Aliénor Golvet
email: alienor.golvet@ircam.fr

Luciano L Barbosa
email: lucianoleitebarbosa@gmail.com

Etienne Démoulin
email: etienne.demoulin@ircam.fr

Benjamin Matuszewski
email: benjamin.matuszewski@ircam.fr

Benjamin Matuszewski Koryphaîos

A Patchworked Compositional Environment for Distributed Music Systems

Keywords: •Applied computing → Sound and music computing, Performing arts, •Human-centered computing → Interactive systems and tools, Web Audio, Distributed Music Systems, Authoring Tools

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION

The past decade has seen important developments of distributed systems dedicated to artistic and music practices. Indeed, the However, despite the growing number of artwork, concerts and installations that have been proposed along the years, it can be argued that such approaches and compositional techniques are far from reaching widespread adoption. We postulate that one of the possible reasons for this state of affairs is the lack of high-level and ready to use composition environments that 1) lean on existing composer's skills and practices, and 2) take into account the specificities (e.g. network, number of devices) of distributed systems. Indeed, while on the one hand we have frameworks dedicated to build distributed music systems [START_REF] Allison | Nexus: Collaborative Performance For The Masses, Handling Instrument Interface Distribution Through The Web[END_REF][START_REF] Matuszewski | A Web-Based Framework for Distributed Music System Research and Creation[END_REF] that lack high-level tools oriented toward composition, on the other hand we have software and libraries dedicated to composition [START_REF] Agostini | A Max Library for Musical Notation and Computer-Aided Composition[END_REF][START_REF] Bresson | OpenMusic: Visual programming environment for music composition, analysis and research[END_REF] that are not primarily oriented toward the specificities of the Web platform and of network-based approaches.

Composing for distributed systems therefore remains a difficult task that generally ends up with ad-hoc systems and idiosyncratic solutions. The difficulties one must face are twofold: 1) tackle complex design, architectural and development questions and 2) reduce the unbounded creative possibilities afforded by the system to define a creative space that can be artistically manipulated. In this regard, we consider with Magnusson that "In new musical instruments created with general and diverse building blocks, the rationale for creating high-level constraints is primarily to engender an identity, a musical world that is simple, intuitive, and direct" [START_REF] Magnusson | Designing Constraints: Composing and Performing with Digital Musical Systems[END_REF]. To put in other words, when dealing with computer music environments, creativity arises from a set of carefully designed constraints and affordances encoded in the software that maps a defined space for musical expression.

In this paper, we propose to approach this problem by creating bridges between existing tools (i.e. Max/MSP and soundworks) and to improve their interoperability and ease of use in a common patchworked workbench, rather than proposing an integrated and monolithic solution. Indeed, contemporary music composers being generally familiar with the Max/MSP environment, we decided to build upon their existing practices and skills to foster the possibilities of our Web-based distributed music frameworks. Additionally, such an approach aims to put back the tools of composition and creation in the hands of the composers rather than relying on a developper as an intermediary agent, therefore leaving more time and cognitive space for the creative process rather than on solving technical issues.

The soundworks framework [START_REF] Matuszewski | A Web-Based Framework for Distributed Music System Research and Creation[END_REF][START_REF] Schnell | Soundworks -A playground for artists and developers to create collaborative mobile web performances[END_REF] is a web-based full stack framework that aims to facilitate the prototyping and creation of networked multimedia applications. The main objectives of the framework are threefold: 1) help the scaffolding of applications, 2) provide a simple way to maintain a coherent and distributed state of the application in real-time, 3) provide a possibility of extension by the implementation of a plugin system. However, while soundworks has successfully been used in a variety of applications and artistic pieces, the framework does not provide any dedicated interface for computer assisted composition, which required us to program ad-hoc solutions, therefore impeding the composers' agentivity. Additionally, soundworks lacked a simple and easy to use solution to inter-operate with existing tools using protocols widely used in computer music software programs such as OSC. The application and underlying component described in this paper represents a first step to fill these gaps.

In this project, we also considered it important to approach our question from different perspectives within a heterogeneous team composed of persons with multiple backgrounds, skills and activities. Finally, while we recognize that the environment as described here, necessarily embodies some aesthetic and compositional perspectives of one single composer (i.e. our co-author L. Barbosa), we hope the genericity and extensibility of the proposed system could prove to be interesting for other composers and artists as well.

After a short review of the related works and a presentation of our design methodology (Sections 2 and 3), we will describe in Section 4 the design choices and overall architecture of our environment. Then, we will showcase in Section 5 some of the artistic and musical possibilities it unfolds. Finally, we will describe in Section 6 a novel component-that lies at the heart of the proposed environment-dedicated to facilitating communications between soundworks and Max/MSP.

RELATED WORKS

In this section we present several tools dedicated to computerassisted composition that have been proposed over the years. We then present the choice we made amongst these software for our own application.

A number of dedicated software and tools (e.g. Bach and Cage [START_REF] Agostini | A Max Library for Musical Notation and Computer-Aided Composition[END_REF], MaxScore [START_REF] Hajdu | Maxscore: Recent Developments[END_REF]) have been created, often with the help of, or by composers themselves, to manipulate symbolic musical data and scores. For example, OpenMusic4 [START_REF] Bresson | OpenMusic: Visual programming environment for music composition, analysis and research[END_REF] has been developed at IR-CAM since the end of the 1990s. It uses a graphical interface and offers a large range of functionalities for algorithmic composition and usage of digital signal processing. [START_REF] Agon | The OM Composer's Book[END_REF].

Another example is ossia score 5 . Born from the i-score software which has been developed since the late 1990s at LABRI [START_REF] Allombert | Iscore: A system for writing interaction[END_REF]. The software focuses on the sequencing of multimedia events and on the construction of interactive scenarios. It benefits from the embedding of multiple programming languages and its support for a large number of communication protocols (OSC, websocket, etc. . .) [START_REF] Celerier | Authoring Interactive Media : A Logical & Temporal Approach[END_REF].

More recently, the Bach package for Max/MSP6 has been proposed by Agostini et. al [START_REF] Agostini | A Max Library for Musical Notation and Computer-Aided Composition[END_REF]. Bach (and its brother package Cage [START_REF] Agostini | Cage: A High-Level Library For Real-Time Computer-Aided Composition[END_REF]) provides various objects, including graphical interfaces, made for performing low and high-level operations on lists of musical data. Bach has been heavily inspired by OpenMusic and both environments share a lot of functionalities, but while the latter is more advanced and provides more possibilities and processing power in some contexts, Bach benefits from the ability to operate with other elements in the Max/MSP environment.

Out of all these options we decided to work with the Bach library. We wanted to create a tool as accessible as possible, and a large number of composers are already familiar with Max/MSP and use it in their works. Also, as one of our goals was to develop a more fluid and user-friendly communication interface between the two software, we think the architecture developed in our application could serve as an interesting model that could be declined to other Max/MSP packages (e.g. score following, MuBu [START_REF] Schnell | MuBu & Friends -Assembling Tools for Content Based Real-Time Interactive Audio Processing in Max/MSP[END_REF], . . .), either in combination with Bach or not.

DESIGN METHODOLOGY

We choose to inscribe our methodological approach in the framework of Meta-Design [START_REF] Fischer | Revisiting and Broadening the Meta-Design Framework for End-User Development[END_REF][START_REF] Fischer | Meta-design: A Framework for the Future of End-User Development[END_REF]. We indeed consider composition, and more generally artistic creation, as fundamentally ill-defined problems in which use cases cannot be fully anticipated at design time. In addition, we consider with Fischer and Giaccardi that "if systems cannot be modified to support new practices, users will be locked into old patterns of use". For these reasons, we believe such an approach could prove to be useful for the design of creative and interactive applications in which novelty, exploration and serendipity are very important aspects. Therefore our goal is not to propose a rigid solution to the problem of networked music composition but rather to develop a design space to unfold a wide range of novel approaches and solutions.

In our view, Meta-Design could be summarized by three important characteristics. First, as it can't be completely designed prior to use, the application must be designed to evolve, and moreover to co-evolve with its users. Second, the application should support and provide a learning path from simple user to expert user and ultimately to co-designer of the application. Finally, this process takes place in a model called Seed-Evolving Growth-Reseeding (SER), in which software development is performed during the Seed and Reseeding phases, while the Evolving Growth phase is dedicated at observing and documenting how users adopt and appropriate the application. While the application we present in this paper is still in its early stage, we expect it to provide both a Seed and some support for a first Evolving Growth phase, potentially providing material for a future Reseeding phase.

To tackle these objectives, the development of our application has been guided from the start together with one of our co-author, the composer Luciano Leite Barbosa. We deliberately ignored all questions of interaction and participation except the one of the composers facing such distributed systems, therefore considering the system as a mere audio projection tool. In this frame, one of our first objectives was to re-create and re-implement a piece composed by Luciano in 2018, Color Fields for accordion, smartphones and electronics (cf. Fig. 1), into a more interactive and versatile compositional workbench. We also asked him to develop a pool of examples with a variety of compositional techniques as well as to propose new features he thought he could need to further simplify his compositional process for distributed music performance. We iteratively developed the first version of Koryphaîos with the intent to make all these examples and use-cases fully working. Alongside these goals, we also asked Luciano to test every version of our application and to deliberately push it to the limits. Indeed, as Tahiroglu et al. note, "Musicians often use musical instruments in ways that the original designers never intended, probing for hidden affordances" [START_REF] Tahıroglu | Digital Musical Instruments as Probes: How computation changes the mode-of-being of musical instruments[END_REF]. We also regularly organized test sessions in the studio to test the application under more realistic conditions with a larger number of mobile phones. These test sessions were not only useful to detect technical issues but were also opportunities to discuss with Luciano about new features or modifications. It allowed us to readjust the course of development to incorporate unanticipated elements, which pushed us to design our software architecture in terms of modularity and flexibility to foster rapid testing and addition of new features. Another design goal was to provide an environment that hides some low-level aspects (e.g. networking, message routing) to the users, but still provide several entry points at its domain level (e.g. audio synthesis, mapping). As such, a large part of Koryphaîos is conceived with the idea that it could provide a "a background against which situated cases, coming up later, can be interpreted" [START_REF] Fischer | Meta-design: A Framework for the Future of End-User Development[END_REF], an application that is able to translate the creative endeavor of its users in the language of a network of mobile devices. This approach represents an attempt to lower the technical wall that exists between composers and the network of sound-producing mobile devices, to facilitate the process of co-adaptivity between them. Objectives of modularity and openness guarantee that the network will adapt to the many idiosyncrasies of its users but in return, we hope that the relationship with the network (with its specific capacity to question traditional music boundaries [START_REF] Bevilacqua | On Designing, Composing and Performing Networked Collective Interactions[END_REF]) created through Koryphaîos could influence composers to reinvent their practice.

DESIGN OVERVIEW

Guided by these objectives, we developed a soundworks-based application for composing distributed music pieces using the Bach library in Max/MSP. As an overview, Koryphaîos is built around a local network of devices, at the center of which lies a Node.js server to which Max/MSP and the mobile devices can connect.

The Node.js server receives the score information from Bach and Max/MSP though OSC and dispatches this information to the connected Web client through WebSocket channels (cf Fig. 2). In the following section we present the application from a design perspective. We start by presenting the composition interface available as a Max/MSP patch. We then present how the application produces music out of an array of mobile devices by detailing the communication process over the server and the custom audio engine we developed using the Web Audio API. Next, we present a variety of functionalities the application provides for monitoring and control to facilitate its usage both in studio and in concert situations. Finally, we detail several features aimed at fostering its appropriation and customization by users, potentially opening doors for future evolutions.

An Interface for Composition

From the point of view of the composer, our application is primarily seen as an interface for composing distributed music performances through a Max/MSP patch (Fig. 3). The core element of the patch is a bach.roll object provided by the Bach library.

A bach.roll is presented as an interactive score sheet which you can edit to place musical notes. Each note can be associated with arbitrary metadata (i.e. using "slots") of different types (e.g. enveloppe breakpoints, modulation parameters, text, filenames). As the score contained in the bach.roll object is played in real-time, its output notes are collected by Koryphaîos' kp.to_soundworks object and formatted as a Max/MSP dictionary. The user can freely define which data is to be collected from the bach.roll object and to which parameters in Koryphaîos they are mapped to by sending a list of parameters to one of the outlet of the kp.to_soundworks object. The dictionary then created contains all the desired data for sound synthesis over different synthesizers (e.g. AM, FM) developed using the Web Audio API, for instance: synthesizer to use, frequency, velocity, duration, envelopes, synthesizer parameters, etc.

We designed Koryphaîos's Max/MSP objects so that lower-lever coding from the composer can be avoided. Any note data sent out by the bach.roll object is automatically formatted to be consumed by the rest of the application.

The Audience as a Speaker Array

Each note information is sent and parsed from the Max/MSP patch to the Node.js soundworks server through the generic soundworks.shared-state object built on top of OSC and presented in Section 6. Upon reception on the server-side, the notes are tagged with a synchronized timestamp and dispatched to all connected clients for rendering using Web Audio synthesizers. By default, the application currently includes different dispatch strategies: sendAll (all notes received are sent to all connected clients at the same time), randomSpread (the n notes of a chord are split between n random groups of clients of the same size), randomPoint (any incoming chord is sent to a single randomly-chosen client).

Upon reception of the time-tagged note by the client, the latter creates an instance of the specified synthesizer (predefined or userdefined), and schedule its rendering using a synchronized scheduler created thanks to the @ircam/sync 7 library, which achieves clock synchronization up to 5 ms [START_REF] Lambert | Synchronisation for Distributed Audio Rendering over Heterogeneous Devices[END_REF]. By default, the application proposes 5 types of generic synthesizers: a basic sine synth, an AM synth, a FM synth, an audio buffer player and a granular synth.

The synthesizer instances are finally piped through master buses for balance and volume controls.

Contexts, Control and Feedback

The application has been designed to be used both in the studio and in concert situations. To fulfill the multiple and sometimes contradictory requirements of these different contexts, we decided 7 https://github.com/ircam-ismm/sync to provide multiple access to the same functionality as well as complementary information from different entry points.

For example, alongside the Max/MSP interface, we developed a browser-based controller interface. This interface is composed of different parts useful both for monitoring and control:

• A text box that logs any incoming note on the server, which is useful to monitor the proper functioning of the application both in working and in concert situations.

• Buttons to switch between available dispatch strategies for the incoming notes on the fly.

• Master and synthesizer-specific bus controls containing each a mute button and a volume slider (cf. Fig. 5). The Master also exposes two sliders for controlling the frequencies of a low-pass filter and a high-pass filter. All these controls are also available in the Max/MSP patch and their visual display is synchronized over the network. To simplify the control and use of these different interfaces in concert situation, we also implemented possibilities of control over a MIDI device either in the Max/MSP patch (using the built-in MIDI map assignment) or directly in the browser using a MIDI map assignment interface developed using the Web MIDI API.

Finally, we implemented a concert mode that provides a series of interfaces that guide the public through the performance:

1. Upon connection to the web page of the applications, the participant is brought to a volume test page in which they are asked to set the volume of their phone to a comfortable level. While mainly technical, this step can also be considered and used by the composer as a real introductory part of the piece.

2. This step is followed by a waiting screen showing the names of the piece and of the composer, prompting them to wait for the performance to begin.

3. Upon starting the performance in the controller interface, participants are automatically brought to the main playing interface in which the audio engine is connected to their device's output and reception of notes from the server is activated. We also included a simple visualization that displays the current energy of the sound produced by the participant's device through a full-screen animated gray scale.

4.

Once the performance has ended, participants are brought to the end page thanking them for their participation.

Appropriation and Evolutionary Growth

To support the evolution of the application in the hands of its users, Koryphaîos provides various possibilities for customization, inclusion of user-made components and sharing of information.

Koryphaîos allows advanced users familiar with JavaScript to program custom implementations of several levels of the application. Thanks to soundworks' scripting plugin8 , user-made scripts can be created and modified on the fly, without having to restart the application or the network. Since user-made scripts are stored locally as a single file they can also be easily shared among users. At the time of writing, the application only supports user-made synthesizers and dispatch strategies but we plan to make the widest range of technical aspects customizable including the visualization animation when playing sound in the performance screen and the sound to be played during the testing phase in concert mode. Script creation and edition is made possible by using text editors available in the controller interface in the browser (cf. fig 6). Upon creation of the script, any user-made component is treated as any other component in the application. For instance, a user-made synth can be called up by its name in the bach.roll object and a dedicated audio bus with GUI in the controller interface is dynamically created. As explained before, the mappings between the bach.roll slots and the user-defined synths' parameters can also be defined at runtime in the Max/MSP patch by sending specific messages to the kp.to_soundworks object. This process of appropriation by users also extends to more "social" aspects surrounding the application. To this end, we also created an information repository in the form of a wiki on the github repository of the application. It already contains documentation and tutorials on several aspects of Koryphaîos as well as the description of the example patches developed by Luciano L. Barbosa (cf section 5). We hope this knowledge base will grow and develop as users may share their own components, musical examples and ideas.

MUSICAL EXAMPLES

In this section, we present several musical examples created within Bach that showcase the compositional possibilities opened by the application. First, we present two simple case-studies created during the design and development of the application. Second, we describe the first sketch of a sound installation, Refraction and third, we present Color Fields, a piece composed in 2018 and rewritten using Koryphaîos. All these musical examples have been created by our co-author Luciano L. Barbosa, and explore distributed synthesis techniques that expand the familiar notion of additive synthesis by taking into account the spatialization of each frequency. As a sound can be created or recreated through several sources (e.g. smartphones or other connected devices), the possibilities of distribution of frequencies through devices are therefore numerous, including random distribution, single or multiple frequencies per device, organization of devices into groups, etc. The resulting sound has an intrinsic immersive quality, as a high number of sound sources are used and these sources can be easily spread in the concert space.

Case Studies

A first example of the possibilities of Koryphaîos, leveraging also on the Cage library for Max/MSP, is to read a sound analysis and resynthesize sounds directly with smartphones. In the following example (see Fig. 7), the object bach.readsdif is used to read an sdif file of a sound analysis, which is displayed in the bach.roll. A number of symbolic transformations, such as time stretching (using the cage.timestretch object) or frequency shifting (using the cage.fshift object) can be applied to this resynthesis. All these transformations can be tested, rendered and listened to in real-time through connected devices. More complex and generative processes can also be handled by Koryphaîos. The example shown in Fig. 8 shows the possibilities of using generative material in Bach and sending it to soundworks in real-time for audio rendering. This simple generative patch creates a new sequence when the cursor arrives at the marker generate seq, using random values to create a new harmonic sequence.

Refraction

The sound installation Refraction is an example of a piece created directly using Koryphaîos. The piece is an installation for smartphones that are spread out in the performance room and that includes the participation of the audience. Its main compositional materials are additive synthesis and FM synthesis, with occasional use of AM synthesis, where the sonic result can be envisioned as a distributed synthesis technique in which the rendering of each component is distributed in space amongst devices.

The installation consists of three bach.roll objects that are linked to one another through markers, playing independently and overlapping at times. During the compositional process, the frequency materials were input freely on the bach.roll and Koryphaîos allowed immediate feedback of the resulting sound. Each note on the bach.roll (see Fig. 9) contains basic data such as pitch, velocity and duration. The slots are used to carry additional data including amplitude envelopes, amplitude modulation values for modulating frequency and tremolo depth, frequency modulation values for harmonicity and modulation indices, and type of synthesizer (e.g. sine wave, am or fm) to be used.

Color Fields

Color Fields, dedicated to Jean-Étienne Sotty, was composed in 2018 during the Cursus program at IRCAM 9 . It was written for XAMP microtonal accordion [START_REF] Sotty | L'accordéon microtonal XAMP : Gestation, fabrication et évolution d'un nouvel instrument[END_REF], smartphones, electronics and included audience participation through the use of mobile devices. 9 https://youtu.be/4GuYtPejijI

The electronics were conceived to be diffused mainly through the audience's smartphones, with the aim of spreading the sound throughout the hall and having audience members participate in the sound production of the work. This feature allowed interesting possibilities of sound masses and harmonic blend between the soloist on stage and the sound coming from the devices of the audience.

The piece used additive synthesis as its main compositional material, and each frequency was assigned to a single device from the audience, randomly distributed among the smartphones of connected audience members. The frequency material was created through a number of processes carried out in the OpenMusic software, such as sound analysis and transformation of the resulting data, and exported to Bach. Other composition techniques used in the piece included free manipulation of harmonies directly within the bach.roll object.

In the first version of the piece, using ad-hoc OSC communications and protocol between Bach and soundworks, frequency and velocity values for each smartphone were hardcoded in advance in flat files directly read by the soundworks server. Each event in the main patch would trigger a bach.roll containing markers that controlled the start of each harmony stored in soundworks. Only the envelope values were sent from Bach to soundworks in real-time, handling the overall volume of the synthesis distributed through the devices of the audience. In order to organize the movement of different harmonic fields, the synthesis data was assigned to different groups of smartphones. Such architecture, with data spread between the Max/MSP patch and soundworks, was however difficult to test and change, making the compositional process slow, cumbersome and error prone. As discussed in Section 3, being able to recreate Color Fields (see the first patch version in Fig. 10) within Koryphaîos was one of our main goals from the beginning. As a result, we consider the new updated version of the piece rewritten using Koryphaîos to be both more efficient and versatile as the synthesis data and parameters are fully contained in the bach.roll and can therefore be manipulated in real-time and from a single place.

In this new version shown in Fig. 11, each event of the piece stores one or more bach.rolls that are in direct communication with soundworks through the bach.roll's playout outlet. Each bach.roll connects to a send object that routes the data to a subpatch containing the soundworks component. Finally, soundworks receives values of frequency, velocity, duration and envelope and propagates them to its smartphone clients, which carry out the synthesis themselves. AM and FM synthesis parameters are included directly in the bach.roll, unlike the first version of the piece. The update both simplified the patch and increased its stability, validating also that Koryphaîos was able to handle the complex harmonic structures of Color Fields, such as dense chords and resynthesis.

REUSABLE COMPONENT

In this section, we present the soundworks.shared-state component 10 for Max/MSP, a low-level module developed to facilitate and improve interoperability between soundworks and Max/MSP, and on top of which Koryphaîos has been built. First we present the technical details of the component and then describe some of its possible use-cases outside Koryphaîos.

soundworks.shared-state for Max/MSP

The soundworks.shared-state component has been developed to facilitate the creation of musical applications relying on both Max/MSP and soundworks. The main objective of this component is to provide an extension of the soundworks's SharedState abstraction [START_REF] Matuszewski | A Web-Based Framework for Distributed Music System Research and Creation[END_REF] 11 in order to seamlessly synchronize states with Max/MSP Dict objects through OSC communication. As illustrated in Fig. 12, the global state, owned by the server, can be accessed and modified from both a Max/MSP patch and a soundworks client, any modification being propagated to all attached clients which can therefore trigger updates based on the new state of the distributed application. An important attention has been given in providing an API on both sides that 1. is similar enough to be intuitive for users and 2. that take into account the idiosyncrasies of the Max/MSP platform and of the JavaScript language. Also, some ad-hoc bindings have been implemented to blur the discrepancies between the primitives exposed by the two languages. For example, the component seamlessly takes care of the conversion between the JavaScript boolean or null values, which have no direct correspondence in Max/MSP, to more idiomatic types (respectively integer and null symbol in the Max/MSP side).

In its current implementation the component suffers from two main limitations. First, it only allows the subscription to unique 10 Available in https://github.com/collective-soundworks/soundworks-max 11 http://collective-soundworks.github.io/soundworks/common.SharedState.html and global states created by the soundworks server, meaning for example that there is currently no way to subscribe to dynamic states created and deleted by clients. This limitation, more than a technical issue, takes its root in the very different paradigms between Max/MSP where everything is statically defined and the more dynamic JavaScript paradigm. We are currently investing to mitigate this limitation. Second, the OSC protocol generally implemented on top of the UDP protocol does introduce de facto the limitations of UDP: unreliable message delivery and limited size of the message. These two limitations indeed impede some use-cases such as sharing audio analysis or recordings of multimodal data. We plan to provide an alternative underlying protocol, for example using Web Socket or TCP as the transport channel, to support such use-cases.

Example Use

Beyond Koryphaîos, the soundworks.shared-state object has already been used in several demonstrators and applications. For example, we successfully used it in Max for Live devices within the Playground12 application designed with the composer Garth Paine, allowing the composer to create, record and replay Live clips controlling some distributed parameters of the application.

Once the question of the UDP limitations discussed above is handled, we also plan to use the component in conjunction with the MuBu [START_REF] Schnell | MuBu & Friends -Assembling Tools for Content Based Real-Time Interactive Audio Processing in Max/MSP[END_REF] package for Max/MSP. Such link could open interesting rapid prototyping perspectives in several areas such as concatenative synthesis [START_REF] Schwarz | Corpus-Based Concatenative Synthesis[END_REF] or gesture design [START_REF] Bevilacqua | Online Gesture Analysis and Control of Audio Processing[END_REF], for which all the building blocks and algorithms are not yet available in the JavaScript ecosystem.

CONCLUSION AND FUTURE WORKS

In this paper, we introduced Koryphaîos, an application for networked music composition. Koryphaîos is built on top of and aim at creating a bridge between two existing libraries: the Bach packages for Max/MSP that provide tools for computer assisted composition and the soundworks framework which is dedicated to the development of distributed multimedia applications. In this work we followed a user-centered and meta-design approach, emphasizing and promoting the heterogeneous nature of our team composed of researchers, developers, computer-music designers and composers.

Koryphaîos is designed around multiple connected parts. The first one is a composition interface in a Max/MSP patch, which at its core is a bach.roll object that sends out note data that is encoded and sent to the rest of the application via OSC communication. The second one is a soundworks application that, upon reception of the note data, dispatches them to the connected devices for Web Audio rendering. The application also provides functionalities for monitoring and control in a concert context available both in a Max/MSP patch and in a dedicated page in the browser. Koryphaîos was designed with appropriation and customization by its users in mind. It thus provides options for the development of user-made components, potentially opening for their sharing between users. We then presented different examples using a variety of compositional techniques (distributed additive synthesis, generative music, spectral analysis and resynthesis) that shows the flexibility of Koryphaîos for composing in a distributed context. Finally we introduced a novel low-level component, on top of which Koryphaîos is built, created to simplify communications and maintain coherent states between Max/MSP and soundworks.

The current version of Koryphaîos leaves room for improvement and evolution. Future works include a better integration of userdefined components in the Max/MSP components. For example, due to current limitations of the soundworks.shared-state object, audio buses dedicated to user-defined synths cannot be controlled from the Max/MSP patch and the user can only rely on the browser interface in such cases. Also, the current implementation of soundworks.shared-state suffers from limitations concerning the size of the messages sent to soundworks. We plan to investigate solutions by relying on a different communication protocol. We would also like to expand the options for user customization. We intend to provide more options for scripting by allowing customization of technical aspects such as the visual rendering during performance and the sound to be played during the testing phase of the performance. Despite these current limitations, we think Koryphaîos has the potential to provide an interesting tool to explore novel compositional techniques within distributed music systems, leveraging on existing knowledge and skills of contemporary composers. As such, we hope feedback and idiosyncratic appropriations of the application by new users will help us strengthen and further develop the application.

Figure 1 :

 1 Figure 1: Premiere of Color Fields by Jean-Étienne Sotty at the CENTQUATRE-PARIS, 2018.

Figure 2 :

 2 Figure 2: Diagram of the communication between the different parts of Koryphaîos.

Figure 3 :

 3 Figure 3: Example of the main composer interface in Max/MSP using the Bach library in Koryphaîos.

Figure 4 :

 4 Figure4: Graph of the audio path within the application. Upon reception of the score information, a Note object is instantiated, containing a synthesizer instance and a velocity enveloppe. The Note is connected to the corresponding synthesizer's bus which is connected to the master bus. Finally the output of the master bus is sent to the audioContext's destination.

Figure 5 :

 5 Figure 5: A part of the controller interface: audio bus controls in the browser (left) and in Max/MSP (right)

Figure 6 :

 6 Figure 6: A user-made synthesizer in the scripting interface in the browser.

Figure 7 :

 7 Figure 7: Max/MSP example patch of additive resynthesis of sound analysis using Koryphaîos.

Figure 8 :

 8 Figure 8: Max/MSP example patch of generative music using Koryphaîos.

Figure 9 :

 9 Figure 9: Patch of the Refraction installation.

Figure 10 :

 10 Figure 10: Concert patch of the first version of Color Fields in Max/MSP.

Figure 11 :

 11 Figure 11: Max/MSP patch of the novel version of Color Fields, rewritten in Koryphaîos.

Figure 12 :

 12 Figure 12: Data flow of state synchronization between Max/MSP and soundworks using the soundwork.shared-state object.

https://github.com/ircam-ismm/koryphaios

https://tools.ietf.org/html/rfc6455

https://www.w3.org/TR/webaudio/

https://openmusic-project.github.io/

https://ossia.io/

https://www.bachproject.net/

https://github.com/collective-soundworks/soundworks-plugin-scripting

https://github.com/ircam-ismm/playground

ACKNOWLEDGMENTS

This work has been conducted in the framework of the SO(a)P Innovation Project Unit funded by Ircam. The soundworks framework has been initiated in the CoSiMa research project funded by the French National Research Agency (ANR, ANR-13-CORD-0010) and further developed in the framework of the Rapid-Mix Project from the European Union's Horizon 2020 research and innovation program (H2020-ICT-2014-1, Project ID 644862). We would like to thank our colleagues at IRCAM for their precious contributions to the project.