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Abstract

This paper introduces an optimization model for machining free-form surfaces. It involves one categorical decision
variable and continuous decision variables. Its objective function is partially separable. It is composed of two black-
boxes: a clustering blackbox that outputs a partition of the surface into K zones, and K independent blackboxes, each
of which outputs a machining time for a zone. This blackbox optimization problem is solved with the state-of-the-art
software NOMAD. In order to improve the performance of the optimization process, we propose several surrogates
of the machining-time blackboxes. Some of these surrogates are simple numerical approximations of the machining
time, while one proposed surrogate is analytical, cheap to evaluate and exact for zones that are rectangles. Numerical
experiments on two benchmark test surfaces show that our methodology outperforms other approaches from the lit-
erature. Although performances are strongly dependent on the topology of the test surfaces, the gains in machining
time can go up to 40%.

Keywords: blackbox optimization; clustering; surrogate model; free-form surfaces; principal component analysis;
toolpath planning
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1 Introduction

Milling is an industrial manufacturing process where a
rotating cutter is moved into a work piece and removes
matter on its way. As a result, the envelope of all the
successive positions of the cutter is removed from the ini-
tial part. When the tip of the cutter is the working area
of the cutter, this process is called end-milling.

In the field of manufacturing, all non prismatic nor rev-
olution surfaces are called free-form surfaces. To manu-
facture a part defined by free-form surfaces, a computer-
driven machine, i.e. a CNC (Computer Numerical Con-
trol) machine, is needed. The CNC machines commonly
encountered in industry are 3- or 5-axis machines, accord-
ing to the number of degrees of freedom they provide. On
a 3-axis machine, only pure translation of the cutter is al-
lowed, while 5-axis machines permit some rotations of the
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Figure 1: The parallel-plane strategy.

cutter. In the context of free-form surfaces machining, so-
called 3+2-axis machining (i.e. 3-axis machining plus two
rotation axes for positioning the part between two milling
phases) is often preferred to 5-axis machining. Indeed,
rotation axes dynamics often bring out slowdowns when
continuously used [1]. This paper is therefore dedicated
to both 3-axis machining and 3+2-axis machining.

From a purely geometric point of view, the key point is:
whatever the path the cutter is taking, it cannot hug per-
fectly the definition surface at each point. The remaining
matter, called scallop, is removed later, often manually
(see Figure 1). Actually, the scallop height is the quality
criterion of the whole operation; while, for productivity
reasons, the objective is to machine the surface as fast
as possible. Yet, because of machinability considerations,
the speed of the cutter must be fixed to an acceptable
value. The only way to decrease machining time is there-
fore to improve the cutter trajectories. This is the tool-
path planning phase, and it is a wide topic of research in
the manufacturing field.

End-milling of free-form surfaces on multi-axis CNC
machines is complex, and it involves expensive operations
in the production of many high-value parts, such as molds
and stamping dies. Currently, in the industry, these op-
erations are still carried out using reliable and proven,
but far from optimal, toolpath planning strategies. The
parallel-plane strategy (Figure 1) is the most commonly
adopted strategy for industrial manufacturing, as it en-
sures that the entire surface is covered and it is easy to
implement.

Using this strategy, toolpaths are defined by the in-
tersection of the surface to be machined with a set of
parallel planes covering the whole surface. Practically,
each toolpath is a sequence of interpolation points calcu-
lated using surface-surface intersection algorithms, such
as those described in [2].

Ball-end mills, i.e. cutters whose tip is hemispheri-
cal, are the most widely used cutters in industry. Many
sources ([3] for instance) point out that toroidal cutters,

(a) ball-end cutter

(b) toroidal cutter

Figure 2: Ball-end cutter vs toroidal cutter.

i.e. cutters whose tip is rounded as a quarter torus, may
however provide better results when machining along the
steepest-slope direction. Unfortunately, they also can
provide worse results when machining along a direction
perpendicular to the steepest-slope direction. Figure 2 il-
lustrates this point on a plane for the sake of clarity, but
the same applies on a free-form surface (on this figure the
same depth of cut is used for both ball-end and toroidal
machinings along a given direction).

Since the steepest-slope direction may vary much across
a free-form surface, partitioning this surface into zones
(each of which will then be machined along an appropriate
direction) is a good approach to improve efficiency of the
toroidal cutter.

The present paper deals with optimization of toroidal
cutter tool path planning in 3-axis and 3+2-axis machin-
ing contexts, using a parallel-plane strategy applied to
dedicated zones on a free-form surface. It is structured
as follows. Section 2 presents the required background
on surface partitioning, toolpath planning optimization,
and derivative-free and blackbox optimization. We pro-
pose an optimization formulation of the toolpath plan-
ning problem for miling free-form surfaces in Section 3.

2



Section 4 introduces and evaluates surrogate functions to
improve the blackbox optimization process. Computa-
tional results are presented in Section 5, while Section 6
is devoted to comparison with previous work. Section 7
briefly illustrates the application of our methodology to a
real-world industrial part. Finally, Section 8 draws con-
clusions and presents perspectives for future work.

2 Background

This section presents the required background on sur-
face partitioning, toolpath planning optimization, and
derivative-free and blackbox optimization. Only the most
relevant papers in relation to our work are presented here.
For a broad review of the state of the art in CNC ma-
chining of free-form surfaces, see [4] or [5] and references
therein.

2.1 Surface partitioning

Finding an optimal surface partitioning for 3-axis ma-
chining is discussed for instance in [6]. The idea is to
use a clustering approach to partition the surface based
on a metric specifically dedicated to free-form surface
clustering. Other works on surface partitioning include
heuristic-based methods inspired by the Vehicle Routing
Problem [7], an approach based on Adaptive Multi-Agent
Systems [8], and an approach based on the concept of
efficiency intervals (set of directions where toroidal cut-
ter is better than ball-end one) is proposed by [9]. In
[10], surface zones are generated based on a vector field
of locally-optimal machining directions. A similar ap-
proach is adopted in [11] for flank milling. The objective
of surface partitioning approaches is to find zones with
small variations of the steepest-slope direction. This in-
creases the effective radius of the cutter leading to maxi-
mal step-over distances, and minimizes thereby the tool-
path length, and as a consequence the machining time is
expected to decrease.

2.2 Toopath planning optimization

Toolpath planning is a complex problem and few authors
have approached it in its globality with an optimization
approach. The authors of [12] are addressing this prob-
lem by building an objective function that attempts to
ensure all requirements for obtaining acceptable milling
trajectories. The objective function is in fact a weighted
sum of conflicting criteria that neglects the real objec-
tive for practitioners, which is to minimize machining
duration. Several authors nevertheless propose optimiza-
tion formulations to improve some particular aspects of
the overall toolpath planning problem. For instance [13]
uses a genetic algorithm to find a parametric cutter path
curve of the form v = A0 + A1u + A2u

2 + A3u
3, that

minimizes the toolpath length using isoscallop strategy

in 3-axis machining, where the coefficients A0, . . . , A3 are
the optimization variables. A traveling salesman problem
formulation involving precedence constraints is proposed
in [14] to minimize the non-productive time (so-called
airtime) by optimally connecting different toolpath seg-
ments. Again, a traveling salesman problem formulation
is used by [15] together with a minimum spanning tree in
view of minimizing cutting forces, with imposed passing
points. Two toolpath planning optimization procedures
are presented in [10]. The first one defines a toolpath
based on a curvilinear grid generation approach, defined
by minimizing the kinematics error in 5-axis machining.
The second one relies on space filling curves algorithms to
fill an isoparametric grid according to the machining strip
calculated for a flat-end cutter. CNC machine-tool kine-
matics is also a field of interest: [16] introduces permis-
sible jerk (derivative of the acceleration) as a constraint
in an optimization model of the feedrate under velocity
and acceleration constraints to generate minimum-time
trajectories.

Free-form surface machining-time cannot be expressed
as a closed-form formula. It requires a complete milling
simulation that includes an accurate evaluation of the
elapsed time. This simulation relies on complex algo-
rithms and produces a non-smooth objective function
that is subject to noise, and that features numerous spu-
rious local minima. That is why most of the proposed
optimization algorithms are either heuristics, or address
partially the machining-time minimization problem.

2.3 Derivative-free and blackbox opti-

mization

Since the 1990’s, due to strong demand from industry, op-
timization methods with proofs of convergence have been
developped to address problems involving objective and
constraint functions given by costly simulations and/or
without any gradient information available. Introduc-
tions to blackbox and derivative-free optimization algo-
rithms are given in [17, 18].

In this paper, we shall use the blackbox optimization
software NOMAD [19, 20] to solve the machining time
minimization problem. NOMAD is considered as the best
performer for the type of problem we consider here [21].
It is a C++ implementation of the MADS algorithm, an
iterative method that proposes a new point where to eval-
uate the objective function (and the constraints) at the
next iteration. An iteration of MADS algorithm involves
two steps: a search step and a poll step. The search step
attempts to escape from local optima; any heuristic can
be used in the search step in order to find a better point.
This step is to be defined by the user. If the search step
is not successful, then the poll step is performed. It se-
lects a set of directions that rely on a mesh constructed
from a positive spanning set of the search space. These
directions are used to define new points. If a better point
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is found, the mesh is coarsened ; otherwise, it is refined.
The convergence of MADS is mathematically guaranteed
by the poll step. Details about the MADS algorithm can
be found in [22].

NOMAD allows the user to provide a so-called surro-
gate (cheaper-to-evaluate models) of the costly objective
and constraints functions in order to improve the opti-
mization computing time. It is either a simplified physi-
cal model of the blackbox functions, or an approximation
model obtained by evaluating the blackbox function at a
given number of points then by interpolating or smooth-
ing the values. Two types of surrogates can be envisaged:
static and dynamic. Static surrogates are provided by
the user and are not updated during the optimization,
but in return they allow introduction of business knowl-
edge about the application into the surrogate. Dynamic
surrogates are in contrast constructed gradually from the
evaluations available made in previous iterations. A sur-
rogate can also be used to re-order the poll points, before
they are evaluated by the blackbox. The use of surrogates
may reduce considerably the number of blackbox evalua-
tions and, sometimes, may help to find a better solution
(than the one found without surrogate). NOMAD pro-
vides a library of dynamic surrogates. For more details,
see [23] which presents a survey on surrogate optimiza-
tion.

One contribution of this article is to propose (in Sec-
tion 4) fast surrogates of the expensive machining-time
blackbox.

3 Optimization formulation

We are given a free-form surface, S, parameterized by
two coordinates, u and v. The objective is to machine S
in minimal time under a given threshold constraint. The
optimization approach proposed in this paper involves a
black box that consists of two main steps: partitioning
and machining. Partitioning the surface S into zones is
done using unsupervised clustering algorithms applied on
a set of N sample points, denoted Si, i = 1, 2, . . . , N ,
built from an isoparametric meshing (Figure 3).

Some clustering algorithms, such as K-means, requires
the user to specify the number of clusters, denoted K,
which can thus be considered as a first optimization vari-
able. An upper bound, Kmax, of K can easily be defined
since beyond a certain number of clusters, machining time
increases, due to the time loss each time the tool finishes
a zone and moves to the next one. This time loss must be
taken into account otherwise the problem becomes trivial:
the solution is obtained by considering as many clusters
as there are sample points. Furthermore, clustering algo-
rithms require in general a feature vector and a measure
of dissimilarity, hereafter called (by misuse of language)
the metric.

Following in [6], we choose the feature vector (ui, vi,

S(u, v)

u

v

sample point Si

Legend:

elementary mesh

Figure 3: The sample points to be clustered.

Si = S(ui, vi)

n(ui, vi)

X

Y

Z

θi si

Figure 4: One sample point Si of the surface and the four
components (ui, vi, si and θi) of its feature vector.

si, θi), where (see Figure 4):

• (ui, vi) is the parametric coordinates of the sample
point Si;

• si is the steepest-slope angle, i.e. the angle between
the vector n(ui,vi), normal to the surface at Si, and
the horizontal plane (X,Y);

• θi is the steepest-slope orientation, i.e. the angle be-
tween the X axis and the projection of n(ui,vi) onto
the horizontal plane (X,Y).

For the metric, we choose a weighted Euclidean dis-
tance, as proposed also in [6]. More precisely, the distance
between two given points Si and Sj is given by:√

w1(ui − uj)2 + w2(vi − vj)2 + w3(si − sj)2 + w4(θi − θj)
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where the values of the weights, 0 ⩽ w1, w2, w3, w4 ⩽ 1, can
be considered as further optimization variables. In the
sequel we shall denote byW the vector whose components
are w1, w2, w3 and w4.

This first step produces a partition of the surface into
K zones. Let Ik be the index set of the sample points
that belong to zone k, k = 1, 2, . . . ,K. The clustering
step is interpreted as the following blackbox constraint:

I = c(K,W ), (1)

where c is a function that represents this clustering step
procedure that outputs a partition, I, of the index set of
the data points; I is a vector whose kth component is Ik,
k = 1, 2, . . . ,K.

The machining step addresses each zone separately ac-
cording to the parallel-plane strategy. The distance be-
tween two adjacent planes (called step-over distance) is
defined as the maximum distance such as the scallop
height constraint is respected for the whole path. At a
given plane, the position of the adjacent plane is easy
to determine: it suffices to consider the worst point, in
terms of scallop height, of the path defined by the given
plane. This is enough to ensure that the quality con-
straint will be satisfied for the entire trajectory. From
the optimization point of view, this strategy is very use-
ful because the constraints are thereby satisfied by con-
struction. The scallop height may be calculated from the
surface swept by the cutter during milling [24, 25], but
using a fast scallop height calculation method, such as in
[26], the above-described toolpath planning process (in-
cluding milling time calculation [27]) is rapid enough to
be used as the objective function of an optimization pro-
cedure. In the case of 3-axis machining, for each cluster
k, the toolpath planning depends only on the machining
direction. The angle, noted γk, between this direction
and the X axis is an optimization variable.

When 3+2-axis machining is considered, two more ori-
entation angles must be determined for each zone k.
Firstly, we define the angle, φk, between the tool axis
and the Z axis. Secondly, we define the angle, ψk, be-
tween the X axis and the projection of the tool axis
on the XY plane. As for γk, these orientation an-
gles, illustrated on Figure 5, are optimization variables.
In the sequel we shall use the following vector nota-
tion: ΓK = (γ1, γ2, . . . , γK), ΦK = (φ1, φ2, . . . , φK) and
ΨK = (ψ1, ψ2, . . . , ψK) (each component corresponds to
one zone).

All points of the zone should be accessible by the
tool. More precisely, consider a zone k and a given
point of that zone, of parametric coordinates (u, v). Let
β(u,v)(φk, ψk) be the angle between the Z axis and the
vector, n(u,v)(φk, ψk), normal to the zone k at (u, v).
This given point is considered accessible by the tool if
|β(u,v)(φk, ψk)| ⩽ π

2 . In practice, this constraint is evalu-
ated only over the sample points (ui, vi) ∈ Ik (belonging

X

Y

Z

γk

φk

ψk

cutter motion

Figure 5: The three angle variables used for 3+2-axis
optimization for a zone k.

to zone k). This will be ensured within the objective-
function blackbox evaluation, f .

To sum up, the resulting optimization problem involves
a blackbox objective function (the machining time), and
the blackbox clustering constraint (1). A chart summa-
rizing the working flow is shown on Figure 6, and the
constrained mixed variable optimization problem consid-
ered is:

min
K,W,ΓK ,ΦK ,ΨK

F (K,W,ΓK ,ΦK ,ΨK)

subject to

I = c(K,W )
0 ⩽ wi ⩽ 1, i = 1, 2, 3, 4
0 ⩽ γk ⩽ π, k = 1, 2, . . . ,K
−π

2 ⩽ φk ⩽ π
2 , k = 1, 2, . . . ,K

0 ⩽ ψk ⩽ π, k = 1, 2, . . . ,K
K ∈ {1, 2, . . . ,Kmax},

(2)

where

F (K,W,ΓK ,ΦK ,ΨK) =

K∑
k=1

f(Ik, γk, φk, ψk).

This problem is partially separable per zone, the only
linking constraint being constraint I = c(K,W ) through
the components, Ik, k = 1, 2, . . . ,K, of the sample-point
index-set partition I.

Remark that the number of variables and constraints of
our problem depends directly on the number of zones, K,
which is itself a variable. Although it is integer valued,
the optimization variable K plays a role of categorical
variable: its continuous relaxation is meaningless.
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Figure 6: Working flow chart of the two-step optimization model.

4 Surrogates models and their nu-

merical evaluation

This section proposes and evaluates surrogate functions
to improve the blackbox optimization process.

In this section, we focus on static surrogates. The aim
is to construct the cheaper surrogates to reduce the com-
putational time, without losing too much precision. An
efficient surrogate does not need to be a good approxi-
mation of the exact values of the blackbox, it may solely
approximate its variations and the location of its optimal
points.

In our context, the machining time is the result of a
blackbox simulation based on numerical calculation of in-
tersections of the part surface and parallel planes. The
intersection curves (the machining toolpath) rely on an
isoparametric meshing of the part surface. The precision
of the curves and the time for their calculation increase
with the mesh step size. Therefore, the mesh step size
is a parameter that allows simplification of the physical
model (cheapest evaluations but less precision) and can
be used to create surrogates. This will be used to create
our Surrogates 1 and 2. Note that the mesh step size can-
not be directly defined on the actual surface, it has to be
defined in the parametric variable space. Consequently,
a reverse approximation procedure is implemented to set
the step size, targeting a given value in the 3D space.

A second parameter that could be used to shorten the
simulation time is the scallop height tolerance. In fact,
increasing this value leads to larger step-over distances
which reduces the number of parallel planes, and subse-
quently the number of intersections to be computed with
the part surface. Of course, this will impact the objective-
function values (reduced machining times). Nevertheless,
it is reasonable if the variations and optimal points were
preserved. This will be investigated further in this section

and it motivate our Surrogate 4.
So far, simplifications of the model have concerned the

machining step rather than the clustering step. One way
of simplifying the clustering step is to increase the cluster-
ing mesh step size. This leads to the reduction of the com-
putational time required for clustering, since the K-means
algorithm (and any other clustering algorithm) needs less
time to run for fewer data points. However, the precision
of the part surface zones (the clusters) is then deterio-
rated; the borders of the zones are roughly approximated,
which will affect the machining times values. The simu-
lation time reduction is more or less efficient depending
on the algorithm used. In our case, empirical tests show
that the K-means algorithm is fast enough, and that this
does not yield a sufficient benefit.

Yet another alternative to simplify the blackbox would
be to approximate the part surface zones to be machined
by rectangular planes, so that machining times could be
calculated analytically, which is expected to reduce dras-
tically the computational time of the blackbox evalua-
tion. The approximation by planes should be accurate,
even though some zones may not be adapted for such an
approximation. Principal Component Analysis (PCA) is
used to calculate the planes that best fit the surface zones.
This procedure is the same one as that introduced in [28],
but we shall apply it here to zones instead of applying it
to the whole surface. The machining time is thereafter
calculated, via Surrogate 4, using the analytical approach
detailed in A.

To summarize, we propose the four surrogate functions
to approximate the blackbox function f :

• Surrogate 1 approximates coarsely the blackbox
function, targeting a value of 5 mm for the mesh
step size (instead of the original value 0.5 mm).

• Surrogate 2 is a finer approximation of the black-
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box function, targeting a value of 2 mm for the mesh
step size.

• Surrogate 3 approximates the blackbox function
using an analytical calculation based on the above-
mentionned PCA-based approach.

• Surrogate 4 approximates the blackbox function
using a scallop height tolerance increased to 1 mm
(instead of the original value 0.1 mm).

In order to investigate the efficiency of the four surro-
gates, we are content with the case of 3-axis machining
(i.e. the components of the orientation variables ΦK and
ΨK are set to the constant value zero).

In this paper, we use two test surfaces: a 4 × 4 bicubic
Bézier surface (named Surface 1) and a 3 × 3 quadratic
Bézier surface (named Surface 2). The corresponding
control points are given in B.

These surfaces are partitioned using the K-means al-
gorithm (clustering step) and the Euclidean metric (i.e.
w1 = w2 = w3 = w4 = 1), leading to a total of seven
zones to be studied (Figure 7).

Figures 8 and 9 display the variations of the four surro-
gates and those of the blackbox machining-time function,
f , for each zone k of Surface 1 and of Surface 2, respec-
tively. To compare the different surrogates and their cor-
relations with the blackbox, we calculate a correlation
coefficient for each zone as follows. Consider a partic-
ular zone k. Let (γi)i=1,2,...,m be a uniform sampling
of the domain [0, π]. Let h denote one of the four sur-
rogate functions. The correlation coefficient ρ between
f (the blackbox) and the surrogate function h is com-
puted from the sample values f(Ik, γi, 0, 0)i=1,2,...,m and
h(Ik, γ

i, 0, 0)i=1,2,...,m.
Table 1 gives the percentages of the computation times

of each surrogate compared to the blackbox function f for
the different zones, while Table 2 provides the correlation
coefficient of each surrogate with the blackbox.

All surrogates show a relatively good correlation with
the blackbox to approximate. We shall therefore elim-
inate the two candidates (Surrogates 1 and 2) that are
the slowest in terms of computational time. Surrogate
3 is particularly interesting with respect to its very low
computational time. This is due to its PCA-based ana-
lytical computation, which renders Surrogate 3 especially
relevent when dealing with zones whose shapes are almost
rectangular (such as the zones of Surface 2). For zones
whose shape is far from being rectangular, one should rely
on Surrogate 4. But, somewhat unexpectedly, at least for
surfaces tested in Section 5, Surrogate 3 also provides
very good results.

5 Tests and results

In this section, we present computational results of our
optimization methodology using Surrogates 3 and 4 on

Figure 7: Clustering of the two surfaces (zones numbers
are displayed in white).

Surfaces 1 and 2.

5.1 Test protocol

Machining is performed with a toroidal cutter whose radii
are R = 5mm (outer radius) and r = 2mm (torus ra-
dius). The parallel-plane strategy is used. The scallop
height tolerance is set to sh = 0.01mm, a value com-
monly used in industry. The kinematic parameters of the
CNC machine tool are:

• jerk (constant): J = 40m/s3;

• maximum acceleration: Amax = 6m/s2;

• nominal feedrate: Vf = 0.083m/s (5m/min).

For the sake of simplicity, in this study we are con-
tent with using an enumerative strategy to determine the
value of the decision variable K (the number of zones).
More precisely, the optimization problem is solved succes-
sively forK = 2, 3, . . . ,Kmax. This proves, in our tests, to
be more efficient than introducing K as an optimization
variable. Remark that the resulting Kmax optimization
problems could then even be solved in parallel. The upper
limit on the number of clusters is set to Kmax = 10.

Let us now consider one fixed value of K. The mesh
used for clustering is a uniform 80×80 isoparametric grid.

The maximum number evaluations of the blackbox
(Figure 6) is set empirically to 1,000. The mesh direc-
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(a) zone 0 of Surface 1 (b) zone 1 of Surface 1

(c) zone 2 of Surface 1 (d) zone 3 of Surface 1

Figure 8: Evolution of machining times of the four surrogates compared to the real blackbox function for the zones of
Surface 1 .

tion type parameter of the MADS algorithm is set to
ORTHO 2N (i.e., poll directions are generated using the
maximum positive spanning set produced from an orthog-
onal basis of the search space and its opposite).

The initial point given to NOMAD is defined with ωi =
1, i = 1, 2, 3, 4, and φk = ψk = 0, , k = 1, 2, . . . ,K and
γk, k = 1, 2, . . . ,K, is set to the average steepest slope
direction of zone k. This starting solution is considered
by practitioners to be a good machining configuration.

For each optimization run, the gain η is defined in re-
lation to this initial point:

η =
F0 − F ∗

F0
, (3)

where F0 is the value of the objective function at the ini-
tial point, and F ∗, the best value of the objective func-
tion.

As it is common practice in blackbox optimization, the
evaluation of surrogates is counted in the computation
time in proportion to their relative cost in time with re-

spect to that of the blackbox. For the sake of comparison,
the optimization process is stopped after a computational
time equivalent to 1,000 blackbox evaluations.

5.2 Optimization results for 3-axis ma-

chining

To simulate 3-axis machining, angles ϕk and ψk are fixed
constant, to zero, throughout the optimization process.
For each test surface, three optimizations are run: one
without surrogate, the other with Surrogate 3 and the
last with Surrogate 4.

Table 3 summarizes the optimization results for each of
these three cases for Surface 1. This example illustrates
how using an efficient surrogate may allow the optimiza-
tion to explore a larger part of the search space. Indeed,
the best objective-function value is found using Surrogate
3 (with K = 8). The optimization history graphs, pre-
sented in Figure 10, show that the surrogate functions,
especially Surrogate 3, accelerate convergence, requiring
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Table 1: Average CPU time ratios between each surrogate and the blackbox f , for each zone k.

Surface zone Surrogate 1 Surrogate 2 Surrogate 3 Surrogate 4

1

0 26.2% 62.5% 5.4% 14.9%
1 25.2% 66.7% 3.1% 17.4%
2 23.9% 82.0% 3.0% 18.8%
3 18.1% 59.4% 1.6% 14.0%

2

0 18.8% 84.0% 3.0% 8.0%
1 19.8% 106% 1.3% 11.3%
2 13.6% 103% 1.2% 9.4%

Table 2: Correlation coefficient between each surrogate and the blackbox f , for each zone k.

Surface zone Surrogate 1 Surrogate 2 Surrogate 3 Surrogate 4

1

0 0.962 0.979 0.854 0.966
1 0.925 0.915 0.824 0.925
2 0.973 0.982 0.850 0.980
3 0.920 0.932 0.650 0.915

2

0 0.813 0.992 0.931 0.820
1 0.990 0.999 0.936 0.991
2 0.810 0.981 0.931 0.815

fewer blackbox evaluations, this is especially true when
the number of variables is high (i.e., for large values of
K).

Table 4 summarizes the optimization results for Sur-
face 2. In this configuration, again, the best point is found
using Surrogate 3 (for K = 4). In this case, however, us-
ing surrogates does not yield a better objective-function
value. The optimization history graphs presented in Fig-
ure 11 show, again, that the surrogates functions, espe-
cially Surrogate 3, accelerate convergence, requiring fewer
blackbox evaluations. This means that even if using sur-
rogates does not improve the result, it still allows one to
reach the best objective-function value faster.

5.3 Optimization results for 3+2-axis

machining

Due to the high number of optimization variables involved
in 3+2-axis machining, especially for high values of K,
NOMAD’s search step is skipped (constructing search
models may be very time consuming for 3+2-axis ma-
chining). Moreover, here, we present only results using
Surrogate 3, as it systematically yields results that are
better than those of Surrogate 4.

Tables 5 and 6 summarize the optimization results
for Surfaces 1 and 2, respectively. As for the results
obtained in 3-axis-machining, the optimization history
graphs (Figures 12 and 13) here again reveal that Surro-
gate 3 accelerates convergence, requiring fewer blackbox
evaluations.

For each value ofK, both optimization runs took nearly

the same CPU time, approximately 1 hour.

To sum up, for both 3-axis and 3+2-axis machinings,
the optimization process allows improvements of machin-
ing times, both on Surfaces 1 and 2, of nearly 15% com-
pared to the reference values. Recall that these reference
values are obtained using solely a clustering step with a
particular (non-optimized) choice of the weights wi’s that
is fairly representative of recent, the-state-of-art results
[6].

As expected the machining times are generally better
in 3+2-axis machining than in 3-axis machining (more de-
grees of freedom for optimizing). Some exceptions are due
to the fact that the optimization algorithm cannot guar-
antee global optimality and the variable space is likely
to be explored differently from one case to another. The
main point to keep in mind here is that for the best values
obtained, 3+2 axis machining does better than the 3-axis
counterpart.

Surrogate 3 is not only the fastest, because of its ana-
lytical formulation, but it is also the one that yields the
best results. In addition, the optimization history plots
show a faster decrease of machining times when Surrogate
3 is used. They also reveal that our methodology gener-
ally reaches best solutions within a number-of-evaluation
budget that is much lower that the 1,000 iterations we
used in our tests.
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2 96.19 92.01 92.01 92.01 4.34% 4.34% 4.34%
3 104.77 93.92 92.92 92.52 10.35% 11.31% 11.69%
4 147,68 98.5 95.92 95.06 33.3% 35.04% 35.63%
5 101.90 96.41 96.23 100.32 5.38% 5.56% 1.55%
6 100.1 95.96 98.41 97.3 4.13% 1.68% 2.79%
7 103.78 102.02 100.06 102.13 1.69% 3.58% 1.58%
8 102.4 95.48 91.93 92.87 6.75% 10.22% 9.3%
9 153,5 102.7 95.29 95.88 33.09% 37.92% 37.53%
10 143,9 97.25 97.91 97.21 32.41% 31.96% 32.44%

Table 3: Optimization results for 3-axis machining of Surface 1 (machining times in seconds).
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2 91.54 90.91 90.82 91.01 0.68% 0.78% 0.57%
3 91.62 86.83 90.77 90.63 5.22% 0.92% 1.08%
4 103.53 78.86 78.86 87.55 23.82% 23.82% 15.43%
5 96.75 90.06 87.26 89.49 6.91% 9.8% 7.5%
6 102.8 88.49 90.03 87.28 13.92% 12.42% 14.52%
7 106.1 89.05 86.89 87.87 16.06% 18.11% 17.18%
8 108.55 93.61 86.52 90.32 13.76% 20.3% 16.79%
9 108.23 88.39 86.75 87.94 18.33% 19.85% 18.75%
10 116.11 88.11 90.97 87.38 24.11% 21.65% 24.74%

Table 4: Optimization results for 3-axis machining of Surface 2 (machining times in seconds).

6 Comparison with other works

This section compares numerically our approach with
other works from the literature.

We test on the same test surfaces (Surface 1 and Sur-
face 2) and on third surface from [29]. We use for compar-
ison previous works from the literature that provide suf-
ficient information (machining time obtained, and when
it is not given: the path length obtained) and we use the
same machining parameters. Remark that, to our knowl-
edge, these studies are the only ones providing sufficient
data to make comparisons possible.

Surface 2 is studied in [7] and [8]. In [7], Clarke and
Wright algorithm is used, among others, for partitioning,
while in [8], an adaptive multi-agent system approach is
adopted. Both papers use the parallel-plane strategy for
3-axis machining. Only the best results provided by these
two papers are included into the present comparison.

In [7], a toroidal cutter with radii R = 5mm, r = 2mm
is used, and the maximum scallop height is set to sh =
0.01mm. The shortest toolpath length, provided by this
study is 4,988 mm. Our methodology provide a better re-
sult: 4,018 mm using 200 blackbox evaluations per value
of k (k = 2, 3, . . . , 10).

In [8], a toroidal cutter with radii R = 3.175mm, r =
1mm is used, and sh = 0.254mm. The shortest toolpath
length obtained is 1183 mm, but this is not taking into
account the connections between adjacent paths. Our
approach yields again a better toolpath length: 995mm.

Surface 1 is studied in a more recent work [9] where
a partitioning approach based on the concept of efficient
machining intervals is proposed. The surface is machined
in 3 axes using a toroidal tool with the same radii as in
Section 5. Two feed rates are considered: a low feed rate
of 1 m/min (for hard materials and/or large tools), and a

10



(a) zone 0 of Surface 2

(b) zone 1 of Surface 2

(c) zone 2 of Surface 2

Figure 9: Evolution of machining times of the four sur-
rogates compared to the real blackbox function for the
zones of Surface 2.

(a) without surrogate (b) Surrogate 3

(c) Surrogate 4

Figure 10: Optimization history for 3-axis machining of
Surface 1.

(a) without surrogate (b) Surrogate 3

(c) Surrogate 4

Figure 11: Optimization history for 3-axis machining of
Surface 2.

(a) without surrogate (b) Surrogate 3

Figure 12: Optimization history for 3+2-axis machining
of Surface 1 .
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2 96.19 85.46 85.68 11.15% 10.92%
3 104.77 97.24 83.59 7.18% 20.21%
4 147,68 100.11 100.14 32.21% 32.19%
5 101.90 98.42 96.2 3.41% 5.59%
6 100.1 97.19 97.41 2.9% 2.69%
7 103.78 96.00 97.8 7.49% 5.76%
8 102.4 93.48 94.36 8.71% 7.85%
9 153,5 108.54 91.93 29.28% 40.11%
10 143,9 99.70 96.09 30.71% 33.22%

Table 5: Optimization results for 3+2-axis machining of
Surface 1 (machining times in seconds).
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2 91.54 75.67 74.96 17.33% 18.11%
3 91.62 77.23 73.84 15.70% 19.4%
4 103.53 79.94 71.95 22.78% 30.5%
5 96.75 83.67 82.01 13.51% 15.23%
6 102.8 86.46 85.43 15.89% 16.89%
7 106.1 91.29 82.23 13.95% 22.5%
8 108.55 93.65 84.03 13.72% 22.58%
9 108.23 91.28 93.91 15.66% 13.23%
10 116.11 98.76 92.04 14.94% 20.73%

Table 6: Optimization results for 3+2-axis machining of
Surface 2 (machining times in seconds).

high feed rate equal to 10 m/min (for light alloys and/or
small tools). The low feed rate leads to a machining time
equal to 311 seconds, and the high feed rate leads to 81
seconds. Our results are again better: 291 seconds for
the low feed rate, and 48 seconds for the high speed rate.

A fuzzy C-means algorithm is used in [29] with a 5-
parameter feature vector, (u, v,n), to partition, for 3+2-
axis machining, a test surface defined in the same pa-
per. Our approach is tested with the same toroidal cut-
ter of radii R = 6.7mm,r = 0.7mm, using the maximum
scallop height: sh = 0.0254mm, the nominal feed rate
V = 2m/min, and K = 4 zones. The authors of [29] re-
port a machining time of 634 seconds, while our approach
still leads to a better machining time: 601 seconds.

The computational time for all the algorithms in stud-
ies presented hereabove (including ours) are of the same

(a) without surrogate (b) Surrogate 3

Figure 13: Optimization history for 3+2-axis machining
of Surface 2.

order of magnitude, and their cost is negligeable with
regards to the cost of industrial machining processes
(hourly rate for exploiting of a machine tool is far above
hourly rate for the use of a computer). Furthermore, tool-
path planification is done only once while real world parts
may be produced a very large number of times.

7 Real-world part application

The tests and results presented in subsections 5.2 et 5.3
focused on surfaces extracted from the literature and that
provides enough data for comparison purposes (see Sec-
tion 6). However, the methodology we introduced ob-
viously also applies to surfaces with more complex ge-
ometries. As an example of such an application, below
is provided the result of our optimization workflow to an
industrial surface: the blade of a propeller (shown on Fig-
ure 14).

On such a surface, optimal partitioning and optimal
machining directions are far from being obvious.

Figure 15 displays the four zones resulting from cluster-
ing, and relative scallop height distribution. The relative
scallop height is defined as the ratio:

effective scallop height

maximum allowed scallop height
.

Recall that since the scallop height constraint is inte-
grated in our toolpath planning algorithm, it is necessar-
ily satisfied, by construction. Thus, the relative scallop

Figure 14: An industrial application: a propeller blade
extrado
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Figure 15: Four zones obtained by clustering (left) and
the relative scallop height distribution over the blade sur-
face (right)

height ratio is necessarily included in the [0, 1] interval.
The optimization results (machining time) is better when
the relative scallop height ratio is close to one, since an
effective scallop height near to the maximum allowed scal-
lop height implies faster machining process. Indeed, as it
is common when optimizing in presence of a constraint
that is strongly conflicting with the objective, the scallop
height constraint is active (or almost active) over most of
the surface.

8 Conclusion and perspectives

The blackbox optimization approach for machining free-
form surfaces introduced in this article involves an objec-
tive function that is composed of two blackboxes: a clus-
tering step producing a partition of the surface into zones,
followed by a machining-time computation for each zone.
The clustering step is driven by the number of zones, and
by the weighting coefficients for the metric used for clus-
tering. The machining-time computation step addresses,
for each zone, the choice of the machining direction (and
also orientation angles in the case of 3+2-axis machining).
In order to improve the performance of the optimiza-
tion process, we proposed and evaluated the efficiency
of four surrogate functions, one of which is analytical and
thereby cheap to evaluate. Numerical experiments on sev-
eral benchmark test surfaces from the literature show that
our methodology outperforms other approaches. Figures
comparisons show that our algorithms always provide a
better result than other approaches. These gains can go
up to 40% in terms of machining time. However, numer-
ical comparisons should be taken with caution because
the performances of algorithms are strongly dependant
on the topology of the test surfaces. In any case, the
main benefit of our methodology is to allow a broader ex-
ploration of the search space, in particular thanks to the
use of surrogates that takes advantage of specific business
knowledge.

Future tracks of research may consider integrating more
categorical decision variables such as: the cutter type to
be used, the machining strategy (other than the parallel

planes), the clustering algorithm used in the partition-
ing step or even the metric upon which it is based to
define the zones. Finally, the partial-separability of the
optimization formulation introduced in this paper could
probably be advantageously exploited.
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A Analytical calculation of ma-

chining time for Surrogate 3

For a given zone, the coordinates of the points belonging
to the zone are gathered and their covariance matrix is
calculated. Let xI and xII be the first and second prin-
cipal directions resulting from the eigen-decompostion of
this covariance matrix . Let λI and λII be the corre-
sponding eigenvalues (λI ⩾ λII).

The rectangular plane that best fits the zone is gener-
ated by xI and xII: its width is along xI, and is denoted
w =

√
12λI , while its height is along xII, and is denoted

h =
√
12λII . This plane is called Π and its normal is

n = xI × xII. The coordinates of n are denoted nx, ny
and nz.

Let F be the unit vector defining the machining di-
rection in the XY plane of the machine tool, and γ the
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Figure 16: Analytical calculation of machining time for
Surrogate 3.

angle between X and F. Let Fp be the feedrate vector;
it belongs to the plane Π, and F is the projection of Fp

in the XY plane. The angle between Fp and xI is called
α (see Figure 16).

The objective is to compute the machining time of the
rectangular plane Π as a function of the machining direc-
tion γ. First, we need to express α as function of γ. The
coordinates of F and Fp are:

F =

cos(γ)
sin(γ)

0

 and Fp =

cos(γ)
sin(γ)
z

 ,

where z is to be determined. We know that Fp · n = 0,
which yields:

z = −nx cos(γ) + nysin(γ)

nz
.

Therefore, the angle α is given by:

cos(α) =
xI · Fp

∥xI∥ ∥Fp∥
.

Now the machining time can be computed as a function
of α. Let p be the step-over distance between two adja-
cent paths; p is constant for planar surfaces, and two cases
are considered according to the value of α. Concerning
the machine kinematics, we assume that the nominal fee-
drate, Vf , is achieved on each path, and not achieved for
the connections between adjacent paths. The maximum
acceleration, Amax, is never achieved.

— 1st case: tan(α) ⩾ h
w . In this case, the toolpath is

composed of constant-length paths in the center area (in
gray on Figure 17), and remaining paths near the sides.

Fp

α

δ

ph

w

a

Figure 17: Computation of machining time in the 1st case.

The length, l, of all paths in the central area is given
by

l =
h

sin(α)

The number, n1, of these paths is the integer part of n
which is defined by: n δ = w− a, where δ, the projection
of p on the xI axis, is given by

cos
(π
2
− α

)
=
p

δ

which implies
δ =

p

sin(α)

and a, the size of remaining side areas, is expressed as

tan(α) =
h

a
⇔ a =

h

tan(α)

As a result, we obtain

n =
sin(α)

p

(
w − h

tan(α)

)
and the machining time associated to this area is

t1 = n1

(
l

Vf
+ 2

√
Vf
J

+ 4
3

√
δ

2J

)
,

where J is the constant jerk of the machine tool.
For the side areas, paths with different lenghts have to

be taken into consideration. The number of these paths,

denoted n2, is the integer part of
a

δ
=

h cos(α)

p
. The

length of the ith path is
i p

cos(α) sin(α)
. Taking into ac-

count the connections, the machining time associated to
each side area is

t2 =

n2∑
i=1

i p

cos(α) sin(α)Vf
+ 2

√
Vf
J

+ 2
3

√
δ

2J
+ 2 3

√
p

2J cos(α)
.

Finally, in this case, the total machining time is t =
t1 + 2 t2.
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— 2nd case: tan(α) < h
w . In this case the constant-

length paths are ending on the narrower side of the rect-
angle. Apart from this difference the computation can be
carried out analogously.

The length l of the central area is

l =
w

cos(α)
.

The number of these paths, denoted n1, is the integer
part of n defined by

n δ = h− b,

where δ, the projection of p on the xII axis, is defined by

δ =
p

cos(α)

and b, the size of remaining side areas, is expressed as

b = w tan(α).

As a result, we obtain

n =
cos(α)

p
(h− w tan(α)) ,

and the machining time associated to this area is

t1 = n2

(
l

V
+ 2

√
V

J
+ 4

3

√
δ

2J

)

For the side areas, the number of paths, denoted n2,

is the integer part of
b

δ
=

w sin(α)

p
. The length of the

ith path is
i p

cos(α) sin(α)
. Taking into account the con-

nections, the machining time associated to each side area
is

t2 =

n2∑
i=1

i p

cos(α) sin(α)Vf
+ 2

√
Vf
J

+ 2
3

√
δ

2J
+ 2 3

√
p

2J sin(α)
.

Finally, in this case, the total machining time is t = t1 +
2 t2

B Control points of Surfaces 1

and 2

Surface 1 is a 4 × 4 bicubic Bézier surface whose Pi,j

control points are given in Table 7. Surface 2 is a 3 ×
3 quadratic Bézier surface whose Pi,j control points are
given in Table 8.

P0,0 P0,1 P0,2 P0,3

0.0
0.0
38.1

0.0
25.4
30.48

0.0
50.8
30.48

0.0
76.2
38.1

P1,0 P1,1 P1,2 P1,3

17.78
0.0
30.48

17.78
25.4
22.86

17.78
50.8
22.86

17.78
76.2
30.48

P2,0 P2,1 P2,2 P2,3

35.56
0.0
38.1

35.56
25.4
30.48

35.56
50.8
30.48

35.56
76.2
38.1

P3,0 P3,1 P3,2 P3,3

50.8
0.0
30.48

50.8
25.4
22.86

50.8
50.8
22.86

50.8
76.2
30.48

Table 7: Cartesian coordinates the control points for Sur-
face 1.

P0,0 P0,1 P0,2

0
0
0

0
20
10

0
40
0

P1,0 P1,1 P1,2

40
0
5

40
20
15

40
40
5

P2,0 P2,1 P2,2

80
0
20

80
20
35

80
40
20

Table 8: Cartesian coordinates the control points for Sur-
face 2.
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