≥ −β and since the function s 7→ P (−2stret − ϕu) is non increasing, the
right hand side can be estimated by h−νεh−ϑεP (2βtret−ϕu) = h−dH+p(β)−O(ε). This is where the
function p(β) = − 1

6λmax
P (2βtret − ϕu) appears.

Armed with this proposition, we can conclude the proof of Theorem 3 by using standard ar-
guments of spectral theory and complex analysis (we mainly borrow the arguments from [DD12],
[Dya19]).

Proof of Theorem 3. The exponent dH is known from [NSZ14] in Theorem 4. We focus on the
potential improvement given by p(γ + ε)− ε.

We fix 0 < r < R and γ > 0 and note Ω0 = {|Re z| ≤ r, Im(z) ∈ [−γ, 2]}. For η > 0, we also
note Ωη = {|Re z| < R, Im z ∈]− γ − η, 4[}. Since det(Id−M(z;h)) = det(Id−Mt(z)) and due to
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the relation: Id−A2N = (Id−A)(Id +A + . . . A2N−1), we have (we note mT (Ω1) the numbers of
zeros of det(I−T ) in Ω1, counted with multiplicity),

mM (Ω0) ≤ mMt(Ω0) ≤ mM2N
t

(Ω0)

that is, it is enough to estimates the number of zeros of f(z) = det
(
Id−Mt(z)

2N
)
.

We claim that if H is some Hilbert space and if A : H → H is a trace-class operator, then
log |det(I − A2)| ≤ ||A||2HS = tr(A∗A). Indeed, if we denote λj(A) (resp. σj(A)) the eigenvalues
(resp. singular values) of A repeated with multiplicity, one has,

log |det(I −A2)| =
∑
j

log(|1− λj(A2)|) =
∑
j

log |1− λj(A)2| ≤
∑
j

log(1 + λj(A)2) ≤
∑
j

λj(A)2

Weyl’s inequalities imply that (see for instance [DZ19], Appendix B.5.1)∑
j

λj(A)2 ≤
∑
j

σj(A)2 = ||A||2HS = tr(A∗A)

which gives the desired result. Hence, we have

(4.3) log |det
(
Id−Mt(z)

2N
)
| ≤ tr

(
(MN

t (z))∗MN
t (z)

)
which is known to be controlled by Proposition 4.1. Let’s note z0 = i ∈ Ω0. By the Riemann
mapping theorem, for any η > 0, there exists a conformal map c : Ωη → {|z| < 1} such that
c(z0) = 0. c(Ω0) b c(Ωη), so that there exists δ > 0 such that c(Ω0) ⊂ {|z| < 1 − δ}. We now
apply Jensen’s formula to the function f ◦ c. Let n(t) denote the number of zeros of f ◦ c (counted
with multiplicities), in the disc of radius t . We have, by Jensen’s formula,∫ 1−δ/2

0

n(t)

t
dt =

1

2π

∫ 2π

0

log |f ◦ c((1− δ/2)eiθ)|dθ − log |f(z0)|

Therefore,

mM (Ω0) ≤ mM2N
t

(Ω0) ≤ n(1− δ)

≤ 2

δ(1− δ)

∫ 1−δ/2

1−δ

n(t)

t
dt

≤ 2

δ(1− δ)

∫ 1−δ/2

0

n(t)

t
dt

≤ 2

δ(1− δ)

Ç
1

2π

∫ 2π

0

log |f ◦ c((1− δ/2)eiθ)|dθ − log |f(z0)|
å

≤ 2

δ(1− δ)

Ç
sup
z∈Ωη

log |f(z)| − log |f(z0)|
å

We apply Proposition 4.1 with a small parameter ε′, depending on ε, giving exponents νε′ , ϑε′ .
Since νε′ = dH + O(ε′) and ϑε′ = 1

6λmax
+ O(ε′), we can choose ε′ small enough so that νε′ −

6λmaxϑε′p(γ + η) ≤ dH − p(γ + η) + ε. Hence, we have

sup
z∈Ωη

log |f(z)| ≤ sup
z∈Ωη

h−νε′h−ϑε′P (−2 Im ztret−ϕu) ≤ h−dH−ε+p(γ+η)

since the map β 7→ p(β) is non increasing (recall the definition of p(β) in (1.10). To handle the term
− log |f(z0)|, since αh(z0) < 1 near T , by choosing t large enough, we may ensure that there exists
ρ ∈ [0, 1[ such that for h small enough, ||Mt(z0)|| ≤ ρ (see the proof of Lemma 5.3 in [NSZ14]). As
a consequence, ||M2N(h)

t (z0)|| ≤ Ctρ
2N , so that for h small enough, ||M2N

t || < 1/2. In particular,
for such h, Id−Mt(z0)2N is invertible and∣∣∣∣∣∣(Id−Mt(z0)2N

)−1
∣∣∣∣∣∣ ≤ 2.
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As a consequence, one has

− log |det
(
Id−Mt(z0)2N

)
| = log

∣∣∣det
(
Id−Mt(z0)2N

)−1
∣∣∣

= log
∣∣∣det
Ä
Id +Mt(z0)2N

(
Id−Mt(z0)2N

)−1ä∣∣∣
≤
∣∣∣∣∣∣Mt(z0)2N

(
Id−Mt(z0)2N

)−1
∣∣∣∣∣∣
tr

≤ ||Mt(z0)2N ||tr
∣∣∣∣∣∣(Id−Mt(z)

2N
)−1
∣∣∣∣∣∣

≤ 2||Mt(z0)N ||HS ≤ Ch−dH−ε+p(γ+η)

This concludes the proof.
�

4.2. Proof of Proposition 4.1. We start the proof of Proposition 4.1. We fix some ε > 0 and we
froze the complex variable z and note Mh and αh instead of Mh(z) and αh(z) : we momentarily
forget this dependence but keep in mind that Im(z) ∈ [−β, 4] for some β > 0. In particular,
αh(z) = e− Im ztret +O

(
h−1S0+

)
in a neighborhood of T and the constant in the estimates below

can be chosen independent of z.

Reduction to FIO acting on R. We will note RJ =
⊔J
j=1 R and L2(RJ) =

⊕J
j=1 L

2(R). Recall
that by construction (see 2.2.3), Mh is an operator of the form (Mij(h)) where Mij(h) : L2(Yj)→
L2(Yi). It will be more convenient for us to work on L2(R). For this purpose, recall that, for all
i, j, there exists M̃ij(h) ∈ I0+ (R× R,Gr(Fij)

′) and cut-off functions Ψi,Ψj such that as operators
L2(Yj)→ L2(Yi)

Mij(h) = ΨiM̃ij(h)Ψj +O(h∞)

and as operator L2(R)→ L2(R),

M̃ij(h) = ΨiM̃ij(h)Ψj +O(h∞)

where, in the two equalities above, the O(h∞) hold for the trace norm. Let’s note Mψ(h) =
(ΨiMij(h)Ψj)ij . As soon as N ≤ C log 1

h , M(h)N = MΨ(h)N + O(h∞) as operators L2(Y ) →
L2(Y ) and MΨ(h)N = M̃(h)N + O(h∞) as operators L2(RJ) → L2(RJ). The same holds after
conjugation by etG. In particular, this sows that

trL2(Y )

(
(MN

t )∗MN
t

)
= trL2(RJ )

Ä
(M̃N

t )∗M̃N
t

ä
+O(h∞)

Since the O(h∞) will finally be adsorbed in our required inequality, it is enough to work with M̃(h)
instead of Mh.

From now on, we will write Mh for the operator M̃h : L2(RJ)→ L2(RJ). There exists ΨA,ΨD

such that
supp ΨA b Ã ; supp ΨD b ‹D

and
ΨAMh = Mh +O(h∞); MhΨD = Mh +O(h∞)

Moreover, we will now omit the h-dependence of the semiclassical operators in the notations when
this dependence is obvious. In particular, we will simply write M , α or Mt instead of Mh, αh and
Mt(h) respectively.

Notations. A function a on T ∗RJ =
⊔J
j=1 T

∗R is a J-uple of functions (a1, . . . , aJ). The quan-
tization Oph(a) is the diagonal matrix with diagonal entries Oph(aj). The support of a is the
disjoint union of the supports of the aj ’s, so as the wavefront set of Oph(a).

4.2.1. Refined quantum partition. In virtue of Proposition 3.1, applied with ϕ = −2 Im ztret −ϕu,
there exists η > 0 such that for any open cover Q of T of diameter smaller than η, one has

(4.4)
∣∣∣∣ lim
n→+∞

1

n
logP1(ϕ, n,Q)− P (ϕ)

∣∣∣∣ ≤ ε/3
We consider some ε0 > 0, which is supposed to be small enough to satisfy all the assumptions

which will appear in the following and which will follow us throughout the end of the chapter. In
particular, we first impose ε0 < η.
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Since T is totally disconnected, there exists an open cover of T by a finite number of disjoint open
sets (of U) of diameter smaller than ε0 :

T ⊂
⋃
A∈Q

A

We fix some ρA ∈ T ∩ A and we assume that for all A ∈ Q, there exists jA, lA,mA ∈ {1, . . . , J}
such that

A ⊂ B(ρA, 2ε0) ⊂ ÃjAlA ∩ ‹DmAjA ⊂ UjA
ε0 is supposed to be small enough so that :

• e−τm ≤ αh ≤ eτM in B(ρA, 2ε0) for some τm, τM , for all h small enough.
• If ε1 denotes the one appearing in Lemma 3.4, 2ε0 ≤ ε1, and then, there exists a chart
κA : B(ρA, 2ε0) → WA = κA(B(ρA, 2ε0)), given by Lemma 3.4, adapted to the dynamics,
where WA is a subset of T ∗R centered at 0. .

• There exist Fourier integral operators BA, B
′
A ∈ I0(R×R,Gr′(κA))× I0(R×R,Gr′(κ−1

A )),
quantizing κA in a neighborhood of κA

(
A
)
× A.

Notations. We will still denote BA and B′A the operators

BA = Diag(0, . . . BA, . . . , 0) : L2(RJ)→ L2(RJ) ; B′A = Diag(0, . . . , B′A, . . . , 0) : L2(RJ)→ L2(RJ)

with the non zero entry in position jA. When we say that (BA, B
′
A) quantize κA in a neighborhood

of κA
(
A
)
× A, we mean that B′ABA = I + O(h∞) microlocally in a neighborhood of A (in the

sense that if supp(c) is included in this neighborhood of A and if C = Oph(c), then B′ABAC =
C + O(h∞) ; CB′ABA = C + O(h∞)) and BAB

′
A = I + O(h∞) microlocally in a neighborhood of

κA(A).

In virtue of the equation (4.4), there exists n0 ∈ N such that∣∣∣∣ 1

n0
logP1(ϕ, n0,Q)− P (ϕ)

∣∣∣∣ ≤ 2ε/3

As a consequence, there exists a subpartition (Wq)q∈A ⊂ Qn0 such that T ⊂
⋃
q∈AWq and

(4.5)
∑
q∈A

sup
ρ∈Wq∩T

exp

(
n−1∑
i=0

ϕ(F i(ρ))

)
≤ en0(P (ϕ)+ε)

For q ∈ A, we can find an open set Vq bWq such that T ∩Wq ⊂ Vq. (Vq)q∈A is still a cover of T .
We complete this cover with

(4.6) V∞ = RJ \
⋃
q∈A
Vq

We note A∞ = A ∪ {∞}. Note also that for q ∈ A, Wq is of the form

A0 ∩ F−1(A1) ∩ · · · ∩ F−(n−1)(An−1)

and in particular Wq ⊂ A0 : we note jq, lq,mq, ρq, κq, Bq, B
′
q, Wq, instead of jA0

, lA0
,mA0

, ρA0
,

κA0
, BA0

, B′A0
, WA0

. Then, for q ∈ A, we consider a cut-off function χq ∈ C∞c (RJ , [0, 1]) such that
supp(χq) ⊂ Wq and χq ≡ 1 in a neighborhood of Vq. Finally, we note χ∞ = 1−

∑
q∈A χq. We note

that χq is supported in only one copy of R in RJ when q ∈ A and χ∞ has non-zero components in
all the copies of R in RJ . Moreover, supp(χ∞) ⊂ V∞.

We then quantize the symbols χq, q ∈ A∞ :

(4.7) Aq = Oph(χq)

Note that for q ∈ A, Aq is a diagonal matrix with a single non zero coefficient. The family
(Aq)q∈A∞ satisfies the following properties :

(4.8)
∑
q∈A∞

Aq = Id ; ∀q ∈ A∞, ||Aq|| ≤ 1 +O(h)

Since Mn0 =
∑
q∈A∞M

n0Aq, we may write

Mnn0 =
∑

q∈An∞

Mq

where for q = q0 . . . qn−1 ∈ An∞,
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(4.9) Mq := Mn0Aqn−1
. . .Mn0Aq0

For q = q0 . . . qn−1 ∈ An∞, we also define a family of refined neighborhoods, forming a refined cover
of T ,

(4.10) V−q =

n−1⋂
i=0

F−in0 (Vqi) ; V+
q = Fnn0

(
V−q
)

=

n−1⋂
i=0

F (n−i)n0 (Vqi)

and we adopt the same definitions by changing V into W. Roughly speaking, we expect that each
operator Mq acts from W−q to W+

q and is negligible elsewhere. Combining (4.8), the fact that
αh ≤ eτM in B(ρA) and the bound on M , the following bound is valid :

(4.11) ||Mq||L2→L2 ≤
(
eτM +O(h1−)

)nn0

As soon as |n| ≤ C0| log h|, we have ||Mq||L2→L2 ≤ Cenn0τM , for some C depending on C0 and a
finite number of semi-norms of αh and then

||Mq|| ≤ Ch−K

for some C,K > 0 depending on C0 and αh.

4.2.2. Local unstable Jacobian. We want to define unstable Jacobians associated with these refined
partition. Let’s fix a word q = q0 . . . qn−1 ∈ An and assume that W−q 6= ∅. Fix ρ ∈ W−q . By
definition of Wqi , there exists A0,i, . . . ,An0−1,i ∈ Q such that

Wqi =

n0−1⋂
j=0

F−j(Aj,i)

Hence, for 0 ≤ l ≤ n′ = n× n0 − 1, there exists ρl ∈ T such that d(ρl, F
l(ρ)) ≤ 2ε0. Hence,

d(F (ρl), ρl+1) ≤ d(F (ρl), F
l+1(ρ)) + d(F l+1(ρ), ρl+1) ≤ Cε0

That is to say, (ρ0, . . . , ρn′) is a Cε0 pseudo orbit. Assume that δ0 > 0 is a small fixed parameter. In
virtue of the shadowing lemma (see [HK95], Section 18.1), if ε0 is sufficiently small, (ρ0, . . . , ρn′) is
δ0 shadowed by an orbit of F : there exists ρ′ ∈ T such that for i ∈ {0, . . . , n′}, d(ρi, F

i(ρ′)) ≤ δ0.
Consequently, d(F i(ρ), F i(ρ′)) ≤ δ0 + Cε0. If ρ2 is another point in W−q , for i = 0, . . . , n′,
d(F i(ρ2), F i(ρ′)) ≤ 2ε0 +Cε0 + δ0. For convenience, set ε2 = 2ε0 + δ0 +Cε0 and note that ε2 can
be arbitrarily small depending on ε0. As a consequence, we have proven the following

Lemma 4.1. If W−q 6= ∅, there exists ρ′ ∈ T such that ∀l ∈ {0, . . . , nn0− 1} and for any ρ ∈ W−q ,
d(F l(ρ), F l(ρ′)) ≤ ε2.

We fix any ρ′ satisfying the conclusions of this lemma and we arbitrarily set (recall also the
definition of Jun (ρ) in (3.3) for ρ ∈ T )

(4.12) Juq := Junn0
(ρ′) =

n−1∏
j=0

Jun0
(F jn0(ρ′))

If ρ′1 is another point satisfying this conclusion, we have d(F i(ρ′), F i(ρ′1)) ≤ 2ε2 for i ∈ {0, . . . , n′}
and in virtue of Corollary (3.1),

Junn0
(ρ′) ∼ Junn0

(ρ′1)

Hence, up to global multiplicative constant, the definition of this unstable Jacobian is independent
of the choice of ρ′. Notice that ifW−q ∩T 6= ∅, any ρ′ ∈ T ∩W−q satisfies the conclusions of Lemma
4.1 and Juq ∼ Junn0

(ρ′).
We have the following facts concerning these local unstable Jacobian :

Lemma 4.2. If ε0 is small enough, the following holds. There exists C > 0 such that for all
q ∈ An and for all ρ ∈ W−q , we have

• ||dρFnn0 || ≤ CJuq
• d(Fnn0−1(ρ), T+) ≤ C

(
Juq
)−1

d(ρ, T+)

• d(ρ, T−) ≤ C
(
Juq
)−1

d(Fnn0−1(ρ), T−)



IMPROVED FRACTAL WEYL UPPER BOUND IN OBSTACLE SCATTERING 37

Proof. The three points are consequences of Lemma 3.3. The first point is an easy one. Concerning
the other two, first recall that T+ (resp. T−) is, in a neighborhood of T , equal to the union of local
unstable (resp. stable manifolds). Let’s consider the second inequality. The proof of the third
one is similar, by inverting the time direction. We fix ζ ∈ T such that d(ρ, T+) = d(ρ,Wu(ζ))
and d(ζ, ρ) ≤ 2ε0. Recall that by Lemma 4.1, there exists ρ′ such that ∀i ∈ {0, . . . , nn0 − 1} and
d(F i(ρ), F i(ρ′)) ≤ ε2. We hence consider the unique point ζ ′ ∈Wu(ζ)∩Ws(ρ

′). Since ζ ′ ∈Ws(ρ
′),

d(F i(ζ ′), F i(ρ′)) ≤ CJsi (ρ)d(ρ′, ζ ′) for all 0 ≤ i ≤ nn0 − 1. If ε0 is small enough, we may assume
that CJsi (ρ)d(ρ′, ζ ′) ≤ 1

2ε1 for 0 ≤ i ≤ n− 1 (where ε1 appears in Lemma 3.3). As a consequence,
Junn0

(ζ ′) ∼ Junn0
(ρ′) ∼ Juq . Moreover, d(F i(ρ), F i(ζ ′)) ≤ 1

2ε1 + ε2 for all 0 ≤ i ≤ nn0 − 1. Hence, if
ε2 ≤ 1

2ε1,

d(Fnn0−1(ρ), T+) ≤ d(Fnn0−1(ρ),Wu(Fn(ζ ′))) ≤ CJunn0
(ζ ′)d(ρ,Wu(ζ ′)) ≤ CJuqd(ρ, T+)

�

4.2.3. Numerology. In this subsection, we introduce the parameters we will work with. Recall that
ε has been fixed. We set δ = 1/2− ε : it is related to the regularity of the escape function g. For
technical reasons, we also introduce

(4.13) δ0 =
1

2
− ε

2
; δ1 = δ − ε

2
=

1

2
− 3ε

2

satisfying δ1 < δ < δ0 < 1/2. Recall that n0 has been chosen in (4.5) and that

λmax = sup
ρ∈T

lim sup
n→+∞

1

n
log Jun (ρ)

We define precisely the parameter ϑε appearing in Proposition 4.1 as

(4.14) ϑε =
1− 4ε

6λmax(1 + ε)2

The precise value of ϑε will be used in the following : what is important is that ϑε = 1
6λmax

−O(ε) <

1/6λmax. Finally, we set

n = n(h) =

õ
ϑε
n0

log
1

h

û
which satisfies

eλmax(1+ε)nn0 ≤ h−
1−4ε

6(1+ε)

In particular, we assume that ε is small enough to ensure that

hδ0h−
1−4ε

6(1+ε) ≤ h1/3

This will constraints the width of the evolved coherent states.

4.2.4. Reduction to L2-bounds of an evolved coherent state. We can find a uniform T0 ∈ N such
that if ρ ∈ V∞, there exists k ∈ {−T0, . . . , T0} such that F k(ρ) "falls" in the hole - that is, either
there exists k ∈ {1, . . . , T0} such that F i(ρ) ∈ ‹D for 1 ≤ i ≤ k − 1 and F k(ρ) ∈ U \ ‹D or there
exists k ∈ {1, . . . , T0} such that F−i(ρ) ∈ Ã for 1 ≤ i ≤ k − 1 and F−k(ρ) ∈ U \ Ã. By standard
properties of the Fourier integral operators, each component (MT0)ij of MT0 is a Fourier integral
operator associated with the component (FT0)ij of FT0 . In particular, WFh

′(MT0) ⊂ Gr(FT0).
Let us study M2T0+nn0 = MT0Mnn0MT0 , and let’s decompose Mnn0 =

∑
q∈An∞

Mq. If q =

q0 . . . qn−1 ∈ An∞ and if there exists an index i ∈ {0, . . . , n− 1} such that qi =∞, one can isolate
this index i and trap Aqi between two Fourier integral operators M1,M2, belonging to a finite
family of FIO associated to FT0 , so that we can write

MT0MqM
T0 = B1M1A∞M2B2

where B1, B2 satisfy the L2-bound :

||B1|| × ||B2|| ≤ C(||αh||∞)nn0−1 = O(h−K)
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for some integer K, and we have M1A∞M2 = O(h∞), with constants that can be chosen inde-
pendent of q. Hence, the same is true for MT0MqM

T0 . So, we can write, keeping in mind that
|A|n = O(h−K) for some K > 0 :

Mnn0+2T0 =
∑

q∈An∞

MT0MqM
T0

=
∑

q∈An
MT0MqM

T0 +O(h∞)

=MT0

Ñ∑
q∈An

Mq

é
MT0 +O(h∞)

Let us note

(4.15) M = Mn0(Id−A∞) = Mn0

∑
q∈A

Aq

We have shown the following lemma :

Lemma 4.3. There exists T0 ∈ N such that

M2T0+nn0 = MT0MnMT0 +O(h∞)

Let us now look at what this equation implies on the trace of M2T0+nn0 . In the following
computations, we use : If A is an Hilbert-Schmidt operator and B bounded,

(i) tr(A∗A) = ||A||2HS ;
(ii) ||AB||HS ≤ ||B|| × ||A||HS ; ||BA||HS ≤ ||B|| × ||A||HS

tr
ÄÄ
M2T0+nn0
t

ä∗
M2T0+nn0
t

ä
= ||M2T0+nn0

t ||2HS

=
∣∣∣∣∣∣MT0

t Mn
tM

T0
t

∣∣∣∣∣∣2
HS

+O(h∞)

≤ ||MT0
t ||4||Mn

t ||2HS +O(h∞)

≤ ||MT0
t ||4 tr

(
(Mn

t )
∗
Mn
t

)
+O(h∞)

Hence, is is enough to find the expected upper bound (4.2) for tr
(
(Mn

t )
∗
Mn
t

)
to obtain the same

kind of upper bounds for tr
Ä(
Mt(z)

N
)∗
Mt(z)

N
ä
.

Evolution in local adapted charts. We will be interested in the evolution of coherent states
through the action of M. It will be more convenient to work in the charts κq in which the action
of F is well adapted to the position-momentum coordinate (x, ξ). For this purpose, we start by
writing,

Mn
t = e−tGMn−1

∑
q∈A

Mn0Aqe
tG

Recall that B′qBq = I +O(h∞) microlocally near supp(aq), hence,

Mn
t = e−tGMn−1

∑
q∈A

Mn0AqB
′
qBqe

tGB′qBq +O(h∞)

Let’s note

(4.16) Ẽt = Bqe
tGB′q
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We also fix Ãq = Oph(ãq) such that WFh(Ãq) ⊂ Wq and ãq = 1 near supp(χq). This gives :

tr
(
(Mn

t )
∗
Mn
t

)
=
∑
q,p∈A

tr
ÄÄ
e−tGMn−1Mn0ApB

′
pẼtBpÃp

ä∗
e−tGMn−1Mn0AqB

′
qẼtBqÃq

ä
+O(h∞)

=
∑
q,p∈A

tr
Ä
B∗p
Ä
e−tGMn−1Mn0ApB

′
pẼt
ä∗
e−tGMn−1Mn0AqB

′
qẼtBqÃqÃ

∗
p

ä
+O(h∞)

=
∑
q∈A

tr
Ä
B∗q
Ä
e−tGMn−1Mn0AqB

′
qẼt
ä∗
e−tGMn−1Mn0AqB

′
qẼtBqÃqÃ

∗
q

ä
+O(h∞)

≤ CQ sup
q∈A

tr
ÄÄ
e−tGMn−1Mn0AqB

′
qẼt
ä∗
e−tGMn−1Mn0AqB

′
qẼt
ä

+O(h∞)

where C is such that C0||Bq|| × ||BqÃqÃ∗q || ≤ C for all q ∈ A (and 0 < h ≤ 1) and Q = |A|. The
passage from the second to the third line holds since ÃqÃ∗p = O(h∞) when q 6= p, in virtue of the
fact that Wp ∩Wq 6= ∅. This computations show that it is enough to control, uniformly in q, the
trace

(4.17) tr
ÄÄ
e−tGMn−1Mn0AqB

′
qẼt
ä∗
e−tGMn−1Mn0AqB

′
qẼt
ä

since we now have :
(4.18)
tr
ÄÄ
M2T0+nn0
t

ä∗
M2T0+nn0
t

ä
≤ CQ sup

q∈A
tr
ÄÄ
e−tGMn−1Mn0AqB

′
qẼt
ä∗
e−tGMn−1Mn0AqB

′
qẼt
ä
+O(h∞)

From now on, we will note ρ, ζ, etc. points in U and ρ̂, ζ̂, etc. their images in the local charts
κq. The resolution of identity of Lemma 2.2, valid at the level of operators on L2(R), extends to
the case of matrix operator acting on L2(RJ), in the following sense :

tr(A) =

J∑
j=1

1

2πh

∫
T∗R

< Ajjϕρ̂, ϕρ̂ > dρ̂

Hence, if K = e−tGMn−1Mn0AqB
′
qẼt, we have

tr (K∗K) =

J∑
j=1

1

2πh

∫
T∗R

< (K∗K)jjϕρ̂, ϕρ̂ > dρ̂

=
∑

1≤i,j≤J

1

2πh

∫
T∗R

< Kijϕρ̂,Kijϕρ̂ > dρ̂

Since AqB′q is diagonal with only one non-zero diagonal entry in position jq, Bij = 0 except when
j = jq. We can write :
(4.19)

tr
Ä(
e−tGMn−1MAqB

′
q

)∗
e−tGMn−1Mn0AqB

′
qẼt
ä

=
1

2πh

∫
T∗R

∣∣∣∣∣∣e−tGMn−1Mn0AqB
′
qẼtϕ̃ρ̂

∣∣∣∣∣∣2 dρ̂
where ϕ̃ρ̂ is the column vector with only one non-zero entry equal to ϕρ̂ in position jq.

4.2.5. End of the proof. The main ingredient for the proof of the improved fractal Weyl law, which
is also the main novelty of this article, is a good control for

(4.20) w(ρ̂) :=
∣∣∣∣∣∣e−tGMn−1Mn0AqB

′
qẼtϕ̃ρ̂

∣∣∣∣∣∣2
This weight w depends on the parameter t which governs the weight of the escape function. We omit
to write this dependence explicitly : indeed, what is important is that once t is fixed sufficiently
large, w will satisfy the expected decay in Proposition 4.2. To state this bound, let’s introduce,
for ρ ∈ W−q ,

Πα,q(ρ) =

nn0−1∏
i=0

α
(
F i(ρ)

)
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where

(4.21) α(ρ) = exp (− Im ztret(ρ)) ; ρ ∈
⋃
q∈A
Wq

so that, for ρ ∈
⋃
q∈AWq, we have αh(ρ) = α(ρ) + O

Ä
h1−S0+

ä
. We also introduce the following

neighborhood of T
(4.22) Tδ,δ1 =

{
ρ ; d(ρ, T−) ≤ hδ, d(ρ, T+) ≤ hδ1

}
⊂ U ⊂ T ∗RJ

Proposition 4.2. For any L > 0, there exists t = t(ε, L) such that the following holds. Let
ρ̂ ∈ R2. If ρ̂ 6∈ κq(Wq), then w(ρ̂) = O

ÄÄ
h
〈ρ̂〉

ä∞ä
with uniform constants. Otherwise, assume that

ρ̂ = κq(ρ) ∈ κq(Wq). We have
(1) If, for all q ∈ An+1, ρ 6∈ W−q , then w(ρ̂) = O(h∞) with uniform constants.
(2) Otherwise, there exists a unique q ∈ An+1 such that ρ ∈ W−q . In that case, for some

uniform constants C > 0 and h0 > 0, one has, for 0 < h ≤ h0,
(i) If ρ 6∈ Tδ,δ1 , w(ρ̂) ≤ hL ;
(ii) If ρ ∈ Tδ,δ1 ,

w(ρ̂) ≤ C (Πα,q(ρ))
2 (
Juq
)dH−1+ε

h(δ0−δ)(dH+ε)+δ−1/2.

This key proposition is proved in Section 5. We will also require the following proposition :

Proposition 4.3. Let q = q0 . . . qn ∈ An+1 with n = n(h) and assume W−q 6= ∅. Then, for some
uniform constant C > 0, and for h small enough, the following estimate holds :

Vol
(
Tδ,δ1 ∩W−q

)
≤ Ch2δ1h−(δ+δ1)(dH+ε)

(
Juq
)−(dH+ε)

.

Proof. We assume that W−q 6= ∅. According to Lemma 4.2, there exists ρ− ∈ T such that for all
ρ ∈ W−q ,

(4.23) d(ρ,Ws(ρ−)) ≤ C
(
Juq
)−1

ε0

We also consider ρ+ ∈ T such that d(ρ, ρ+) ≤ 2hδ1 . In particular, d(ρ−, ρ+) � ε0 and we may
consider a point ρO ∈Ws(ρ−)∩Wu(ρ+) and we decide to work in an adapted chart κ centered at ρO.
We want to estimate the volume of κ

(
Tδ,δ1 ∩W−q

)
. We assume that Wq is included in the domain

of this chart (and so is W−q ) and we choose this chart such that the image of Ws(ρ−) = Ws(ρO)

is given by {(0, ξ), ξ ∈ V } : this is possible in virtue of Lemma 3.4 (by considering F−1 instead
of F to change the unstable manifold into the stable one) 6. In virtue of (4.23), we have for some
uniform constant C ′ > 0,

(x, ξ) ∈ κq(W−q ) =⇒ |x| ≤ C ′
(
Juq
)−1

ε0

Let’s consider Ξ(T ) = {ξ ∈ V, κ−1
q (0, ξ) ∈ T } and let’s cover it by Ns intervals of size 2hδ1 centered

at point ξ1, . . . , ξNs ∈ Ξ(T ). Since dimT ∩Ws(ρ−) = dH and in virtue of Proposition 3.3, we may
choose Ns such that

(4.24) Ns ≤ Ch−δ1(dH+ε)

for some uniform constant C > 0. For 1 ≤ i ≤ Ns, let’s note σi = κ−1(0, ξi). The local unstable
manifold passing through σi can be written, in the chart κ, as a graph {(x, gi(x)), x ∈ Ui}. We
note

Xi(T ) = {x ∈ Ui, κ−1(x, gi(x)) ∈ T , |x| ≤ 2C ′
(
Juq
)−1

ε0}
and we cover Xi(T ) by Ni,u intervals of size 2hδ, centered at points xi,j , 1 ≤ j ≤ Ni,u. Lemma
3.6 shows that we can take Ni,u such that for all 1 ≤ i ≤ Ns,

(4.25) Ni,u ≤ C
(
hδJuq

)−dH−ε
for some uniform constant C.

For 1 ≤ i ≤ Ns and 1 ≤ j ≤ Ni,u, let’s also note ξi,j = gi(xi,j). We claim that there exists a
uniform constant C > 0 such that

6In fact, without the assumption on κ being symplectic, we may assume that both Ws(ρO) and Wu(ρO) are
rectified.
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Figure 6. The different points introduced in the proof of the claim 4.26. To
alleviate the figure, we use the same notations for a point σ and its image trough
κ.

(4.26) κ
(
Tδ,δ1 ∩W−q

)
⊂

Ns⋃
i=1

Ni,u⋃
j=1

[xi,j − Chδ1 , xi,j + Chδ1 ]× [ξi,j − Chδ1 , ξi,j + Chδ1 ]

This claim obviously implies the proposition, by combining it with the bounds on Ns (4.24) and
the Ni,u (4.25). We now turn to the proof of this claim.
Let’s consider (x, ξ) = κ(σ) ∈ κ

(
Tδ,δ1 ∩W−q

)
. We introduce different points (and encourage the

reader to use Figure 6 to follow the different steps) :

• Since d(σ, T+) ≤ hδ1 , there exists σ+ ∈ T such that d(σ,Wu(σ+)) ≤ hδ1 . We can replace σ+

by the unique point in the intersection Wu(σ+)∩Ws(ρO) and we can note κ(σ+) = (0, ξ+).
• Since ξ+ ∈ Ξ(T ), there exists i ∈ {1, . . . , Ns} such that |ξi − ξ+| ≤ hδ1 . In particular,
d(σi, σ+) ≤ Chδ1 .

• Since d(σ, T−) ≤ hδ, there exists σ− ∈ T such that d(σ,Ws(σ−)) ≤ hδ. We note σO the
unique point in Ws(σ−) ∩Wu(σ+).

• We also note σ′i the unique point in Ws(σ−) ∩Wu(σi). Due to the Lipschitzness of the
holonomy maps (with uniform Lipschitz constant),

d(σO, σ
′
i) ≤ Cd(σ+, σi) ≤ Chδ1

• Due to the local product structure near σO, we have d(σ, σO)2 ∼ d(σ,Ws(σO))2+d(σ,Wu(σO))2 ∼
h2δ1 + h2δ. It gives d(σ, σO) ≤ Chδ1 and hence, d(σ′i, σ) ≤ Chδ1 .

• Let’s note σ′i = (x′, gi(x
′)). Since x′ ∈ Xi(T ), there exists j ∈ {1, . . . , Ni,u} such that

|xi,j − x′| ≤ hδ. Then we have

d(σ′i, κ((xi,j , ξi,j)) ≤ C|x′i − xi,j | ≤ Chδ

• We conclude that d(σ, κ((xi,j , ξi,j)) ≤ Chδ1 , which gives |x−xi,j | ≤ Chδ1 , |ξ−ξi,j | ≤ Chδ1 .
�

We can now conclude the proof of the main trace estimate. Set N = 2T0 + n(h). We want to
plug the estimates of Proposition 4.2 into (4.18) and (4.19). For q ∈ A, let’s note

Oq = κq

Ñ
Tδ,δ1 ∩

⋃
q∈An+1

W−q

é
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and let’s write

tr(
(
MN
t

)∗
MN
t ) ≤ C sup

q∈A

1

2πh

∫
R2

w(ρ̂)dρ̂

≤ C

h
sup
q∈A

Ç∫
Oq

w(ρ̂)dρ̂+

∫
R2\Oq

w(ρ̂)dρ̂

å
≤ sup
q∈A

Ñ
Ch(δ−δ0)(dH+ε)+δ−3/2

∑
q∈An+1

∫
κq

(
Tδ,δ1∩W

−
q

) (Πα,q(ρ))
2 (
Juq
)dH−1+ε

dρ̂

é
+O(hL)

The last inequality holds since the integral outside Oq can be made O(hL) by choosing correctlyt,
to make L arbitrarily large. Indeed, using Proposition 4.2, the part outside κq(Wq) is O(h∞) and
the integral on κq(Wq) \Oq is O(hL).

Let q = q0 . . . qn−1 ∈ An. We write Wqi =
⋂n0−1
j=0 F−1(Ai,j) with Ai,j ∈ Q and for ρ ∈ W−q .

Let’s note ϕ = −2 Im ztret − ϕu and recall that α = exp(− Im ztret). We have uniformly with
respect to q ∈ An and ρ ∈ W−q ,

(Πα,q(ρ))
2 (
Juq
)−1 ≤ C (Πα,q(ρ))

2 (
Junn0

(ρ)
)−1

≤ C
n−1∏
i=0

Ñ
exp

Ñ
n0−1∑
j=0

ϕ(F in0+j(ρ))

éé
≤ C

n−1∏
i=0

Ñ
sup

ρi∈Wqi

exp

Ñ
n0−1∑
j=0

ϕ(F j(ρi))

éé
≤ C

n−1∏
i=0

Ñ
C0 sup

ρi∈Wqi
∩T

exp

Ñ
n0−1∑
j=0

ϕ(F j(ρi))

éé
The last inequality holds for some C0 > 0 independent of n0 (and z), since ϕ is Hölder continuous
(with constant uniform with respect to z). Indeed, if ε0 is small enough, in virtue of Lemma 3.2,
there exists θ ∈ [0, 1) and C > 0 such that if ρ1 ∈ Wqi and if ρ2 ∈ Wqi∩T then d(F j(ρ1), F j(ρ2)) ≤
Cθn−j . As a consequence, |ϕ(F j(ρ1)) − ϕ(F j(ρ2))| ≤ Cθn−j1 (with θ1 = θβ for some 0 < β ≤ 1).
Since

∑n−1
j=0 θ

n−j
1 ≤

∑∞
j=0 θ

j
1 < +∞, we find that

exp

Ñ
n0−1∑
j=0

ϕ(F j(ρ1)

é
∼ exp

Ñ
n0−1∑
j=0

ϕ(F j(ρ2))

é
For q ∈ A, let’s call

pq = sup
ρ∈Wq∩T

exp

Ñ
n0−1∑
j=0

ϕ(F j(ρ))

é
and recall that, due to our special choice of the partition (Wq)q (see (4.5)), we have

∑
q∈A pq ≤

en0(P (ϕ)+ε). We may assume that n0 is big enough so that C0 ≤ en0ε, and hence,
∑
q∈A C0pq ≤



IMPROVED FRACTAL WEYL UPPER BOUND IN OBSTACLE SCATTERING 43

en0(P (ϕ)+2ε). As a consequence, we find that

tr(
(
MN
t

)∗
MN
t ) ≤ Ch(δ−δ0)(dH+ε)+δ−3/2

∑
q∈An

Vol
(
Tδ,δ1 ∩W−q

) (
Juq
)dH+ε

n−1∏
i=0

C0pqi

≤ Ch(δ−δ0)(dH+ε)+δ−3/2
∑

q∈An
h2δ1h−(δ+δ1)(dH+ε)

(
Juq
)−(dH+ε) (

Juq
)dH+ε

n−1∏
i=0

C0pqi

≤ Ch−νε
∑

q∈An

n−1∏
i=0

C0pqi = Ch−νε

Ñ∑
q∈A

C0pq

én

≤ Ch−νεenn0(P (ϕ)+2ε)

where

νε = dH + (δ0 − δ)(dH + ε) + (1/2− δ) + (δ1 + δ)ε+ (2δ1 − 1)− dH(δ + δ1 − 1) = dH +O(ε)

(see the definitions of these exponents in (4.13)). Recalling that nn0 ≤ ϑε log 1/h, we find that

tr(
(
MN
t

)∗
MN
t ) ≤ Ch−νεh−ϑε(P (−2 Im ztret−ϕu)+2ε)

We can finally insert the term 2ϑεε into the νε and we find that

tr(
(
MN
t

)∗
MN
t ) ≤ Ch−νεh−ϑεP (−2 Im ztret−ϕu)

This concludes the proof of Proposition 4.1.

5. Proof of Proposition 4.2.

In this section we fix some q = q0 and we aim at proving Proposition 4.2. If ρ̂ 6∈ κq(Wq),
as we will explain, the estimate in O

ÄÄ
h
〈ρ̂〉

ä∞ä
is nothing but a consequence of the fact that

WFh(BqAqB
′
q) b κq (Wq) and one can for instance apply Lemma 15 in [CR12], Chapter 2, Section

3.
The main part of the Proposition 4.2 concerns points ρ̂ = κq(ρ) ∈ κq(Wq). To prove this

proposition, we study separately the actions of the different operators in e−tGMn−1Mn0AqB
′
qẼt.

• First, we analyze the action of Ẽt. We show that it is essentially given by the multiplication
by etg(ρ).

• We go on studying the propagation of Gaussian coherent state through the iterated actions
of M. The hyperbolicity of the trajectories leads to a deformation of the Gaussian state.
The results we obtain are related to the results of [CR12] with Hamiltonian flow. In
particular, this is where we use the fact that ϑε < 1/6. The approximation we use fails for
longer logarithmic times.

• Finally, we analyze the action of e−tG on the evolved coherent states. In a way, we treat
this evolved state as a Lagrangian state with rapidly oscillating amplitude, of the form
a(x)ei

φ(x)
h . The scale of oscillation of a is larger than hδ, scale on which g oscillates. We

show that, at leading order, the action of e−tG is well approximated by the multiplication
by e−tg(x,φ

′(x)).

Notations. In the following, we will be lead to consider states u ∈ L2(RJ) such that all the
components of u are O(h∞), except one equal to some v ∈ L2(R). By abuse, we will note v instead
of u as soon as the component where u is non zero is explicit in the context. For instance, we
can simply note ϕρ̂ instead of ϕ̃ρ̂ as soon as we specify that ρ̂ ∈ κq(Wq). Another example : for
any u ∈ L2(RJ) and q ∈ A, BqAqu has only one non zero component at jq and we can use this
component to write u. This will be widely used in the sequel since most of the time we will consider
this type of elements.

5.1. Preparatory work. Due to standard properties of Fourier integral operators, we can con-
sider a pseudodifferential operator Ξq such that WFh(Ξq) ⊂ Wq, T ∗R \WFh(1 − Ξq) ⊂ κq(Wq)
and ΞqB

′
qBq = Ξq + O(h∞) (recall that Wq = κq(B(ρq, 2ε0)) and that Wq b B(ρq, 2ε0) by con-

struction). With these properties, we have in particular AqB′qẼt = AqB
′
qẼtΞq + O(h∞) . This
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allows us to change harmlessly Ẽt into Et := ẼtΞq in all the computations below. We first write

e−tGMn−1Mn0AqB
′
qEt =

∑
(q1,...,qn−1)∈An−1

e−tGMn0Aqn−1 . . .M
n0Aq1M

n0AqB
′
qEt

=
∑

(q1,...,qn)∈An
Aqne

−tGMn0Aqn−1 . . .M
n0Aq1M

n0AqB
′
qEt +O(h∞)

=
∑

(q1,...,qn)∈An
Aqne

−tGB′qnMqn,qn−1 . . .Mq2,q1Mq1,qEt +O(h∞)

where

(5.1) Mp,q = BpM
n0AqB

′
q

We say that a pair (p, q) is admissible if Fn0(Wq) ∩ Wp 6= ∅. By standard properties of Fourier
integral operators, if (p, q) is not admissible, Mp,q = O(h∞). We say that a word (q1, . . . , qn) ∈ An
is admissible if all the pairs (qi, qi−1) are admissible (with q0 = q). Hence, since n = O

(
log 1

h

)
, we

can restrict the indices in the above sum to the admissible words.
Suppose that (p, q) is an admissible pair. By composition of Fourier integral operators, Mp,q

is a Fourier integral operator associated with the symplectic map Fp,q := κp ◦ Fn0 ◦ κ−1
q . Since

diam(Wq) ≤ ε0, by taking ε0 sufficiently small, we can assume that Fn0(Wq) is included in the
domain of κp. Indeed, there exists ρ̃q ∈ Wq such that Fn0(ρ̃q) ∈ Wp and hence if ρ ∈ Wq,

d(Fn0(ρ), ρp) ≤ d(Fn0(ρ), Fn0(ρ̃q)) + d(Fn0(ρ̃q), ρp) ≤ Cε0

We note (y, η) the variables in the charts and (∂y, ∂η) the canonical basis of R2 and we have
• Fp,q(0) = κp ◦ Fn0(ρq) = O(ε0);
• d0Fp,q = dF (ρq)κp ◦ dρqFn0 ◦

[
dρqκq

]−1 ;
• dρqFn0(Eu(ρq)) = Eu(Fn0(ρq)) and ρ 7→ Eu(ρ) is Lipschitz. Hence, if we note eu(ρq) =(

dρqκq
)−1

(∂y) ∈ Eu(ρq), due to the definitions of the adapted charts in Lemma 3.4, there
exists λp,q ∈ R∗ such that

dρq (κp ◦ Fn0)(eu(ρq)) = λp,q∂y +O(ε0)

• Similarly, d0Fp,q(∂η) = µp,q∂η +O(ε0) for some µp,q ∈ R∗

Eventually, we use the fact that Fp,q − Fp,q(0)− d0Fp,q = O(ε0)C1(Wq) and we get that

(5.2) Fp,q(y, η) = (λp,qy + yr(y, η), µp,qη + ηr(y, η)), (y, η) ∈Wq

where yr(y, η) and ηr(y, η) areO(ε0)C1 . In particular, if ε0 is small enough, (x, ξ, y, η) ∈ Gr(Fp,q) 7→
(x, η) is a local diffeomorphism near (0, 0, 0, 0). Then, there exists a phase function ψp,q which
generates Fp,q in a neighborhood Ω of (0, 0, 0, 0). Assuming ε0 small enough, we can assume that
Fp,q(Wq)×Wq ⊂ Ω.

As a consequence (see for instance [Ale08], [Zwo12] Chapter 10), the Fourier integral operator
Mp,q can be written under the form (2.2), up to O(h∞), that is,

(5.3) Mp,qu(x) =
1

2πh

∫
R2

e
i
h (ψp,q(x,η)−yη)αp,q(x, η)u(y)dydη

where αp,q is a symbol in S0+(R2). It has an asymptotic expansion

(5.4) αp,q ∼
∑
j≥0

hjα(j)
p,q

where α(j)
p,q ∈ h0−S0+ , for all j ≥ 1 (that is, α(j)

p,q ∈
⋂
η>0 h

−ηS0+) and we have
(5.5)

|α(0)
p,q(x, η)| = |∂2

x,ηψ(x, η)|1/2χq(ρ)×

(
n0−1∏
i=0

α ◦ F i(ρ)

)
; ρ = κ−1

q (y, η) ; (x, ξ) = Fp,q(y, η)

Here, we use the fact that in Wq, αh = α+O
Ä
h1−S0+

ä
to put the O

Ä
h1−S0+

ä
in α(1)

p,q. Moreover,
we have the following support properties : for j ∈ N,

(5.6) (x, η) ∈ supp(α(j)
p,q) =⇒ (y, η) ∈ κq (supp(χq)) ; (x, ξ) = Fp,q(y, η)
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We now pick an admissible word (q1, . . . , qn) and for ρ̂ ∈ R2, we aim at studying

||Aqne−tGB′qnMqn,qn−1 . . .Mq2,q1Mq1,qEtϕ̃ρ̂||

We have Mq1,qEt = Bq1M
n0AqB

′
qBqe

tGB′q. Since WFh
(
AqB

′
qBqe

tG
)
⊂ supp(χq) and B′q is a

Fourier integral operator associated with κ−1
q , we can find χ̃q such that supp(χ̃q) ⊂ κq(Wq) ⊂Wq

and
AB′qBqe

tGB′q = AB′qBqe
tGB′q Oph(χ̃q) +O(h∞)

To prove the estimate in O
ÄÄ

h
〈ρ̂〉

ä∞ä
, we invoke Lemma 15 in [CR12], Chapter 2, Section 3,

which allows us to say that, if ρ̂ 6∈ κq(Wq),

Oph(χ̃q)ϕρ̂ = O

ÅÅ
h

〈ρ̂〉

ã∞ã
.

Since both Mqn,qn−1 . . .Mq1,q and the number of terms in the sum are O(h−K) for some K > 0,
we deduce the first part of Proposition 4.2 :

Lemma 5.1. Uniformly for ρ̂ 6∈ κq(Wq), w(ρ̂) = O
ÄÄ

h
〈ρ̂〉

ä∞ä
.

We now focus on ρ̂ ∈ κq(Wq) bWq, for which Fp,q(ρ̂) is well defined. We finish this preparatory
subsection with an important computation. First note that the neighborhood

⋃
q∈AWq has been

fixed by dynamical considerations. We may assume that the cut-off function χ̂ used in (3.20) for
the construction of g, is chosen such that supp χ̂ b

⋃
q∈AWq. As a consequence, we can apply

Proposition 2.5 and we have :

Lemma 5.2. For all q ∈ A, there exists (gj,q)j≥1 ∈ Sδ such that for all N ∈ N, the following
holds:

BqGB
′
q = Oph

(
g ◦ κ−1

q

)
+

N−1∑
j=1

hj(1−2δ) Oph(gj,q) +RN

where ||RN ||L2→L2 ≤ C2N+M,gh
N(1−2δ), for some constants C2N+M,g depending on semi-norms of

g in Sδ up to order 2N +M .

Remark. Even if g 6∈ Sδ, it still satisfies |∂αg| ≤ C|α|,gh−δ|α| as soon as α 6= 0. This allows us to
fairly define these semi-norms.

Proof. Let’s note that g ∈ log 1
hSδ so that we can apply Proposition 2.5 to

(
log 1

h

)−1
g. We can

find differential operators Lj,q such that

BqGB
′
q = Oph(g ◦ κ−1

q ) +

N−1∑
j=1

hj Oph
(
(Lj,qg) ◦ κ−1

q

)
+OL2→L2

(
hN ||g||C2N+M

)
In fact, due to the properties of ĝ, ∂αg ∈ h−δ|α|Sδ as soon as α 6= 0 and the terms gj,q :=

h2δj(Lj,qg) ◦ κ−1
q ∈ Sδ for j ≥ 1. Moreover, the O is in fact an O(C2N+M,gh

N(1−2δ)), where
C2N+M,g depends on semi-norms of g in Sδ up to order 2N +M . �

5.2. Action of Et. We begin with the action of Et. Recall the definition of Et = Bqe
tGB′qΞq in

(4.16).

Lemma 5.3. For any N ∈ N and ρ̂ = κq(ρ) ∈ κq(Wq), there exists ψ0, . . . , ψ2N−1 and rN such
that

Etϕρ̂ =

2N−1∑
j=0

hj(1/2−δ)ψj + rN

satisfying :
• ψ0 = etg(ρ)ϕρ̂ ;
• For 1 ≤ j ≤ 2N − 1, ψj is of the form

ψj = etg(ρ)T (ρ̂)Λh
Ä
P

(j)
t,hΨ0

ä
where P (j)

t,h is a polynomial of degree at most 2j, with coefficients depending on t, g (and

hence, h) and ρ̂. It satisfies, N∞(P
(j)
t,h ) ≤ Cj,t with h-independent constants, depending on

derivatives of g.
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• ||rN ||L2 ≤ CN (1 + |t|)2N+1hN(1−2δ)h−K0t for some K0 > 0 depending on g.

Proof. Let’s fix ρ̂ = κq(ρ) ∈ κq(Wq), N ∈ N and set φ(t) = Etϕρ̂. φ solves the equation

φ′(t) = BqGe
tGB′qΞqϕρ̂

Since BqB′q = I microlocally near WFh(Ξq), we have etGB′qΞq = B′qBqe
tGB′qΞq +O(h∞). Hence,

up to O(h∞) , ψ(t) solves φ′(t) = G̃φ(t) with G̃ = BqGB
′
q. It is enough to find an expansion for

the solution of this equation. By Lemma 5.2, there exists CN (depending on g) such that, with
Gj = Oph(gj,q) and G0 = Oph(g ◦ κ−1

q ),∣∣∣∣∣∣
∣∣∣∣∣∣G̃−

N−1∑
j=0

hj(1−2δ)Gj

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ CNhN(1−2δ)

Set ψ(t) = T (ρ̂)∗φ(t). It solves : ψ′(t) = T (ρ̂)∗G̃T (ρ̂)ψ(t). We also set u(t) = Λ∗hψ(t), which solves
u′(t) = Au(t) where A = Λ∗hT (ρ̂)∗G̃T (ρ̂)Λh. Let’s also note Ãj = Λ∗hT (ρ̂)∗GjT (ρ̂)Λh = Op1 (aj)

where aj(ζ̂) = gj,q(ρ̂+ h1/2ζ̂). We wish to apply the formalism of Appendix A.2 with H = L2(R),
the operator A : H → H, C = {PΨ0, P ∈ C[X]} with initial state u(0) = Ψ0. The parameter h in
Appendix A.2 is replaced by h̃ = h1/2−δ. If P ∈ C[X], we approximate the action of A by

A(PΨ0) =

N−1∑
j=0

h̃2jÃj(PΨ0) +ON
Ä
h̃2N ||PΨ0||

ä
=

N−1∑
j=0

h̃2j

(
2N−1−2j∑
k=0

h̃kAj,k(PΨ0) +RN,j(PΨ0)

)
+ON

Ä
h̃2N ||PΨ0||

ä
where, according to Lemma 2.4,

Aj,k = Op1

Ñ ∑
α+β=k

hδk
∂αx ∂

β
ξ hj

α!β!
(0)xαξβ

é
; RN,j(PΨ0) = ON,j,degP

Ä
h̃2N−2jN∞(P )

ä
where the constant in ON,j,degP depend on g trough its semi-norms, but are h-independent. Gath-
ering the term of same order together, we can write

A(PΨ0) =

2N−1∑
l=0

h̃lAl(PΨ0) +ON,degP

Ä
h̃2NN∞(P )

ä
here Al =

∑
2j+k=lAj,k. It is not hard to see that Al(PΨ0) = PlΨ0 where P 7→ Pl is linear and

degPl ≤ degP + 2l. Since gj,q ∈ Sδ if j ≥ 1 and since h|γ|δ∂γg = O(1), we observe that as soon as
l ≥ 1, there exists Cl depending on g (trough a finite number of semi-norms), but independent of
h, such that

N∞(Pl) ≤ ClN∞(P )

Concerning A0, it is clear that it is in fact g(ρ) Id. We now apply the formulas given in Appendix
A.2 and use the notations introduced in this appendix, that is

R2N−1(t) = etAΨ0 − etA0

2N−1∑
l=0

h̃lvl(t)

with vl constructed inductively by (A.3) and v0 = Ψ0. Since A0 is a multiplication, Ak(s) = Ak
for all s ∈ R and we see by induction that vk(t) is of the form

vk(t) =

k∑
l=0

tlPl,kΨ0 = Pk(t)Ψ0
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where Pl,k ∈ C[X] has degree at most 2k. In particular, N∞(Pk(t)) ≤ ck(1 + |t|)k for some
h-independent ck depending on g. Concerning the remainder, we have

||r̃k,2N (t)|| = etg(ρ)

∣∣∣∣∣∣
∣∣∣∣∣∣
Ñ
A−

2N−k−1∑
j=0

h̃jAj

é
vk(t)

∣∣∣∣∣∣
∣∣∣∣∣∣

= ON,k
Ä
etg(ρ)h̃2N−kN∞(Pk(t)

ä
≤ CN,k(1 + |t|)ketg(ρ)h̃2N−k

Finally, we recall that R′2N−1(t) = AR2N−1(t) +
∑2N−1
j=0 h̃j r̃j,2N (t). Hence, integrating this in-

equality, we find that

||R2N−1(t)|| ≤
∫ t

0

||A|| × ||R2N−1(s)||ds+ CN h̃
Netg(ρ)(1 + |t|)2N−1

By a version of Gronwall’s lemma, we can find a constant CN such that

||R2N−1(t)|| ≤ CN h̃2Netmax(|g(ρ)|,||A||)t2N+1

(where CN depends on finitely many semi-norms of g). Since g ∈ log(1/h)Sδ, we can find K0 > 0
such that max(|g(ρ)|, ||A||)) ≤ K0 log(1/h). Going back to φ(t), we have proved the Lemma. �

Remark. t is supposed to be fixed, so that the only meaningful term involving t is h−Bt. The
other mentions of t can be put into the constants CN . All the polynomials depend also on h, we will
omit to mention it in the subscripts, but we keep in mind that in the following, all the polynomials
potentially depend on h. Nevertheless, their N∞-norm can be controlled in an h-independent way.

5.3. Repeated actions of Mqi,qi−1
. We fix some q = qq1 . . . qn ∈ An+1. Each term in the

development of Etϕρ̂ is a sum of term of the form

etg(ρ)T (ρ̂)Λh(P0Ψ0)

with some P0 ∈ C[X] depending on h. We now focus on the evolution of each of these terms under
the repeated actions of Mqi,qi−1 . We recall that this operator has the form

(5.7) Mp,qu(x) =
1

2πh

∫
R2

e
i
h (ψp,q(x,η)−yη)αp,q(x, η)u(y)dydη

with

(5.8) αp,q ∼
∑
j≥0

hjα(j)
p,q

This will allow us to use Proposition 2.10, but we will have to deal with two different scales of
asymptotic expansion : h and h1/2. To simplify the notations in this context, we note for 1 ≤ i ≤ n,

Mqi,qi−1 = Mi

ψqi,qi−1
= ψi

Fqi,qi−1
= Fi

F (i) = Fi ◦ · · · ◦ F1 = κqi ◦ Fn0i ◦ κ−1
q

α(j)
qi,qi−1

= α
(j)
i

For 0 ≤ i ≤ n, we also note ρ̂i = Fi ◦ · · · ◦ F1(ρ̂) (with ρ̂0 = ρ̂) and set ρ̂i = (xi, ξi).
We fix a parameter N and we start with an initial state

(5.9) u0 = T (ρ̂0)Λh
(
P0Ψ0

)
with P0 a polynomial of degree d0. Our aim is to show that we have an asymptotic expansion for
ui = Mi . . .M1u0 of the form

ui =
∑

2j+k<2N

hjhk/2u
(j,k)
i + r

(N)
i

where u(j,k)
i has the form

T (ρ̂i)M
Ä
dρ̂F

(i)
ä

Λh
Ä
P

(j,k)
i Ψ0

ä
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with P (j,k)
i polynomial and with a good control on r(N)

i . For 1 ≤ i ≤ n and 0 ≤ j ≤ N − 1, we
apply Proposition 2.10 to the operator

(M
(j)
i u)(x) =

1

2πh

∫
R2

e
i
h (ψi(x,η)−yη)α

(j)
i (x, η)u(y)dydη

and for a state of the form

u = T (ρ̂i−1)M
Ä
dρ̂F

(i−1)
ä

Λh (PΨ0)

For each such polynomial P , we can find a family Q(j,k)
i (P ) of polynomials such that

• Q(j,0)
i (P ) =

α
(j)
i (xi,ξi−1)

|∂2
xηψi(xi,ξi−1)|1/2P (up to a multiplicative factor of norm 1 that we omit in the

proof) ;
• Q(j,k)

i (P ) is a polynomial of degree degP + 3k and the map P 7→ Q
(j,k)
i is linear, with

coefficients depending on F (i) and the derivatives of ψi and α
(j)
i at (xi, ξi−1) up to the

3k-th order and we have

N∞(Q
(j,k)
i ) ≤ C3k(ψi)||α(j)

i ||Ck ||dρ̂F
(i)||3kN∞(P )

Moreover, if (xi, ξi−1) 6∈ suppα
(j)
i , then Q(j,k)

i = 0.
• for every N ∈ N,

(5.10)

M
(j)
i

(
T (ρ̂i−1)M(dρ̂F

(i−1))Λh[PΨ0]
)

= T (ρ̂i)M(dρ̂F
(i))Λh

[
N−1∑
k=0

hk/2Q
(j,k)
i (P )Ψ0

]
+R

(j,N)
i (P )

with

||R(j,N)
i (P )||L2 ≤ hN/2C3N+M (ψi)||α(j)

i ||CN+M ||dρ̂F (i)||3NKN,degPN∞(P )

Remark. In virtue of the properties of α(j)
i , the condition (xi, ξi−1) ∈ suppα

(j)
i ⇐⇒ F in0(ρ) ∈

supp(χqα).

We also write the expansion of Mi in the form, for every N ,

(5.11) Mi =

N−1∑
j=0

hjM
(j)
i + S̃

(N)
i

with
||S̃(N)

i || ≤ ‹Ci,N,εhN(1−ε)

Since Mi belongs to the finite family (Mp,q), we can replace ‹Ci,N,ε by ‹CN,ε = supi ‹Ci,N,ε.
We now give the iteration formulas for the required expansion. We state P (0,0)

0 = P0 and
P

(j,k)
0 = 0 for the other values of (j, k). For 2j + k < 2N , we define inductively P (j,k)

i = P
(j,k)
i,P0

by
the formula (to alleviate the notations, we will omit to specify the dependence in P0 when this is
not necessary) :

(5.12) P
(j,k)
i =

∑
j1+j2=j

∑
k1+k2=k

Q
(j2,k2)
i

Ä
P

(j1,k1)
i−1

ä
Concerning the remainder term, we set

(5.13) r
(N)
i = r

(N)
i,P0

= Mi

Ä
r

(N)
i−1

ä
+

∑
2j+k<2N

hj+k/2S̃
(N−j−dk/2e)
i

Ä
u

(j,k)
i−1

ä
+

∑
2j1+2j2+k1<2N

hN−j1−j2−k1/2R
(j1,2(N−j1−j2)−k1)
i

Ä
P

(j1,k1)
i−1

ä
Lemma 5.4. With the above notations, we have for 1 ≤ i ≤ n,

ui =
∑

2j+k<2N

hjhk/2u
(j,k)
i,P0

+ r
(N)
i,P0

; u
(j,k)
i = T (ρ̂i)M

Ä
dρ̂F

(i)
ä

Λh
Ä
P

(j,k)
i,P0

Ψ0

ä
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We now analyze these formulas to understand more precisely these terms and obtain a good
control of the remainder. In particular, concerning the polynomial P (j,k)

i , we want to control their
degree and the norms of their coefficients.

Leading term. First note that the leading term (that is the term (0, 0)) has a nice form. Indeed,
up to a factor of norm 1, it is given by

P
(0,0)
i = P0 ×

i∏
l=1

α
(0)
l (xl, ξl−1)

|∂2
xηψl(xl, ξl−1)|1/2

= P0 ×
i−1∏
l=0

Ñχql n0−1∏
j=0

α ◦ F j
é

(F ln0(ρ))


The product on the right plays a crucial role in the analysis. Let’s note

pα,l(ρ) =

Ñ
χql

n0−1∏
j=0

α ◦ F j
é

(F ln0(ρ)) ; πα,i(ρ) =

i−1∏
l=0

pα,l(ρ)

We remark that
πα,i(ρ) ≤ Πα,q0...qi−1(ρ)

Recall that Πα,q(ρ) =
∏nn0−1
i=0 α

(
F i(ρ)

)
. To simplify the notations, let’s note Πα,i = Πα,q0...qi−1

.
Moreover, combining the support property (5.6) of α(j)

i , Remark 5.3 and the properties of Q(j,k)
i

given by Proposition 2.10, we see that for q = q0 . . . qi−1,

(5.14) ρ 6∈ W−q =⇒ ∀j, k ∈ N, Q
(j,k)
i = 0

Analysis of the polynomial P (j,k)
i,P0

. According to (5.14), we assume that ρ = κ−1
q (ρ̂) ∈ W−q0...qi−1

.
Otherwise, there is nothing more to say. We start by the easiest part of the analysis :

Lemma 5.5. For all 0 ≤ i ≤ n and all (j, k) with 2j + k < 2N , Pi,P0(j, k) is of degree at most
3k + degP0.

Proof. We argue by induction on i. This is obvious for the case i = 0. To pass from i− 1 to i, we
use (5.12) which shows that

degP
(j,k)
i ≤ max

j1+j2=j,k1+k2=k
degQ

(j2,k2)
i

Ä
P

(j1,k1)
i−1

ä
≤ max
j1+j2=j,k1+k2=k

3k2 + degP
(j1,k1)
i−1

≤ max
j1+j2=j,k1+k2=k

3k2 + 3k1 + d0

≤ 3k + d0

�

The analysis of N∞
Ä
P

(j,k)
i

ä
is a bit more tedious.

Lemma 5.6. For every ε > 0, there exists a family of constants Cj,k,ε depending on the dynamical
system and on Mh such that: For all 0 ≤ i ≤ n and all (j, k) with 2j + k < 2N , we have

N∞
Ä
P

(j,k)
i,P0

ä
≤ Cj,k,εh−kεi2j+kΠα,i(ρ)

Ä
Juq0...qi−1

ä3k
N∞(P0)

Remark. The dependence on i is of major importance. Here, i ≤ n = O(log 1/h). Hence, the

term i2j+k is essentially harmless compared to the second part Πα,i(ρ)
Ä
Juq0...qi−1

ä3k
h−kε. The

factor Πα,i(ρ) does not depend on k and is common to all the terms. It can be put in front of the
all expansion. On the contrary, the growth of Juq0...qi−1

influences the precision and the validity of
the expansion. So that the expansion holds, we need to requireÄ

Juq0...qi−1

ä3
h−ε � h−1/2
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As a consequence, this is where the assumption

ϑε <
1− 4ε

6λmax

(see its definition in (4.14)) is important and lead to a valid expansion.

Remark. The constant Cj,k,ε depends on Mh through its amplitude αh as a Fourier integral
operator in a class Iη(R×R,Gr(F )′) (for some η = η(ε)) and it depends only a finite number Nj,k
of derivatives.

Proof. To alleviate the notations, we renormalize P0 so that N∞(P0) = 1. We fix (j, k) such that
2j + k < 2N . By iterating (5.12), we find that

P
(j,k)
i =

∑
j1+···+ji=j
k1+···+ki=k

Q
(ji,ki)
i ◦ · · · ◦Q(j1,k1)

1 (P0)

We now use the simple following idea : when i is large that is when i � 2j + k, and when
j1 + · · ·+ ji = j and k1 + · · ·+ ki = k, most of the couples (jl, kl) are equal to (0, 0). From a more
quantitative point of view, we have

#{1 ≤ l ≤ i, (jl, kl) 6= (0, 0)} ≤ 2j + k

Indeed,
2j + k = 2(j1 + · · ·+ ji) + (k1 + · · ·+ ki) ≥ #{1 ≤ l ≤ i, (jl, kl) 6= (0, 0)}

Let’s note P(i, 2j + k) the set of subsets of {1, . . . , i} of cardinals smaller than 2j + k. For
L ∈ P(i, 2j + k) we define the set of indices IL ⊂ Ni × Ni by

(
−→
j ,
−→
k ) =

(
(j1, . . . , ji), (k1, . . . , ki)

)
∈ IL ⇐⇒

 j1 + · · ·+ ji = j
k1 + · · ·+ ki = k
∀1 ≤ l ≤ i, (jl, kl) 6= (0, 0) ⇐⇒ l ∈ L

With these notations, we have

P
(j,k)
i =

∑
L∈P(i,2j+k)

∑
(
−→
j ,
−→
k )∈IL

Q
(ji,ki)
i ◦ · · · ◦Q(j1,k1)

1 (P0)

Let’s fix L ∈ P(i, 2j+k) and (
−→
j ,
−→
k ) ∈ IL. Let’s write L = {l1 < · · · < lm}. Since Q(0,0)

l is simply
a multiplication by pα,l(ρ), we have :

Q
(ji,ki)
i ◦ · · · ◦Q(j1,k1)

1 (P0) =

Ñ∏
l 6∈L

pα,l

é
×Q(jlm ,klm )

lm
◦ · · · ◦Q(jl1 ,kl1 )

l1
(P0)

Using Proposition 2.10, we can estimate

N∞

(
Q

(jlm ,klm )
lm

◦ · · · ◦Q(jl1 ,kl1 )

l1
(P0)

)
≤ N∞(P0)×

m∏
p=1

C3klp
(ψlp)||α(jlp )

lp
||
C
klp
||dρ̂F (lp)||3klp

For 1 ≤ l ≤ i, ψl (resp. α
(·)
l ) belongs to a finite family of functions (corresponding to the finite

number of admissible transitions). Hence, recalling that α(j)
l ∈ S0+ if j = 0 and h0−S0+ if j ≥ 1, we

can find a global uniform constant depending on the dynamical system, and on a certain number
Nj,k of derivatives of α such that for all j′ ≤ j, k′ ≤ k and for all l,

C3k′(ψl)||α(j′)
l ||Ck′ ≤ Cj,k,ε

®
h−k

′ε/2 if j′ = 0

h−k
′ε/2h−ηk,j if j′ ≥ 1

.

where we artificially choose ηk,j = kε
2j and use the fact that α(j)

l ∈ Sε/2 (resp. h−ηj,kSε/2) if j′ = 0

(resp. j′ ≥ 1). As a consequence, since jl1 + · · ·+ jlm = j and kl1 + · · ·+ klp = k, we have

N∞

(
Q

(jlm ,klm )
lm

◦ · · · ◦Q(jl1 ,kl1 )

l1
(P0)

)
≤ Cmj,k,εN∞(P0)h−kε/2h−jηk,j

Ç
sup

1≤l≤i
||dρ̂F (l)||

å3k

Since m ≤ 2j + k, there exists a global constant, still denoted Cj,k,ε, such that, uniformly in IL,

N∞

(
Q

(jlm ,klm )
lm

◦ · · · ◦Q(jl1 ,kl1 )

l1
(P0)

)
≤ Cj,k,εN∞(P0)h−kε

Ç
sup

1≤l≤i
||dρ̂F (l)||

å3k
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We remark that for 1 ≤ l ≤ n, ||dρ̂F (l)|| ≤ C||dρ̂Fn0l|| ≤ CJuq0...ql−1
. Finally, since |α| ≥ e−τm in

the neighborhood
⋃
q∈AWq of T , we see that for every (

−→
j ,
−→
k ) ∈ IL we have

N∞
Ä
Q

(ji,ki)
i ◦ · · · ◦Q(j1,k1)

1 (P0)
ä
≤ Cj,k,εN∞(P0)h−kεΠα,i(ρ)

Ä
Juq0...qi−1

ä3k
We can now conclude the proof. Indeed, we have

N∞
Ä
P

(j,k)
i

ä
≤

∑
L∈P(i,2j+k)

#IL ×
(
Cj,k,εN∞(P0)h−kεΠα,i(ρ)

Ä
Juq0...qi−1

ä3k)
If L ∈ P(i, 2j + k), we estimate (crudely) the cardinal of IL by

#IL ≤ (j + 1)#L(k + 1)#L ≤ (j + 1)2j+k(k + 1)2j+k

Finally,

i 7→
∑

L∈P(i,2j+k)

1 =

2j+k∑
m=0

Ç
i

m

å
is a polynomial function of i, of degree 2j + k. Hence, thee exists Cj,k such that∣∣∣∣∣∣ ∑

L∈P(i,2j+k)

Ç
i

#L

å∣∣∣∣∣∣ ≤ Cj,ki2j+k
This concludes the proof. �

Control of the remainder. Armed with Lemma 5.6 and the iterative formula (5.13), we can
deduce a control for the remainder term. Let’s consider B ≥ 1 such that ||Mq,p|| ≤ B for all
admissible pair (q, p) (it is possible to take B ≤ (1 + ε)||α||∞, or even with ε going to 0 as h→ 0,
but the precise value of B is not relevant for this term). For this reason, we will also get rid of the
precise value of Πα,i and assume that ||α||∞ ≤ B so that ||Πα,i|| ≤ Bi.

Plugging the previous estimates into (5.13), we get

||r(N)
i || ≤ B||r(N)

i−1 ||+
∑

2j+k<2N

hj+k/2‹CN−j−dk/2e,εh(N−j−dk/2e)(1−ε)||u(j,k)
i−1 ||

+
∑

2j1+2j2+k1<2N

hNC3(2N−2j1−2j2−k1)+M (ψi−1)h−εM
Ä
h−ε||dρ̂F (i)||3

ä2N−2j1−2j2−k1
K3k1,3k1+degP0

N∞(P
(j1,k1)
i−1 )

Recall that ||PΨ0||L2 ≤ KdegPN∞(P ) for some family of constants Kn depending only on n. By
the expression of u(j,k)

i , we have

||u(j,k)
i ||L2 = ||P (j,k)

i Ψ0||L2 ≤ K3k+degP0N∞
Ä
P

(j,k)
i

ä
We also recall that we can bound ||dρ̂F (i)|| by CJq0...qi−1 for some global constant C.

||r(N)
i || ≤ B||r(N)

i−1 ||+
∑

2j+k<2N

hN(1−ε)‹CN−j−dk/2e,εK3kCj,k,εB
ii2j+k

Ä
Juq0...qi−1

ä3k
+

∑
2j1+2j2+k1<2N

hNCN,j,εh
−MεK3k1Cj1,k1,εB

ii2j1+k1
(
h−ε
Ä
Juq0...qi−1

ä3)2(N−j1−j2)

Finally, we plug the bound Juq0...qi−1
≤ Cεe

iλmax(1+ε) into the previous inequality. We can find a
constant CN,degP0,ε such that

||r(N)
i || ≤ B||r(N)

i−1 ||+ CN,degP0,εB
ii2Ne6Niλmax(1+ε)hN(1−2ε)h−Mε

This being valid for all 1 ≤ i ≤ n, by induction on i, we find that

||r(N)
i || ≤

i∑
l=0

Bi−l × CN,degP0,εB
llNe6Nlλmax(1+ε)hN(1−2ε)h−Mε

≤ CN,degP0,εB
i

i∑
l=0

lNe6Nlλmax(1+ε)hN(1−2ε)h−Mε
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Let cN,ε > 0 be such that
∑i
l=0 l

Ne6Nlλmax(1+ε) ≤ cN,εe
6Niλmax(1+ε)2 for all i ∈ N. This gives, for

a constant CN,degP0,ε,

||r(N)
i || ≤ CN,degP0,εB

ie6Niλmax(1+ε)2hN(1−2ε)h−Mε

To conclude, recall that n(h) ≤ ϑε log 1/h with ϑε = 1−4ε
6λ(1+ε)2 . Hence, as soon as i ≤ n(h),

e6Niλmax(1+ε)2 ≤ h−N(1−4ε) and this shows the following lemma

Lemma 5.7. There exists constants CN,d,ε such that for all N ∈ N and for all P0 ∈ C[X], we have
for all 1 ≤ i ≤ n(h),

||r(N)
i,P0
|| ≤ CN,degP0,εh

2Nεh−KN∞(P0)

with K = ϑε logB +Mε.

First consequences. Since N can be taken arbitrarily large, we recover the known fact that
a wave packet centered at ρ̂ is changed after n steps into an excited squeezed state centered at
F (n)(ρ̂). The squeezing is governed by the unstable Jacobian along the orbit of ρ. In particular,
we obtain the expected following corollary, which gives the first point in Proposition 4.2.

Corollary 5.1. Let’s note q = q0 . . . qn ∈ An+1. Let ρ̂ ∈ κq(Wq) and let us note ρ = κ−1
q (ρ̂).

• If ρ 6∈ W−q , then Aqne−tGB′qnMqn,qn−1
. . .Mq1,qEtϕρ̂ = O(h∞).

• If ρ ∈ W−q ,

e−tGMn−1Mn0AqB
′
qEtϕρ = Aqne

−tGB′qnMqn,qn−1
. . .Mq1,q0Etϕρ +O(h∞)

with constants independent of q and ρ.

Proof. This is a consequence of the previous results and the fact that WFh(BqnAqne
−tGB′qn) b

κqn(Wqn). �

Moreover, we can combine Lemma 5.3 (the running index in the formula of Lemma 5.3 was j,
it becomes l in the sum below) and Lemma 5.4 to get :

Proposition 5.1. Assume that ρ̂ = κq(ρ) ∈ κq(Wq) with ρ ∈ W−q0...qn . Then, for any N ∈ N, we
have the following expansion (with n = n(h))

Mqn,qn−1
. . .Mq1,q0Etϕρ̂ =

∑
2j+k+l<2N

hj+k/2hl(1/2−δ)u(j,k,l)
n +R(N)

n

where
u(j,k,l)
n = etg(ρ)T (ρ̂n)M(dρ̂F

(n))Λh
Ä
P (j,k,l)
n Ψ0

ä
P

(j,k,l)
n is a polynomial of degree at most 3k + 2l and

N∞
Ä
P (j,k,l)
n

ä
≤ Cj,k,l,εn2j+kΠα,n(ρ)

Ä
Juq0...qn−1

ä3k
h−kε

Concerning the leading term, P (0,0,0))
n = πα,n(ρ). Concerning the remainder R(N)

n we have

||R(N)
n ||L2 ≤ CN,εh−(K+K0t)h2Nε

Proof. We simply state P (j,k,l)
n = P

(j,k)

n,P
(l)
t,h

which satisfies the required bound for the degree and

N∞. Here, P (l)
t,h appears in the expansion of Lemma 5.3. Lemma 5.3 and Lemma 5.4 show that

Mqn,qn−1
. . .Mq1,q0Etϕρ =

∑
2j+k+l<2N

hj+k/2hl(1/2−δ)u(j,k,l)
n +R(N)

n

with u(j,k,l)
n given by the required formula and

R(N)
n = Mqn,qn−1 . . .Mq1,q0r2N +

2N−1∑
l=0

hl(1/2−δ)r
(N−bl/2c)
n,P

(l)
t,h
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We can use the bound ||r2N || ≤ CNh
N(1−2δ) and the bound for r(N)

n,P in Lemma 5.7. Since the

degrees of the polynomial P (l)
t,h are bounded by 4N , we can forget the depence in degP in the

estimates of Lemma 5.7, so that we find

||R(N)
n || ≤ CN,εh−Kh−K0t

2N∑
0

hl(1/2−δ)h2(N−l/2)ε ≤ CN,εh−(K+K0t)h2Nε

where the last inequality follows from ε = 1/2− δ. �

Remark. This expansion mixes up different scales :

• the scale h1−2δ = h2ε : it comes from the symbol class in which g lives ;
• a second scale which is the scale h1/2 when n is independent of h. In our context, it

is better to think this second scale to be h1/2(Juq0...qn)3h−ε. This scale depends on the
starting point ρ. The definition of ϑε ensures that the higher order terms are smaller than
the leading term, .

Since we can choose N as large as we want, we can ensure that the remainder decays in h and
that the leading term controls the whole expansion. Note also that the constants Cj,k,l,ε and CN,ε
depends on g and M = Mh(z) and they can be chosen uniform in z ∈ Ω(h) ∩ {Im z ∈ [−β, 4]}.

5.4. Final action of Aqne−tGB′qn . From now on, and until the end of the section, we assume that
ρ ∈ W−q and we prove the missing items of Proposition 4.2.

We need to understand the action of e−tGB′qn on the terms u(j,k,l)
n of the last expansion. Since

all these terms have the same form, we consider a general polynomial P of degree d and want to
understand

e−tGB′qn

Ä
T (ρ̂n)M

Ä
dρ̂F

(n)
ä

Λh(PΨ0)
ä

It is no more possible to reuse the strategy of Lemma 5.3. Indeed, if g still oscillates on scale hδ,
M
(
dρ̂F

(n)
)

Λh(PΨ0) is no more a wave packet in a box of size h1/2. To see that in a model case,
assume that dρ̂F (n) is given by the diagonal matrixÅ

λh 0
0 λ−1

h

ã
with λh ∼ Juq0...qn−1

∼ h−α where

λminϑε ≤ α ≤ λmaxϑε =
1− 4ε

6(1 + ε)2

ThenM
(
dρ̂F

(n)
)
is nothing but Λλ2

h
and hence,M

(
dρ̂F

(n)
)

Λh(PΨ0) = Λhλ2
h
(PΨ0). This states

oscillate in the x-direction on a scale h1/2−α � hδ.

5.4.1. Precise description of dρ̂F (n). It is not possible to write dρ̂F (n) exactly as a diagonal matrix
in the standard position/momentum variable. However, the following lemma shows that dρ̂F (n)

stays close to a diagonal matrix :

Lemma 5.8. There exists ε2 which can be made arbitrarily small depending on ε0 such that the
following holds. There exists λn,q, µn,q ∈ R+ such that for all n, q = q0 . . . qn and ρ̂ ∈ κq

(
W−q ,

)
,

we have for some global constant C > 0 :

• C−1Juq ≤ λn,q ≤ CJuq ;
• C−1 ≤ µn,qλn,q ≤ C ;
• dρ̂F (n) is close to a diagonal matrix :∣∣∣∣∣∣∣∣dρ̂F (n) −

Å
λn,q 0

0 µn,q

ã∣∣∣∣∣∣∣∣ ≤ ε2J
u
q

Proof. We note ρi = F in0 (ρ) = κ−1
qi ◦ F

(i)(ρ̂). Recall also that F (i) = κqi ◦ F in0 ◦ κ−1
q0 .
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Step 1 : Reduction to ρ ∈ T . By definition of Wqi , for i ∈ {0, . . . , n}, we have d(ρqi , ρi) ≤ 2ε0.
Hence,

d(Fn0(ρqi), ρi+1) ≤ d(Fn0(ρqi), F
n0(i+1)(ρ)) + d(Fn0(i+1)(ρ), ρi+1) ≤ Cε0

for a constant C only depending on F . That is to say, (ρ0, . . . , ρn) is a Cε0 pseudo orbit for Fn0 .
Assume that δ0 > 0 is a small fixed parameter. In virtue of the Shadowing Lemma ([HK95] , Section
18.1), if ε0 is sufficiently small, (ρ0, . . . , ρn) is δ0 shadowed by an orbit of Fn0 i.e. there exists ρ′ ∈ T
such that for i ∈ {0, . . . , n}, d(ρi, F

in0(ρ′)) ≤ δ0. Consequently, d(F in0(ρ), F in0(ρ′)) ≤ δ0 + Cε0.
For convenience, set ε2 = δ0 +Cε0 and note that ε2 can be arbitrarily small depending on ε0. By
Lemma 3.3, for 1 ≤ i ≤ n,

||dρF in0 || ≤ CJuin0
(ρ′) ; C−1Juq0...qi−1

≤ Juin0
(ρ′) ≤ CJuq0...qi−1

Hence, using the relation

dρF
nn0 − dρ′Fnn0 =

n−1∑
k=0

dFn0(k+1)(ρ′)F
n0(n−k−1) ◦

Ä
dFn0k(ρ)F

n0 − dFn0k(ρ′)F
n0

ä
◦ dρFn0k

we find that

||dρFnn0 − dρ′Fnn0 || ≤ C
n−1∑
k=0

Jun0(n−k−1)

Ä
Fn0(k+1)(ρ′)

ä ∣∣∣∣∣∣dFn0k(ρ)F
n0 − dFn0k(ρ′)F

n0

∣∣∣∣∣∣ Jun0k(ρ′)

≤ C
n−1∑
k=0

d
(
Fn0k(ρ), Fn0k(ρ′)

)
Junn0

(ρ′)

≤ CJuq
n−1∑
k=0

θmin(k,n−k)ε0

≤ CJuq ε0

where we use the Lemma 3.1 in the third equality and the last one follows from
∑n−1
k=0 θ

min(k,n−k) ≤
2
∑
k=0,dn/2e θ

k ≤ 2
∑∞
k=0 θ

k < +∞. It is not hard to deduce from this that

||dρ̂F (n) − dκq(ρ′)F
(n)|| ≤ CJuq ε0

Hence, it is enough to prove the Lemma for dκq(ρ′)F
(n).

Step 2 : The case ρ ∈ T . We assume that ρ ∈ T . The spaces Eu(ρ), Es(ρ), Eu(Fnn0(ρ)) and
Es(F

nn0(ρ)) are well-defined. For q ∈ A and • = s, u, the maps ζ ∈ Wq ∩ T 7→ dζκq(E•(ζ)) are
Lipschitz. Since dρκq(Eu(ρq)) = R∂y, dρκq(Es(ρq)) = R∂η and d(ρq0 , ρ) ≤ Cε2, d(ρqn , F

nn0(ρ)) ≤
Cε2, we can fix unit vectors

eu0 ∈ dρκq0 (Eu(ρ)) , es0 ∈ dρκq0 (Es(ρ))

eun ∈ dFnn0 (ρ)κqn (Eu(Fnn0(ρ))) esn ∈ dFnn0 (ρ)κqn (Es(F
nn0(ρ)))

such that eu0 , eun = ∂y +O(ε2) and es0, esn = ∂η +O(ε2). If we note P0 (resp. Pn) the change-of-basis
matrix from the natural basis of R2 to (eu0 , e

s
0) (resp. (eun, e

s
n)), then P0, Pn = I2+O(ε2) (with global

constants in O not depending on n). Moreover, since dρ̂F (n)(eu0 ) ∈ Reun and dρ̂F (n)(es0) ∈ Resn, the
matrix P−1

n dρ̂F
(n)P0 is diagonal. Let’s write itÅ

λn,q 0
0 µn,q

ã
λn,q (resp. µn,q) is nothing but an unstable (resp. stable) Jacobian for ρ, and hence λn,q ∼ Juq .
Since det dρF

nn0 = 1, λn,qµn,q = det(P0)−1 det(Pn) = 1 +O(ε2). Finally,

P−1
n dρ̂F

(n)P0 = (I2 +O(ε2))dρ̂F
(n)(I2 +O(ε2)) = dρ̂F

(n) +O
Ä
||dρ̂F (n)||ε2

ä
= dρ̂F

(n) +O
(
ε2J

u
q

)
This concludes the proof. �
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As a consequence of this lemma, in the standard position/momentum coordinates, we can write

(5.15) dρ̂F
(n) =

Å
an bn
cn dn

ã
; an ∼ Juq ; bn, cn, dn = O

(
ε2J

u
q

)
Here, an, bn, cn, dn depend on ρ, but we won’t make this dependence precise since ρ is fixed until
the end of the section. Since we want to understand the action ofM

(
dρ̂F

(n)
)
on excited coherent

states, we also introduce

(5.16) γn = (cn + idn)(an + ibn)−1 ; βn = Re(γn) ; αn = Im(γn)−1 = |an + ibn|2

We’ve got the basic estimates

(5.17) αn ∼
(
Juq
)2

; βn = O(ε2)

Now assume that P ∈ C[X] and decompose P into the basis of the renormalized hermite polyno-
mials (hn) : P =

∑degP
k=0 ak(P )hk. By Proposition 2.9,

M
Ä
dρ̂F

(n)
ä

Λh (hkΨ0) (x) = (αnπh)−1/4

Å
an − ibn
an + ibn

ãk/2
hk

Å
x

(αnh)1/2

ã
eiγn

x2

2h = cn,kΛαnh (hkΨ0) (x)eiβn
x2

2h

with |cn,k| = 1. As a consequence, there exist linear maps Φn : C[X] → C[X] such that for all
n ∈ N and P ∈ C[X],

• deg Φn(P ) = degP for all P ∈ C[X] ;
• N∞(Φn(P )) ≤ KdegPN∞(P ) where KdegP depends only on degP ;
• and the following relation holds

(5.18) M
Ä
dρ̂F

(n)
ä

Λh (PΨ0) = Λαnh (Φn(P )Ψ0) eiβn
x2

2h

Remark. We can interpret this state as a (highly-oscillating) Lagrangian state associated with the
Lagrangian manifold {(x, βnx)}, with amplitude a(x) = Λαnh (Φn(P )Ψ0) (x). Since αn ∼

(
Juq
)2,

αn ∼ h−α for some α ≥ 2λminϑε, the amplitude a oscillates on a scale h1/2−α/2. Compared with the
initial state ϕ0, localized in position in an interval of size h1/2, this expression shows a stretching
in position. Moreover, this scale is larger than the scale hδ on which the symbol g oscillates.

5.4.2. Asymptotic expansion for the exponential. We now aim at understanding the stateAqne−tGB′qnu
where u is of the form

u(x) = T (ρ̂n) (Λαnhf) (x)eiβn
x2

2h

where f = PΨ for some P ∈ C[X]. We first claim that

Aqne
−tGB′qn = AqnB

′
qne
−tBqnGB

′
qn +O(h∞)

Proof. Set A(t) = Aqne
−tGB′qne

tBqnGB
′
qn . At t = 0, A(0) = AqnB

′
qn . We differentiate:

Ȧ(t) = Aqne
−tG [B′qnBqnGB′qn −GB′qn] etBqnGB′qn

The operatorAqne−tG is bounded on L2 and has its semiclassical wavefront set included in suppχqn .
In particular, Aqne−tG

(
B′qnBqn − Id

)
= O(h∞) (uniformly for t in a bounded interval). This shows

that A′(t) = O(h∞). We conclude that A(t) = AqnB
′
qn +O(h∞). �

Hence we aim at understanding the action of e−tBqnGB
′
qn . We make use of Lemma 5.2 and we

write for all N ∈ N,

Gqn := BqnGB
′
qn = Oph

(
g ◦ κ−1

qn

)
+

N−1∑
j=1

hj(1−2δ) Oph(gj,qn) +RN

with ||RN || ≤ CNhN(1−2δ). Let’s write g0,qn = g ◦ κ−1
qn . Similarly, we have

AqnB
′
qne
−tGqnT (ρ̂n) = AqnB

′
qnT (ρ̂n)e−tT (ρ̂n)∗GqnT (ρ̂n)

and we recall that T (ρ̂n)∗Oph(a)T (ρ̂n) = Oph(a(· + ρ̂n)) for any a ∈ S ′. Let’s note hj(ζ̂) =

gj,qn(ρ̂n + ζ̂), so that

A := T (ρ̂n)∗GqnT (ρ̂n) =

∞∑
j=0

hj(1−2δ) Oph(hj) +ON (hN(1−2δ))
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Recall that in virtue of Lemma 5.2, h0 ∈ log(1/h)Sδ and hj ∈ Sδ for j ≥ 1.
Finally, we need to understand the action of e−tA on states u(x) = Λαnhf(x)eiβn

x2

2h . We want
to apply the formalism of Appendix A.2 with H = L2(R) and A. The class of elements which
will interest us is defined as follows : we say that a h-dependent family of states u = uh ∈ L2(R)
belongs to the class C if u has the form :

u(x) = a(x)eiβn
x2

2h

where a = ah ∈ C∞(R) satisfies : for all p ∈ N, there exists Cp such that

(5.19) |a(p)(x)| ≤ Cph−δp(αnh)−1/4

Å
1 +

x2

αnh

ã−1

This class depends on h (and n, which himself depends on h). For such a state u, we define the
natural semi-norms on C :

(5.20) qp(u) = sup
k≤p

sup
x∈R

Å
|a(k)(x)|hδk(αnh)1/4

Å
1 +

x2

αnh

ãã
In particular, one has ||u|| ≤ Cq0(u).

Remark. In fact, the introduction of the semi-norms qj with the factor (1 + x2

αnh
)−1 is purely

technical : it allows to work in a symbol class depending on this order function (see the proof of
Lemma 5.10 in the appendix A.1.3). In the end, we will simply need to estimate the semi-norm q0

of each term of the expansion of an evolved state e−tAu, but this will require to control (a finite
number of) semi-norms qj of the initial state u. This reason has motivated the introduction of
the qj ’s. We will mainly consider states u with exponential decay and what is important is that
∂kΨ0 ≤ Ck,p(1 + x2)−p/2 for all k, p ∈ N.

The following lemma ensures that the states we work with are indeed in C, as soon as h2δ � αnh.
Recall that αn ≥ Ch−αmin where αmin = 2λminϑε. Then, it suffices to require

ε = 1/2− δ ≤ αmin/2.

This is clearly not a problem since we want to work with δ = 1/2 − ε very close to 1/2 and we
assume that this is true, that is, we assume that

ε ≤ αmin/2.

Lemma 5.9. Assume that u(x) = Λαnh(PΨ0)eiβn
x2

2h where P ∈ C[X] has degree d. Then u ∈ C
and for all j ∈ N, there exists constants Cd,j depending only on d and j such that qj(u) ≤
Cd,jN∞(P )

Proof. ∣∣∣(Λαnh(PΨ0))
(j)

(x)
∣∣∣ =

∣∣∣(αnh)−j/2Λαnh((PΨ0)(j))(x)
∣∣∣

≤ h−δj(πhαn)−1/4
∣∣∣(PjΨ0)((αnh)−1/2x)

∣∣∣
Here, we use that αnh� h2δ. and Pj is a polynomial which depends linearly on P , with degPj =
degP + j and N∞(Pj) ≤ Cd,jN∞(P ). Hence, we have

qk(u) ≤ sup
j≤k

sup
x∈R

∣∣∣(PjΨ0)((αnh)−1/2x)
∣∣∣Å1 +

x2

αnh

ã
≤ sup

j≤k
sup
x∈R
|(PjΨ0)(x)|

(
1 + x2

)
≤ sup

j≤k
Cd,jN∞(Pj) ≤ Cd,kN∞(P )

�

To apply the formalism of Appendix A.2, we will require the following lemma. This a more or
less direct application of the stationary phase theorem in the quadratic case. We write its proof in
appendix A.1.3. This lemma explains how to compute Oph(m)u for u ∈ C and m ∈ Sδ.
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Lemma 5.10. There existsM > 0 such that the following holds. Assume that m ∈ Sδ or m = h0.
Then, for all k ∈ N, there exists Ak(m) : C → C such that for u ∈ C, written under the form
u(x) = a(x)eiβn

x2

2h , we have
• A0(m)u(x) = m(x, βnx)u(x);
• For k ≥ 1, Ak(m) is of the form

(5.21) Ak(m)u(x) =
∑
l≤2k

cl(x)∂lxa(x)eiβn
x2

2h

where |c(p)l (x)| ≤ Cl,k,ph(l−p)δ.
• For all (j, k) ∈ N2 \ {(0, 0)}, there exists cj,k > 0 such that for all u ∈ C, qj(Ak(m)u) ≤
cj,kq2k+j(u);

• For all N ∈ N∗ and for all j ∈ N, there exists Cj,N > 0 such that

qj

(
Oph(m)u−

N−1∑
k=0

hk(1−2δ)Ak(m)u

)
≤ Cj,Nqj+2N+M (u)hN(1−2δ)

Remark. We need to distinguish the cases m = h0 and m ∈ Sδ because h0 is not in Sδ (recall that
we only have h0 = O(log(1/h))). However, h0 satisfies |∂αh0| ≤ Cαh−|α|δ as soon as |α| ≥ 1. This
explains why we restrict on (j, k) 6= (0, 0) in the third item but in the case m ∈ Sδ, the expression
given in the first item shows that it also holds for (j, k) = (0, 0).

Gathering the terms of same order in the expansions of each Oph(hk) given by Lemma 5.10, we
can build the family of operators

Ak : C → C ; Ak =
∑
j+l=k

Aj(hl).

Each Ak has the same form as (5.21) and they satisfy, for all u ∈ C,
• A0u(x) = h0(x, βnx)u(x).
• For all (j, k) ∈ N2 \ {(0, 0)}, there exists cj,k > 0 such that for all u ∈ C, qj(Aku) ≤
cj,kq2k+j(u);

• For all N ∈ N∗ and for all j ∈ N, there exists Cj,N > 0 such that

qj

(
Au−

N−1∑
k=0

hk(1−2δ)Aku

)
≤ Cj,Nqj+2N+M (u)hN(1−2δ)

We now use the formulas and notations of Appendix A.2 to show :

Proposition 5.2. Assume that P ∈ C[X] is of degree d and consider the state u = Λαnh(PΨ0)e
iβnx

2

2h .
Then, t being fixed, there exists a family of functions (fk) and K1 > 0 such that,

• v0(x) = u(x) ;
• For all N ∈ N∗, there exists CN,d such that∣∣∣∣∣
∣∣∣∣∣Aqn

(
e−tGB′qnT (ρ̂n)u−

N−1∑
k=0

hk(1−2δ)B′qnT (ρ̂n)uk

)∣∣∣∣∣
∣∣∣∣∣ ≤ CN,dhN(1−2δ)h−tK1N∞(P )

where

uk(x) = exp (−th0(x, βnx))) vk(x) ; vk(x) = fk(x) (ΛαnhΨ0) (x)e
iβnx

2

2h

• For all k ∈ N, there exists ck,d > 0 such that for all x ∈ R,

|fk(x)| ≤ ck,d
Å

1 +
x2

αnh

ãk/2
N∞(P )

Remark. In particular, these last estimates imply that vk ∈ C.

Proof. We use the notations and formulas of Appendix A.2, with parameter h̃ = h1−2δ. We define
a family (vk(t)) by the iterative formula (A.3). The operator A0 is nothing but the multiplication
by

a0(x) = h0(x, βnx)

and hence, esA0 is the multiplication by exp (sa0).
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Let us noteAk(s) = e−sA0Ake
sA0 and let us show that Ak(s)u(x) has the same form as (5.21),

with the functions cl(x) replaced by functions c̃l(s, x). We have

e−sa0cl(x)∂lx (esa0a(x)) = cl(x)

l∑
m=0

Ç
l

m

å
am(s, x)a(l−m)(x)

=

l∑
m=0

c̃l,m(s, x)∂mx a(x)

where am(s, x) = e−sa0∂mx (esa0) is a sum of terms of the form

si
i∏

j=1

a
(kj)
0 with (k1, . . . , ki) ∈ (N∗)i and k1 + · · ·+ ki = m

and c̃l,m(s, x) =
(
m
l

)
cl(x)al−m(s, x). It is not hard to see that |∂pxam(s, x)| ≤ Cm,p(1+|s|)mh−δ(m+p)

so that we have

|∂pxc̃l,m(x)| =
Ç
m

l

å ∣∣∣∣∣∣ ∑
p1+p2=p

Ç
p

p1

å
c
(p1)
l (x)a

(p2)
l−m(s, x)

∣∣∣∣∣∣
≤ Cp,l,m sup

p1+p2=p
hδ(l−p1)δh−(l−m+p2)δ ≤ Cp,l,mh(m−p)δ

which shows that the term in front of ∂mx has the correct behavior to be of the form (5.21) and we
can set c̃m(s, x) =

∑
l≤2k c̃l,m(s, x) so that

Ak(s)u(x) =
∑
m≤2k

c̃m(s, x)∂mx
Ä
ue−iβnx

2/2h
ä
eiβnx

2/2h

Let us now analyze the action of Ak(s) on states of the form c(x)Λαnh(Ψ0)(x)eiβn
x2

2h . We claim
that we can write

(5.22) Ak(s)
(
c(x)Λαnh(Ψ0)(x)eiβn

x2

2h

)
= dk(s, x)Λαnh(Ψ0)(x)eiβn

x2

2h

where

(5.23) |∂pxdk(s, x)| ≤ Ck,ph−pδ(1 + |s|)k sup
y∈R,m≤2k+p

|c(m)(y)|
Å

1 +
x2

αnh

ãk
.

To see that, let us write

c̃m(s, x)∂mx (c(x)Λαnh(Ψ0)) = c̃m(s, x)

m∑
l=0

Ç
m

l

å
c(m−l)(x) (Λαnh(Ψ0))

(l)
(x))

=

(
m∑
l=0

Ç
m

l

å
c̃m(s, x)c(m−l)(x)

Ql((αnh)−1/2x)

(αnh)l/2

)
︸ ︷︷ ︸

Cm(s,x)

Λαnh(Ψ0)(x)

where Ql ∈ R[X] are some polynomials of degree l. We hence have,∣∣∣∂(p)
x Cm(s, x)

∣∣∣ =

∣∣∣∣∣∂px
( ∑
m1+m2=m

Ç
m

m1

å
c̃m(s, x)c(m1)(x)

Qm2
((αnh)−1/2x)

(αnh)m2/2

)∣∣∣∣∣
≤ Cm,p sup

m1+m2=m
p1+p2+p3=p

|∂p1x c̃m(s, x)||c(m1+p2)(x)|(αnh)−m2/2−p3/2|Q(p3)
m2

((αnh)−1/2x)|(1 + |s|)m

≤ Cm,p sup
m1+m2=m
p1+p2+p3=p

h(m−p1)δ|c(m1+p2)(x)|(αnh)−m2/2−p3/2(1 + |s|)m
Å

1 +
x2

αnh

ã(m2−p3)/2

≤ Cm,p sup
y∈R,l≤m+p

|c(l)(y)| sup
m1+m2=m
p1+p2+p3=p

h(l−p1)δh−(m2+p3)δ(1 + |s|)m
Å

1 +
x2

αnh

ãm/2
≤ Cm,p sup

y∈R,l≤m+p
|c(l)(y)|h−δp(1 + |s|)m

Å
1 +

x2

αnh

ãm/2
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and the claim is proved, with dk(s, x) =
∑
m≤2k Cm(s, x).

We now analyze precisely the iteration formula (A.3) in Appendix A.2. We use the notations
of this appendix f(in particular, for the remainders r̃j,N and RN ). Let K0 > 0 be such that
|h0| ≤ K0 log 1/h so that |eta0 | ≤ h−tK0 . For j ≥ 0, we have

qj(e
ta0u) ≤ h−|t|K0c0,jqj(u)

This is obvious for j = 0. For j ≥ 1, it comes from the fact that the derivatives of h0 satisfy
|∂αh0| ≤ Cαh−|α|δ for α 6= 0 and the definition of qj in (5.20).

Leading term. For our leading term in the expansion we want in Proposition 5.2, we simply have

u0(t) = eta0u

As a consequence,

qj (r̃0,N (t)) ≤ Cj,N h̃Nqj+2N+M

(
eta0u

)
≤ Cj,N h̃Nc0,j+2N+Mh

−|t|K0qj+2N+M (u) ≤ Cd,j,N h̃Nh−|t|K0N∞(P )

Iteration. By induction, using the formulas (A.3) and (5.22), we see that if the initial state is
u = Λαnh(PΨ0)eiβn

x2

2h then

vk(t) = fk(t, x)Λαnh(Ψ0)(x)eiβn
x2

2h

where |∂pxfk(s, x)| ≤ Ck,ph
−pδ(1 + |s|)k

Ä
1 + x2

αnh

äk/2
N∞(P ). When p = 0, it gives the required

estimate for |fk(x)| in Proposition 5.2. It follows that

qj(e
tA0vk(t)) ≤ h−|t|M0c0,jqj(vk(t)) ≤ h−|t|M0c0,j(1 + |t|)kh−|t|M0C̃d,j,k(1 + |t|)kN∞(P )

Moreover, we can estimate

qj (r̃k,N (t)) ≤ Cj,N−kh̃N−kqj+2(N−k)+M

(
etA0vk(t)

)
≤ Cd,N,j,kh̃N−kh−|t|M0(1 + |t|)kN∞(P )

Conclusion. We find that for j ∈ N,

qj

(
N−1∑
k=0

h̃kr̃k,N (t)

)
≤ h̃Nh−|t|M0

N−1∑
k=0

Cd,N,j,k(1 + |t|)kN∞(P )

≤ Cd,j,N h̃Nh−|t|M0(1 + |t|)N−1N∞(P )

Integrating (A.4), and recalling that || · || ≤ Cq0 in C, we have

||RN−1(t)|| ≤
∫ |t|

0

||A||||RN−1(s)||ds+ Cd,0,N h̃
Nh−|t|M0(1 + t2)N−1N∞(P )

By a version of Gronwall’s lemma, we can find a constant CN,d such that

||RN−1(t)|| ≤ CN,dh̃Ne|t|max(K0| log h|,||A||)(1 + t2)NN∞(P )

Since, ||A|| = O(log h), there exists K1 > 0 such that e|t|max(K0| log h|,||A||) ≤ h−|t|K1 and it
concludes the proof of Proposition 5.2. �

Combining Proposition 5.1, (5.18) and Proposition 5.2, we deduce the following expansion :

Corollary 5.2.

(5.24) Aqne
−tGMn−1Mn0AqB

′
qϕρ̂ = Aqn

∑
2j+k+l+2m<2N

hj+k/2+lε+mεu(j,k,l,m)
n

+O
Ä
h−K−t(K0+K1)h2Nε (log h)

N
ä

where
T (ρ̂n)∗u(j,k,l,m)

n (x) = etg(ρ)−th0(x,βnx)f (j,k,l,m)
n (x)Λαnh(Ψ0)(x)e

iβnx
2

2h

where we have, for all x ∈ R,∣∣∣f (j,k,l,m)
n (x)

∣∣∣ ≤ Cj,k,l,mn2j+kΠα,n(ρ)
(
Juq
)3k

h−kε
Å

1 +
x2

αnh

ãm/2
Concerning the leading term, f (0,0,0,0)

n is constant equal to πα,n(ρ).
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Proof. In the expansion of Proposition 5.1, we transform the states u(j,k,l)
n using formula (5.18).

Finally we use Proposition 5.2 on each such state. For u(j,k,l)
n , we keep the Nj,k,l first terms of the

expansion, where Nj,k,l = N − j − d(k + l)/2e. It gives a remainder term r
(j,k,l)
n satisfying

||r(j,k,l)
n ||L2 ≤ CN,j,k,lhj+k/2+lεh2εNj,k,lN∞

Ä
Φn
Ä
P (j,k,l)
n

ää
h−t(K0+K1)

≤ CN,j,k,lhj+k/2+lεh2εNj,k,lh−kεn2j+kΠα,n(ρ)
(
Juq
)3k

h−t(K0+K1)

≤ CN,j,k,lhj+k/2+lεh2εNj,k,ln2j+kh−kεh−k
1−4ε

2(1+ε)h−K−t(K0+K1)

≤ CN,j,k,l (log 1/h)
N
h2δjh2εNhk(1/2−2ε− 1−4ε

2(1+ε) )h−K−t(K0+K1)

But we have 1
2 − 2ε − 1−4ε

2(1+ε) ≥ 0 (assuming that ε ≤ 1/4, which is not a problem since we work

with ε small). Hence, ||r(j,k,l)
n || ≤ CN,j,k,l (log 1/h)

N
h−K−t(K0+K1). As a consequence, gathering

all the remainders r(j,k,l)
n together and adding them to e−tGB′qnR

(N)
n , we obtain a remainder term

controlled by CNh−K−t(K0+K1)h2Nε (log 1/h)
N as expected. �

5.5. Crucial estimates for the terms of the expansion. In the expansion of Corollary 5.2,
the leading term is given by

u0
n := T ∗(ρ̂n)u(0,0,0,0)

n = exp (tg(ρ)− th0(x, βnx))) Λαnh(Ψ0)(x)e
iβnx

2

2h πα,n(ρ)

As a consequence of the Corollary 5.2, the other terms have the form

T ∗(ρ̂n) = u(j,k,l,m)
n (x) = f (j,k,l,m)

n (x)
u0
n(x)

πα,n(ρ)

with ∣∣∣f (j,k,l,m)
n (x)

∣∣∣ ≤ Cj,k,l,mn2j+k
(
Juq0...qn

)3k
Πα,n(ρ)h−kε

Å
1 +

x2

αnh

ãm/2
so that, denoting

vn =
u0
n

πα,n
= exp (tg(ρ)− th0(x, βnx)) Λαnh(Ψ0)(x)e

iβnx
2

2h

we have

(5.25)

∣∣∣∣∣∣hj+k/2+lε+mεu
(j,k,l,m)
n

∣∣∣∣∣∣
L2

Πα,n(ρ)×
∣∣∣∣∣∣∣∣Ä1 + x2

αnh

äm/2
vn

∣∣∣∣∣∣∣∣
L2

≤ Cj,k,l,mhj+k/2+lε+mεn2j+k
(
Juq0...qn

)3k
h−kε

Recalling that
(
Juq0...qn

)3k
h−kε ≤ Cke

3knλmax(1+ε)h−kε ≤ Ckh
−k 1−4ε

2(1+ε)
−ε � Ckh

−k/2, we see that
the right hand side in the above inequality tends to 0 when h→ 0. As a consequence, it is enough
to control ∣∣∣∣∣

∣∣∣∣∣
Å

1 +
x2

αnh

ãm/2
vn

∣∣∣∣∣
∣∣∣∣∣
L2

This is what we do in the rest of this subsection.

5.5.1. Reduction to a compact interval. Note that since WFh(Aq) is compact, there exists χ ∈
C∞c (R) such that

AqB
′
q = AqB

′
qχ(x) +O(h∞)

and it is possible to choose a single χ for all the Aq. Indeed, recall that WFh(Aq) = supp(χq) b
Wq ⊂ B(ρq, 2ε0) and that κq is well-defined in a neighborhood of ρq of fixed size ε1 bigger than
ε0. There exists a Ξq ∈ Ψ0(R2) such that

AqB
′
qΞq = AqB

′
q +O(h∞) ; WFh(Ξq) b κq(Wq)

In particular, diam (WFh(Ξq)) = O(ε0). Hence, it is enough to fix χ ∈ C∞c (R) such that χ = 1 in
a neighborhood of πx(WFh(Ξq)) for all q ∈ A and such that suppχ ⊂ [−Cε0, Cε0] for some large
constant C independent of ε0. As a consequence, we focus on χvn.

We set

(5.26) ζn(x) = κ−1
qn (ρ̂n + (x, βnx)) ∈ Wqn
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It describes a curve, preimage by κqn of the line ρ̂n+(x, βnx). To ensure that ζn(x) is well defined,
ρ̂n + (x, βnx) has to be at distance at most ε1 of κqn(ρqn) = 0. We claim that we may choose ε0

small enough so that

(5.27) x ∈ supp(χ) =⇒ ζn(x) is well defined

Indeed, x ∈ suppχ =⇒ |x| ≤ Cε0, so that d(ρ̂n, κqn(ρqn)) = O(ε0) and we choose ε0, ensuring
the good definition of ζn(x).

5.5.2. Control of the norm of vn. Our goal is to control the norm of χvn, which allows to control
the leading term. In fact, as already explained, to control the higher order terms, it is also necessary

to control the norm of χ
Ä
1 + x2

αnh

äm/2
vn. Let us note ‹Ψm(x) = π−1/4(1 + x2)m/2e−x

2/2.

∣∣∣∣∣
∣∣∣∣∣
Å

1 +
x2

αnh

ãm/2
χvn

∣∣∣∣∣
∣∣∣∣∣
2

L2

=

∫
R
|χ(x)|2e2tg(ρ)−2tg(ζn(x))|Λαnh(‹Ψm)(x)|2dx

=

∫
R

∣∣∣χ((αnh)1/2x)
∣∣∣2 e2tg(ρ)−2tg(ζn((αnh)1/2x))(1 + x2)me−x

2

dx

We have

Lemma 5.11.

1|x|≥α1/2
n hδ0

Å
1 +

x2

αnh

ãm/2
χ(x)vn(x) = O(h∞)L2

The constants in O(h∞) depend on m and ε, but neither on ρ nor n as soon as n ∼ ϑε log 1/h.

Proof. Since g = O(log h), we have

e2tg(ρ)−2tg(ζn((αnh)1/2x)) ≤ exp(O(log(h))) = O(h−C)

for some C depending on t and g. We also have |χ| = O(1). Hence, after a change of variable
x = α

1/2
n h1/2y, it suffices to estimate∫

R
1

[−α1/2
n hδ0 ,α

1/2
n hδ0 ]

(α1/2
n h1/2y)(1 + y2)me−y

2

dy =

∫
|y|≥hδ0−1/2

(1 + y2)me−y
2

dy

Since δ0 < 1/2, we conclude by using the standard estimate∫
|y|>λ

(1 + y2)me−y
2

dy = Om(λ−∞)

�

A very important consequence of this lemma is that we only need to focus on ζn(x) where
|x| ≤ α1/2

n hδ0 . In particular,

|x| ≤ α1/2
n hδ0 =⇒ d(ζn(x), ρn) ≤ Cα1/2

n hδ0

Recall that α1/2
n ≤ Cenλmax(1+ε) ≤ Ch−

1−4ε
6(1+ε) and recall that δ0 is such that

(5.28) δ0 −
1− 4ε

6(1 + ε)
≥ 1

3

ensuring that α1/2
n hδ0 ≤ Ch1/3. It will turn out to be important.

5.5.3. Control outside an hδ-neighborhood of T . We first treat the case where ρ lies outside an
hδ-neighborhood of T (in fact, we will be slightly less precise in the unstable direction, see the
Lemmata below). The following estimate strongly relies on the structure of the escape function
g. The escape property of g has been used in [NSZ14] to damp the symbol of the Fourier integral
operator M(h) and they prove that the norm of Mt(h) outside an hδ-neighborhood of T can be
smaller than any arbitrary ε as soon as t is well chosen. Here, we want to obtain strong polynomial
decay of the form hL for some L = L(t) as large as we want if t is sufficiently large. This will be
possible since we propagate on logarithmic times n(h).

We are interested in controlling the term

d(x) := exp (tg(ρ)− tg(ζn(x)))
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which controls the norm of χvn. Indeed, since ||‹Ψm||∞ < +∞, we have∣∣∣∣∣
∣∣∣∣∣
Å

1 +
x2

αnh

ãm/2
χvn

∣∣∣∣∣
∣∣∣∣∣
2

L2

≤
∫
|x|≤α1/2

n hδ0
d(x)2|Λαnh‹Ψm(x)|2dx+O(h∞)

≤ Cm(αnh)−1/2

∫
|x|≤α1/2

n hδ0
d(x)2dx+O(h∞)

In virtue of the construction of g in (3.19), we have

(5.29) d(x) = (R−(x)R+(x))
t
, R−(x) :=

Mh2δ + ϕ̂−(ρ)

Mh2δ + ϕ̂−(ζn(x))
, R+(x) :=

Mh2δ + ϕ̂+(ζn(x))

Mh2δ + ϕ̂+(ρ)

(These terms depend on ρ and h, but we voluntarily omit this dependence to alleviate the nota-
tions). Recall also that ρn = Fnn0(ρ) = κ−1

qn (ρ̂n) = ζn(0).

Proposition 5.3. Estimates for R−. There exists a global constant C > 0 (i.e. depending only
F and ε trough the choice of the partition of unity, but independent of ρ, h and q) such that for
all x ∈ [−α1/2

n hδ0 , α
1/2
n hδ0 ], we have

• If d(ρ, T−) ≥ hδ, R−(x) ≤ C
(
Juq
)−2 ;

• If d(ρ, T−) ≤ hδ, R−(x) ≤ C.

Proof. We pick x ∈ [−α1/2
n hδ0 , α

1/2
n hδ0 ].

• We assume that d(ρ, T−) ≥ hδ. By Lemma 4.2 and (5.17), d(ρn, T−) ≥ C−1Juqd(ρ, T−) ≥
C−1α

1/2
n hδ. Then, we have

d(ζn(x), T−) ≥ d(ρn, T−)− d(ζn(x), ρn) ≥ C−1α1/2
n d(ρ, T−)− Cα1/2

n hδ0 ≥ C̃−1α1/2
n d(ρ, T−)

since δ < δ0 and hδ ≤ d(ρ, T−). Recall that ϕ̂−(ζ) ∼ h2δ + d(ζ, T−)2. Hence,

R−(x) ≤ C1d(ρ, T−)2

C2αnd(ρ, T−)2
≤ Cα−1

n ≤ C
(
Juq
)−2

• The second point is much easier (and in fact very crude at this stage) : if d(ρ, T−) ≤ hδ, the
numerator Mh2δ + ϕ̂−(ρ) is smaller that Ch2δ. Concerning the denominator, we simply
use the fact that ϕ̂− ≥ 0 to bound it from below byMh2δ, and we deduce that R−(x) ≤ C.

�

We now come to the case of R+. Before, we need to understand more precisely the Lagrangian
space {(x, βnx)}. We expect it to be a good first order approximation of an unstable manifold.
This is the content of the following lemma :

Lemma 5.12. There exists a global constant C > 0 such that the following holds : there exists
ζ?n ∈ T such that for all x ∈ [−α1/2

n hδ0 , α
1/2
n hδ0 ], we have

d(ζn(x), T+) ≤ d(ζn(x),Wu(ζ?n)) ≤ C
Ä
h1/3 +

(
Juq
)−1
ä
d(ρ, T+) + Chδ0

Remark. The different terms which compose the error above appear at different places in the
proof. One of this term is due to the fact that it is a first order approximation of an unstable
manifold : we need to control the error term in this approximation. It turns out that as soon as
|x| ≤ α1/2

n hδ0 = O(h1/3), this error is O(|x|2) = O(h2/3). Depending on ρ (and q), the main term
of the error can differ. As we will see, when d(ρ, T ) ≥ hδ1 , the term hδ0 is negligible.

Proof. Step 1 : ρn is close to a reference unstable manifold Wu(ζ?n). (See Figure 7)
In this first step, we want to show that ρn is close to an unstable manifold Wu(ζ?n). As in the

proof of Lemma 4.2, we consider a point ζ+ ∈ T such that d(ρ, T+) = d(ρ,Wu(ζ+)) and such
that for all 0 ≤ i ≤ n, d(F in0(ζ+), F in0(ρ)) ≤ ε2 for some small ε2 depending on ε0. Note also
that, by the third point of Lemma 4.2, d(ρ, T−) ≤ C2

(
Juq
)−1

ε0. Let’s fix a point ζ− such that
d(ρ, T−) = d(ρ,Ws(ζ−)) and let’s consider ζO the unique point in Wu(ζ+)∩Ws(ζ−). Then, we still
have d(ρ, T+) = d(ρ,Wu(ζO)) and we also have

d(ρ, ζO)2 ∼ d(ρ, T−)2 + d(ρ, T+)2 ≤ C
Ä(
Juq
)−1

ε0

ä2
+ d(ρ, T+)2
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Figure 7. The points introduced in Step 1 of the proof of Lemma 5.12.

For 0 ≤ i ≤ n, set ζ?i = F in0(ζO). We have

d(ρn,Wu(ζ?n)) ≤ C
(
Juq
)−1

d(ρ,Wu(ζO)) ≤ C
(
Juq
)−1

d(ρ, T+)

and

d(ρn, ζ
?
n)2 ≤ C

(
Juq
)2
d(ρ, T−)2 + C

(
Juq
)−2

d(ρ, T+)2 ≤ Cε0

Let us fix ζ̌n ∈Wu(ζ?n) such that

d(ρn,Wu(ζ?n)) = d(ρn, ζ̌n)

Step 2 : The curve ζn(x) is close to the (unstable) tangent space Eu(ζ̌n).
Step 2-a : First approximation. (See Figure 8).
We now want to show that the curve is a rather good approximation of the tangent space of

Wu(ζ?n) at ζ̌n. To do so, we make the following observation (recall the notations of (5.15) and the
definition of βn in (5.16)).

vn :=

Å
1
βn

ã
= α−1/2

n dρ̂F
(n)(v′n) ; v′n = α−1/2

n

Å
an
bn

ã
and note that ||v′n|| = 1 (since α2

n = a2
n+b2n). We compare this vector vn town := α

−1/2
n dζ̂F

(n)(v′n)

where ζ̂ = κq0(ζ̌0) with ζ̌0 = F−nn0(ζ̌n). Arguing as in the proof of Lemma 5.8, we can show that

||dρ̂F (n) − dζ̂F
(n)|| ≤ CJuqd(ρ, ζ̌0)

By the triangular inequality, d(ρ, ζ̌0) ≤ d(ρ, ζO) + d(ζO, ζ̌0) where the first term is controlled by
C
Ä(
Juq
)−1

ε0 + d(ρ, T+)
ä
. For the second term, we use the fact that ζ̌0 ∈Wu(ζO) and d(ζ̌n, F

nn0(ζO)) ≤
Cε0, this gives d(ζO, ζ̌0) ≤ C

(
Juq
)−1

ε0. As a consequence, we find that

||dρ̂F (n) − dζ̂F
(n)|| ≤ CJuqd(ρ, T+) + Cε0

Finally, recalling that α1/2
n ∼ Juq - so that vn and wn are close from being normalized -, we get

that ||vn −wn|| ≤ Cd(ρ, T+) + Cε0

(
Juq
)−1.

Let’s now define ζ̃n(x) by

κqn
Ä
ζ̃n(x)

ä
= κqn

(
ζ̌n
)

+ xwn
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ff
gg

Figure 8. The curve ζn(x) (in red) passing through ρn is close to an unstable
manifold Wu(ζ?n) (in green). Wu(ζ?n) is well approximated, near ζ̌n, by its tangent
space at ζ̌n, spanned by a vector close to wn.

We have (recall that ζn(x) = κ−1
qn (ρ̂n + xvn))

d(ζ̃n(x), ζn(x))) ≤ Cd(κqn
(
ζ̌n
)

+ xwn, ρ̂n + xvn)

≤ Cd(ζ̌n, ρn) + |x|||wn − vn||

≤ C
(
Juq
)−1

d(ρ, T+) + |x|
Ä
Cd(ρ, T+) + ε0

(
Juq
)−1
ä

≤ C
(
Juq
)−1

d(ρ, T+) + CJuqh
δ0
Ä
d(ρ, T+) + Cε0

(
Juq
)−1
ä

if |x| ≤ α1/2
n hδ0

≤ C
( (
Juq
)−1

+ h1/3
)
d(ρ, T+) + Chδ0

where we use the fact that Juqhδ0 ≤ Ch1/3. We will now control the distance of ζ̃n(x) to T+.

Step 2-b : Comparison with the tangent space. (See Figure 8).
In this step, we want to show that wn is close to a vector spanning dκqn(Tζ̌nWu(ζ?n)). To do

so, we use Lemma 3.5. If ε0 is small enough (depending on the parameter ε1 appearing in Lemma
3.5), we can ensure that the vector vn is suffienctly close to R × {0} and hence,

Ä
dζ̌0κ0

ä−1
v′n is

sufficiently close to Tζ̌0Wu(ζO), so that we can apply this lemma with initial vector
Ä
dζ̌0κ0

ä−1
v′n.

To alleviate the notations, let’s note L = κqn(Wu(ζ?n)), m = κqn(ζ̌n). By applying Lemma 3.5 and
sending the result in the chart κqn , we obtain that

d

Å
wn

||wn||
, TmL

ã
≤ C

(
Juq
)−2

since ||wn|| ≤ C, the same is true for wn. Let’s pick w′n ∈ TmL such that ||wn−w′n|| ≤ C
(
Juq
)−2.

We now define Zn(x) by the relation

κqn (Zn(x)) = κqn
Ä
ζ̃n(x)

ä
+ w′nx

If |x| ≤ α1/2
n hδ0 , it is clear that

d(Zn(x), ζ̃n(x)) ≤ |x|||wn −w′n|| ≤ C
(
Juq
)−2

α1/2
n hδ0 ≤ Cα−1/2

n h1/2 � hδ0

Gathering the steps 2-a and 2-b, we see that

d(ζn(x), T+) ≤ d(Zn(x), T+) + C
( (
Juq
)−1

+ h1/3
)
d(ρ, T+) + Chδ0

Step 3 : The tangent space is a good approximation. The only remaining point is
to control d(Zn(x), T+). We observe that w′n ∈ TmL. Hence, by standard results of differential
geometry, d(m + xw′n,L) ≤ Cx2 where C depends on ||w′n|| and on the curvature of L - which
can be controlled independently of the base point ζ̃n of this unstable manifold. As a consequence,
if |x| ≤ α

1/2
n hδ0 ≤ h1/3, d(m + xw′n,L) ≤ Ch2/3 � Chδ0 . This shows that d(Zn(x), T+) ≤

Cd(m+ xw′n,L) ≤ Chδ0 and concludes the proof of the lemma. �

This Lagrangian being well understood, we can now come to the estimates for R+ :
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Proposition 5.4. Estimates for R+. There exists a global constant C > 0 such that for all
x ∈ [−α1/2

n hδ0 , α
1/2
n hδ0 ], we have

• If d(ρ, T+) ≥ hδ1 , R+(x) ≤ Ch2ε ;
• If d(ρ, T+) ≤ hδ1 , R+(x) ≤ C

(for some constant C > 0).

Proof. Recall that δ1 = δ − ε. We pick x ∈ [−α1/2
n hδ0 , α

1/2
n hδ0 ]. Here, we will use the inequality

d(ρn, T+) ≤ C
(
Juq
)−1

d(ρ, T+) and the result of the previous lemma, namely,

d(ζn(x), T+) ≤ C
Ä
h1/3 +

(
Juq
)−1
ä
d(ρ, T+) + Chδ0

Recall that Juq ≥ Cεen(h)λmin(1−ε) ≥ Cεh−ϑελmin(1−ε).
We choose some 0 < β < min(1/3, ϑελmin(1− ε)), which ensures that

d(ζn(x), T+) ≤ Chβd(ρ, T+) + Chδ0

Note that since we work with ε small, it is harmless to assume that ε < β. We treat the two points
separately :

• For this first point, we distinguish two cases :

First case : hδ1 ≤ d(ρ, T+) ≤ hδ−β. In this context, one has d(ζn(x), T+) ≤ Chβhδ−β +
Chδ0 ≤ Chδ. As a consequence, ϕ̂+(ζn(x)) ≤ Ch2δ. We also have ϕ̂+(ρ) ≥ C−1(h2δ +
h2δ1) ≥ C−1h2δ1 which gives

R+(x) ≤ (M + C)h2δ

Mh2δ + C−1h2δ1
≤ Ch2(δ−δ1) = Ch2ε

Second case: d(ρ, T+) ≥ hδ−β. . In this context, we have d(ρ, T+)2 � h2δ so that we
can bound the denominator Mh2δ + ϕ̂+(ρ) from below by C−1d(ρ, T+)2. Concerning the
numerator, we have

d(ζn(x), T+) ≤ Chβd(ρ, T+) + Chδ0 ≤ Chβd(ρ, T+)

since hβd(ρ, T+) ≥ hβhδ−β ≥ hδ � hδ0 . We deduce also that ϕ̂+(ζn(x)) ≤ Ch2βd(ρ, T+)2.
As a consequence,

R+(x) ≤ Ch2βd(ρ, T+)2

C−1d(ρ, T+)2
≤ Ch2β � h2ε

• We now assume that d(ρ, T+) ≤ hδ1 . As in the first case above, we can bound the numerator
by Ch2δ. Concerning the denominator, we simply use the fact that ϕ̂+ ≥ 0 to bound it
from below by Mh2δ, and this gives, as expected

R+(x) ≤ C
�

Let’s recap these two estimates and their implications concerning d(x) (and recall that by
definition, β > ε and Juq ≥ C−1h−β)

d(ρ, T−) ≥ hδ =⇒ d(x) ≤ (Ch2β)t � h2tε , ∀x ∈ [−α1/2
n hδ0 , α1/2

n hδ0 ]

d(ρ, T−) ≤ hδ and d(ρ, T+) ≥ hδ1 =⇒ d(x) ≤
(
Ch2ε

)t
, ∀x ∈ [−α1/2

n hδ0 , α1/2
n hδ0 ]

As a consequence, the L2 norm of χvn is very small when ρ lies outside the neighborhood of T
defined before Proposition 4.2 :

(5.30) Tδ,δ1 =
{
ρ , d(ρ, T−) ≤ hδ, d(ρ, T+) ≤ hδ1

}
Indeed, we obviously have

Proposition 5.5. For all L > 0, there exists t = t(ε, L) such that the following holds. Assume
that ρ 6∈ Tδ,δ1 . Then, ∫

|x|≤α1/2
n hδ0

d(x)2dx ≤ ChL
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5.5.4. Crucial estimates in Tδ,δ1 . We now turn to the crucial estimate which helps to control the
L2 norm of χvn when ρ ∈ Tδ,δ1 .

Proposition 5.6. Assume that ρ ∈ Tδ,δ1 . Then,∫
|x|≤α1/2

n hδ0
d(x)2dx ≤ C

(
Juq
)dH+ε

h(δ0−δ)(dH+ε)hδ

Proof. Step 0 : A simple estimates for d(x). First recall from Proposition 5.4, ρ ∈ Tδ,δ1 =⇒
d(x) ≤ CR−(x)t. Moreover, the numerator in R−(x) is bounded by Ch2δ and since ϕ̂−(ζn(x)) ≥
Ch2δ + Cd(ζn(x), T−)2, we find that

d(x) ≤ C
Ç

1 +

Å
d(ζn(x), T−)

hδ

ã2
å−t

Step 1 : The mass is supported in an hδ-neighborhood of T . We use Lemma 5.12
which asserts that there exists ζ?n such that

(5.31) d(ζn(x),Wu(ζ?n)) ≤ Chβd(ρ, T+) + Chδ0 � hδ

with β defined in the proof of Proposition 5.4. Recall that in the chart κqn , κqn(ζn(x)) = ρ̂n +
(x, βnx). Moreover, if ε0 is small enough, we may assume that κqn(Wu(ζ?n)) can be written as the
graph of a function :

κqn(Wu(ζ?n)) = {(x,Gu(x)), x ∈ Iu}

where Iu is a small interval of size ∼ ε0 and Gu a smooth function with bounded C∞ norms (with
bounds depending only on F and the charts). Since d(ρn,Wu(ζ?n)) � hδ, up to translating, we
may assume that ρ̂n = (0, ξn) and |Gu(0) − ξn| � hδ. In particular, if h is small enough, we
may assume that [−α1/2

n hδ0 , α
1/2
n hδ0 ] ⊂ Iu. Finally, if ε0 is small enough, we can also assume that

|G′u(x)| ≤ 1/4 if |x| ≤ 2α
1/2
n hδ0 � 1 (recall that the chart κq is centered at a point ρq such that

κq(Eu(ρq)) = R× {0}). We now set

X(T ) = {x ∈ [−2α1/2
n hδ0 , 2α1/2

n hδ0 ], κ−1
qn (x,Gu(x)) ∈ T }

Let’s cover X(T ) by N intervals of size 2hδ, centered at points x1, . . . , xN ∈ X(T ). In virtue of
Lemma 3.6, we can choose N such that

N ≤ C
(
Juqh

δ0−δ
)dH+ε

Each interval around xi of size O(hδ) supports a mass of order O(hδ). Our aim in the following
lines is to show that the weight of the integral supported at distance larger than hδ of the xi is also
O(hδ), so that we will be able to estimate the whole integral by Nhδ, which would conclude the
proof. Let us consider x ∈ [−α1/2

n hδ0 , α
1/2
n hδ0 ] and assume that for all 1 ≤ i ≤ N , |x− xi| ≥ 2hδ.

Let us choose i such that |x− xi| = min1≤k≤N |x− xk|. We claim that there exists ν > 0, uniform
with respect to ρ, h and x ∈ [−α1/2

n hδ0 , α
1/2
n hδ0 ] such that

(5.32) d(ζn(x), T−) ≥ ν|x− xi|

Let’s admit it for a while. For i ∈ {1, . . . , N}, let’s note

Ji = {x ∈ [−α1/2
n hδ0 , α1/2

n hδ0 ], |x− xi| = min
1≤k≤N

|x− xk|}
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eq1eq1

ff
gg

Figure 9. The points appearing in the proof of the claim 5.32. The curve ζn(x)
is in red. The image of the important point (x′, Gu(x′)) is a purple diamond.

These intervals form a partition of [−α1/2
n hδ0 , α

1/2
n hδ0 ].∫

|x|≤α1/2
n hδ0

d(x)2dx ≤
∫
|x|≤α1/2

n hδ0
C

Ç
1 +

Å
d(ζn(x), T−)

hδ

ã2
å−2t

dx

≤ C
N∑
i=1

∫
Ji

Ç
1 +

Å
d(ζn(x), T−)

hδ

ã2
å−2t

dx

≤ C
N∑
i=1

(∫
|xi−x|≤2hδ

1dx+

∫
|xi−x|>2hδ

Ç
1 +

Å
ν|x− xi|

hδ

ã2
å−2t

dx

)

≤ C
N∑
i=1

Ç
4hδ +

∫
|y|>2

Å
1

1 + (νy)2

ã2t

hδdy

å
≤ CNhδ

Here, t is large enough and in particular, we may ensure that t ≥ 1 so that the integral converges.
Step 2 : Proof of the claim (5.32). We argue by contradiction and assume that d(ζn(x), T−) ≤

ν|x− xi| for some sufficiently small ν (with conditions specified below). Since T− is made of local
stable leaves near T (and ζn(x) lies in a small neighborhood of T ), we may chose ρ− ∈ T such that
d(ζn(x), T−) = d(ζn(x),Ws(ρ−)). Let’s still note ρ− ∈ T the unique point of Wu(ζ?n) ∩Ws(ρ−)
and let’s write κqn(ρ−) = (x−, Gu(x−)). Again if ε0 is small enough, all the stable leaves in κqn
can be written as graphs in the vertical variable : let us write

κqn(Ws(ρ−)) = {(Hs(ξ), ξ), ξ ∈ Is}

where Is is a small interval of size O(ε0) and Hs a smooth function with C∞ norms bounded by
constants only depending on the dynamics and the chart. Up to translating, we may assume that
(Hs(0), 0) = κqn(ρ−) = (x−, 0). As for Gu, if ε0 is small enough, we can assume that |H ′s(ξ)| ≤ 1
for all ξ ∈ Is. Finally, let us note ρmin = κ−1

qn (Hs(ξmin), ξmin) a point in Ws(ρ−) such that
d(ζn(x), ρmin) = d(ζn(x),Ws(ρ−)) (see Figure 9).

Since by (5.31), d(ζn(x),Wu(ζ?n))� hδ, we can find x′ ∈ Iu such that ||(x, βnx)−(x′, Gu(x′))|| �
hδ. This inequalitiy implies

|x− x′| � hδ ,

|βnx−Gu(x′)| � hδ ,

|Gu(x)−Gu(x′)| � hδ ,

|Gu(x)− βnx| � hδ.

Since by assumption, |x−xi| ≥ 2hδ, when h is small enough, the inequality |Gu(x)−βnx| ≤ ν|x−xi|
holds. We have

||(Hs(ξmin), ξmin)− (x, βnx)|| ≤ Cd(ζn(x), ρmin) ≤ Cd(ζn(x), T−) ≤ Cν|x− xi|
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From this we deduce that

|ξmin| ≤ |ξmin −Gu(x)|+ |Gu(x)| = |ξmin −Gu(x)|+ |Gu(x)−Gu(x−)|

≤ |ξmin − βnx|+ |βnx−Gu(x)|+ 1

4
|x− x−|

≤ ||(H(ξmin), ξmin)− (x, βnx)||+ ν|x− xi|+
1

4
|x− x−|

≤ Cν|x− xi|+
1

4
|x− x−|

Finally, we find that,

|x− − x| ≤ |x− −Hs(ξmin)|+ |Hs(ξmin)− x|
≤ |H(0)−H(ξmin)|+ ||(H(ξmin), ξmin)− (x, βnx)||
≤ |ξmin|+ Cν|x− xi| (recall that |H ′| ≤ 1)

≤ 1

4
|x− x−|+ Cν|x− xi|

From this, we deduce that

(5.33) |x− x−| ≤
4

3
Cν|x− xi|

A first consequence of this inequality is that if ν is small enough so that 4νC
3 ≤ 1

4 , we have

|x−| ≤ |x|+
1

4
|x− xi| ≤

5

4
|x|+ |xi| ≤

5

4
α1/2
n hδ0 +

2

4
α1/2
n hδ0 ≤ 2α1/2

n hδ0

Since κ−1
qn (x−, Gu(x−)) = ρ− ∈ T , we deduce that x− ∈ X(T ). In particular, there exists

j ∈ {1, . . . , N} such that |x− − xj | ≤ hδ. But then, we would have

|xi − x| ≤ |xj − x| ≤ |x− − xj |+ |x− − x| ≤ hδ +
1

4
|x− xi| ≤

1

2
|x− xi|+

1

4
|x− xi| < |x− xi|

(recall that |x− xi| ≥ 2hδ) . This gives the required contradiction and concludes the proof of the
claim (5.32).

�

5.6. End of the proof. We can use Lemma 5.11, Proposition 5.5 and Proposition 5.6 to conclude
the proof of Proposition 4.2. Indeed, since ||‹Ψm||∞ < +∞, we have∣∣∣∣∣

∣∣∣∣∣
Å

1 +
x2

αnh

ãm/2
χvn

∣∣∣∣∣
∣∣∣∣∣
2

L2

≤
∫
|x|≤α1/2

n hδ0
d(x)2|Λαnh‹Ψm(x)|2dx+O(h∞)

≤ Cm(αnh)−1/2

∫
|x|≤α1/2

n hδ0
d(x)2dx+O(h∞)

It gives a bound CmhL when ρ 6∈ Tδ,δ1 (with L as large as necessary by choosing t large enough)
and when ρ ∈ Tδ,δ1 , we find that∣∣∣∣∣

∣∣∣∣∣
Å

1 +
x2

αnh

ãm/2
χvn

∣∣∣∣∣
∣∣∣∣∣
2

L2

≤ Cm
(
Juq
)dH−1+ε

h(δ0−δ)(dH+ε)+δ−1/2

When m = 0, it gives a control of the leading term, since we have

||u0
n||2L2 ≤ Πα,n(ρ)2||χvn||2L2

and since Πα,n(ρ)2 = O(h−L2) for some L2 > 0, so that for ρ 6∈ Tδ,δ1 we can have ||u0
n||2L2 = O(hL)

for any L by choosing t large enough.
It controls the first term of the expansion given by Corollary 5.2. We recall that the number

of terms in this expansion is controlled by a integer N ∈ N. For the other terms in the expansion
given by Corollary 5.2, as already explained with (5.25), they all have their L2 norms controlled
by some

ε(h)Πα,n(ρ)

∣∣∣∣∣
∣∣∣∣∣
Å

1 +
x2

αnh

ãm/2
χvn

∣∣∣∣∣
∣∣∣∣∣
L2
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(a) The notations used to define the bil-
liard map and the shadow map.

(b) The billiard map. B+
ij(yj , ηj) =

(yi, ηi).

Figure 10. Definition of the billiard map

with m ≤ N and ε(h)→ 0 when h→ 0. Finally, we can choose N = N(ε) such that the remainder
has an L2 norm O(h2L). This concludes the proof of Proposition 4.2, and eventually of Theorem
3.

6. Proof of the fractal Weyl upper bounds in obstacle scattering and scattering
by a potential

6.1. Proof of Theorem 2. Let us show how Theorem 3 implies Theorem 2. Suppose that the
obstacles Oj are strictly convex, have smooth boundary and satisfy Ikawa condition of no-eclipse.
We will use the results of [NSZ14] to apply Theorem 3 to the case where F is the billiard map. To
be precise, let us introduce the following notations.

For j ∈ {1, . . . , J}, let B∗∂Oj be the co-ball bundle of ∂Oj , S∗∂Oj be the restriction of S∗Ω
to ∂Oj , πj : S∗∂Oj → B∗∂Oj the natural projection and νj(x) be the outward normal vector at
x ∈ ∂Oj (see Figure 10).
B is then the union of the maps Bij corresponding to the reflection on two obstacles : for

(ρi, ρj) ∈ B∗∂Oi ×B∗∂Oj (with ρi = (yi, ηi), ρj = (yj , ηj)).

ρi = Bij(ρj) ⇐⇒ ∃t > 0 , ξ ∈ S1 , x ∈ ∂Oj
πj(x, ξ) = ρj , πi(x+ tξ, ξ) = ρi , νj(x) · ξ > 0 , νi(x+ tξ) · ξ < 0.

It is a standard fact in the study of chaotic billiards (see for instance [CM00]) that the billiard map
is hyperbolic due to the strict convexity assumption. Ikawa’s condition ensures that the restriction
of the dynamical system to the trapped set has a symbolic representation ([Mor91]). It is possible
to restrict the study to a neighborhood of the trapped set. Since πy (T ∩B∗∂Oj) 6= ∂Oj , it is
possible to work with an interval Yj ⊂ ∂Oj instead of the whole boundary. Moreover, it is known
that T is compact and totally disconnected, so that the relation B satisfies the assumption of
Theorem 3.

In [NSZ14], the author have shown that there exists a familyMh(z) of open hyperbolic quantum
maps associated with B, depending holomorphically on z ∈ Ω(h) =]−R,R[+i]− C log 1/h,R[ for
some fixed R > 1 and C > 1, and such that for h small enough and for z ∈ Ω(h), 1

h + z is
a resonance if and only if det(1 − Mh(z)) = 0, and the multiplicity of the resonance coincides
with the multiplicity of z as a zero of det(1−Mh(z)). The construction of this operator relies on
the study of the operators M0(z) : C∞(∂O) → C∞(∂O) defined as follows : for 1 ≤ j ≤ J , let
Hj(z) : C∞(∂Oj)→ C∞(R2 \ Oj) be the resolvent of the problem (−h2∆− (1 + hz)2)(Hj(z)v) = 0

Hj(z)v is outgoing
Hj(z)v = v on ∂Oj

.

Let γj be the restriction of a smooth function u ∈ C∞(R2) to C∞(∂Oj) and define M0(z) by :
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M0(z) =

ß
0 if i = j
−γiHj(z) otherwise.

Using the analysis of Gérard ([Gé88], Appendix II) and restricting the study near the trapped set
by the use of escape functions, the author transformM0 into a Fourier integral operator associated
with the billiard map (see Section 6 in [NSZ14]). Moreover, by analyzing the formula given in
[Gé88], Appendix II) we see that the amplitude ofMh(z) is related, via the solutions of the eikonal
equation, to the distance between two collisions. In particular, near the trapped set, it is given by

(6.1) αh(z)(ρ) = exp (−tret(ρ) Im z) +O
(
h1−S0+

)
.

For ρ ∈ T , tret(ρ) is described as follows : assume that ρ = (x, ξ) and (y, η) = B(x, ξ), then
tret(ρ) = |x−y|. t continues smoothly in a neighborhood of T and is called a return time function.

We can apply Theorem 3 to this family of open quantum maps and we find that, for any fixed
ε > 0 and for r � 1 (with h = r−1, recalling that the resonances are given by 1/h + z where
z is a pole of det(1 −Mh(z))), the number N(r, γ) of resonances, counted with multiplicity, in
[r, r + 1]− i[0, γ] satisfies

N(r, γ) ≤ mM

{
|Re z| < 2, Im z ≥ −γ}

)
≤ Cε,γrdH−p(γ+ε)++ε

Here, p(β) is given by

p(β) = − 1

6λmax
P (2βtret − ϕu).

Using the continuity of the pressure, we can choose ε′ > 0 to ensure that

P (2(γ + ε′)t− ϕu) ≥ P (2γtret − ϕu) + ε/2

and we may assume that ε′ ≤ ε/2. Applying the above formula with ε′ , we find that

N(r, γ) ≤ Cε,γrdH−σ(γ)+ε

with

(6.2) σ(γ) = max

Å
0,− 1

6λmax
P (−ϕu + 2γtret)

ã
.

To check that σ satisfies the properties listed in Theorem 3, we invoke the theory of Axiom A
flows ([BR75]) : the map s 7→ P (−ϕu + st) is strictly increasing and has a unique root given
by γcl. In particular, we deduce that σ(γ) > 0 for γ < γcl/2 and σ(γ) = 0 for γ ≥ γcl/2, as
expected. Finally, since the bound N(r, γ) = O(rdH ) holds for any γ, we can change σ(γ)− ε into
(σ(γ)− ε)+ = max(σ(γ)− ε, 0). This concludes the proof of Theorem 2.

6.2. Proof of Theorem 4. Let us show how Theorem 3 implies Theorem 4. The ideas are the
same as for the case of obstacle scattering and rely on the reduction performed in [NSZ11].

We consider V ∈ C∞c (R2), E0 > 0 and the semiclassical pseudodifferential operator Ph =
−h2∆ + V − E0. We note p(x, ξ) = ξ2 + V − E0 and we assume that

dp 6= 0 on p−1(0).

Let’s note Hp the Hamiltonian vector field associated with p and Φt = exp(tHp) the corresponding
Hamiltonian flow. Let’s note K0 the trapped set of Φt at energy 0 and we assume that Φt is
hyperbolic on K0 and K0 is topologically one dimensional. More generally, we could work with
more general Schrödinger operators in manifolds with Euclidean ends. We refer the reader to
[NSZ11] (Section 2.1) for more general assumptions.

To apply Theorem 3, we use the results of [NSZ11] (Theorem 1 and 2). Under the assumptions
above, there exists a smooth Poincaré hypersurface Σ for the flow Φt on the energy shell p−1(0)
near K0. Σ is made of several disjoint pieces Σj , 1 ≤ j ≤ J . The reduced trapped set is now
T := K0 ∩ Σ, and if we write 2dH + 1 for the dimension of K0, T has dimension

dim T = dimK0 − 1 = 2dH .

The assumption that Σ is a smooth Poincaré hypersurface ensures that there exists εmin > 0 such
that the map

(ρ, t) ∈ Σ×]− εmin, εmin[7→ Φt(ρ)
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is a smooth diffeomorphism onto its image. We note tret the return time function on Σ : for ρ ∈ Σ,

tret(ρ) = inf{t > εmin,Φt(ρ) ∈ Σ} ∈ [εmin,+∞]

tret < +∞ in a neighborhood U ⊂ Σ of T . We then define the Poincaré return map F , which is
an open hyperbolic map defined on an open subset of Σ :

F : ρ ∈ Σ 7→ Φtret(ρ) ∈ Σ

In [NSZ11], the authors construct a family of finite-dimensional matrices (M(z;h)) for z ∈ Ω(h) =
] − R,R[+i] − C log 1/h,R[ (with R fixed but large) such that for h small enough and for all
z ∈ Ω(h),

det(I −M(z;h)) = 0 ⇐⇒ hz is a resonace of Ph
The matrices M(z;h) satisfy uniformly for z ∈ Ω(h) and for h small enough,

(6.3) M(z;h) = ΠhM(z;h)Πh +O(hL)

where L > 0 can be chosen as large as necessary , Πh is a finite rank projector and M(z;h) is a
family of open hyperbolic quantum maps associated with F (in the sense of Definition 2.4). The
amplitude of M(z;h) satisfies

αh(z)(ρ) = exp(−tret(ρ) Im z) +O
(
h1−S0+

)
.

By their construction, M(z;h) and Πh satisfy, for some L > 0 as large as necessary, uniformly for
z ∈ Ω(h) and for h small enough,

(6.4) ΠhM(z;h)Πh = M(z;h) +O(hL)

We can apply Theorem 3 to the family M(z;h) of open quantum maps and we find that, for
any fixed ε > 0 and K > 0 (with K < R) and for h � 1, the number NM (R, γ;h) of zeros of
det(Id−M(z;h)) in {|Re z| < R, Im z ∈ [−γ, 0]} satisfies

NM (R, γ;h) ≤ CR,ε,γh−dH+p(γ+ε)+−ε

Here, p(β) is given by

p(β) = − 1

6λmax
P (2βtret − ϕu)

where ϕu is the unstable Jacobian associated with F . Here, it can also be obtained by differentiating
the flow Φt. In fact, by inspecting the proof of Theorem 3 and by using (6.3) and (6.4), we see
that the same conclusion holds for M instead of M . Indeed, in the formula (4.2) in Proposition
4.1, one can replace M(z;h) by M(z;h) since M(z;h)N(h) = M(z;h)N(h) + O(| log h|hL) as soon
as N(h) = O(log h). We now conclude as for the case of obstacle scattering in 6.1 and find that

N(R, γ;h) ≤ CR,γ,εh−dH+σ(γ)−ε

where

(6.5) σ(γ) = max

Å
0,− 1

6λmax
P (−ϕu + 2γtret)

ã
Appendix A.

A.1. Proofs of the missing Lemmas involving stationary phase expansions. In this ap-
pendix, we give the missing proofs of Lemmas 2.5, 2.6 and 5.10. It relies on different uses of
stationary phase theorems.

A.1.1. Proof of of Lemma 2.5. To alleviate the notations, let’s note q(x, η) = 〈D2ψ(x1, ξ0)(x, η), (x, η)〉
and write it q(x, η) = ux2 + 2vxη + wη2. The metaplectic operatorM(dρ0F ) admits the kernel

k(x, y) :=
|v|1/2

2πh

∫
R
e
i
h ( 1

2 q(x,η)−yη)dη

and k(y, x) is the kernel ofM(dρ0F )∗. We also note

Mbu(x) =
1

2πh

∫
R2

e
i
h ( 1

2 q(x,η)−yη)b̃(x, η)u(y)dydη
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We have

(M(dρ0F )∗Mbu) (x) =
|v|

(2πh)2

∫
R4

e
i
h (− 1

2 q(y,η)+xη+ 1
2 q(y,ξ)−zξ)b̃(y, ξ)u(z)dydηdzdξ

=
1

2πh

∫
R2

u(z)e
i
h (x−z)ξ

Å |v|
2πh

∫
R2

e
i
h ( 1

2 q(y,ξ)−
1
2 q(y,η)+x(η−ξ))b̃(y, ξ)dydη

ã
︸ ︷︷ ︸

b̌(x,ξ)

dzdξ

= OpRh (b̌)u(x)

= Oph(b)u(x)

where OpRh denotes the right quantization, and by [Zwo12] (Theorem 4.13), b(x, ξ) = e−
ih
2 〈Dx,Dξ〉b̌(x, ξ).

Let’s analyze b̌:

b̌(x, ξ) =
|v|

2πh

∫
R2

e
i
h ( 1

2 q(y,ξ)−
1
2 q(y,η+ξ)+xη)b̃(y, ξ)dydη

=
|v|

2πh

∫
R2

e
i
h ( 1

2wη
2−wηξ−vyη+xη)b̃(y, ξ)dydη

=
1

2πh

∫
R2

e
i
2hwη

2

e
i
h (x−y)η b̃(v−1(y − wξ), ξ)dydη (change of variable vy + wξ 7→ y)

= e
ih
2 wD

2
x b̃(v−1(x− wξ), ξ)

In particular, if w = 0, we directly find that b̌(x, ξ) = b̃(v−1x, ξ). Otherwise, it is represented by
the formula ([Zwo12], Theorem 4.8):

b̌(x, ξ) =
ei
π
4
w
|w|

2πh|w|

∫
R
e−

ih
2w y

2

b̃(v−1(y + x− wξ), ξ)dy

As a consequence, we see that b is obtained from b̃ by composing 3 actions : the one of e−
ih
2 〈Dx,Dξ〉,

the change of variable (x, ξ) 7→ (v−1(x−wξ), ξ) and e ih2 wD2
x . The second one is obviously continuous

from S(〈ρ〉3N ) to S(〈ρ〉3N ). We can now use [Zwo12] Theorem 4.17 (or more precisely, the estimates
given in the proof) : both the action of e

ih
2 wD

2
x and e−

ih
2 〈Dx,Dξ〉 are continuous from S(〈ρ〉3N ) to

S(〈ρ〉3N ), and more precisely, there exists a universal integer M and universal constants Cα such
that, for every α ∈ N2, (x, ξ) ∈ T ∗R,

|∂α(Lb̃)(x, ξ)| ≤ Cα sup
|β|≤|α|+M

||〈ρ〉−3N∂β b̃||〈ρ〉3N

with L being either e
ih
2 wD

2
x or e−

ih
2 〈Dx,Dξ〉. The same holds for the change of variable. This gives

the required estimates for the symbol b and concludes the proof of the Lemma.
�

A.1.2. Proof of Lemma 2.6. Fix s ∈ [0, 1] and recall that, with the notation q introduced above

R̃su(x) =
1

2π

∫
R2

ei(
1
2 q(x,η)+sh1/2rψ3 (x,η;h)−yη)bN (x, η)u(y)dydη

Let’s introduce
Rs = ΛhR̃sΛ

∗
h

and observe that the Schwartz kernel of Rs is given by

ks(x, y) =
1

2πh

∫
R
e
i
h ( 1

2 q(x,η)+sρψ3 (x,η;h)−yη)b̃N (x, η)u(y)dη

where

ρψ3 (x, η) = h3/2rψ3 (h−1/2x, h−1/2η) = ψ(x1+x, ξ0+η)−ψ(x1, ξ0)−x∂xψ(x1, ξ0)−η∂η(x1, ξ0)−1

2
q(x, η)

and b̃N (x, η) = bN (h−1/2x, h−1/2η) which lies in S0+(〈ρ〉3N ). Let’s note ψs(x, η) = 1
2q(x, η) + sρψ3

and remark that
∂2
xηψs = (1− s)∂2

xηψ(x1, ξ0) + s∂2
xηψ(x1 + x, ξ0 + η)
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Since ∂xηψ does not vanish on Ωx×Ωη, it has constant sign and hence, ∂2
xηψs(x, η) 6= 0 on Ωx×Ωη.

We now analyze the kernel Ks of R∗sRs and find that this kernel is

Ks(x, y) =

∫
R
ks(z, x)ks(z, y)dz

=

∫
R3

exp

Å
i

h
(ψs(z, η)− ψs(z, ξ)− yη + xξ)

ã
b̃N (z, ξ)b̃N (z, η)dηdξdz

=

∫
R
dξe

i
h (x−y)ξ

∫
R2

exp

Å
i

h
(ψs(z, η)− ψs(z, ξ)− y(η − ξ))

ã
b̃N (z, ξ)b̃N (z, η)dηdz︸ ︷︷ ︸

Bs(y,ξ)

which is the kernel of OpRh (Bs). To analyze Bs, we want to apply a stationary phase theorem and
we need to know the stationary points in the variable (z, η), of the phase

Φs(z, η, y, ξ) = ψs(z, η)− ψs(z, ξ)− y(η − ξ)

We have
∂zΦs(z, η, y, ξ) = ∂xψs(z, η)− ∂xψs(z, η) = ∂2

xηψs(z, η(z, ξ, η))(η − ξ)
for some η(z, ξ, η) ∈ [η, ξ]. Hence, since ∂2

xηψ does not vanish,

∂zΦs(z, η, y, ξ) = 0 ⇐⇒ ξ = η

We also have
∂ηΦs(z, η, y, ξ) = ∂ηψs(z, η)− y

so that the equation ∂ηΦs(z, ξ, y, ξ) = 0 has at most one solution, using again the fact that ∂2
xηψs

does not vanish. When there is no stationary point, a non stationary phase argument gives that
|Bs(y, ξ)| ≤ O(h∞)〈ρ〉6N . If there is a stationary point, it is given by a smooth function zs(y, ξ)
locally around (y, ξ) and a stationary phase argument shows that |Bs(y, ξ)| ≤ CM 〈ρ〉6N where
CM depends on the first M semi-norms (for some universal integer M) of b̃N . We can treat the
derivatives of Bs by differentiating under the integral and integration by part to obtain the same
estimates for ∂αBs, involving derivatives of b̃N up to order |α|+M . This shows that Bs ∈ S(〈ρ〉3N ).
We conclude the proof by passing from OpRh to Oph as in the proof of Lemma 2.5 and we come
back to h = 1 by standard scaling arguments.

�

A.1.3. Proof of Lemma 5.10. Let’s write u(x) = a(x)eiβn
x2

2h with a satisfying (5.19).

Oph(m)u(x) =
1

2πh

∫
R2

m
(x+ y

2
, ξ
)
e
i
h (x−y)ξa(y)eiβn

y2

2h dydξ

=
1

2πh

∫
R2

m
(
x+

y

2
, βnx+ ξ

)
a(x+ y)e−

i
hy(ξ+βnx)eiβn

(x+y)2

2h dydξ

= eiβn
x2

2h
1

2πh

∫
R2

m
(
x+

y

2
, βnx+ ξ

)
a(x+ y)e

i
2h (βny2−2yξ)dydξ︸ ︷︷ ︸

B(x)

To analyze B(x) ,we invoke the stationary phase theorem in the quadratic case (see [Zwo12],

Theorem 3.13) with the non singular symmetric matrix Qn =

Å
βn −1
−1 0

ã
and we follow the proof

of [Zwo12], Theorem 4.17. We fix a cut-off function χ ∈ C∞c (R2) with suppχ ⊂ B(0, 1) and χ = 1
in a neighborhood of 0. We write (with χ1 = χ, χ2 = 1− χ)

B(x) = B1(x)+B2(x) ; Bi(x) =
1

2πh

∫
R2

χi(y, ξ)m
(
x+

y

2
, βnx+ ξ

)
a(x+y)e

i
2h (βny2−2yξ)dydξ

We also set vi(x) = Bi(x)eiβn
x2

2h . By the stationary phase expansion, we can expand B1 : for every
N ∈ N,

B1(x) =

N−1∑
k=0

hk

k!

Å
(Q−1

n D,D)

2i

ãk
c(x, 0, 0) +RN (x)
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c(x, y, ξ) = χ(y, ξ)m
(
x+

y

2
, βnx+ ξ

)
a(x+ y) ; D =

Å
Dy

Dξ

ã
RN (x) = O

Ç
hN sup

y,ξ
sup

k+l≤2N+2
|∂ky∂lξc(x, y, ξ)|

å
We observe that :

• The first term of the expansion of B1 is given by m(x, βnx)a(x) ;
• B1 is smooth since we can derive under the integral and obtain the same kind of expansion;

• The k-th term, that is ck(x) = 1
k!

(
(Q−1

n D,D)
2i

)k
c(x, 0, 0) is a sum of terms of the form

cα∂
αm(x, βnx)a(l)(x) with α ∈ N2, l ∈ N, |α|+ l ≤ 2k and cα ∈ R. The coefficients cα of

this sum depend on Qn. Since βn = O(ε0), these coefficients are bounded uniformly in n.
As a consequence, there exists ck,p = ck,p(m) such that for p ∈ N with k + p > 0,

qp(ck) ≤ ck,ph−2kδq2k+p(u)

Hence we set Aku(x) = h2kδck(x)iβn
x2

2h , which has the required form in virtue of the
expression of ck(x).

Concerning the remainder term, we have

RN (x) ≤ CN (m)hNh−(2N+2)δ sup
|y|≤1

Å
1 +

(x+ y)2

αnh

ã−2

It is not hard to see that

sup
|y|≤1

Å
1 +

(x+ y)2

αnh

ã−2

≤ C
Å

1 +
x2

αnh

ã−2

We chooseM > 0 such thatM(1−2δ)−2δ > 0, so thatRN+M (x) ≤ CN (m)hN(1−2δ) sup|y|≤1

(
1 + (x+y)2

αnh

)−2

.

By writing, B1(x) =
∑N−1
k=0 ck(x) +

∑N+M−1
k=N ck(x) +RN+M (x) , we see that

q0

(
v1 −

N−1∑
k=0

hkAku

)
≤ CNhN(1−2δ)q2N+M (u)

By differentiating under the integral, we can show similarly that

qj

(
v1 −

N−1∑
k=0

Aku

)
≤ CNhN(1−2δ)qj+2N+M (u)

It remains to analyze B2. Since there is no stationary point in the integral defining B2, we do
repeated integration by part using the differential operator L(y, ξ) = (Qn(y,ξ),D)

|Qn(y,ξ)|2 which satisfies

L
Ä
e
i
h (Qn(y,ξ),(y,ξ))

ä
= e

i
h (Qn(y,ξ),(y,ξ)). Set c2(x, y, ξ) = (1− χ(y, ξ))m(x+ y/2, βn + y/2)a(x+ y).

Since |Q(y, ξ)| ≥ c(y2 + ξ2)1/2 on supp(1− χ), we observe that for M ∈ N.

(L∗)2Mc2(x, y, ξ) ≤ CM (1 + y2 + ξ2)−M/2h2(1−δ)Mq2M (u)(αnh)1/4
(
1 + (x+ y)2/αnh

)−2

≤ CM (1 + y2 + ξ2)−M/2h2(1−δ)Mq2M (u)(αnh)1/4
(
1 + x2/αnh

)−2 (
1 + y2/αnh

)−2

≤ CM (1 + y2 + ξ2)−M/2h2(1−δ)Mq2M (u)(αnh)1/4
(
1 + x2/αnh

)−2

Integrating over R2, we find that |B2(x)| ≤ CMh
2(1−δ)Mq2M (u)(αnh)1/4

(
1 + x2/αnh

)−2. In
particular, with M = N , q0(v2) ≤ CNh

N(1−2δ)q2N (u). Similarly, we can show that qj(v2) ≤
Cj,Nh

N(1−2δ)qj+2N (u). Since Oph(m)u = v1 + v2, this concludes the proof of the Lemma 5.10.
�

A.2. Formulas for approximation of exponential. We consider
• a Hilbert space H (H = L2(R) for applications in this article) ;
• a bounded operator A : H → H ;
• a parameter h;
• a "class" C of elements of H, that is a subspace of H.
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We assume that for each j ∈ N, there exists Aj : C → C such that, in some sense to be specified in
applications, Au ∼

∑∞
j=0 h

jAju. More precisely, we assume that for all N ∈ N and all u ∈ C, we
can write

Au =

N−1∑
j=0

hjAju+ hNRN (u)

We are interested in understanding the action of the operator etA on elements of C. Recall that if
u0 ∈ H, t 7→ etAu0 is the solution of the Cauchy problemß

d
dtu(t) = Au(t)
u(0) = u0

Moreover, we assume that A0 extends to a bounded operator on H, so that etA0 is a well-defined
operator and we assume also that etA0(C) ⊂ C for all t ∈ R. We introduce in this appendix formulas
and notations to give an approximation of etAu. Of course, the interesting mathematical work lies
in controlling the following terms and the accuracy of the expansion, which is done in applications.
Let us fix an integer N ∈ N and an initial state u ∈ C.

Leading term. For our leading term, we simply state u0(t) = etA0u. Then, we set R0(t) =

etAu− etA0u. We have Ṙ0(t) = AetAu−A0e
tA0u. Hence, we have

(A.1) Ṙ0(t) = AR0(t) +

N−1∑
j=1

hjAje
tA0u+ r̃0,N (t) ; r̃0,N (t) = hNRN (u0(t))

First correction. When N = 1, we stop. Otherwise, we can correct this first approximation by
a term of order h. Of course, it is possible to write down directly a general formula for every j,
but it seems to the author that the case j = 1 helps to understand the general case. Let’s try the
Ansatz u1(t) = etA0v1(t) and set

R1(t) = etAu− etA0 (u+ hv1(t))

Then we have,

Ṙ1(t) = Ṙ0(t)− hetA0 (A0v1(t) + v′1(t))

= AR0(t) +

N−1∑
j=1

hjAje
tA0u+ r̃0,N (t)− hAetA0v1(t) + h(A−A0)etA0v1(t)− hetA0v′1(t)

= AR1(t) +

N−1∑
j=1

hjAje
tA0u+ r̃0,N (t) + h(A−A0)etA0v1(t)− hetA0v′1(t)

To cancel the term of order h in the sum, we set

(A.2) v1(t) =

∫ t

0

e−sA0A1e
sA0uds

To proceed with our expansion, we need to assume that v1(t) ∈ C for all t ∈ R. This will be the
case in the applications, with precise control on v1(t).

Higher order terms. For convenience, let’s note Aj(s) = e−sA0Aje
sA0 . We can construct by

induction a family of functions vk(t) by setting v0(t) = u and for 1 ≤ k ≤ N − 1,

(A.3) vk(t) =

k−1∑
l=0

∫ t

0

Ak−l(s)vl(s)ds

For these formulas to hold, we assume this construction ensure that vk(t) ∈ C for all t ∈ R. It will
be easily satisfied in applications. We also set

r̃k,N (t) = (A−A0)etA0vk(t)−
N−k−1∑
j=1

hjAje
tA0vk(t)

and

Rk(t) = etAu− etA0

k∑
l=0

hlvl(t)
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r̃k,N (t) has to be seen as a term of order hN−k. These formulas ensure that

Ṙk(t) = ARk(t) +

N−1∑
j=k+1

hj

(
k∑
l=0

Ak−le
tA0vl(t)

)
+

k∑
j=0

hj r̃j,N (t)

In particular, when k = N − 1,

(A.4) ṘN−1(t) = ARN−1(t) +

N−1∑
j=0

hj r̃j,N
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