
HAL Id: hal-03957224
https://hal.science/hal-03957224v1

Submitted on 26 Jan 2023 (v1), last revised 3 Oct 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Deep learning: basics and convolutional neural networks
(CNN)

Maria Vakalopoulou, Stergios Christodoulidis, Ninon Burgos, Olivier Colliot,
Vincent Lepetit

To cite this version:
Maria Vakalopoulou, Stergios Christodoulidis, Ninon Burgos, Olivier Colliot, Vincent Lepetit. Deep
learning: basics and convolutional neural networks (CNN). Olivier Colliot. Machine Learning for
Brain Disorders, Springer, 2023. �hal-03957224v1�

https://hal.science/hal-03957224v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Chapter 3

Deep learning: basics and
convolutional neural networks
(CNN)

Maria Vakalopoulou1, Stergios Christodoulidis1,
Ninon Burgos2, Olivier Colliot2, and Vincent
Lepetit3

1Université Paris-Saclay, CentraleSupélec, Mathématiques et Informatique
pour la Complexité et les Systémes, 91190, Gif-sur-Yvette, France.
2Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM,
CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, F-75013, Paris,
France
3LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, France.
*Corresponding author: e-mail address:

maria.vakalopoulou@centralesupelec.fr

Abstract

Deep learning belongs to the broader family of machine learning methods
and currently provides state-of-the-art performance in a variety of fields,
including medical applications. Deep learning architectures can be cate-
gorized into different groups depending on their components. However,
most of them share similar modules and mathematical formulations. In
this chapter, the basic concepts of deep learning will be presented to
provide a better understanding of these powerful and broadly used al-
gorithms. The analysis is structured around the main components of
deep learning architectures, focusing on convolutional neural networks
and autoencoders.

Keywords: perceptrons, backpropagation, convolutional neural
networks, deep learning, medical imaging

To appear in
O. Colliot (Ed.), Machine Learning for Brain Disorders, Springer

mailto:maria.vakalopoulou@centralesupelec.fr


2 Vakalopoulou et al.

1. Introduction

Recently, deep learning frameworks have become very popular, attract-
ing a lot of attention from the research community. These frameworks
provide machine learning schemes without the need for feature engineer-
ing, while at the same time they remain quite flexible. Initially developed
for supervised tasks, they are nowadays extended to many other settings.
Deep learning, in the strict sense, involves the use of multiple layers of
artificial neurons. The first artificial neural networks were developed in
the late fifties with the presentation of the perceptron [1] algorithms.
However, limitations related to the computational costs of these algo-
rithms during that period, as well as the often-miscited claim of Minsky
and Papert [2] that perceptrons are not capable of learning nonlinear
functions such as the XOR, caused a significant decline of interest for
further research on these algorithms and contributed to the so-called ar-
tificial intelligence winter. In particular, in their book [2] Minsky and
Papert discussed that single-layer perceptrons are only capable of learn-
ing linearly separable patterns. It was often incorrectly believed that they
also presumed this is the case for multilayer perceptron networks. It took
more than ten years for research on neural networks to recover, and in [3]
some of these issues were clarified and further discussed. Even if during
this period there was not a lot of research interest for perceptrons, very
important algorithms such as the backpropagation algorithm [4, 5, 6, 7]
and recurrent neural networks [8] were introduced.

After this period, and in the early 2000s, publications by Hinton,
Osindero, and Teh [9] indicated efficient ways to train multilayer per-
ceptrons layer by layer, treating each layer as an unsupervised restricted
Boltzmann machine and then use supervised backpropagation for the
fine-tuning [10]. Such advances in the optimization algorithms and in
hardware in particular graphics processing units (GPUs), increased the
computational speed of deep learning systems and made their training
easier and faster. Moreover, around 2010, the first large-scale datasets,
with ImageNet [11] being one of the most popular, were made avail-
able, contributing to the success of deep learning algorithms, allowing
the experimental demonstration of their superior performance on several
tasks in comparison with other commonly used machine learning algo-
rithms. Finally, another very important factor that contributed to the
current popularity of deep learning techniques is their support by pub-
licly available and easy-to-use libraries such as Theano [12], Caffe [13],
Tensorflow [14], Keras [15] and Pytorch [16]. Indeed, currently, due to all
these publicly available libraries that facilitate collaborative and repro-
ducible research and access to resources from large corporations such as

Machine Learning for Brain Disorders, Chapter 3



Deep learning: basics and CNN 3

Kaggle, Google Colab, and Amazon Web Services, teaching and research
about these algorithms have become much easier.

This chapter will focus on the presentation and discussion of the main
components of deep learning algorithms, giving the reader a better under-
standing of these powerful models. The chapter is meant to be readable
by someone with no background in deep learning. The basic notions of
machine learning will not be included here, however, the reader should
refer to Chapter 2 (reader without a background in engineering or com-
puter science can also refer to Chapter 1 for a lay audience-oriented
presentation of these concepts). The rest of this chapter is organized as
follows. We will first present the deep feedforward networks focusing on
perceptrons, multilayer perceptrons, and the main functions that they are
composed of (Section 2). Then, we will focus on the optimization of deep
neural networks, and in particular, we will formally present the topics of
gradient descent, backpropagation as well as the notions of generaliza-
tion and overfitting (Section 3). Section 4 will focus on convolutional
neural networks discussing in detail the basic convolutional operations,
while Section 5 will give an overview of the autoencoder architectures.

2. Deep feedforward networks

In this section, we will present the early deep learning approaches to-
gether with the main functions that are commonly used in deep feed-
forward networks. Deep feedforward networks are a set of parametric,
non-linear, and hierarchical representation models that are optimized
with stochastic gradient descent. In this definition, the term parametric
holds due to the parameters that we need to learn during the training
of these models, the non-linearity due to the non-linear functions that
they are composed of, and the hierarchical representation due to the fact
that the output of one function is used as the input of the next in a
hierarchical way.

2.1 Perceptrons

The perceptron [1] was originally developed for supervised binary classi-
fication problems, and it was inspired by works from neuroscientists such
as Donald Hebb [17]. It was built around a non-linear neuron, namely
the McCulloch-Pitts model of a neuron. More formally, we are looking
for a function f(x;w, b) such that f(.;w, b) : x ∈ Rp −→ {+1,−1} where
w and b are the parameters of f and the vector x = [x1, . . . , xp]

⊤ is the
input. The training set is {(x(i)), y(i))}. In particular, the perceptron
relies on a linear model for performing the classification:

Machine Learning for Brain Disorders, Chapter 3



4 Vakalopoulou et al.

f(x;w, b) =

{
+1 if w⊤x+ b ≥ 0

−1 otherwise
. (1)

Such a model can be interpreted geometrically as a hyperplane that
can appropriately divide data points that are linearly separable. More-
over, one can observe that, in the previous definition, a perceptron is a
combination of a weighted summation between the elements of the input
vector x combined with a step function that performs the decision for
the classification. Without loss of generality, this step function can be
replaced by other activation functions such as the sigmoid, hyperbolic
tangent or softmax functions (see Section 2.3); the output simply needs
to be thresholded to assign the +1 or −1 class. Graphically, a percep-
tron is presented in Figure 1 on which each of the elements of the input
is described as a neuron, and all the elements are combined by weighting
with the models’ parameters and then passed to an activation function
for the final decision.

Figure 1: A simple perceptron model. The input elements are described
as neurons and combined for the final prediction ŷ. The final prediction
is composed of a weighted sum and an activation function.

During the training process and similarly to the other machine learn-
ing algorithms, we need to find the optimal parameters w and b for the
perceptron model. One of the main innovations of Rosenblatt was the
proposition of the learning algorithm using an iterative process. First,
the weights are initialized randomly, and then using one sample (x(i), y(i))
of the training set the prediction of the perceptron is calculated. If the
prediction is correct, no further action is needed, and the next data point
is processed. If the prediction is wrong, the weights are updated with the
following rule: the weights are increased in case the prediction is smaller
than the ground truth label y(i) and decreased if the prediction is higher

Machine Learning for Brain Disorders, Chapter 3



Deep learning: basics and CNN 5

than the ground truth label. This process is repeated until no further
errors are made for the data points. A pseudocode of the training or
convergence algorithm is presented in the diagram 1 (note that in this
version, it is assumed that the data is linearly separable).

Algorithm 1 Train perceptron

procedure Train({(x(i), y(i))})
Initialization: initialize randomly the weights w and bias b
while ∃i ∈ {1, . . . , n}, f(x(i);w, b) ̸= y(i) do

Pick i randomly
error = y(i) − f(x(i);w, b)
if error ̸= 0 then

w ← w + error · x(i)

b← b+ error

Originally, the perceptron has been proposed for binary classifica-
tion tasks. However, this algorithm can be generalized for the case of
multiclass classification: fc(x;w, b) where c ∈ {1, ..., C} are the different
classes. This can be easily achieved by adding more neurons to the output
layer of the perceptron. That way, the number of output neurons would
be the same as the number of possible outputs we need to predict for the
specific problem. Then, the final decision can be made by choosing the
maximum of the different output neurons fn = max

c∈{1,...,C}
fc(x;w, b).

Finally, in the following, we will integrate the bias b in the weights w
(and thus add 1 as the first element of the input vector x = [1, x1, . . . , xp]

⊤).
The model can then be rewritten as f(x;w) such that f(.;w) : x ∈
Rp+1 −→ {+1,−1}.

2.2 Multilayer perceptrons

The limitation of perceptrons to linear problems can be overcome by
using multilayer perceptions, often denoted as MLP. An MLP consists of
at least three layers of neurons: the input layer, a hidden layer, and an
output layer. Except for the input neurons, each neuron uses a non-linear
activation function, making it capable of distinguishing data that is not
linearly separable. These layers can also be called fully connected layers
since they connect all the neurons of the previous and of the current
layer. It is absolutely crucial to keep in mind that non-linear functions
are necessary for the network to find non-linear separations in the data
(otherwise, all the layers could simply be collapsed together into a single
gigantic linear function).

Machine Learning for Brain Disorders, Chapter 3



6 Vakalopoulou et al.

2.2.1. A simple multilayer network

Without loss of generality, an MLP with one hidden layer can be defined
as: {

z(x) = g(W 1x)

ŷ = f(x;W 1,W 2) = W 2z(x)
, (2)

where g(x) : R −→ R denotes the non-linear function (which can be
applied element-wise to a vector), W 1 the matrix of coefficients of the
first layer and W 2 the matrix of coefficients of the second layer.

Equivalently, one can write:

ŷc =

d1∑
j=1

W 2
(c,j)g(W

1⊤
(j) x) , (3)

where d1 is the number of neurons for the hidden layer which defines the
width of the network, W 1

(j) denotes the first column of the matrix W 1

and W 2
(c,j) denotes the c, j element of the matrix W 2. Graphically, a

two-layer perceptron is presented in Figure 2 on which the input neurons
are fed into a hidden layer whose neurons are combined for the final
prediction.

Figure 2: An example of a simple multilayer perceptron model. The
input layer is fed into a hidden layer (z), which is then combined for the
last output layer providing the final prediction.

There were a lot of research works indicating the capacity of feedfor-
ward neural networks with a single hidden layer of finite size to ap-
proximate continuous functions. In the late 80s, the first proof was
published [18] for sigmoid activation functions (see Section 2.3 for the

Machine Learning for Brain Disorders, Chapter 3



Deep learning: basics and CNN 7

definition) and was generalized to other functions for feedforward mul-
tilayer architectures [19, 20, 21]. In particular, these works prove that
any continuous function can be approximated under mild conditions as
closely as wanted by a three-layer network. As N −→ ∞, any continu-
ous function f can be approximated by some neural network f̂ , because
each component g(W T

(j)x) behaves like a basis function and functions in
a suitable space admits a basis expansion. However, since N may need to
be very large, introducing some limitations for these types of networks,
deeper networks, with more than one hidden layer, can provide good
alternatives.

2.2.2. Deep neural network

The simple MLP networks can be generalized to deeper networks with
more than one hidden layer that progressively generate higher-level fea-
tures from the raw input. Such networks can be written as

z1(x) = g(W 1x)

. . .

zk(x) = g(W kzk−1(x))

. . .

ŷ = f(x;W 1, . . . ,WK) = zK(zK−1(...(z1(x))))

, (4)

where K denotes the number of layers for the neural network, which
defines the depth of the network. In Figure 3, a graphical representation
of the deep multilayer perceptron is presented. Once again, the input
layer is fed into the different hidden layers of the network in a hierarchical
way such that the output of one layer is the input of the next one. The
last layer of the network corresponds to the output layer, which makes
the final prediction of the model.

As for networks with one hidden layer, they are also universal ap-
proximators. However, the approximation theory for deep networks is
less understood compared with neural networks with one hidden layer.
Overall, deep neural networks excel at representing the composition of
functions.

So far, we have described neural networks as simple chains of layers,
applied in a hierarchical way, with the main considerations being the
depth of the network (the number of layers K) and the width of each
k layer (the number of neurons dk). Overall, there are no rules for the
choice of the K and dk parameters that define the architecture of the
MLP. However, it has been shown empirically that deeper models per-
form better. In Figure 4, an overview of two different networks with 3

Machine Learning for Brain Disorders, Chapter 3



8 Vakalopoulou et al.

Figure 3: An example of a deep neural network. The input layer, the
kth layer of the deep neural network, and the output layer are presented
in the figure.

and 11 hidden layers is presented with respect to the number of parame-
ters and their accuracy. For each architecture, the number of parameters
varies by changing the number of neurons dk. One can observe that,
empirically, deeper networks achieve better performance using approxi-
mately the same or a lower number of parameters. Additional evidence to
support these empirical findings is a very active field of research [22, 23].

Figure 4: Comparison of two different networks with almost the same
number of parameters, but different depths. Figure inspired by [24].

Neural networks can come in a variety of models and architectures.
The choice of the proper architecture and type of neural network depends
on the type of application and the type of data. Most of the time, the best
architecture is defined empirically. In the next section, we will discuss
the main functions used in neural networks.

Machine Learning for Brain Disorders, Chapter 3



Deep learning: basics and CNN 9

2.3 Main functions

A neural network is a composition of different functions also called mod-
ules. Most of the times, these functions are applied in a sequential way.
However, in more complicated designs (e.g. deep residual networks),
different ways of combining them can be designed. In the following sub-
sections, we will discuss the most commonly used functions that are the
backbones of most perceptrons and multilayer perceptron architectures.
One should note, however, that a variety of functions can be proposed
and used for different deep learning architectures with the constraint to
be differentiable -almost- everywhere. This is mainly due to the way that
deep neural networks are trained and this will be discussed later in the
chapter.

2.3.1. Linear functions

One of the most fundamental functions used in deep neural networks is
the simple linear function. Linear functions produce a linear combination
of all the nodes of one layer of the network, weighted with the param-
eters W . The output signal of the linear function is Wx, which is a
polynomial of degree one. While it is easy to solve linear equations, they
have less power to learn complex functional mappings from data. This
is why they need to be combined with non-linear functions, also called
activation functions (the name activation has been initially inspired by
biology as the neuron will be active or not depending on the output of
the function).

Box 1: Function Counting Theorem

The so-called Function Counting Theorem (Cover, 1965 [25]) counts
the number of linearly separable dichotomies of n points in gen-
eral position in Rp. The theorem shows that, out of the total 2n

dichotomies, only C(n, p) = 2
∑p

j=0

(
n− 1
j

)
are homogeneously,

linearly separable.
When n >> p, the probability of a dichotomy to be linearly sep-

arable converges to zero. This indicates the need for the integration
of non-linear functions into our modeling and architecture design.
Note that n >> p is a typical regime in machine learning and deep
learning applications where the number of samples is very large.

Machine Learning for Brain Disorders, Chapter 3



10 Vakalopoulou et al.

2.3.2. Non-linear functions

One of the most important components of deep neural networks is the
non-linear functions, also called activation functions. They convert the
linear input signal of a node into non-linear outputs to facilitate the
learning of high-order polynomials. There are a lot of different non-
linear functions in the literature. In this subsection, we will discuss the
most classical non-linearities.

Figure 5: Overview of different non-linear functions (in green) and their
first order derivative (blue). (A) Hyperbolic tangent function (tanh), (B)
Sigmoid, (C) Rectified linear unit (ReLU).

Hyperbolic tangent function (tanh) One of the most standard non-
linear functions is the hyperbolic tangent function, a.k.a., the tanh func-
tion. Tanh is symmetric around the origin with a range of values varying
from −1 to 1. The biggest advantage of the tanh function is that it
produces a zero-centered output (Figure 5(A)), thereby supporting the
backpropagation process that we will cover in the next section. The tanh
function is used extensively for the training of multilayer neural networks.
Formally, the tanh function, together with its gradient, is defined as:

g = tanh(x) =
ex − e−x

ex + e−x

∂g

∂x
= 1− tanh2(x)

. (5)

One of the downsides of tanh is the saturation of gradients that occurs
for large or small inputs. This can slow down the training of the networks.

Sigmoid Similarly to tanh, the sigmoid is one of the first non-linear
functions that were used to compose deep learning architectures. One
of the main advantages is that it has a range of values varying from 0
to 1 (Figure 5(B)) and therefore is especially used for models that aim

Machine Learning for Brain Disorders, Chapter 3



Deep learning: basics and CNN 11

to predict a probability as an output. Formally, the sigmoid function,
together with its gradient, is defined as:

g = σ(x) =
1

1 + e−x

∂g

∂x
= σ(x)(1− σ(x))

. (6)

Note that this is in fact the logistic function, which is a special case
of the more general class of sigmoid function. As it is indicated in Fig-
ure 5(B), the sigmoid gradient vanishes for large or small inputs making
the training process difficult. However, in case it is used for the output
units which are not latent variables and on which we have access to the
ground truth labels, sigmoid may be a good option.

Rectified Linear Unit (ReLU) ReLU is considered among the de-
fault choice of non-linearity. Some of the main advantages of ReLU in-
clude its efficient calculation and better gradient propagation with fewer
vanishing gradient problems compared to the previous two activation
functions [26]. Formally, the ReLU function, together with its gradient,
is defined as:

g = max(0,x)

∂g

∂x
=

{
0, if x ≤ 0

1, if x > 0

. (7)

As it is indicated in Figure 5(C), ReLU is differentiable anywhere else
than zero. However, this is not a very important problem as the value of
the derivative at zero can be arbitrarily chosen to be 0 or 1. In [27] the
authors empirically demonstrated that the number of iterations required
to reach 25% training error on the CIFAR-10 dataset for a four-layer
convolutional network was six times faster with ReLU than with tanh
neurons. On the other hand, and as discussed in [28], ReLU type neural
networks which yield a piecewise linear classifier function produce al-
most always high confidence predictions far away from the training data.
However, due to its efficiency and popularity, many variations of ReLU
have been proposed in the literature, such as the leaky ReLU [29] or the
parametric ReLU [30]. These two variations both address the problem of
dying neurons, where some ReLU neurons die for all inputs and remain
inactive no matter what input is supplied. In such a case, no gradient
flows from these neurons, and the training of the neural network architec-
ture is affected. Leaky ReLU and parametric ReLU change the g(x) = 0
part, by adding a slope and extending the range of ReLU.

Machine Learning for Brain Disorders, Chapter 3



12 Vakalopoulou et al.

Swish The choice of the activation function in neural networks is not
always easy and can greatly affect performance. In [31], the authors per-
formed a combination of exhaustive and reinforcement learning-based
searches to discover novel activation functions. Their experiments dis-
covered a new activation function that is called Swish, and is defined
as:

g = x · σ(βx)
∂g

∂x
= βg(x) + σ(βx)(1− βg(x))

, (8)

where σ is the sigmoid function and β is either a constant or a trainable
parameter. Swish tends to work better than ReLU on deeper models, as
it has been shown experimentally in [31] in different domains.

Softmax Softmax is often used as the last activation function of a
neural network. In practice, it normalizes the output of a network to
a probability distribution over the predicted output classes. Softmax is
defined as:

Softmax(xi) =
exi∑C
j exj

. (9)

The softmax function takes as input a vector x of C real numbers
and normalizes it into a probability distribution consisting of C proba-
bilities proportional to the exponentials of the input numbers. However,
a limitation of softmax is that it assumes that every input x belongs to
at least one of the C classes (which is not the case in practice, i.e. the
network could be applied to an input that does not belong to any of the
classes).

2.3.3. Loss functions

Besides the activation functions, the loss function (which defines the cost
function) is one of the main elements of neural networks. It is the func-
tion that represents the error for a given prediction. To that purpose,
for a given training sample, it compares the prediction f(x(i);W ) to the
ground truth y(i) (here we denote for simplicity as W all the parame-
ters of the network, combining all the W 1, . . . ,WK in the multilayer
perceptron shown above). The loss is denoted as ℓ(y, f(x;W )). The
average loss across the training samples (n) is called the cost function

Machine Learning for Brain Disorders, Chapter 3



Deep learning: basics and CNN 13

and is defined as:

J(W ) =
1

n

n∑
i=1

ℓ
(
y(i), f(x(i);W )

)
, (10)

where {x(i), y(i)}i=1..n composes the training set. The aim of the training
will be to find the parameters W such that J(W ) is minimized. Note
that, in deep learning, one often calls the cost function the loss function,
although, strictly speaking, the loss is for a given sample, and the cost
is averaged across samples. Besides, the objective function is the over-
all function to minimize, including the cost and possible regularization
terms. However, in the remainder of this chapter, in accordance with
common usage in deep learning, we will sometimes use the term loss
function instead of cost function.

In neural networks, the loss function can be virtually any function
that is differentiable. Below we present the two most common losses,
which are respectively used for classification or regression problems. How-
ever, specific losses exist for other tasks, such as segmentation, which are
covered in the corresponding chapters.

Cross entropy loss One of the most basic loss functions for classifi-
cation problems corresponds to the cross-entropy between the expected
values and the predicted ones. It leads to the following cost function:

J(W ) = −
n∑

i=1

log
(
P
(
y = y(i)|x = x(i);W

))
, (11)

where P
(
y = y(i)|x = x(i);W

)
is the probability that a given sample is

correctly classified.
The cross-entropy can also be seen here as the negative log-likelihood

of the training set given the predictions of the network. In other words,
minimizing this loss function corresponds to maximizing the likelihood:

L(W ) =
n∏

i=1

P
(
y = y(i)|x = x(i);W

)
. (12)

Mean squared error loss For regression problems, the mean squared
error is one of the most basic cost functions, measuring the average of the
squares of the errors, which is the average squared difference between the
predicted values and the real ones. The mean squared error is defined
as:

J(W ) =
n∑

i=1

∥y(i) − f(x(i);W )∥2 . (13)

Machine Learning for Brain Disorders, Chapter 3



14 Vakalopoulou et al.

3. Optimization of deep neural networks

Optimization is one of the most important components of neural net-
works, and it focuses on finding the parameters W that minimize the
loss function J(W ). Overall, optimization is a difficult task. Tradition-
ally, the optimization process is performed by carefully designing the loss
function and integrating its constraints to ensure that the optimization
process is convex (and thus, one can be sure to find the global mini-
mum). However, neural networks are non-convex models, making their
optimization challenging and, in general, one does not find the global
minimum but only a local one. In the next sections, the main compo-
nents of their optimization will be presented, giving a general overview
of the optimization process, its challenges, and common practices.

3.1 Gradient descent

Gradient descent is an iterative optimization algorithm that is among
the most popular and basic algorithms in machine learning. It is a first-
order1 optimization algorithm, which is finding a local minimum of a
differentiable function. The main idea of gradient descent is to take iter-
ative steps toward the opposite direction of the gradient of the function
that needs to be optimized (Figure 6).

Figure 6: The gradient descent algorithm. This first-order optimization
algorithm is finding a local minimum by taking steps toward the opposite
direction of the gradient.

1First-order means here that the first-order derivatives of the cost function are
used as opposed to second-order algorithms that, for instance, use the Hessian.

Machine Learning for Brain Disorders, Chapter 3



Deep learning: basics and CNN 15

That way, the parameters W of the model are updated by

W t+1 ←W t − η
∂J(W t)

∂W t
, (14)

where t is the iteration and η, called learning rate, is the hyperparameter
that indicates the magnitude of the step that the algorithm will take.

Besides its simplicity, gradient descent is one of the most commonly
used algorithms. More sophisticated algorithms require computing the
Hessian (or an approximation), and/or its inverse (or an approximation).
Even if these variations could give better optimization guarantees, they
are often more computationally expensive, making gradient descent the
default method for optimization.

In the case of convex functions, the optimization problem can be
reduced to the problem of finding a local minimum. Any local minimum
is then guaranteed to be a global minimum and gradient descent can
identify it. However, when dealing with non-convex functions, such as
neural networks, it is possible to have many local minima making the use
of gradient descent challenging. Neural networks are, in general, non-
identifiable [24]. A model is said to be identifiable if it is theoretically
possible, given a sufficiently large training set, to rule out all but one
set of the model’s parameters. Models with latent variables, such as the
hidden layers of neural networks, are often not identifiable because we
can obtain equivalent models by exchanging latent variables with each
other. However, all these minima are often almost equivalent to each
other in cost function value. In that case, these local minima are not a
problematic form of non-convexity. It remains an open question whether
there exist many local minima with a high cost that prevent adequate
training of neural networks. However, it is currently believed that most
local minima, at least as found by modern optimization procedures, will
correspond to a low cost (even though not to identical costs) [24].

For W ∗ to be a local minimum, we need mainly two conditions to be
fulfilled

•
∥∥ ∂J
∂W

(W ∗)
∥∥ = 0, and

• all the eigenvalues of
(

∂2J
∂W 2 (W

∗)
)
to be positive.

For random functions in n dimensions, the probability for the eigen-
values to be all positive is 1

n
. On the other hand, the ratio of the number

of saddle points to local minima increases exponentially with n [32]. A
saddle point, or critical point, is a point where the derivatives are zero
without being a minimum of the function. Such points could result in
a high error making the optimization with gradient descent challenging.

Machine Learning for Brain Disorders, Chapter 3



16 Vakalopoulou et al.

In [32], this issue is discussed, and an optimization algorithm that lever-
ages second-order curvature information is proposed to deal with this
issue for deep and recurrent networks.

3.1.1. Stochastic gradient descent

Gradient descent efficiency is not enough when it comes to machine learn-
ing problems with large numbers of training samples. Indeed, this is the
case for neural networks and deep learning which often rely on hundreds
or thousands of training samples. Updating the parameters W after
calculating the gradient using all the training samples would lead to a
tremendous computational complexity of the underlying optimization al-
gorithm [33]. To deal with this problem, the stochastic gradient descent
(SGD algorithm) is a drastic simplification. Instead of computing the
∂L(W )
∂W

exactly, each iteration estimates this gradient on the basis of a
small set of randomly picked examples, as follows:

W t+1 ←W t − ηtG(W t) , (15)

where

G(W t) =
1

K

K∑
k=1

∂

∂W
J(y(ik), f(x(ik);W t)) , (16)

where {(x(ik), y(ik))}k=1...K is the small subset of K training samples
(K << N). This subset of K samples is called a mini-batch or some-
times a batch2. In such a way, the iteration cost of stochastic gradient
descent will be O(K) while for gradient descent O(N). The ideal choice
for the batch size is a debated question. First, an upper limit for the
batch size is often simply given the available GPU memory, in particu-
lar when the size of the input data is large (e.g. 3D medical images).
Besides, choosing K as a power of 2 often leads to more efficient compu-
tations. Finally, small batch sizes tend to have a regularizing effect which
can be beneficial [24]. In any case, the ideal batch size usually depends
on the application, and it is not uncommon to try different batch sizes.
Finally, one calls an epoch a complete pass over the whole training set
(meaning that each training sample has been used once). The number of
epochs is the number of full passes over the whole training set. It should
not be confused with the number of iterations which is the number of
mini-batches that have been processed.

2Note that, as often in deep learning, the terminology can be confusing. In iso-
lation, the term batch is usually a synonym of mini-batch. On the contrary, batch
gradient descent means computing the gradient using all training samples and not
only a mini-batch [24].

Machine Learning for Brain Disorders, Chapter 3



Deep learning: basics and CNN 17

Note that various improvements over traditional SGD have been in-
troduced, leading to more efficient optimization methods. These state-
of-the-art optimization methods are presented in Section 3.4.

Box 2: Convergence of SGD theorem

In [34], the authors prove that stochastic gradient descent converges
if the network is sufficiently overparametrized. Let (x(i), y(i))1≤i≤n

be a training set satisfying mini,j:i ̸=j ∥x(i) − x(j)∥2 > δ > 0. Con-
sider fitting the data using a feedforward neural network with ReLU
activations. Denote by D (resp. W ) the depth (resp. width) of
the network. Suppose that the neural network is sufficiently over-
parametrized, i.e.,

W ≫ polynomial(n,D,
1

δ
) . (17)

Then, with high probability, running SGD with some random ini-
tialization and properly chosen step sizes ηt yields J(W t) < ϵ in
t ∝ log 1

ϵ
.

3.2 Backpropagation

The training of neural networks is performed with backpropagation. Back-
propagation computes the gradient of the loss function with respect to
the parameters of the network in an efficient and local way. This algo-
rithm was originally introduced in 1970. However, it started becoming
very popular after the publication of [6], which indicated that backprop-
agation works faster than other methods that had been proposed back
then for the training of neural networks.

Figure 7: A multilayer perceptron with one hidden layer.

The backpropagation algorithm works by computing the gradient of
the loss function (J) with respect to each weight by the chain rule, com-
puting the gradient one layer at a time, and iterating backward from
the last layer to avoid redundant calculations of intermediate terms in

Machine Learning for Brain Disorders, Chapter 3



18 Vakalopoulou et al.

the chain rule. In Figure 7, an example of a multilayer perceptron with
one hidden layer is presented. In such a network, the backpropagation is
calculated as

∂J(W )

∂w2

=
∂J(W )

∂ŷ
× ∂ŷ

∂w2

∂J(W )

∂w1

=
∂J(W )

∂ŷ
× ∂ŷ

∂w1

=
∂J(W )

∂ŷ
× ∂ŷ

∂z1
× ∂z1

∂w1

. (18)

Overall, backpropagation is very simple and local. However, the rea-
son why we can train a highly non-convex machine with many local min-
ima, like neural networks, with a strong local learning algorithm is not
really known even today. In practice, backpropagation can be computed
in different ways, including manual calculation, numerical differentia-
tion using finite difference approximation, and symbolic differentiation.
Nowadays, deep learning frameworks such as [14, 16] use automatic dif-
ferentiation [35] for the application of backpropagation.

3.3 Generalization and overfitting

Similar to all the machine learning algorithms (discussed in Chapter
2), neural networks can suffer from poor generalization and overfitting.
These problems are caused mainly by the optimization of the parameters
of the models performed in the {(xi, yi)}i=1..n training set, while we need
the model to perform well on other unseen data that are not available
during the training. More formally, in the case of cross entropy, the loss
that we would like to minimize is:

J(W ) = −log
∏

(x,y)∈TT

P (y = y|x = x;W ) , (19)

where TT is the set of any data, not available during training. In practice,
a small validation set TV is used to evaluate the loss on unseen data. Of
course, this validation set should be distinct from the training set. It is
extremely important to keep in mind that the performance obtained on
the validation set is generally biased upwards because the validation set
was used to perform early stopping or to choose regularization parame-
ters. Therefore, one should have an independent test set, that has been
isolated at the beginning, has not been used in any way during training,
and is only used to report the performance (see Chapter 20 for details).
In case one cannot have an additional independent test set due to a lack
of data, one should be aware that the performance may be biased and
that this is a limitation of the specific study.

Machine Learning for Brain Disorders, Chapter 3



Deep learning: basics and CNN 19

To avoid overfitting and improve the generalization performance of
the model, usually, the validation set is used to monitor the loss during
the training of the networks. Tracking the training and validation losses
over the number of epochs is essential and provides important insights
into the training process and the selected hyperparameters (e.g. choice
of learning rate). Recent visualization tools such as TensorBoard3 or
Weights & Biases4 make this tracking easy. In the following, we will also
mention some of the most commonly applied optimization techniques
that help with preventing overfitting.

Early stopping Using the reported training and validation errors, the
best model in terms of performance and generalization power is selected.
In particular, early stopping, which corresponds to selecting a model cor-
responding to an earlier time point than the final epoch is a common way
to prevent overfitting [36]. Early stopping is a form of regularization for
models that are trained with an iterative method, such as gradient de-
scent and its variants. Early stopping can be implemented with different
criteria. However, generally, it requires the monitoring of the perfor-
mance of the model on a validation set, and the model is selected when
its performance degrades or its loss increases. Overall, early stopping
should be used almost universally for the training of neural networks [24].
The concept of early stopping is illustrated in Figure 8.

Figure 8: Illustration of the concept of early stopping. The model that
should be selected corresponds to the dashed bar which is the point where
the validation loss starts increasing. Before this point, the model is un-
derfitting. After, it is overfitting.

3https://www.tensorflow.org/tensorboard
4https://wandb.ai/site

Machine Learning for Brain Disorders, Chapter 3

https://www.tensorflow.org/tensorboard
https://wandb.ai/site


20 Vakalopoulou et al.

Weight regularization Similar to other machine learning methods
(Chapter 2), weight regularization is also a very commonly used tech-
nique for avoiding overfitting in neural networks. More specifically, dur-
ing the training of the model, the weights of the network start growing
in size in order to specialize the model to the training data. However,
large weights tend to cause sharp transitions in the different layers of the
network and, that way, large changes in the output for only small changes
in the inputs [37]. To handle this problem, during the training process,
the weights can be updated in such a way that they are encouraged to be
small, by adding a penalty to the loss function, for instance, the ℓ2 norm
of the parameters λ∥W ∥2, where λ is a trade-off parameter between the
loss and the regularization. Since weight regularization is quite popular
in neural networks, different optimizers have integrated them into their
optimization process in the form of weight decay.

Weight initialization The way that the weights of neural networks
will be initialized is very important, and it can determine whether the
algorithm converges at all, with some initial points being so unstable that
the algorithm encounters numerical difficulties and fails altogether [24].
Most of the time, the weights are initialized randomly from a Gaussian
or uniform distribution. According to [24], the choice of Gaussian or
uniform distribution does not seem to matter very much; however, the
scale does have a large effect on both the outcome of the optimization
procedure and on the ability of the network to generalize. Nevertheless,
more tailored approaches have been developed over the last decade that
have become the standard initialization points. One of them is the Xavier
Initaliazation [38] which balances between all the layers to have the same
activation variance and the same gradient variance. More formally the
weights are initialized as

Wi,j ∼ Uniform

(
−
√

6

m+ n
,

√
6

m+ n

)
, (20)

where m is the number of inputs and n the number of outputs of matrix
W . Moreover, the biases b are initialized to 0.

Drop-out There are other techniques to prevent overfitting, such as
drop-out [39], which involves randomly destroying neurons during the
training process, thereby reducing the complexity of the model. Drop-
out is an ensemble method that does not need to build the models ex-
plicitly. In practice, at each optimization iteration, random binary masks
on the units are considered. The probability of removing a unit (p) is
defined as a hyperparameter during the training of the network. During

Machine Learning for Brain Disorders, Chapter 3



Deep learning: basics and CNN 21

inference, all the units are activated; however, the obtained parameters
W are multiplied with this probability p. Drop-out is quite efficient and
commonly used in a variety of neural network architectures.

Data augmentation Since neural networks are data-driven methods,
their performance depends on the training data. To increase the amount
of data during the training, data augmentation can be performed. It gen-
erates slightly modified copies of the existing training data to enrich the
training samples. This technique acts as a regularizer and helps reduce
overfitting. Some of the most commonly used transformations applied
during data augmentation include random rotations, translations, crop-
ping, color jittering, resizing, Gaussian blurring, and many more. In
Figure 9, examples of different transformations on different digits (first
column) of the MNIST dataset [40] are presented. For medical images,
the TorchIO library allows to easily perform data augmentation [41].

Figure 9: Examples of data transformations applied in the MNIST
dataset. Each of these generated samples is considered additional train-
ing data.

Batch normalization To ensure that the training of the networks will
be more stable and faster, batch normalization has been proposed [42].
In practice, batch normalization re-centers and re-scales the layer’s in-
put, mitigating the problem of internal covariate shift which changes the
distribution of the inputs of each layer affecting the learning rate of the
network. Even if the method is quite popular, its necessity and use for
the training have recently been questioned [43].

Machine Learning for Brain Disorders, Chapter 3



22 Vakalopoulou et al.

3.4 State-of-the-art optimizers

Over the years, different optimizers have been proposed and widely used,
aiming to provide improvements over the classical stochastic gradient
descent. These algorithms are motivated by challenges that need to be
addressed with stochastic gradient descent and are focusing on the choice
of the proper learning rate, its dynamic change during training as well as
the fact that it is the same for all the parameter updates [44]. Moreover, a
proper choice of optimizer could speed up the convergence to the optimal
solution. In this subsection, we will discuss some of the most commonly
used optimizers nowadays.

3.4.1. Stochastic gradient descent with momentum

One of the limitations of the stochastic gradient descent is that since the
direction of the gradient that we are taking is random, it can heavily
oscillate, making the training slower and even getting stuck in a saddle
point. To deal with this problem, stochastic gradient descent with mo-
mentum [45, 46] keeps a history of the previous gradients, and it updates
the weights taking into account the previous updates. More formally,

gt ← ρgt−1 + (1− ρ)G(W t)

∆W t ← −ηtgt

W t+1 ←W t +∆W t

, (21)

where gt is the direction of the update of the weights in time-step t
and ρ ∈ [0, 1] is a hyperparameter that controls the contribution of the
previous gradients and current gradient in the current update. When
ρ = 0, it is the same as the classical stochastic gradient descent. A
large value of ρ will mean that the update is strongly influenced by the
previous updates.

The momentum algorithm accumulates an exponentially decaying
moving average of the past gradients and continues to move in their
direction [24]. Momentum increases the speed of convergence, while it
is also helpful to not get stuck in places where the search space is flat
(saddle points with zero gradient), since the momentum will pursue the
search in the same direction as before the flat region.

3.4.2. AdaGrad

To facilitate and speed up, even more, the training process, optimizers
with adaptive learning rates per parameter have been proposed. The

Machine Learning for Brain Disorders, Chapter 3



Deep learning: basics and CNN 23

adaptive gradient (AdaGrad) optimizer [47] is one of them. It updates
each individual parameter proportionally to their component (and mo-
mentum) in the gradient. More formally,

gt ← G(W t)

rt ← rt−1 + gt ⊙ gt

∆W t ← − η

δ +
√
rt
⊙ gt

W t+1 ←W t +∆W t

, (22)

where gt is the gradient estimate vector in time-step t, rt is the term
controlling the per parameter update, and δ is some small quantity that
is used to avoid the division by zero. Note that rt constitutes of the
gradient’s element-wise product with itself and of the previous term rt−1

accumulating the gradients of the previous terms.
This algorithm performs very well for sparse data since it decreases

the learning rate faster for the parameters that are more frequent and
slower for the infrequent parameters. However, since the update accumu-
lates gradients of the previous steps, the updates could decrease very fast,
blocking the learning process. This limitation is mitigated by extensions
of the AdaGrad algorithm as we discuss in the next sections.

3.4.3. RMSProp

Another algorithm with adaptive learning rates per parameter is the root
mean squared propagation (RMSProp) algorithm, proposed by Geoffrey
Hinton. Despite its popularity and use, this algorithm has not been
published. RMSProp is an extension of the AdaGrad algorithm dealing
with the problem of radically diminishing learning rates by being less
influenced by the first iterations of the algorithm. More formally,

gt ← G(W t)

rt ← ρrt−1 + (1− ρ)gt ⊙ gt

∆W t ← − η

δ +
√
rt
⊙ gt

W t+1 ←W t +∆W t

, (23)

where ρ is a hyperparameter that controls the contribution of the previous
gradients and the current gradient in the current update. Note that

Machine Learning for Brain Disorders, Chapter 3



24 Vakalopoulou et al.

RMSProp estimates the squared gradients in the same way as AdaGrad,
but instead of letting that estimate continually accumulate over training,
we keep a moving average of it, integrating the momentum. Empirically,
RMSProp has been shown to be an effective and practical optimization
algorithm for deep neural networks [24].

3.4.4. Adam

The effectiveness and advantages of the AdaGrad and RMSProp algo-
rithms are combined in the adaptive moment estimation (Adam) opti-
mizer [48]. The method computes individual adaptive learning rates for
different parameters from estimates of the first and second moments of
the gradients. More formally,

gt ← G(W t)

st ← ρ1s
t−1 + (1− ρ1)g

t

rt ← ρ2r
t−1 + (1− ρ2)g

t ⊙ gt

ŝt ← st

1− (ρ1)t

r̂t ← rt

1− (ρ2)t

∆W t ← − λ

δ +
√
r̂t
⊙ ŝt

W t+1 ←W t +∆W t

, (24)

where st is the gradient with momentum, rt accumulates the squared
gradients with momentum as in RMSProp, ŝt and r̂t are smaller than
st and rt respectively but they converge towards them. Moreover, δ is
some small quantity that is used to avoid the division by zero while ρ1
and ρ2 are hyperparameters of the algorithm. The parameters ρ1 and ρ2
control the decay rates of each moving average, respectively, and their
value is close to 1. Empirical results demonstrate that Adam works
well in practice and compares favorably to other stochastic optimization
methods, making it the go-to optimizer for deep learning problems.

3.4.5. Other optimizers

The development of efficient (in terms of speed and stability) optimizers
is still an active research direction. RAdam [49] is a variant of Adam,

Machine Learning for Brain Disorders, Chapter 3



Deep learning: basics and CNN 25

introducing a term to rectify the variance of the adaptive learning rate.
In particular, RAdam leverages a dynamic rectifier to adjust the adaptive
momentum of Adam based on the variance and effectively provides an
automated warm-up custom-tailored to the current dataset to ensure a
solid start to training. Moreover, LookAhead [50] was inspired by recent
advances in the understanding of loss surfaces of deep neural networks
and provides a breakthrough in robust and stable exploration during
the entirety of the training. Intuitively, the algorithm chooses a search
direction by looking ahead at the sequence of fast weights generated by
another optimizer. These are only some of the optimizers that exist in the
literature, and depending on the problem and the application, different
optimizers could be selected and applied.

4. Convolutional neural networks

Convolutional neural networks (CNNs) are a specific category of deep
neural networks that employ the convolution operation in order to pro-
cess the input data. Even though the main concept dates back to the 90s
and is greatly inspired by neuroscience [51] (in particular by the organi-
zation of the visual cortex), their widespread use is due to a relatively
recent success on the ImageNet Large Scale Visual Recognition Challenge
of 2012 [27]. In contrast to the deep fully-connected networks that have
been already discussed, CNNs excel in processing data with a spatial or
grid-like organization (e.g., time series, images, videos, etc.), while at
the same time decrease the number of trainable parameters due to their
weight sharing properties. The rest of this section is first introducing the
convolution operation and the motivation behind using it as a building
block/module of neural networks. Then, a number of different variations
are presented together with examples of the most important CNN archi-
tectures. Lastly, the importance of the receptive field – a central property
of such networks – will be discussed.

4.1 The convolution operation

The convolution operation is defined as the integral of the product of
the two functions (f , g)5 after one is reversed and shifted over the other
function. Formally we write,

h(t) =

∫ ∞

−∞
f(t− τ)g(τ) dτ . (25)

5Note that f and g have no relationship to their previous definitions in the chapter.
In particular, f is not the deep learning model.

Machine Learning for Brain Disorders, Chapter 3



26 Vakalopoulou et al.

Such an operation can also be denoted with an asterisk (∗) so it is
written as,

h(t) = (f ∗ g)(t) . (26)

In essence, the convolution operation shows how one function affects
the other. This intuition arises from the signal processing domain, where
it is typically important to know how a signal will be affected by a filter.
For example, consider a uni-dimensional continuous signal, like the brain
activity of a patient on some electroencephalography electrode, and a
Gaussian filter. The result of the convolution operation between these
two functions will output the effect of a Gaussian filter on this signal
which will, in fact, be a smoothed version of the input.

A different way to think of the convolution operation is that it shows
how the two functions are related. In other words, it shows how similar or
dissimilar the two functions are at different relative positions. In fact, the
convolution operation is very similar to the cross-correlation operation,
with the subtle difference being that in the convolution operation, one of
the two functions is inverted. In the context of deep learning specifically,
the exact differences between the two operations can be of secondary
concern; however, the convolution operation has more properties than
correlation, such as commutativity. Note also that when the signals are
symmetric both operations will yield the same result.

In order to deal with discrete and finite signals, we can expand the
definition of the convolution operation. Specifically, given two discrete
signals f [k] and g[k], with k ∈ Z, the convolution operation is defined
by,

h[k] =
∑
n

f [k − n]g[n] . (27)

Lastly, the convolution operation can be extended for multi-dimensional
signals similarly. For example, we can write the convolutional operation
between two discrete and finite two-dimensional signals (e.g., I[i, j], K[i, j])
as

H[i, j] =
∑
m

∑
n

I[i−m, j − n]K[m,n] . (28)

Very often, the first signal will be the input of interest (e.g. a large
size image) while the second signal will be of relatively small size (e.g.
a 3 × 3 or 4 × 4 matrix) and will implement a specific operation. The
second signal is then called a kernel. In Figure 10, a visualization of the
convolution operation is shown in the case of a 2D discrete signal such as
an image and a 3× 3 kernel. In detail, the convolution kernel is shifted

Machine Learning for Brain Disorders, Chapter 3



Deep learning: basics and CNN 27

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0
I

∗
1 0 1

0 1 0

1 0 1

K

=

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0

I ∗K

1 0 1

0 1 0

1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 10: A visualization of the discrete convolution operation in 2D.

over all locations of the input, and an element-wise multiplication and a
summation are utilized to calculate the convolution output at the corre-
sponding location. Examples of applications of convolutions to an image
are provided in Figure 11. Finally, note that, as in multilayer percep-
trons, a convolution will generally be followed by a non-linear activation
function, for instance, a ReLU (see Figure 12 for an example of activation
applied to a feature map).

Figure 11: Two examples of convolutions applied to an image. One
of the filters acts as a vertical edge detector, and the other one as a
horizontal edge detector. Of course, in CNNs, the filters are learned, not
predefined, so there is no guarantee that, among the learned filters, there
will be a vertical/horizontal case detector, although it will often be the
case in practice, especially for the first layers of the architecture.

In the following sections of this chapter, any reference to the convolu-
tion operation will mostly refer to the 2D discrete case. The extension to
the 3D case, which is often encountered in medical imaging, is straight-
forward.

Machine Learning for Brain Disorders, Chapter 3



28 Vakalopoulou et al.

Figure 12: Example of application of a non-linear activation function
(here a ReLU) to an image.

4.2 Properties of the convolution operation

In the case of a discrete domain, the convolution operation can be per-
formed using a simple matrix multiplication without the need of shifting
one signal over the other one. This can be essentially achieved by uti-
lizing the Toeplitz matrix transformation. The Toeplitz transformation
creates a sparse matrix with repeated elements which, when multiplied
with the input signal, produces the convolution result. To illustrate how
the convolution operation can be implemented as a matrix multiplication,
let’s take the example of a 3× 3 kernel (K) and a 4× 4 input (I)

K =

k00 k01 k02
k10 k11 k12
k20 k21 k22

 and I =


i00 i01 i02 i03
i10 i11 i12 i13
i20 i21 i22 i23
i30 i31 i32 i33

 .

Then, the convolution operation can be computed as a matrix multipli-
cation between the Toepliz transformed kernel

K̂ =


k00 k01 k02 0 k10 k11 k12 0 k20 k21 k22 0 0 0 0 0
0 k00 k01 k02 0 k10 k11 k12 0 k20 k21 k22 0 0 0 0
0 0 0 0 k00 k01 k02 0 k10 k11 k12 0 k20 k21 k22 0
0 0 0 0 0 k00 k01 k02 0 k10 k11 k12 0 k20 k21 k22


and a reshaped input

Î =
[
i00 i01 i02 i03 i10 i11 i12 i13 i20 i21 i22 i23 i30 i31 i32 i33

]⊤
.

The produced output will need to be reshaped as a 2 × 2 matrix in
order to retrieve the convolution output. This matrix multiplication

Machine Learning for Brain Disorders, Chapter 3



Deep learning: basics and CNN 29

implementation is quite illuminating on a few of the most important
properties of the convolutional operation. These properties are the main
motivation behind using such elements in deep neural networks.

By transforming the convolution operation to a matrix multiplication
operation, it is evident that it can fit in the formalization of the linear
functions, which has already been presented in section 2.3. As such, deep
neural networks can be designed in a way to utilize trainable convolution
kernels. In practice, multiple convolution kernels are learned at each con-
volutional block while several of these trainable convolutional blocks are
stacked on top of each other forming deep CNNs. Typically, the output
of a convolutional operation is called a feature map or just features.

Figure 13: For a given layer, several (usually many) filters are learned,
each of them being able to detect a specific characteristic in the image,
resulting in several feature/filter maps. On the other hand, for a given
filter, the weights are shared across all the locations of the image.

Another important aspect of the convolution operation is that it re-
quires much fewer parameters than the fully connected MLP-based deep
neural networks. As it can also be seen from the K̂ matrix, the exact
same parameters are shared across all locations. Eventually, rather than
learning a different set of parameters for the different locations of the
input, only one set is learned. This is referred to as parameter sharing or
weight sharing and can greatly decrease the amount of memory that is
required to store the network parameters. An illustration of the process
of weight sharing across locations, together with the fact that multiple
filters (resulting in multiple feature maps) are computed for a given layer,
is illustrated in Figure 13. The multiple feature maps for a given layer
are stored using another dimension (see Figure 14), thus resulting in a
3D array when the input is a 2D image (and a 4D array when the input
is a 3D image).

Machine Learning for Brain Disorders, Chapter 3



30 Vakalopoulou et al.

Figure 14: The different feature maps for a given layer are arranged
along another dimension. The feature maps will thus be a 3D array when
the input is a 2D image (and a 4D array when the input is a 3D image).

Convolutional neural networks have proven quite powerful in pro-
cessing data with spatial structure (e.g. images, videos, etc.). This is
effectively based on the fact that there is a local connectivity of the
kernel elements while at the same time the same kernel is applied at
different locations of the input. Such processing grants a quite useful
property called translation equivariance enabling the network to output
similar responses at different locations of the input. An example of the
usefulness of such a property can be identified on an image detection
task. Specifically, when training a network to detect tumors in an MRI
image of the brain, the model should respond similarly regardless of the
location where the anomaly can be manifested.

Lastly, another important property of the convolutional operation is
that it decouples the size of the input with the trainable parameters. For
example, in the case of MLPs the size of the weight matrix is a function
of the dimension of the input. Specifically, a densely connected layer that
maps 256 features to 10 outputs would have a size of W ∈ R10×256. On
the contrary, in convolutional layers, the number of trainable parameters
only depends on the kernel size and the number of kernels that a layer
has. This eventually allows the processing of arbitrarily sized inputs, for
example, in the case of fully convolutional networks.

4.3 Functions and variants

An observant reader might have noticed that the convolution operation
can change the dimensionality of the produced output. In the example
visualized in Figure 10, the image of size 7 × 7, when convolved with
a kernel of size 3 × 3, produces a feature map of size of 5 × 5. Even

Machine Learning for Brain Disorders, Chapter 3



Deep learning: basics and CNN 31

Figure 15: The padding operation, which involves adding zeros around
the image, allows to obtain feature maps that are of the same size as the
original image.

Figure 16: Effect of a pooling operation. Here a Maximum Pooling of
size 2× 2 with a stride of 2.

though dimension changes can be avoided with appropriate padding (see
Figure 15 for an illustration of this process) prior to the convolution
operation, in some cases it is actually desired to reduce the dimensions
of the input. Such a decrease can be achieved in a number of ways
depending the task at hand. In this subsection, some of the most typical
functions that are utilized in CNNs will be discussed.

Downsampling operations (i.e. pooling layers) In many CNN
architectures there is an extensive use of downsampling operations that
aim to compress the size of the feature maps and decrease the computa-
tional burden. Otherwise referred to as pooling layers, these processing
operations are aggregating the values of their input depending on their
design. Some of the most common downsampling layers are the Maxi-
mum Pooling, Average Pooling, or Global Average Pooling. In the first

Machine Learning for Brain Disorders, Chapter 3



32 Vakalopoulou et al.

Figure 17: Stride operation, here with a stride of 2.

two, either the maximum or the average value is used as a feature for
the output across non overlapping regions of a predefined pooling size.
In the case of the global average pooling, the spatial dimensions are all
represented with the average value. An example of pooling is provided
in Figure 16.

Strided convolution The strided convolution refers to the specific
case in which, instead of applying the convolution operation for every
location using a step size (or stride, s) of 1, different step sizes can be
considered (Figure 17). Such an operation will produce a convolution
output with much fewer elements. Convolution blocks with s > 1 can
be found on CNN architectures as a way to decrease the feature sizes in
intermediate layers.

Atrous or dilated convolution Dilated, also called atrous, convolu-
tion, is the convolution with kernels that have been dilated by inserting
zero holes (à trous in French) between the non-zero values of a kernel.
In this case, an additional parameter (d) of the convolution operation is
added and it is changing the distance between the kernel elements. In
essence, it is increasing the reach of the kernel but keeping the number
of trainable parameters the same. For example, a dilated convolution
with a kernel size of 3× 3 and a dilation rate of d = 2 would be sparsely
arranged on a 5× 5 grid.

Transpose convolution In certain circumstances, one needs not only
to downsample the spatial dimensions of the input but also, usually at
a later stage of the network, apply an upsample operation. The most
emblematic case is the task of image segmentation (see Chapter 13), in
which a pixel-level classification is expected, and therefore the output of

Machine Learning for Brain Disorders, Chapter 3



Deep learning: basics and CNN 33

the neural network should have the same size as the input. In such cases,
several upsampling operations are typically applied. The upsampling can
be achieved by a transpose convolution operation that will eventually
increase the size of the output. In details, the transpose convolution is
performed by dilating the input instead of the kernel before applying a
convolution operation. In this way, an input of size 5 × 5 will reach a
size of 10× 10 after being dilated with d = 2. With proper padding and
using a kernel of size 3× 3, the output will eventually double in size.

4.4 Receptive field calculation

In the context of deep neural networks and specifically CNNs, the term
receptive field is used to define the proportion of the input that produces
a specific feature. For example, a CNN that takes an image as input and
applies only a single convolution operation with a kernel size of 3 × 3
would have a receptive field of 3 × 3. This means that for each pixel of
the first feature map, a 3 × 3 region of the input would be considered.
Now, if another layer were to be added, with again 3 × 3 size, then the
receptive field of the new feature map with respect to the CNN’s input
would be 5× 5. In other words, the proportion of the input that is used
to calculate each element of the feature map of the second convolution
layer increases.

Calculating the receptive field at different parts of a CNN is crucial
when trying to understand the inner workings of a specific architecture.
For instance, a CNN that is designed to take as an input an image of size
256× 256 and that requires information from all parts of it should have
a receptive field close to the size of the input. The receptive field can
be influenced by all the different convolution parameters and down/up-
sampling operations described in the previous section. A comprehensive
presentation of mathematical derivations for calculating receptive fields
for CNNs is given in [52].

4.5 Classical convolutional neural network archi-
tectures

In the last decades, a variety of convolutional neural network architec-
tures have been proposed. In this chapter, we cover only a few classical
architectures for classification and regression. Note that classification
and regression can usually be performed with the same architecture, just
changing the loss function (e.g. cross-entropy for classification, mean
squared error for regression). Architectures for other tasks can be found
in other chapters.

Machine Learning for Brain Disorders, Chapter 3



34 Vakalopoulou et al.

Figure 18: A basic CNN architecture. Classically, it is composed of
two main parts. The first one, using convolutional operations, performs
feature learning. The features are then flattened and fed into a set of
fully connected layers (i.e. a multilayer perceptron), which performs the
classification or the regression task.

A basic CNN architecture Let us start with the most simple CNN,
which is actually very close to the original one proposed by Le Cun et
al. [53], sometimes called “LeNet”. Such architecture is typically com-
posed of two parts: the first one is based on convolutional operations and
learns the features for the image, and the second part flattens the fea-
tures and inputs them to a set of fully connected layers (in other words,
a multilayer perceptron) for performing the classification/regression (see
illustration in Figure 18). Note that, of course, the whole network is
trained end-to-end: the two parts are not trained independently. In the
first part, one combines a series of blocks composed of a convolution op-
eration (possibly strided and/or dilated), a non-linear activation function
(for instance, a ReLU), and a pooling operation. It is often a good idea
to include a drawing of the different layers of the chosen architecture.
Unfortunately, there is no harmonized format for such a description. An
example is provided in Figure 19.

One of the first CNN architectures that follow this paradigm is the
AlexNet architecture [54]. AlexNet was one of the first papers that em-
pirically indicated that the ReLU activation function makes the conver-
gence of CNNs faster compared to other non-linearities such as the tanh.
Moreover, it was the first architecture that achieved a top-5 error rate
of 18.2% on the ImageNet dataset, outperforming all the other methods
on this benchmark by a huge margin (about 10%). Prior to AlexNet,
best-performing methods were using (very sophisticated) pre-extracted
features and classical machine learning. After this advance, deep learning
in general and CNNs, in particular, became very active research direc-

Machine Learning for Brain Disorders, Chapter 3



Deep learning: basics and CNN 35

Figure 19: A drawing describing a CNN architecture. Classically, it is
composed of two main parts. Here 16@3 × 3 × 3 means that 16 features
with a 3 × 3 × 3 convolution kernel will be computed. For the pooling
operation, the kernel size is also mentioned (2 × 2). Finally, the stride
is systematically indicated.

tions to address different computer vision problems. This resulted in
the introduction of a variety of architectures such as VGG16 [55] that
reported a 7.3% error rate on ImageNet, introducing some changes such
as the use of smaller kernel filters. Following these advances, and even
if there were a lot of different architectures proposed during that period,
one could mention the Inception architecture [56], which was one of the
deepest architectures of that period and which further reduced the error
rate on ImageNet to 6.7%. One of the main characteristics of this archi-
tecture was the inception modules, which applied multiple kernel filters
of different sizes at each level of the architecture. To solve the prob-
lem of vanishing gradients, the authors introduced auxiliary classifiers
connected to intermediate layers, expecting to encourage discrimination
in the lower stages in the classifier, increasing the gradient signal that
gets propagated back, and providing additional regularization. During
inference, these classifiers were completely discarded.

In the following section, some other recent and commonly used CNN
architectures, especially for medical applications, will be presented.

ResNet One of the most commonly used CNN architectures, even to-
day, is the ResNet [57]. ResNet reduced the error rate on ImageNet to
3.6%, while it was the first deep architecture that proposed novel concepts
on how to gracefully go deeper than a few dozen of layers. In particular,
the authors introduced a deep residual learning framework. The main
idea of this residual learning is that instead of learning the desired un-
derlying mapping of each network level, they learn the residual mapping.
More formally, instead of learning the H(x) mapping after the convolu-
tional and non-linear layers, they fit another mapping of F (x) = H(x)−x
on which the original mapping is recast into F (x)+x. Feedforward neural

Machine Learning for Brain Disorders, Chapter 3



36 Vakalopoulou et al.

networks can realize this mapping with “shortcut connections” by simply
performing identity mapping, and their outputs are added to the outputs
of the stacked layers. Such identity connections add neither additional
complexity nor parameters to the network, making such architectures
extremely powerful.

Different ResNet architectures have been proposed even in the origi-
nal paper. Even though the depth of the network is increased with the
additional convolutions, especially for the 152-layer ResNet (11.3 billion
floating point operations), it still has lower complexity (i.e. fewer parame-
ters) than VGG-16/19 networks. Currently, different layered-size ResNet
architectures pre-trained on ImageNet are used as backbones for vari-
ous problems and applications, including medical imaging. Pre-trained
ResNet models, even if they are 2D architectures, are commonly used on
histopathology [58, 59], chest X-ray [60] or even brain imaging [61, 62],
while the way that such pre-trained networks work for medical applica-
tions gathered the attention of different studies such as [63]. However, it
should be noted that networks pre-trained on ImageNet are not always
efficient for medical imaging tasks, and there are cases where they per-
form poorly, much lower than simpler CNNs trained from scratch [64].
Nevertheless, a pre-trained ResNet is very often a good idea to use for a
first try in a given application. Finally, there was an effort from the med-
ical community to train 3D variations of ResNet architectures on a large
amount of 3D medical data and release the pre-trained models. Such
an effort is presented in [65] in which the authors trained and released
different 3D ResNet architectures trained on different publicly available
3D datasets, including different anatomies such as the brain, prostate,
liver, heart and pancreas.

EfficientNet A more recent CNN architecture that is worth mention-
ing in this section is the recently presented EfficientNet [66]. EfficientNets
are a family of neural networks that are balancing all dimensions of the
network (width/depth/resolution) automatically. In particular, the au-
thors propose a simple yet effective compound scaling method for obtain-
ing these hyperpameters. In particular, the main compound coefficient
ϕ uniformly scales network width, depth, and resolution in a principled
way: depth = αϕ, width = βϕ, resolution = γϕ s.t. α · β2 · γ2 ≈ 2,
α ≥ 1, β ≥ 1, γ ≥ 1. In this formulation, the parameters α, β, γ are
constants, and a small grid search can determine them. This grid search
resulted in 8 different architectures presented in the original paper. Ef-
ficientNet is used more and more for medical imaging tasks, as can be
seen in multiple recent studies [67, 68, 69].

Machine Learning for Brain Disorders, Chapter 3



Deep learning: basics and CNN 37

Figure 20: The general principle of a denoising autoencoder. It aims
at learning of a low-dimensional representation (latent space) z of the
training data. The learning is done by aiming to provide a faithful recon-
struction x̂ of the input data x̂.

5. Autoencoders

An autoencoder is a type of neural network that can learn a compressed
representation (called the latent space representation) of the training
data. As opposed to the multilayer perceptrons and CNNs seen until
now that are used for supervised learning, autoencoders have widely been
used for unsupervised learning, with a wide range of applications. The
architecture of autoencoders is composed of a contracting path (called the
encoder), which will transform the input into a lower-dimensional repre-
sentation, and an expanding path (called the decoder), which will aim at
reconstructing the input as well as possible from the lower-dimensional
representation (see Figure 20).

The loss is usually the ℓ2 loss and the cost function is then:

J(θ,ϕ) =
n∑

i=1

∥x(i) −Dθ(Eϕ(x
(i)))∥22 , (29)

where Eϕ is the encoder (and ϕ its parameters) and Dθ is the decoder
(and θ its parameters). Note that, in Figure 20, Dθ(Eϕ(x)) is denoted
as x̂. More generally, one can write:

J(θ,ϕ) = Ex∼µref
[d (x, Dθ(Eϕ(x)))] , (30)

where µref is the reference distribution that one is trying to approximate,
and d is the reconstruction function. When µref is the empirical distri-
bution of the training set and d is the ℓ2 norm, Equation 30 is equivalent
to Equation 29.

Many variations of autoencoders exist, to prevent autoencoders from
learning the identity function and to improve their ability to capture

Machine Learning for Brain Disorders, Chapter 3



38 Vakalopoulou et al.

important information and learn richer representations. Among them,
sparse autoencoders offer an alternative method for introducing an infor-
mation bottleneck without requiring a reduction in the number of nodes
at the hidden features. This is done by constructing the loss function
such that it penalizes activations within a layer. This is achieved by en-
forcing sparsity in the network and encouraging it to learn an encoding
and decoding which relies only on activating a small number of neurons.
This sparsity is enforced in two main ways, an ℓ1 regularization on the
parameters of the network or a Kullback-Leibler divergence, which is a
measure of the difference between two probability distributions. More in-
formation about sparse autoencoders could be found in [70]. Moreover,
a quite common type of autoencoders is the denoising autoencoders [71],
on which the model is tasked with reproducing the input as closely as
possible while passing through some sort of information bottleneck (Fig-
ure 20). This way, the model is not able to simply develop a mapping that
memorizes the training data, but rather learns a vector field for mapping
the input data towards a lower dimensional manifold. One should note
here that the vector field is typically well-behaved in the regions where
the model has observed data during training. In out-of-distribution data,
the reconstruction error is both large and does not always point in the
direction of the true distribution. This observation makes these networks
quite popular for anomaly detection in medical data [72]. Additionally,
contractive autoencoders [73] are other variants of this type of models,
adding the contractive regularization loss to the standard autoencoder
loss. Intuitively, it forces very similar inputs to have a similar encoding
and in particular, it requires the derivative of the hidden layer activations
to be small with respect to small changes in the input. The denoising
autoencoders can be understood as a variation of the contractive autoen-
coder. In the limit of small Gaussian noise, the denoising autoencoders
make the reconstruction error resistant to finite-sized input perturba-
tions, while the contractive autoencoders make the extracted features
resistant to small input perturbations.

Depending on the input type, different autoencoder architectures
could be designed. In particular, when the inputs are images, the encoder
and the decoder are classically composed of convolutional blocks. The
decoder uses, for instance, transpose convolutions to perform the expan-
sion. Finally, the addition of skip connections has led to the U-Net [74]
architectures that are commonly used for segmentation purposes. Seg-
mentation architectures will be more extensively described in Chapter 13.
Finally, variational autoencoders, which rely on a different mathematical
formulation, are not covered in the present chapter and are presented,
together with other generative models, in Chapter 5.

Machine Learning for Brain Disorders, Chapter 3



Deep learning: basics and CNN 39

6. Conclusion

Deep learning is a very fast involving field, with numerous still unan-
swered theoretical questions. However, deep learning-based models have
become the state of the art methods for a variety of fields and tasks. In
this chapter, we presented the basic principles of deep learning, covering
both perceptrons and convolutional neural networks. All architectures
were feedforward and recurrent networks are covered in Chapter 4. Gen-
erative adversarial networks are covered in Chapter 5, along with other
generative models. Chapter 6 presents a recent class of deep learning
methods, which does not use convolutions, and that are called transform-
ers. Finally, throughout the other chapters of the book, different deep
learning architectures are presented for various types of applications.

Acknowledgments

This work was supported in part by the French government under man-
agement of Agence Nationale de la Recherche as part of the “Investisse-
ments d’avenir” program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA
Institute), reference ANR-10-IAIHU-06 (Institut Hospitalo-Universitaire
ICM) and ANR-21-CE45-0007 (Hagnodice).

References

[1] Rosenblatt F (1957) The perceptron, a per-
ceiving and recognizing automaton Project
Para. Cornell Aeronautical Laboratory

[2] Minsky M, Papert S (1969) Perceptron: an
introduction to computational geometry

[3] Minsky ML, Papert SA (1988) Perceptrons:
expanded edition

[4] Linnainmaa S (1976) Taylor expansion of
the accumulated rounding error. BIT Nu-
merical Mathematics 16(2):146–160

[5] Werbos PJ (1982) Applications of advances
in nonlinear sensitivity analysis. In: Sys-
tem modeling and optimization, Springer,
pp 762–770

[6] Rumelhart DE, Hinton GE, Williams RJ
(1986) Learning representations by back-
propagating errors. nature 323(6088):533–
536

[7] Le Cun Y (1985) Une procédure
d’apprentissage pour réseau à seuil as-
symétrique. Cognitiva 85:599–604

[8] Hochreiter S, Schmidhuber J (1997) Long
short-term memory. Neural computation
9(8):1735–1780

[9] Hinton GE, Osindero S, Teh YW (2006) A
fast learning algorithm for deep belief nets.
Neural computation 18(7):1527–1554

[10] Hinton GE (2007) Learning multiple layers
of representation. Trends in cognitive sci-
ences 11(10):428–434

[11] Deng J, Dong W, Socher R, Li LJ, Li K,
Fei-Fei L (2009) Imagenet: A large-scale hi-
erarchical image database. In: 2009 IEEE
conference on computer vision and pattern
recognition, Ieee, pp 248–255

[12] Bergstra J, Bastien F, Breuleux O, Lamblin
P, Pascanu R, Delalleau O, Desjardins G,
Warde-Farley D, Goodfellow I, Bergeron A,
et al (2011) Theano: Deep learning on gpus
with python. In: NIPS 2011, BigLearning
Workshop, Granada, Spain, Citeseer, vol 3,
pp 1–48

Machine Learning for Brain Disorders, Chapter 3



40 Vakalopoulou et al.

[13] Jia Y, Shelhamer E, Donahue J, Karayev S,
Long J, Girshick R, Guadarrama S, Darrell
T (2014) Caffe: Convolutional architecture
for fast feature embedding. In: Proceedings
of the 22nd ACM international conference
on Multimedia, pp 675–678

[14] Abadi M, Agarwal A, Barham P, Brevdo
E, Chen Z, Citro C, Corrado GS, Davis A,
Dean J, Devin M, et al (2016) Tensorflow:
Large-scale machine learning on heteroge-
neous distributed systems. arXiv preprint
arXiv:160304467

[15] Chollet F, et al (2015) Keras. URL https:

//github.com/fchollet/keras

[16] Paszke A, Gross S, Massa F, Lerer A,
Bradbury J, Chanan G, Killeen T, Lin
Z, Gimelshein N, Antiga L, et al (2019)
Pytorch: An imperative style, high-
performance deep learning library. Ad-
vances in neural information processing sys-
tems 32

[17] Hebb DO (1949) The Organization of Be-
havior: A Psychological Theory. Wiley New
York

[18] Cybenko G (1989) Approximations by su-
perpositions of a sigmoidal function. Math-
ematics of Control, Signals and Systems
2:183–192

[19] Hornik K, Stinchcombe M, White H
(1989) Multilayer feedforward networks are
universal approximators. Neural networks
2(5):359–366

[20] Mhaskar HN (1996) Neural networks for op-
timal approximation of smooth and analytic
functions. Neural computation 8(1):164–177

[21] Pinkus A (1999) Approximation theory of
the mlp model in neural networks. Acta nu-
merica 8:143–195

[22] Poggio T, Mhaskar H, Rosasco L, Miranda
B, Liao Q (2017) Why and when can
deep-but not shallow-networks avoid the
curse of dimensionality: a review. Interna-
tional Journal of Automation and Comput-
ing 14(5):503–519

[23] Rolnick D, Tegmark M (2017) The power of
deeper networks for expressing natural func-
tions. arXiv preprint arXiv:170505502

[24] Goodfellow I, Bengio Y, Courville A (2016)
Deep learning. MIT press

[25] Cover TM (1965) Geometrical and statisti-
cal properties of systems of linear inequal-
ities with applications in pattern recogni-
tion. IEEE transactions on electronic com-
puters 3:326–334

[26] Glorot X, Bordes A, Bengio Y (2011) Deep
sparse rectifier neural networks. In: Pro-
ceedings of the fourteenth international con-
ference on artificial intelligence and statis-
tics, JMLR Workshop and Conference Pro-
ceedings, pp 315–323

[27] Krizhevsky A, Sutskever I, Hinton GE
(2012) Imagenet classification with deep
convolutional neural networks. Advances in
neural information processing systems 25

[28] Hein M, Andriushchenko M, Bitterwolf
J (2019) Why relu networks yield high-
confidence predictions far away from the
training data and how to mitigate the prob-
lem. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pat-
tern Recognition, pp 41–50

[29] Maas AL, Hannun AY, Ng AY, et al (2013)
Rectifier nonlinearities improve neural net-
work acoustic models. In: Proc. icml, At-
lanta, Georgia, USA, vol 30, p 3

[30] He K, Zhang X, Ren S, Sun J (2015) Delving
deep into rectifiers: Surpassing human-level
performance on imagenet classification. In:
Proceedings of the IEEE international con-
ference on computer vision, pp 1026–1034

[31] Ramachandran P, Zoph B, Le QV (2017)
Searching for activation functions. arXiv
preprint arXiv:171005941

[32] Dauphin YN, Pascanu R, Gulcehre C, Cho
K, Ganguli S, Bengio Y (2014) Identifying
and attacking the saddle point problem in
high-dimensional non-convex optimization.
Advances in neural information processing
systems 27

[33] Bottou L (2010) Large-scale machine learn-
ing with stochastic gradient descent. In:
Proceedings of COMPSTAT’2010, Springer,
pp 177–186

[34] Allen-Zhu Z, Li Y, Song Z (2019) A con-
vergence theory for deep learning via over-
parameterization. In: International Confer-
ence on Machine Learning, PMLR, pp 242–
252

[35] Baydin AG, Pearlmutter BA, Radul AA,
Siskind JM (2018) Automatic differentia-
tion in machine learning: a survey. Journal
of Marchine Learning Research 18:1–43

[36] Prechelt L (1998) Early stopping-but when?
In: Neural Networks: Tricks of the trade,
Springer, pp 55–69

Machine Learning for Brain Disorders, Chapter 3

https://github.com/fchollet/keras
https://github.com/fchollet/keras


Deep learning: basics and CNN 41

[37] Reed R, MarksII RJ (1999) Neural
smithing: supervised learning in feed-
forward artificial neural networks. Mit
Press

[38] Glorot X, Bengio Y (2010) Understanding
the difficulty of training deep feedforward
neural networks. In: Proceedings of the thir-
teenth international conference on artificial
intelligence and statistics, JMLR Workshop
and Conference Proceedings, pp 249–256

[39] Srivastava N, Hinton G, Krizhevsky A,
Sutskever I, Salakhutdinov R (2014)
Dropout: a simple way to prevent neural
networks from overfitting. The journal of
machine learning research 15(1):1929–1958

[40] Deng L (2012) The mnist database of hand-
written digit images for machine learning
research. IEEE Signal Processing Magazine
29(6):141–142

[41] Pérez-Garćıa F, Sparks R, Ourselin S (2021)
Torchio: a python library for efficient
loading, preprocessing, augmentation and
patch-based sampling of medical images in
deep learning. Computer Methods and Pro-
grams in Biomedicine 208:106236

[42] Ioffe S, Szegedy C (2015) Batch normal-
ization: Accelerating deep network training
by reducing internal covariate shift. In: In-
ternational conference on machine learning,
PMLR, pp 448–456

[43] Brock A, De S, Smith SL, Simonyan K
(2021) High-performance large-scale image
recognition without normalization. In: In-
ternational Conference on Machine Learn-
ing, PMLR, pp 1059–1071

[44] Ruder S (2016) An overview of gradi-
ent descent optimization algorithms. arXiv
preprint arXiv:160904747

[45] Polyak BT (1964) Some methods of speed-
ing up the convergence of iteration meth-
ods. Ussr computational mathematics and
mathematical physics 4(5):1–17

[46] Qian N (1999) On the momentum term in
gradient descent learning algorithms. Neu-
ral networks 12(1):145–151

[47] Duchi J, Hazan E, Singer Y (2011) Adaptive
subgradient methods for online learning and
stochastic optimization. Journal of machine
learning research 12(7)

[48] Kingma DP, Ba J (2014) Adam: A method
for stochastic optimization. arXiv preprint
arXiv:14126980

[49] Liu L, Jiang H, He P, Chen W, Liu X, Gao
J, Han J (2019) On the variance of the
adaptive learning rate and beyond. arXiv
preprint arXiv:190803265

[50] Zhang M, Lucas J, Ba J, Hinton GE (2019)
Lookahead optimizer: k steps forward, 1
step back. Advances in neural information
processing systems 32

[51] Fukushima K, Miyake S (1982) Neocog-
nitron: A self-organizing neural network
model for a mechanism of visual pattern
recognition. In: Competition and coopera-
tion in neural nets, Springer, pp 267–285

[52] Araujo A, Norris W, Sim J (2019) Com-
puting receptive fields of convolutional neu-
ral networks. Distill DOI 10.23915/distill.
00021, https://distill.pub/2019/computing-
receptive-fields

[53] LeCun Y, Boser B, Denker JS, Henderson
D, Howard RE, Hubbard W, Jackel LD
(1989) Backpropagation applied to hand-
written zip code recognition. Neural com-
putation 1(4):541–551

[54] Krizhevsky A, Sutskever I, Hinton GE
(2012) Imagenet classification with deep
convolutional neural networks. In: Pereira
F, Burges C, Bottou L, Weinberger K
(eds) Advances in Neural Information Pro-
cessing Systems, Curran Associates, Inc.,
vol 25, URL https://proceedings.

neurips.cc/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.

pdf

[55] Simonyan K, Zisserman A (2014) Very deep
convolutional networks for large-scale image
recognition. arXiv preprint arXiv:14091556

[56] Szegedy C, Liu W, Jia Y, Sermanet P, Reed
S, Anguelov D, Erhan D, Vanhoucke V, Ra-
binovich A (2015) Going deeper with convo-
lutions. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recog-
nition, pp 1–9

[57] He K, Zhang X, Ren S, Sun J (2016) Deep
residual learning for image recognition. In:
Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp
770–778

[58] Lu MY, Williamson DF, Chen TY, Chen
RJ, Barbieri M, Mahmood F (2021) Data-
efficient and weakly supervised computa-
tional pathology on whole-slide images. Na-
ture biomedical engineering 5(6):555–570

Machine Learning for Brain Disorders, Chapter 3

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf


42 Vakalopoulou et al.

[59] Benkirane H, Vakalopoulou M,
Christodoulidis S, Garberis IJ, Michiels S,
Cournède PH (2022) Hyper-adac: Adaptive
clustering-based hypergraph representation
of whole slide images for survival analysis.
In: Machine Learning for Health, PMLR,
pp 405–418

[60] Horry MJ, Chakraborty S, Paul M, Ulhaq
A, Pradhan B, Saha M, Shukla N (2020)
X-ray image based covid-19 detection using
pre-trained deep learning models. Engineer-
ing Archive

[61] Li JP, Khan S, Alshara MA, Alotaibi RM,
Mawuli C, et al (2022) Dacbt: deep learn-
ing approach for classification of brain tu-
mors using mri data in iot healthcare envi-
ronment. Scientific Reports 12(1):1–14

[62] Nandhini I, Manjula D, Sugumaran V
(2022) Multi-class brain disease classifica-
tion using modified pre-trained convolu-
tional neural networks model with substan-
tial data augmentation. Journal of Medical
Imaging and Health Informatics 12(2):168–
183

[63] Raghu M, Zhang C, Kleinberg J, Bengio S
(2019) Transfusion: Understanding transfer
learning for medical imaging. Advances in
neural information processing systems 32

[64] Wen J, Thibeau-Sutre E, Diaz-Melo M,
Samper-González J, Routier A, Bottani S,
Dormont D, Durrleman S, Burgos N, Col-
liot O (2020) Convolutional neural net-
works for classification of alzheimer’s dis-
ease: Overview and reproducible evalua-
tion. Medical image analysis 63:101694

[65] Chen S, Ma K, Zheng Y (2019) Med3d:
Transfer learning for 3d medical image anal-
ysis. arXiv preprint arXiv:190400625

[66] Tan M, Le Q (2019) Efficientnet: Rethink-
ing model scaling for convolutional neural
networks. In: International conference on
machine learning, PMLR, pp 6105–6114

[67] Wang J, Liu Q, Xie H, Yang Z, Zhou H
(2021) Boosted efficientnet: Detection of
lymph node metastases in breast cancer us-
ing convolutional neural networks. Cancers
13(4):661

[68] Oloko-Oba M, Viriri S (2021) Ensemble of
efficientnets for the diagnosis of tuberculo-
sis. Computational Intelligence and Neuro-
science 2021

[69] Ali K, Shaikh ZA, Khan AA, Laghari AA
(2021) Multiclass skin cancer classification
using efficientnets–a first step towards pre-
venting skin cancer. Neuroscience Informat-
ics p 100034

[70] Ng A, et al (2011) Sparse autoencoder.
CS294A Lecture notes 72(2011):1–19

[71] Vincent P, Larochelle H, Bengio Y, Man-
zagol PA (2008) Extracting and compos-
ing robust features with denoising autoen-
coders. In: Proceedings of the 25th interna-
tional conference on Machine learning, pp
1096–1103

[72] Baur C, Denner S, Wiestler B, Navab N,
Albarqouni S (2021) Autoencoders for un-
supervised anomaly segmentation in brain
mr images: a comparative study. Medical
Image Analysis 69:101952

[73] Salah R, Vincent P, Muller X, et al (2011)
Contractive auto-encoders: Explicit invari-
ance during feature extraction. In: Proc. of
the 28th International Conference on Ma-
chine Learning, pp 833–840

[74] Ronneberger O, Fischer P, Brox T (2015) U-
net: Convolutional networks for biomedical
image segmentation. In: International Con-
ference on Medical image computing and
computer-assisted intervention, Springer,
pp 234–241

Machine Learning for Brain Disorders, Chapter 3


	Introduction
	Deep feedforward networks
	Perceptrons
	Multilayer perceptrons
	A simple multilayer network
	Deep neural network

	Main functions
	Linear functions
	Non-linear functions
	Loss functions


	Optimization of deep neural networks
	Gradient descent
	Stochastic gradient descent

	Backpropagation
	Generalization and overfitting
	State-of-the-art optimizers
	Stochastic gradient descent with momentum
	AdaGrad
	RMSProp
	Adam
	Other optimizers


	Convolutional neural networks
	The convolution operation
	Properties of the convolution operation
	Functions and variants
	Receptive field calculation
	Classical convolutional neural network architectures

	Autoencoders
	Conclusion

