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Abstract: The vertical distribution of irradiance in the ocean is a key input to quantify processes
spanning from radiative warming, photosynthesis to photo-oxidation. Here we use a novel dataset of
thousands local-noon downwelling irradiance at 490 nm (Ed(490)) and photosynthetically available
radiation (PAR) profiles captured by 103 BGC-Argo floats spanning three years (from October 2012 to
January 2016) in the world’s ocean, to evaluate several published algorithms and satellite products
related to diffuse attenuation coefficient (Kd). Our results show: (1) MODIS-Aqua Kd(490) products
derived from a blue-to-green algorithm and two semi-analytical algorithms show good consistency
with the float-observed values, but the Chla-based one has overestimation in oligotrophic waters;
(2) The Kd(PAR) model based on the Inherent Optical Properties (IOPs) performs well not only at
sea-surface but also at depth, except for the oligotrophic waters where Kd(PAR) is underestimated
below two penetration depth (2zpd), due to the model’s assumption of a homogeneous distribution
of IOPs in the water column which is not true in most oligotrophic waters with deep chlorophyll-a
maxima; (3) In addition, published algorithms for the 1% euphotic-layer depth and the depth of
0.415 mol photons m−2 d−1 isolume are evaluated. Algorithms based on Chla generally work well
while IOPs-based ones exhibit an overestimation issue in stratified and oligotrophic waters, due to
the underestimation of Kd(PAR) at depth.

Keywords: diffuse attenuation coefficient; satellite product assessment; euphotic layer depth;
isolume depth

1. Introduction

Light from the sun fuels oceanic primary production, heats the upper ocean, and oxidizes chemical
compounds such as organic molecules. In order to accurately model these processes, the subsurface
light distribution is needed. As light attenuates near-exponentially in water, to describe the subsurface
light field, the exponent describing this attenuation needs to be known (referred to as the diffuse
attenuation coefficient [1]). This exponent is a function of in-water components themselves and,
to a lesser degree, a function of the illumination conditions [2]. Additionally, in order to constrain
the layer in which certain processes take place, specific light horizons are of interest. For example,
for photosynthesis, a euphotic or isolume depth is defined based on a relative light level (e.g., 1% [3]) or
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an absolute intensity (e.g., 0.415 mol photons m−2 d−1 [4]) below which photosynthesis is assumed as
zero. Moreover, accurately quantifying the attenuation of sunlight within the upper ocean is essential
for physical and biogeochemical models, affecting the modeled upper-ocean temperature (e.g., [5,6])
and ecosystem dynamics (e.g., [7]). Sea-surface sunlight is globally available from space agencies ([8]),
and a variety of models to describe its attenuation through the water have been devised (e.g., [9,10]).
However, lack of data has limited their validation on global scales.

In the past decade, with the rapid progress of the Biogeochemical-Argo (BGC-Argo) float
technology, the BGC-Argo dataset has become the largest data source for optical and biogeochemical
observations in the global ocean [11,12]. Downwelling radiometry is one of the six core BGC variables
in the International Argo program [13,14], and has been used to study global bio-optical relationships
and anomalies [15,16], used to determine the depths of the euphotic zone and a specific isolume [17,18],
to improve the parameterization scheme of sunlight attenuation in a biological model [19], as well as to
correct and derive other bio-optical measurements performed on the same float [20–22]. An additional
important application of BGC-Argo is to validate ocean color remote sensing products (e.g., [23–25])
over the whole year and on the global scale.

In this study, based on a recently compiled global BGC-Argo dataset (described in [15,26,27]),
first, we evaluate several ocean color remote sensing algorithms for the diffuse attenuation coefficient
at 490 nm (Kd(490)), including two empirical [28,29] and two semi-analytical algorithms [9,30]; then,
we evaluate the performance of the algorithm for the diffuse attenuation coefficient (Kd(PAR)) of
photosynthetically available radiation (PAR) [10], at different optical depths; finally, we evaluate several
empirical [29,31] and semi-analytical algorithms [32] for the euphotic depth (zeu) and the 0.415 mol
photons m−2 d−1 isolume depth (z0.415). Given our dataset, we focus only on open ocean algorithms.
The need for validation stems from the fact that these algorithms have not been validated globally and
over the whole year.

2. Data and Methods

2.1. BGC-Argo Data

The globally distributed BGC-Argo dataset used here was published in the SEA scieNtific
Open data Edition (SEANOE, www.seanoe.org/data/00383/49388/) and is comprised of more than
5000 local-noon profiles of downwelling irradiance (different numbers for different wavelengths
due to quality control filtering [26]) obtained using 103 Satlantic OCR504 radiometers deployed on
Argo floats, spanning 3 years from 20 October 2012 to 26 January 2016. Each radiometry data depth
profile includes downward irradiance (Ed) at three wavelengths (380, 412, 490 nm, [µW cm−2 nm−1]),
and the instantaneous photosynthetically available radiation (iPAR, [µmol photons m−2 s−1]), which is
the downwelling photon flux integrated over a wavelength range spanning from 400 to 700 nm.
All radiometry data has been quality controlled [26], removing the points and profiles that are
significantly affected by clouds and wave focusing. The ocean basin and trophic environment of
each profile have been identified in the dataset (www.seanoe.org/data/00383/49388/data/49825.pdf),
however, in this study, we reorganized them into 10 regions (Table 1 and Figure 1). All symbols used
in this study are listed in Table 2. We note that no correction for dark offset has been applied in this
dataset beyond that obtained from the manufacturer. Small (O(0.03 µW cm−2 nm−1)) nonzero dark
values are observed in data from profiling floats but these values are variable in sign and hence will
not introduce a bias in our current work.

www.seanoe.org/data/00383/49388/
www.seanoe.org/data/00383/49388/data/49825.pdf
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Table 1. Regions and Basins Classified in This Dtudy and Corresponding Profile Numbers of Ed(490)
and iPAR.

Region Name in
This Study

Basin Name Classified in the
SEANOE-BGC-Argo Dataset

Ed(490)
Num *

iPAR
Num *

Southern Ocean
ATL (Southern Ocean Atlantic sector)

ATOI (Southern Ocean Atlantic to Indian sector)
IND (Southern Ocean Indian sector)

974 (894) 1097 (471)

Subpolar Gyre

LAS (Labrador Sea)
IRM (Irminger Sea)
ICB (Iceland Basin)

SLAS (South Labrador Sea)

1618 (1465) 1610 (885)

Transition Zone
NASTZ (North Atlantic Transition Zone)

EQNASTZ (North Atlantic South Transition Zone)
SASTZ (South Atlantic Transition Zone)

197 (137) 205 (83)

Red Sea RED (Red Sea) 62 (39) 56 (8)
Black Sea BLACK (Black Sea) 128 (118) 134 (84)

West Mediterranean
(Med.) Sea

NW (Northwestern)
SW (Southwestern)

TYR (Tyrrhenian Sea)
1121 (939) 1141 (472)

East Med. Sea ION (Ionian Sea)
LEV (Levantine Sea) 886 (683) 801 (206)

Subtropical Gyre

NASTG (North Atlantic Subtropical Gyre)
ENASTG (Eastern North Atlantic Subtropical Gyre)
WNASTG (Western North Atlantic Subtropical Gyre)

SASTG (South Atlantic Subtropical Gyre)
SSASTG (South Atlantic South Subtropical Gyre)

SPSTG (South Pacific Subtropical Gyre)

549 (505) 630 (282)

Arctic Sea NOR (Norwegian Sea) 61 (57) 83 (39)
New Caledonia NC (New Caledonia) 52 (45) 58 (18)

TOTAL 5648 (4882) 5815 (2548)

* The numbers in the parentheses represent the numbers of profiles used in this study, with valid surface Ed(490,0−)
and iPAR(0−).

Table 2. Symbols used in this study.

Symbol Definition Algorithm Reference

α Air-sea interface transmission factor Modeled [33]
a(490) Absorption coefficient at 490 nm Quasi-analytical [34]

bb(490) Backscattering coefficient at 490 nm Quasi-analytical [34]

Chlasat
Downloaded MODIS-Aqua chlorophyll-a

concentration Empirical [35]

Ed(490) Downwelling irradiance at 490 nm Observed [26]
iPAR Instantaneous photosynthetically available radiation Observed [26]

Kd(490)M-L05a Derived MODIS-Aqua Kd(490) product Semi-analytical [9]
Kd(490)M-L13 Derived MODIS-Aqua Kd(490) product Semi-analytical [30]

Kd(490)M-KD2M Downloaded MODIS-Aqua Kd(490) product Empirical [28]
Kd(490)M-M07 Derived MODIS-Aqua Kd(490) product Equation (5) [29]

Kd(490)GC-L05a Downloaded GlobColour Kd(490) product Semi-analytical [9]
Kd(490)GC-M07 Downloaded GlobColour Kd(490) product Equation (5) [29]

Kd(PAR)z Layer-averaged Kd(490) from surface to any depth Equation (1) /
Kd(490)zpd Float-observed near surface Kd(490) Equation (3) [36]

Kd(490)zpd-O17 Float-observed near surface Kd(490) Appendix A [15]

Kd(PAR)z-L05b
Derived MODIS-Aqua layer-averaged Kd(PAR) from

surface to any depth IOPs-based [10]

Kd(PAR)z Layer-averaged Kd(PAR) from surface to any depth Equation (2) /
PARsat Downloaded MODIS-Aqua daily PAR / [8]
z0.415 Isolume depth at 0.415 mol photons m−2 d−1 Equation (4) [4]

z0.415-B10 Derived MODIS-Aqua z0.415 product Equations (6) and (7) [31]
z0.415-L07 Derived MODIS-Aqua z0.415 product IOPs-based Modified from [32]

z1%490 Float-observed 1% light depth for Ed(490) Equation (1) /
zeu Float-observed 1% light depth for iPAR Equation (2) [3]

zeu-L07 Downloaded MODIS-Aqua zeu product IOPs-based [32]
zeu-M07 Derived MODIS-Aqua zeu product Equation (6) [29]

zpd Penetration depth at 490 nm Equation (3) [36]
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(a)

N = 4882

(b)

N = 2548

(c)

N = 946

(d)

N = 374

Figure 1. BGC-Argo profile data distribution maps used in this study, for all points (a) with valid surface
Ed(490,0−) (N = 4882), (b) with valid iPAR(0−) (N = 2548), (c) with matchup with all satellite Kd(490)
products (N = 946), and (d) with matchup with all satellite Kd(PAR) products (N = 374, same for zeu

and z0.415 products), respectively.
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2.1.1. Layer-Averaged Diffuse Attenuation Coefficients, Penetration, and Euphotic Depths

The attenuation of Ed(490) and of PAR with depth is approximated as an exponential decrease,
and the layer-averaged diffuse attenuation coefficients, Kd(490)z and Kd(PAR)z, from surface (0−) to
any given depth, z, are defined as:

Kd(490)z =
1
z

ln
(

Ed(490, 0−)
Ed(490, z)

)
(1)

Kd(PAR)z =
1
z

ln
(

iPAR(0−)
iPAR(z)

)
(2)

The BGC-Argo radiometry data processing flow chart is shown in Figure 2, where the surface
Ed(490,0−) and iPAR(0−) are determined first. Since BGC-Argo has no radiometry exactly at z = 0−,
they are computed by extrapolating a linear regression for ln(Ed(490,z)) and a second-degree polynomial
regression for ln(iPAR(z)) with depth, z, respectively, at the top 10 m of each profile. To ensure the
accuracy of extrapolation, we only process the profiles with at least 5 valid values within the top 10 m
(which include 4882 Ed(490) and 2548 iPAR profiles, as shown in Table 1). This extrapolation method is
validated with in-situ cruise data in Appendix A.

Ed(490,0¯)

Ed(490,zpd)

zpd

Definition

Kd(490)zpd

iPAR(0¯)

iPAR(zeu)

zeu

iPAR(zpd)

Kd(PAR)zpd

Ed(490,z)

Extrapolation

iPAR(z)

Eq. 3

Eq. 2

Interpolation

Figure 2. Flow chart of BGC-Argo radiometry data processing. Note that all derived Kd values are
layer-averaged ones (the layer from sea surface to depth z, thus, z as the subscript in the symbols,
e.g., Kd(490)z), rather than Kd at a specific depth. The same procedure could be used to derive the
layer-averaged attenuation coefficient to any depth of interest.

We then determine the penetration depth at 490 nm (zpd) and euphotic depth (zeu), as the depth
where Ed(490,z) reaches Ed(490,0−) × e−1 ~ 0.37 × Ed(490,0−) [36] and the depth (denoted by zeu)
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where iPAR(z) reaches iPAR(0−) × 1% [3], respectively. zpd and zeu, respectively, are determined
through an interpolation of Ed(490) and iPAR profiles to depths where Ed(490) and iPAR reach
the calculated Ed(490,zpd) = Ed(490, 0−)/e and iPAR(zeu) = 0.01 iPAR(0−) (Figure 2). Note that,
the definition of penetration depth is spectrally dependent (i.e., zpd varies with wavelength), in this
study, the wavelength is omitted for simplicity, and all zpd without designated wavelength represents
zpd(490). By definition, the remotely-sensed diffuse attenuation coefficient Kd(490) is the layer-averaged
one from surface to zpd, and it is determined in situ as:

Kd(490)zpd =
1

zpd
(3)

Note that Organelli et al. [15] used an approximation to estimate the penetration depth, to derive
Kd(490)zpd, namely zpd = zeu/4.6. In Appendix B we show that this approximation results in a
significant bias in Kd(490)zpd in oligotrophic regions.

2.1.2. The 0.415 mol Photons m−2 d−1 Isolume Depth (z0.415)

Since the work of Letelier et al. [4], the isolume depth z0.415, defined as the depth where the daily
PAR reaches 0.415 mol photons m−2 d−1, has been used as a threshold depth below which light is
insufficient to support photosynthesis, and has been regarded as a useful estimate of the euphotic
depth [31,37–39]. Phytoplankton living at depth are expected to react to absolute light level rather
than a relative level [40], and thus, the isolume is more applicable for phytoplankton growth than the
depth of 1% of sea surface light intensity (zeu). Note that recently, Behrenfeld and Boss [41] argued for
a lower threshold irradiance value.

Generally, it is difficult to directly measure z0.415, as well as any other daily-isolume depth, as it
needs the radiometry at both continuous vertical scale (at least a resolution of meters) and continuous
temporal scale (at least hourly). It can be estimated using a single observation during a day (on Argo
and ships), with the assumption that the layer-averaged Kd(PAR) at z0.415 is constant during the day
(not a constant Kd(PAR) profile), i.e.,:

iPAR(z 0.415)

iPAR(0−)
=

0.415
PARsat ×α

(4)

Equation (4) allows us to determine iPAR(z0.415) based on a single profile of radiometry and
PARsat, the surface daily photosynthetically available radiation product (see Section 2.2.1). α is the
transmission of sun light through the air-sea interface, dependent on the latitude and day of year [33].
z0.415 is determined as the depth where iPAR(z) reaches iPAR(z0.415) which is calculated from Equation
(4). Using a similar procedure, one can derive the depth of any other isolume.

2.2. Satellite Data

2.2.1. Auxiliary Satellite Data Products

We use several satellite-derived products (Level-3, daily, 4 km-resolution) provided by the
Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellite “EOS PM (Aqua)”: (1) Daily
photosynthetically available radiation (PARsat [mol photons m−2 d−1]) (https://oceandata.sci.gsfc.nasa.
gov/MODIS-Aqua/Mapped/Daily/4km/par/) for calculating z0.415. This product is derived from the
radiative transfer model [8] and the atmospheric properties inferred from MODIS-Aqua; (2) Surface
chlorophyll-a concentration (Chlasat) (https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Daily/

4km/chlor_a/). This product combines two algorithms, band-ratio OCx algorithm [35], and the Hu’s
color index (CI) algorithm [42]; (3) Remote sensing reflectance (Rrs [sr−1]) at four wavelengths (443, 488,
555, and 667 nm) (https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Daily/4km/Rrs_443/) are
used as input to the quasi-analytical algorithm (QAA) [34] to retrieve the absorption and backscattering

https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Daily/4km/par/
https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Daily/4km/par/
https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Daily/4km/chlor_a/
https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Daily/4km/chlor_a/
https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Daily/4km/Rrs_443/
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coefficients at 490 nm (a(490) and bb(490)), and in turn, to calculate Kd(490) following [9] and [30],
and to calculate Kd(PAR) following [10]. Note that the Raman effect on Rrs is corrected following [30].

2.2.2. Satellite-Based Kd(490)

We download three available satellite Kd(490) products and derive three other literature-based
Kd(490) for evaluation using the floats’ data. They encompass different approaches (empirical vs.
semi-analytical) and different sources (MODIS-Aqua vs. GlobColour):

(i) Kd(490)M-KD2M is an operational MODIS product derived from an empirical algorithm “KD2M”
that uses the blue-green reflectance ratio (“B/G”) of satellite-measured remote sensing reflectance [28]
and is available from NASA (https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Daily/4km/

Kd_490/);
(ii) Kd(490)GC-M07 is an operational product retrieved from an empirical relationship between

Kd(490) and Chla (Equation (5), [29]), provided by the GlobColour project [43], using products
merged between MODIS and a visible infrared imaging radiometer (VIIRS) for our data period
(ftp://ftp.hermes.acri.fr/GLOB/merged/day/);

Kd(490) =0.0166 + 0.077298× [Chla]0.67155 (5)

(iii) Kd(490)M-M07 is derived from MODIS-retrieved Chlasat and Equation (5) (the same empirical
algorithm as Kd(490)GC-M07);

(iv) Kd(490)GC-L05a is an operational product retrieved from a semi-analytical IOPs-Kd(490)
algorithm [9] available from GlobColour (ftp://ftp.hermes.acri.fr/GLOB/merged/day/);

(v) Kd(490)M-L05a is derived from MODIS-Aqua Rrs, based on the same algorithm as
Kd(490)GC-L05a; and

(vi) Kd(490)M-L13 is derived from MODIS-Aqua Rrs, based on a similar but updated semi-analytical
algorithm [30]. Compared to L05a, the L13 algorithm added a new input: the backscattering coefficient
of pure sea water (bbw(490)). Here we take it as a constant, 0.001387 m−1, which corresponds to the
sea-surface water with temperature at 20 ◦C and salinity at 35 psu, based on [44]. We have tried to
use the Argo-observed temperature and salinity to compute a more accurate bbw(490) following [44],
but found no obvious improvement for Kd(490) retrieval, when compared to using a constant value.

2.2.3. Satellite-Based Kd(PAR)z

Based on radiative-transfer computations with Hydrolight [2], Lee et al. [10] proposed an
IOPs-Kd(PAR) algorithm, which can be used to estimate the layer-averaged Kd(PAR) at any depth,
with the inputs of remotely-sensed surface a(490) and bb(490). In this study, we evaluate Kd(PAR)M-L05b

at six optical depths (from zpd to 6zpd).

2.2.4. Satellite-Based zeu and z0.415

Two euphotic layer depth algorithms are evaluated here:
(i) zeu-L07, is an operational MODIS product provided by NASA (https://oceandata.sci.gsfc.nasa.

gov/MODIS-Aqua/Mapped/Daily/4km/Zeu_lee/), based on [32], which is an implementation of the
IOPs-Kd(PAR) model [10];

(ii) zeu-M07, is derived from MODIS-retrieved Chlasat, based on an empirical Chla-zeu relationship
proposed by Morel et al. [29]:

log10(z eu−M07) = 1.524− 0.436X− 0.0145X2 + 0.0186X3 (6)

Here, X = log10(Chlasat).
For satellite-based z0.415 products, two products are computed:

https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Daily/4km/Kd_490/
https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Daily/4km/Kd_490/
ftp://ftp.hermes.acri.fr/GLOB/merged/day/
ftp://ftp.hermes.acri.fr/GLOB/merged/day/
https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Daily/4km/Zeu_lee/
https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Daily/4km/Zeu_lee/
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(i) z0.415-B10, is derived following [31], based on PARsat and Morel’s euphotic layer depth (zeu-M07):

z0.415−B10= ln(0.415 /PARsat/α) × (z eu−M07/ln(0.01)) (7)

While α = 0.98 in [31], in this study we use the look-up table provided by Mobley and Boss [33]
which takes into account the sun angle and a wind ruffled surface.

(ii) z0.415-L07, is calculated following [32], whose method for zeu, can also be used for z0.415.

2.2.5. Satellite-Float Matchup Criteria

For each float profile, the median value of the corresponding satellite data within a 3 × 3 pixel box
centered on the profile’s surface position was used if at least 5 values in the box were available and
that the profile was within 3 hrs of satellite overpass (Figure 3), consistent with the criteria of Bailey
and Werdell [45].

4km

NA NA

NA

NA

Figure 3. Diagram of a good match-up between satellite and float data. The 9 squares represent 9 pixels
closest to the location of float surfacing, with 5 valid pixels (blue) and 4 invalid ones (white). The spatial
resolution is 4 km. In such a condition or with more than 5 valid-value pixels out of 9, a pair of valid
satellite-float matchup data is obtained.

2.3. Statistical Metrics

Three statistical metrics are used to evaluate the differences between products derived from the
float database and satellite products: (1) Mean absolute difference (MAD), which represents the absolute
differences between the measured (observation) values, and satellite-derived or model-estimated
values; (2) Mean absolute percentage difference (MAPD), which represents the relative differences;
(3) and Mean percentage difference (MPD), which represents the relative system bias. They are
defined as:

MAD =
1
n

n∑
i=1

|Ei −Mi| (8)
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MAPD =
100
n

n∑
i=1

|Ei −Mi|

Mi
(%) (9)

MPD =
100
n

n∑
i=1

(Ei −Mi)

Mi
(%) (10)

Here, Mi is the in-situ measured value, Ei represents the satellite-retrieved or model-estimated
value, and n is the number of observations.

3. Results and Discussion

3.1. Distribution of Kd(490)zpd, zeu, and z0.415 for the BGC-Argo Dataset

In the BGC-Argo dataset, Kd(490)zpd varies by over an order of magnitude, from 0.02 m−1 to
0.3 m−1 (Figure 4a). Regionally, the median Kd(490)zpd is observed to be lowest in subtropical gyres
(0.024 m−1) and highest in the Black Sea (0.112 m−1), with the highest dynamic ranges in the Western
Mediterranean (Med.) Sea, Southern Ocean, and subpolar regions (Figure 4b). zeu spans about an order
of magnitude in this dataset, from ~ 25 m in the (North Atlantic) subpolar gyre to ~ 250 m in subtropical
gyres (Figure 4c), with a median value being shallowest (34.0 m) in the Black Sea (Figure 4d) where
high CDOM concentration contributes significantly to attenuation [46]. z0.415 has a similar dynamic
range and regional distribution as zeu (Figure 4e,f) with median values varying from 23.5 m in the Black
Sea to 118.5 m in the subtropical gyres. It exhibits a few very shallow values (<10 m, see Figure 4e)
corresponding to very cloudy days (daily PAR above sea surface are very low, e.g., <2 mol photons
m−2 d−1). In fact, z0.415 is often shallower than zeu, because the highest daily PAR at sea surface is
about 70–80 mol photons m−2 d−1 for a clear summer day [33], and then the corresponding PAR(zeu) is
about 0.7–0.8 mol photons m−2 m−1, slightly higher than 0.415 mol photons m−2 m−1 (as light intensity
in water decreases with depth exponentially, about 5.2 m (6.6 m) are needed to decrease PAR from 0.7
(0.8) mol photons m−2 m−1 to 0.415 mol photons m−2 m−1 for a moderate Kd(PAR) as 0.1 m−1). Thus,
for a clear summer day, z0.415 may be deeper than zeu by about 5 m; but when clouds cause highly
depressed daily PAR values, or in other seasons, zeu is deeper than z0.415. In the dataset analyzed
here, the median zeu is always deeper than the median z0.415 in all regions (Figure 4d,f), by 3.64 m in
subtropical gyres and by 14.7 m in the Southern Ocean.

3.2. Assessment of Satellite Algorithms for Kd(490)

The performance of classical B/G algorithm (Kd(490)M-KD2M) and semi-analytical algorithm
(Kd(490)M-L13) outperform the others with this dataset (Figure 5a,b, Table 3). The former has the
lowest relative differences (MAPD = 14.1%) and no significant mean bias (MPD = −0.3%), but it has
a few points overestimated in the high-value range (>0.2 m−1); the latter has the lowest absolute
differences (MAD = 0.009 m−1) and it does not exhibit the overestimation issue at high-values as the
B/G algorithm. Note, however, that both algorithms underestimate Kd(490) in the Black Sea. It is
likely due to high colored dissolved organic matter (CDOM) concentration in this region [16,46],
which affects the performance of both band-ratio and semi-analytical algorithms that have been devised
using open-ocean data. Kd(490)M-L05a (Figure 4c) also performs well in these highly attenuating
waters with similar but slightly worst results than Kd(490)M-L13. Chla-based Kd(490)M-M07 has the
highest MAPD (19.1%) among all 4 MODIS-Aqua products, with an overestimation bias (MPD = 8.7%)
mainly in oligotrophic waters (Figure 4d). As for the GlobColour products, Kd(490)GC-L05a exhibits
an obvious overestimation in all waters (Figure 4e), having high relative and absolute differences
(MAPD = 52.4%, MPD = 51.5%). Comparing MODIS-Aqua and GlobColour with the same Chla-based
empirical algorithm (M07), we find little difference (Table 3); however, for the semi-analytical algorithm
(L05a), Kd(490)M-L05a, is much closer to float-observed Kd(490)zpd, than Kd(490)GC-L05a, suggesting
that the overestimation of Kd(490)GC-L05a is associated with GlobColour, rather than the model of
Lee et al. itself.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Histogram and boxplot of the distribution of the (a,b) near surface diffuse attenuation
coefficient at 490 nm (Kd(490)zpd), (c,d) euphotic layer depth (zeu), (e,f) and isolume depth (z0.415),
for each of the 10 regions (SO: Southern Ocean; AS: Arctic Sea; SPG: Subpolar Gyre; BS: Black Sea; TZ:
Transition Zone; WMS: West Med. Sea; RS: Red Sea; EMS: East Med. Sea; NC: New Caledonia; STG:
Subtropical Gyre). In the histogram, black and red columns (as well as numbers) represent the full
dataset and the satellite-matched ones, respectively. In the boxplot, red points beyond the end of the
whiskers represent outliers beyond the 1.5 × IQR (IQR = interquartile range) threshold.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Assessment of satellite Kd(490) products based on BGC-Argo dataset. Scatter plot of
float-observed Kd(490)zpd v.s. MODIS-Aqua B/G-based empirical Kd(490)M-KD2M (a) semi-analytical
Kd(490)M-L13, (b) semi-analytical Kd(490)M-L05a, (c) Chla-based empirical Kd(490)M-M07, (d) GlobColour
semi-analytical Kd(490)GC-L05a, (e) Scatter plot of float-observed Kd(490)zpd vs. MODIS-Aqua-retrieved
Chla, (f) black dashed line represents the empirical equation (Equation (5)) used in Kd(490)GC-M07 and
Kd(490)M-M07, and the red solid line represents the relationship obtained in this study (Equation (11)).
Black solid lines are the 1:1 lines. Note that in Panel (a)–(e) we use only data for which all algorithms
could be evaluated.
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Table 3. Statistical results of evaluation on the satellite-based Kd(490) products *.

Product Platform Source Algorithm MAD MAPD MPD Figure

Kd(490)M-KD2M MODIS-Aqua Downloaded B/G-based 0.010 m−1 14.1% −0.3% Figure 5a
Kd(490)M-L13 MODIS-Aqua Calculated IOPs-based 0.009 m−1 14.4% 2.2% Figure 5b
Kd(490)M-L05a MODIS-Aqua Calculated IOPs-based 0.009 m−1 15.2% 4.6% Figure 5c
Kd(490)GC-L05a GlobColour Downloaded IOPs-based 0.025 m−1 52.4% 51.5% Figure 5e
Kd(490)M-M07 MODIS-Aqua Calculated Chla-based 0.010 m−1 19.1% 8.7% Figure 5d
Kd(490)GC-M07 GlobColour Downloaded Chla-based 0.011 m−1 19.5% 11.7% /

* We compared 946 matchup values for which all products were available.

In addition, we find that the relationship of float-observed Kd(490)zpd and Chlasat (Figure 5f)
is different than that in [29], having a larger scale factor and a higher exponent (Figure 5f and
Equation (11)):

Kd(490)zpd = 0.0166 + (0.1056± 0.002) ×Chlasat
(0.886±0.010) (R2 = 0.94) (11)

We applied this relationship to retrieve Kd(490)zpd from Chlasat and found it to have similar
statistical differences to Kd(490)M-KD2M (MAD = 0.013 m−1, MAPD = 15.1%, MPD = 2.1%). Although
our results show that the updated Chla-Kd(490) equation has limited improvement on the Kd(490)
retrieval from satellite, it suggests the need to re-consider the bio-optical relationship with more
in-situ data.

In summary, the GlobColour-provided semi-analytical Kd(490) product seems to have a retrieval
problem while the classical B/G-based KD2M algorithm performs best except in highly turbid waters.
The semi-analytical algorithm [30] also performs well in the open ocean, and even better in the
high-value range as it is designed for solving both clear and turbid waters.

3.3. Assessment of the Satellite Algorithm for Kd(PAR)

The IOPs-Kd(PAR) algorithm [10] was the only one to date to estimate the layer-averaged Kd(PAR)
at any depth. It was developed on the basis of Hydrolight simulation to provide a layer-averaged
Kd(PAR) at any depth from remote sensing. However, the Hydrolight simulation conducted by
Lee et al. [10] assumed a homogeneous distribution of IOPs in the water column. Since the surface
a(490) and bb(490) only represent the IOPs within the upper mixed layer, changes of IOPs below the
mixed layer depth (MLD) are not accounted for in the IOPs-Kd(PAR) algorithm. Satellite-retrieved
Kd(PAR)z-L05b is evaluated with the BGC-Argo dataset from zpd to 6zpd (Figure 6 and Table 4).
It performs well at all six optical depths in the high latitude (e.g., Southern Ocean, Subpolar Gyre,
and Arctic Ocean), where most water-columns are well-mixed. However, in the stratified waters
(including almost all profiles in subtropical gyres, most in the Eastern Mediterranean Sea, and many in
the Western Mediterranean Sea), the algorithm increasingly and gradually underestimates Kd(PAR)
from 2zpd to 4zpd (from 5.7% to 0.8% of relative light intensity for PAR). In subtropical gyres,
MPD decreases from 4.4% at zpd to −14.6% at 4zpd (Table 4). Since Chla increases with depth from
MLD to the deep chlorophyll maximum (DCM) in oligotrophic waters [47], both a(490) and bb(490) are
expected to increase with depth as well. As a consequence, the IOPs-Kd(PAR) algorithm inevitably
underestimates Kd(PAR), even if the QAA algorithm could retrieve sea-surface a(490) and bb(490)
correctly. zeu corresponds roughly to 3–4 times zpd (see Appendix B), and is near the DCM in
oligotrophic waters [4,47]. It follows that the largest underestimation of Kd(PAR) is at 4zpd. At 5zpd

and 6zpd (correspondingly 0.43% and 0.28% of relative light intensity for PAR), there are fewer valid
BGC-Argo observations and the underestimation issue is not clear. In addition, given that below the
DCM Chla, a(490) and bb(490) are observed to decrease with depth, the underestimation of Kd(PAR) at
such depths will weaken.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Assessment of satellite Kd(PAR) products based on BGC-Argo dataset. Scatter plots of
float-observed Kd(PAR) and satellite-derived Kd(PAR)z-L05b [10] at (a) zpd, (b) 2zpd, (c) 3zpd, (d) 4zpd,
(e) 5zpd, and (f) 6zpd, respectively. All black solid lines represent 1:1 lines.
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Table 4. Statistical results of evaluation on the satellite-based Kd(PAR) and related products (all products
compared here are calculated for the MODIS-Aqua platform).

Product Algorithm Number # MAD# MAPD # MPD # Figure

Kd(PAR)zpd-L05b IOPs-based 374(49) 0.013 m−1 (0.005 m−1) 12.8%(11.1%) 8.3%(4.4%) Figure 6a
Kd(PAR)2zpd-L05b IOPs-based 374(49) 0.011 m−1 (0.004 m−1) 12.5%(10.9%) −0.4%(−1.3%) Figure 6b
Kd(PAR)3zpd-L05b IOPs-based 374(49) 0.012 m−1 (0.006 m−1) 14.7%(14.7%) −4%(−10.6%) Figure 6c
Kd(PAR)4zpd-L05b IOPs-based 364(40) 0.012 m−1 (0.007 m−1) 15.2%(17.1%) −2.5%(−14.3%) Figure 6d
Kd(PAR)5zpd-L05b IOPs-based 315(14) 0.012 m−1 (0.005 m−1) 15.1%(12.5%) 4.2%(−2.9%) Figure 6e
Kd(PAR)6zpd-L05b IOPs-based 264(5) 0.014 m−1 (0.006 m−1) 17.9%(15.5%) 12.6%(1.6%) Figure 6f

zeu-M07 Chla-based 374(49) 8.0 m (12.6 m) 12.5%(9.9%) −1.7%(−8.4%) Figure 7a
zeu-L07 IOPs-based 374(49) 14.0 m (20.5 m) 19.7%(16.7%) 8.4%(12.0%) Figure 7b

z0.415-B10 Chla-based 374(49) 7.7 m (12.7 m) 12.2%(9.8%) −1.1%(−8.2%) Figure 7c
z0.415-L07 IOPs-based 374(49) 16.4 m (32.7 m) 21.3%(24.7%) 10.2%(20.6%) Figure 7d

# The numbers in the parentheses represent the statistics in subtropical gyres.

(a) (b)

(c) (d)

Figure 7. Assessment of satellite zeu and z0.415 algorithms through comparison with the BGC-Argo
dataset. zeu retrieved from a Chla-based algorithm (zeu-M07; [29]) (a) and from the IOPs-based algorithm
(zeu-L07; [32]); (b) z0.415 retrieved from a Chla-based algorithm (z0.415-B10; [31]); (c) and from IOPs-based
algorithm (z0.415-L0 [32]); (d) Black solid lines are the 1:1 lines.
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3.4. Assessment of Satellite Algorithms for zeu and z0.415

Next, we evaluate the satellite products of two important light-level horizons, the euphotic
layer depth zeu, and isolume depth z0.415, which represent a relative and an absolute light horizon,
respectively. Both zeu and z0.415 have optical and biological significance, and have been used to estimate
primary production [48], retrieve the vertical distributions of Chla [47], and understand the mechanisms
on formation and variability of the DCM [17,18]. Based on the BGC-Argo dataset, the Chla-based zeu

algorithm (zeu-M07) performs better, with the lower absolute and percentage differences of 8.0 m and
12.5%, respectively (Figure 7a), than the IOPs-based one (Figure 7b). Regionally, zeu-M07 exhibits a
slight underestimation in the subtropical gyres (MPD = −8.4%) and the eastern Mediterranean Sea,
and an overestimation in the Black Sea where CDOM deviates significantly from its global relationship
to Chla [16,49]. The CDOM index (relative CDOM concentration to the global mean CDOM-Chla
relationship) is extremely high in the Black Sea and low in oligotrophic gyres [50]. Therefore, the Black
Sea (Subtropics) is expected to have a shallower (deeper) zeu than the empirical Chla-zeu relationship
would provide (High CDOM shoals zeu and low CDOM deepens zeu). The overall performance of
zeu-L07 is still satisfactory (Figure 7b), with MAD of 14.0 m, but with a bias (MPD = 8.4%) which
appears in the clearest waters (zeu > 80 m). In subtropical gyres, the overestimation is most remarkable,
with MPD reaching 12.0% (Table 4). This issue is likely due to the constant IOPs with depth assumed in
this model design which does not include a DCM, consistent with the underestimation of Kd(PAR)-L05b

at 3zpd and 4zpd.
We assess two satellite z0.415 algorithms (Figure 7c,d), which to our knowledge has never been

done, although the equation (Equation 7) proposed by Boss and Behrenfeld [31] has been used in
several subsequent studies (e.g., [51–54]). Overall, the patterns of two scatter plots of z0.415 (Figure 7c,d)
are similar to those for zeu (Figure 7a,b), with similar statistics (Table 4). z0.415-B10 displays a slight but
obvious underestimation in Subtropical Gyres and Eastern Mediterranean Sea as it is based on zeu-M07

(Figure 7c) and z0.415-L07 exhibits the same overestimation in subtropical gyres (Figure 7d) as zeu-L07

(Figure 7b).
In summary, the evaluation of satellite-retrieved zeu and z0.415 suggests that the Chla-based

algorithms outperform the IOPs-based ones, with lower scatter and lower relative system bias.
Both IOPs-based zeu and z0.415 exhibit the overestimation in subtropical gyres due to the underestimation
of Kd(PAR)z-L05b at depth.

4. Final Remarks and Conclusions

The synergy and joint use of BGC-Argo and satellite remote sensing data contribute to studies
using both observing assets [55]. BGC-Argo floats provide the largest dataset for validation and
evaluation of satellite products in the global ocean, extend the satellite ocean color observations from
surface to depth, and fill missing data in satellite coverage due to low sun angle, high latitude winters
and clouds; remote sensing is helpful in guiding the deployment of BGC-Argo floats (e.g., in the
subtropical gyres or seasonal bloom regions), identifying the spatial scale of float-observed phenomena
(basin-, meso- or submeso-scale), extending the BGC-Argo observation from discrete locations to
continuous temporal and spatial distributions, and even as a method for calibration of chlorophyll
fluorometers deployed on floats (e.g., [23]).
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In this study, we present the use of BGC-Argo data to assess existing satellite products. First,
for the MODIS-Aqua Kd(490) products, both the B/G algorithm and the semi-analytical algorithm [30]
perform well, in the open ocean. Moreover, our dataset shows, the B/G algorithm, while having the
lowest bias in the open ocean, exhibits an overestimation at large-values region (Kd(490) > 0.2 m−1),
not exhibited by the semi-analytical one. All Kd(490) algorithms underestimate in the Black Sea due to
extremely high CDOM. The GlobColour Kd(490)GC-L05a product has an abnormal overestimation for all
the data, which is likely not related to Lee et al.’s model embedded in it. The agreement between float
and satellite platforms can be regarded as a “consistency check”: on one hand, it provides the validation
of existing products, and on the other hand, it suggests that the quality-controlled float-observed
Ed(490) [26] is of high quality.

Kd(PAR) is a critical variable for the retrieval of zeu, and z0.415, and is also useful for marine
ecosystem modeling (e.g., [56]) and the estimation of biological heat effect on the upper-layer oceans [5].
However, Kd(PAR) is affected by differences in diffuse attenuation coefficient at different wavelengths.
Near the surface, the decrease of PAR is mainly dominated in the open ocean by the losses at the
red band due to water absorption [57]. With the depth increasing, as red and near-UV light nearly
disappear, the green and blue bands make increasing contributions to Kd(PAR). Finally, Kd(PAR) at
deep waters will be close to Kd of the blue/green band (440–510 nm), which is most penetrative in the
clear waters [5]. Owing to its spectral sensitivity, the layer-averaged Kd(PAR)z at a certain depth (z) is
not a linear average of Kd(λ)z spectra, but a weighted average, and the weight varies as function of
both downwelling irradiance spectra (Ed(z)) and attenuation spectra Kd(λ)z [57]. This characteristic
makes devising an algorithm for it challenging close to the sea surface [58]. While, in the deeper
waters, the vertical change of IOPs becomes the main error sources of retrieval algorithm of Kd(PAR)z.
Subsurface structure of IOPs can vary for the same surface conditions, therefore, it is difficult to predict
the whole PAR profile accurately, when only relying on the sea-surface IOPs information. Even so,
overall, the IOPs-based model [10] performs well near the sea surface until ~2zpd, and also estimates
the vertical change of Kd(PAR) well in well-mixed waters, but underestimate remarkably below 2zpd in
stratified waters (including almost all profiles in Subtropical Gyres, most in the Eastern Mediterranean
Sea, and quite a few in the Western Mediterranean Sea), due to the presence of a DCM not accounted
for in its design. In turn, affected by the underestimation of Kd(PAR) below 2zpd, both IOPs-derived
zeu and z0.415 exhibit a bias in the oligotrophic waters. Chla-based algorithms to estimate zeu and
z0.415 [29,31] perform better although both exhibit some underestimation in subtropical gyres and
eastern Mediterranean Sea.

Besides the validation of remote sensing products performed here (and the identification of
the significant bias associated with some regions), the statistics associated with our validation can
be used to assign errors to the remote sensing products, for example, to propagate them when
used in models. For example, many primary-production algorithms parametrize light attenuation
using the euphotic depth or include the diffuse attenuation of light attenuation directly (e.g., [48,59]).
Simple error propagation (e.g., [60]) can provide the uncertainty in primary production resulting from
their uncertainties.
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Appendix A. Independent Evaluation of Processing Methods of BGC-Argo Data

In Figure A1, the processing methods of BGC-Argo radiometry data are validated with traditional
ship-borne measurements in the Biogeochemistry and Optics South Pacific Experiment (BIOSOPE)
cruise [61], which was conducted in the Southeast Pacific during October-December, 2004. Its radiometry
dataset had 39 spectral-irradiance profiles recorded by a Satlantic profiler and corresponding surface
irradiance measurements recorded by the Satlantic TSRB (Tethered Spectral Radiometer Buoy), spanning
various trophic environments, from eutrophic (west of Marquesas Island, and the upwelling conditions
off Chile) to ultra-oligotrophic (center of South Pacific subtropical gyre). We first conducted the same
quality-control procedure as Organelli et al. [26] on all BIOSOPE radiometry data, removing the noisy
profiles and points, then the measured irradiance values above the sea surface (Es) are converted to
the ones just below sea surface Ed(0−), by multiplying the transmission coefficient α [33], and using
a similar procedure to obtain iPAR(0−). Following the same steps as Figure 2, zpd, zeu, Kd(490),
and Kd(PAR) are calculated. All these values are denoted as “measured”, as they are obtained based
on measured Es. We follow the same extrapolation methods mentioned above to estimate Ed(490,0−)
and iPAR(0−) from below water measurements. Then, extrapolation-based derived zpd, zeu, Kd(490),
and Kd(PAR) are denoted as “estimated”.

After quality control procedures similar to those used for radiometry measured with floats,
there remain 23 Ed(490) and 21 iPAR profiles from BIOSOPE for validation (due to the requirement
of at least 5 samples within the top 10 m). We find no obvious differences between the linear and
non-linear extrapolation methods for Ed(490), although both have a slight overestimation (MPD = 6.1%
and 4.9%) (Figure A1a). Since the attenuation coefficient at 490 nm is mainly determined by IOPs,
Kd(490) is expected to vary little within the top 10 m (it will vary some due to the adjustment in the
mean-cosine at that wavelength and Raman scattering). Thus, ln(Ed(490)) is expected to be a nearly
linear function of depth. As for iPAR, a second-degree polynomial extrapolation is necessary due to
the strong attenuation of red wavelengths especially in the top 10 m just below the sea surface due
to strong attenuation of red wavelengths [57], causing the linear extrapolation to yield a significant
underestimation (MPD = −15.6%, Figure A1b). Derived zpd, zeu, Kd(490)zpd, and Kd(PAR)zpd are
computed to evaluate the error due to propagation of estimated sea surface Ed(490,0−) and iPAR(0−)
(Figure A1c–f). The influence of extrapolation is very limited, although Kd(490)zpd and Kd(PAR)zpd

exhibit a slight bias.
We conclude from this validation exercise that our extrapolation methods to obtain iPAR(0−) and

Ed(490,0−) and computing zpd, zeu, Kd(490)zpd, and Kd(PAR)zpd from radiometers on profiling floats to
have well constrained and small uncertainties.
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(a) (b)

(c) (d)

(e) (f)

Figure A1. Evaluation of BGC-Argo data processing methods suggested here using the BIOSOPE
data. Scatter plot of Measured and Estimated values, of Ed(490,0−) (a) iPAR(0−), (b) zpd, (c) zeu,
(d) Kd(490)zpd, (e) and Kd(PAR)zpd, (f) respectively. “Measured (meas.)” means determination of
Ed(490,0−) and iPAR(0−) based on measured radiometry above sea surface; “Estimated (Est.)” means
determination of Ed(490,0−) and iPAR(0−) is based on a linear (blue) or second-degree polynomial
extrapolation (red) within the upper10 m of the ocean. The black solid lines represent the 1:1 lines.

Appendix B. Should We Use zpd = zeu/4.6?

Organelli et al. [15] proposed a method to derived Kd(490)zpd from BGC-Argo data by first
determining zeu from iPAR profile as we do here (Section 2.1), then determining zpd based on the
proposed equation: zpd = zeu/4.6 (derived based on the fact that -ln(0.01) ≈ 4.6). Finally, they applied
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a linear regression between ln(Ed(490)) and depth to retrieve Kd(490)zpd. In contrast, here we use
Equation (3) to compute zpd.

When we follow their method to derive Kd(490)zpd-O17, it displays a slight underestimation in
oligotrophic waters in comparison to ours (Figure A2a). The relationship zpd = zeu/4.6 is likely biased
in most oligotrophic waters. On one hand, the diffuse attenuation of visible light is lowest in the blue
band for such waters [62], and hence zeu (the 1% light depth for PAR) must be shallower than z1%490

(the 1% light depth for Ed(490), i.e., zeu < z1%490 in most waters [57], as shown in Figure A2b). On the
other hand, from Equation (1):

Kd(490)z1%490 × z1%490 = − ln(0.01) ×Kd(490)zpd × zpd (A1)

which implies that the ratio of z1%490 to zpd could reach –ln(0.01) (approximately 4.6) only when
Kd(490) is uniform from surface to z1%490 (i.e., Kd(490)z1%490 = Kd(490)zpd). However, due to the deep
chlorophyll-a maximum (DCM) observed in highly clear and stratified waters [47], one would expect
Kd(490) to increase with depth to the DCM depth, which means z1%490/4.6 < zpd (Figure A2c). It follows
that zeu/4.6 < zpd in highly stratified (oligotrophic) waters, as shown in Figure A2d, consistent with
the observed bias in [15] obtained in such waters (Figure A2a). Statistically, for all valid 2272 samples
in our BGC-Argo dataset (Figure A2d), zeu = (3.53 ± 0.83) × zpd. Regionally, the ratio of (zeu/zpd)
reaches its highest values in the North Atlantic subpolar gyre (4.05 ± 0.83), and its lowest values
in the subtropical gyres (3.05 ± 0.46) and New Caledonia (2.98 ± 0.60). We note that Lee et al. [30]
also showed that, z1% of blue light (the arithmetic average of z1%412, z1%443, z1%488, and z1%531) was
generally 30%–40% deeper than zeu in open oceans.

(a) (b)

(c) (d)

Figure A2. Comparison of different methodology of Kd calculation. (a) float-observed Kd(490)zpd-O17

following the methodology of [15] vs. our determined Kd(490)zpd; (b) zeu vs. z1%490; (c) z1%490/4.6 vs.
zpd; (d) zeu/4.6 vs. zpd.
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