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A cheap and easy-to-implement upwind scheme for second order traffic flow models

We extend the finite volume numerical scheme proposed by Hilliges and Weidlich [11] to second order traffic flow models consisting in 2 × 2 systems of non strictly hyperbolic conservation laws of Temple class. The scheme is shown to satisfy some maximum principle properties on the density. We provide numerical tests illustrating the behaviour at vacuum and the gain in computational time when dealing with optimization algorithms.

Introduction

The Generic Second Order Model [START_REF] Lebacque | Generic second order traffic flow modelling[END_REF] provides a general framework for macroscopic traffic flow modeling. In particular, it generalises the classical Lighthill-Whitham-Richards (LWR) model [START_REF] Lighthill | On kinematic waves. II. A theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF] and includes the widely used Aw-Rascle-Zhang (ARZ) system [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF][START_REF] Zhang | A non-equilibrium traffic model devoid of gas-like behavior[END_REF]. We recall that second order models are able to capture several traffic behaviours, such as stop-and-go waves and non-equilibrium regimes, in particular in congested situations. They can therefore be used for better traffic state reconstruction and prediction [START_REF] Würth | Data-driven uncertainty quantification in macroscopic traffic flow models[END_REF], for which efficient numerical simulations are of utmost importance. For this, most of the literature relies on a supply-demand formulation of Godunov scheme, see e.g [START_REF] Lebacque | Second order traffic flow modeling: supplydemand analysis of the inhomogeneous Riemann problem and of boundary conditions[END_REF], which allows for sharp approximations, but is quite cumbersome to code. A much easier and cheaper alternative is offered by an upwind type finite volume scheme proposed by [START_REF] Hilliges | A phenomenological model for dynamic traffic flow in networks[END_REF] for the scalar case and more extensively studied in [START_REF] Bürger | A family of numerical schemes for kinematic flows with discontinuous flux[END_REF] for multi-class models.
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In this paper, we prove that the scheme is positivity preserving and obeys a maximum principle under the hypothesis of a unique zero-speed density. We also provide some tests exploring the behaviour of solutions involving vacuum states, and evidence of the computational gain offered by the proposed scheme.

General Second Order Models

Generic Second Order traffic flow Models (GSOM) [START_REF] Lebacque | Generic second order traffic flow modelling[END_REF] consist in the 2 × 2 system of conservation laws

𝜕 𝑡 𝜌 + 𝜕 𝑥 (𝜌𝑣) = 0, 𝜕 𝑡 (𝜌𝑤) + 𝜕 𝑥 (𝜌𝑤𝑣) = 0, 𝑥 ∈ R, 𝑡 > 0, (1) 
where the average speed of vehicles is a function of the density 𝜌 = 𝜌(𝑡, 𝑥) and a Lagrangian vehicle property 𝑤 = 𝑤(𝑡, 𝑥), namely 𝑣 = V (𝜌, 𝑤) for some speed function V satisfying

V (𝜌, 𝑤) ≥ 0, V (0, 𝑤) = 𝑤, V 𝑤 (𝜌, 𝑤) > 0, ( 2a 
) 2V 𝜌 (𝜌, 𝑤) + 𝜌V 𝜌𝜌 (𝜌, 𝑤) < 0, (2b) ∀𝑤 ∈ [𝑤 𝑚𝑖𝑛 , 𝑤 𝑚𝑎𝑥 ] ∃ 𝑅(𝑤) > 0 s.t. V (𝑅(𝑤), 𝑤) = 0, (2c) 
on a domain Ω of the form

Ω := (𝜌, 𝑤) ∈ R 2 | 𝜌 ∈ [0, 𝑅(𝑤 𝑚𝑎𝑥 )], 𝑤 ∈ [𝑤 𝑚𝑖𝑛 , 𝑤 𝑚𝑎𝑥 ] with 0 < 𝑤 𝑚𝑖𝑛 ≤ 𝑤 𝑚𝑎𝑥 [8].
As in [START_REF] Chiarello | Micro-macro limit of a nonlocal generalized Aw-Rascle type model[END_REF][START_REF] Fan | Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model[END_REF], we observe that (2b) implies that 𝜌 ↦ → 𝑄(𝜌, 𝑤) := 𝜌V (𝜌, 𝑤) is strictly concave and V 𝜌 (𝜌, 𝑤) < 0 for 𝑤 > 0, if V is a C 2 function in 𝜌. We also remark that in (2c) we can have 𝑅(𝑤) = R max for all 𝑤 ∈ [𝑤 𝑚𝑖𝑛 , 𝑤 𝑚𝑎𝑥 ].

System (1) is strictly hyperbolic for 𝜌 > 0, with eigenvalues 𝜆 1 (𝜌, 𝑤) = V (𝜌, 𝑤) + 𝜌V 𝜌 (𝜌, 𝑤), 𝜆 2 (𝜌, 𝑤) = V (𝜌, 𝑤). The first characteristic field is genuinely non-linear and the second linearly degenerate [START_REF] Bressan | Hyperbolic systems of conservation laws[END_REF]Definition 5.2]. The associated Riemann invariants are 𝑧 1 (𝜌, 𝑤) = V (𝜌, 𝑤), 𝑧 2 (𝜌, 𝑤) = 𝑤. Since shock and rarefaction curves of each family coincide, the system belongs to the Temple class [START_REF] Temple | Systems of conservation laws with invariant submanifolds[END_REF]. Notice that, setting V (𝜌, 𝑤) = 𝑤 -𝑝(𝜌) for a suitable "pressure" function 𝑝, system (1) corresponds to the ARZ model [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF][START_REF] Zhang | A non-equilibrium traffic model devoid of gas-like behavior[END_REF] and, taking 𝑤 = w constant, we recover the classical LWR model [START_REF] Lighthill | On kinematic waves. II. A theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF] with 𝑣 𝑒 (𝜌) = V (𝜌, w).

Due to the loss of strict hyperbolicity at vacuum, it is not possible to give a unique definition of the solutions of Riemann problems involving vacuum states, even enforcing entropy conditions. Different options are proposed and discussed in the literature, see e.g. [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF][START_REF] Fan | Data-fitted generic second order macroscopic traffic flow models[END_REF]. In particular, if the right (downstream) state belongs to the vacuum, the solution can either consist of a rarefaction wave to the vacuum, or a first family wave (shock or rarefaction) followed by a contact discontinuity. More details on the construction of solutions and an existence result for the corresponding Initial Boundary Value Problem can be found in [START_REF] Goatin | The initial boundary value problem for second order traffic flow models with vacuum: existence of entropy weak solutions[END_REF].

Hilliges-Weidlich numerical scheme

The most widely used numerical scheme for traffic flow macroscopic simulations is the finite volume Godunov scheme [START_REF] Godunov | A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics[END_REF] in its Cell Transmission Model (CTM) version [START_REF] Daganzo | The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory[END_REF], where the fluxes across interfaces are given by the minimum of the sending capacity of the upstream cell and the receiving capacity at the downstream one. Here we propose a much simpler to implement alternative, which we will refer to as Hilliges-Weidlich (HW) scheme [START_REF] Hilliges | A phenomenological model for dynamic traffic flow in networks[END_REF].

Given a space step Δ𝑥 and a time step Δ𝑡 satisfying the CFL condition

Δ𝑡 ∥V (𝜌, 𝑤) ∥ L ∞ (Ω) + 𝑅(𝑤 𝑚𝑎𝑥 ) V 𝜌 (𝜌, 𝑤) L ∞ (Ω) ≤ Δ𝑥, (3) 
let 𝑥 𝑗+1/2 = 𝑗Δ𝑥, 𝑗 ∈ Z, be the cell interfaces, and 𝑡 𝑛 = 𝑛Δ𝑡, 𝑛 ∈ N, the time mesh.

Denoting by u = (𝜌, 𝑦) 𝑇 = (𝜌, 𝜌𝑤) 𝑇 the vector of the conservative variables (where we set 𝑦 = 𝜌𝑤), we construct a finite volume approximate solution of (1) of the form

u Δ𝑥 = (𝜌 Δ𝑥 , 𝑦 Δ𝑥 ) 𝑇 with 𝜌 Δ𝑥 (𝑡, 𝑥) = 𝜌 𝑛 𝑗 and 𝑦 Δ𝑥 (𝑡, 𝑥) = 𝑦 𝑛 𝑗 for (𝑡, 𝑥) ∈ 𝐶 𝑛 𝑗 = [𝑡 𝑛 , 𝑡 𝑛+1 [ ×[𝑥 𝑗 -1/2 , 𝑥 𝑗+1/2 [.
To this end, we approximate the initial data with piecewise constant functions

𝜌 0 𝑗 = 1 Δ𝑥 ∫ 𝑥 𝑗+1/2 𝑥 𝑗 -1/2 𝜌 0 (𝑥) 𝑑𝑥, 𝑦 0 𝑗 = 1 Δ𝑥 ∫ 𝑥 𝑗+1/2 𝑥 𝑗 -1/2 𝑦 0 (𝑥) 𝑑𝑥, ∀ 𝑗 ∈ Z,
and we iterate in time according to the conservation formulas

u 𝑛+1 𝑗 = u 𝑛 𝑗 - Δ𝑡 Δ𝑥 F 𝑛 𝑗+1/2 -F 𝑛 𝑗 -1/2 , (4) 
with 

F 𝑛 𝑗+1/2 = (𝐹
) = V (𝜌 𝑛 𝑗+1 , 𝑤 𝑛 𝑗+1 ), see Figure 1. Therefore we have 𝐹 𝜌,𝑛 𝑗+1/2 = 𝜌 𝑛 𝑗 V + (𝜌 𝑛 𝑗+1 , 𝑤 𝑛 𝑗+1 ) = 𝜌 𝑛 𝑗 V + (𝜌 𝑛 𝑗+1/2 , 𝑤 𝑛 𝑗 )
, which reduces to the scalar case [START_REF] Bürger | A family of numerical schemes for kinematic flows with discontinuous flux[END_REF][START_REF] Hilliges | A phenomenological model for dynamic traffic flow in networks[END_REF]. 

Proposition 1 Under the CFL condition Δ𝑡 ∥V (𝜌, 𝑤) ∥ L ∞ (Ω) ≤ Δ𝑥,
𝜌 𝑛+1 𝑗 = 𝜌 𝑛 𝑗 - Δ𝑡 Δ𝑥 𝜌 𝑛 𝑗 V + (𝜌 𝑛 𝑗+1 , 𝑤 𝑛 𝑗+1 ) -𝜌 𝑛 𝑗 -1 V + (𝜌 𝑛 𝑗 , 𝑤 𝑛 𝑗 ) = 𝜌 𝑛 𝑗 1 - Δ𝑡 Δ𝑥 V + (𝜌 𝑛 𝑗+1 , 𝑤 𝑛 𝑗+1 ) + Δ𝑡 Δ𝑥 𝜌 𝑛 𝑗 -1 V + (𝜌 𝑛 𝑗 , 𝑤 𝑛 𝑗 ) ≥ 0 since Δ𝑡 V + (𝜌 𝑛 𝑗+1 , 𝑤 𝑛 𝑗+1 ) ≤ Δ𝑥 by assumption. □ Proposition 2 Under the CFL condition (3), if 𝑅(𝑤) = R max for all 𝑤 ∈ [𝑤 𝑚𝑖𝑛 , 𝑤 𝑚𝑎𝑥 ],
the approximate solution constructed by (4)-( 5) satisfies 𝜌 𝑛 𝑗 ≤ R max for all 𝑗 ∈ Z and 𝑛 ∈ N. In particular, V (𝜌 𝑛 𝑗 , 𝑤 𝑛 𝑗 ) ≥ 0 for all 𝑗 ∈ Z and 𝑛 ∈ N. Proof We assume that at time 𝑡 = 𝑡 𝑛 , the approximate solution satisfies 𝜌 𝑛 𝑗 ≤ R max for all 𝑗 ∈ Z. Then we get approximate solutions consist of a stationary vacuum discontinuity followed by a shock from (0, 0.5) (resp. (0, 0.8)) to 𝑈 𝑅 .

𝜌 𝑛+1 𝑗 = 𝜌 𝑛 𝑗 - Δ𝑡 Δ𝑥 𝜌 𝑛 𝑗 V + (𝜌 𝑛 𝑗+1 , 𝑤 𝑛 𝑗+1 ) -𝜌 𝑛 𝑗 -1 V + (𝜌 𝑛 𝑗 , 𝑤 𝑛 𝑗 ) = 𝜌 𝑛 𝑗 - Δ𝑡 Δ𝑥 𝜌 𝑛 𝑗 V (𝜌 𝑛 𝑗+1/2 , 𝑤 𝑛 𝑗 ) -𝜌 𝑛 𝑗 -1 V (𝜌 𝑛 𝑗 , 𝑤 𝑛 𝑗 ) = 𝜌 𝑛 𝑗 - Δ𝑡 Δ𝑥 𝜌 𝑛 𝑗 V (𝜌 𝑛 𝑗+1/2 , 𝑤 𝑛 𝑗 ) ± 𝜌 𝑛 𝑗 V (𝜌 𝑛 𝑗 , 𝑤 𝑛 𝑗 ) -𝜌 𝑛 𝑗 -1 V (𝜌 𝑛 𝑗 , 𝑤 𝑛 𝑗 ) = 𝜌 𝑛 𝑗 - Δ𝑡 Δ𝑥 𝜌 𝑛 𝑗 V 𝜌 (𝜉 𝑛 𝑗 , 𝑤 𝑛 𝑗 ) 𝜌 𝑛 𝑗+1/2 -𝜌 𝑛 𝑗 + V (𝜌 𝑛 𝑗 , 𝑤 𝑛 𝑗 ) 𝜌 𝑛 𝑗 -𝜌 𝑛 𝑗 -1 = 𝜌 𝑛 𝑗 1 - Δ𝑡 Δ𝑥 𝑏 𝑛 𝑗 + 𝑎 𝑛 𝑗 + 𝜌 𝑛 𝑗+1/2
𝜌 𝑛+1 𝑗 ≤ R max 1 - Δ𝑡 Δ𝑥 𝑏 𝑛 𝑗 + 𝑎 𝑛 𝑗 + R max Δ𝑡 Δ𝑥 𝑏 𝑛 𝑗 + R max Δ𝑡 Δ𝑥 𝑎 𝑛 𝑗 = R max . □
• Test 3: right vacuum state 𝜌 𝑅 = 0, see Figures 5, 6 and7.

(A) AS1 consists of a rarefaction wave from 𝑈 𝐿 = (0.3, 0.5) to (0, 0.5); in AS2, the rarefaction is followed by a vacuum wave from (0, 0.5) to (0, 0.7). (B) AS1 consists of a rarefaction wave from 𝑈 𝐿 = (0.5, 0.7) to (0, 0.7); AS2 is composed of a rarefaction from 𝑈 𝐿 to (0.3, 0.7), followed by a contact discontinuity to 𝑈 𝑅 = (0, 0.4) moving with speed V (𝑈 𝑅 ) = 0.4. (C) AS1 consists of a rarefaction wave from 𝑈 𝐿 = (0.3, 0.8) to (0, 0.8); AS2 is composed of a shock from 𝑈 𝐿 to (0.5, 0.8) with 0 speed, followed by a contact discontinuity to 𝑈 𝑅 = (0, 0.3) moving with speed V (𝑈 𝑅 ) = 0.3. In all the cases, the numerical solutions capture AS1 by construction.

Convergence order

To compare the performance of the numerical schemes, we consider the L 1 -error L 1 (Δ𝑥) and the numerical order of accuracy 𝛾(Δ𝑥) for Δ𝑥 = 1 100 , 1 200 , 1 400 , 1 800 , 1 1600 at 𝑡 = 𝑇, defined respectively by 

1 (Δ𝑥) = 1 𝑀 𝑀 𝑗=1 |𝜌 𝑇 Δ𝑡 𝑗 -ρ| + |𝑦 𝑇 Δ𝑡 𝑗 -ȳ| , 𝛾(Δ𝑥) = log 2 L 1 (2Δ𝑥 ) L 1 (Δ𝑥 ) ,
where ρ and ȳ denote the cell averages of the exact Riemann solution at 𝑡 = 𝑇 and 𝑀 is the number of cells (see Table 1). We consider two cases: + 0.2, 𝑤(0, 𝑥) = 1.12(𝑥 -0.5) 2 + 0.7.

We observe that, as expected for first order schemes, the order of convergence is about 0.5 for discontinous solutions and 1 for smooth ones, HW showing in general a slightly higher order than Godunov's, but for bigger errors due to greater viscosity. 

Model calibration: computational cost

In the following section, we compare the computational performance of the proposed HW scheme with the more commonly used Godunov scheme.

We consider real traffic data provided by the Minnesota Department of Transportation (RTMC data) [START_REF]Mn/Dot Traffic Data[END_REF]. Thus, we analyse a 5 hours traffic scenario (Friday 02/22/2013, 6am-11am) on a 1.1 km long rampless road stretch equipped with 4 As in [START_REF] Würth | Data-driven uncertainty quantification in macroscopic traffic flow models[END_REF], the speed function is given by

V (𝜌, 𝑤) = 𝑤 1 -exp C V max 1 -R max 𝜌
, which satisfies (2). The function contains three parameters 𝜃 𝜃 𝜃 = (V max , C, R max ) (V max : maximum speed, C: propagation speed in congestion), which have to be calibrated. In order to compute the optimal parameter set 𝜃 𝜃 𝜃 * , we execute a least square optimization which reads as

𝜃 𝜃 𝜃 * = argmin 𝜃 𝜃 𝜃 𝐶 (𝜃 𝜃 𝜃) = argmin 𝜃 𝜃 𝜃 𝑁 𝑖=1 𝑞(𝑡 𝑖 , 𝑥 𝑖 ) -𝑞 𝑠𝑖𝑚 (𝑡 𝑖 , 𝑥 𝑖 , 𝜃 𝜃 𝜃) 2 ,
where 𝑁 denotes the number of observation points. The quantity of interested is chosen to be the flow, thus 𝑞(𝑡, 𝑥) (resp. 𝑞 𝑠𝑖𝑚 (𝑡, 𝑥)) denotes the averaged measured (resp. simulated) flow value at time 𝑡 and loop position 𝑥. The optimization is executed in Matlab by using the global optimization solver pso and setting its hybrid function tool to the local fmincon-solver. The maximum Lagrangian vehicle property is set to 𝑤 𝑚𝑎𝑥 = 140 and the optimization bounds are the same as in [18, Table 1]. Finally, we compare the calibration parameters, the root-mean square error and the computational time 𝜏 between the two numerical schemes in Table 2. We recall that the root-mean square error between an observed traffic quantity 𝑦 𝑘 and its averaged simulated value 𝑦 𝑠𝑖𝑚 𝑘 , for 𝑘 ∈ {flow, speed, density}, is given by 𝐸 𝑘 = 1 . We observe that, for comparable errors and similar calibration parameters, the computational time is reduced by 42% using HW scheme. 

Fig. 1

 1 Fig. 1 Left: Phase-plane representation of an example of solution to the Riemann problem corresponding to 𝑈 𝐿 = 𝑈 𝑛 𝑗 = (𝜌 𝑛 𝑗 , 𝑤 𝑛 𝑗 ) and 𝑈 𝑅 = 𝑈 𝑛 𝑗+1 = (𝜌 𝑛 𝑗+1 , 𝑤 𝑛 𝑗+1 ), consisting of a shock joining 𝑈 𝐿 to 𝑈 𝑀 = 𝑈 𝑛 𝑗+1/2 = (𝜌 𝑛 𝑗+1/2 , 𝑤 𝑛 𝑗 ) and a contact discontinuity from 𝑈 𝑀 to 𝑈 𝑅 . Right: Space-time representation of the Riemann solution at the corresponding cell interface.

Fig. 2

 2 Fig. 2 Test 1. Solutions of the Riemann problem with (𝜌 𝐿 , 𝑤 𝐿 ) = (0.4, 0.5), (𝜌 𝑅 , 𝑤 𝑅 ) = (0.1, 0.9), computed by the Godunov and HW schemes at 𝑇 = 0.5 with Δ𝑥 = 1 800 , compared to the analytical solutions.

Fig. 3

 3 Fig. 3 Test 2 (A) Solutions of the Riemann problem with (𝜌 𝐿 , 𝑤 𝐿 ) = (0, 0.7), (𝜌 𝑅 , 𝑤 𝑅 ) = (0.3, 0.5), computed by the Godunov and HW schemes at 𝑇 = 0.5 with Δ𝑥 = 1 800 , compared to the analytical solutions.

Fig. 4

 4 Fig. 4 Test 2 (B) Solutions of the Riemann problem with (𝜌 𝐿 , 𝑤 𝐿 ) = (0, 0.4), (𝜌 𝑅 , 𝑤 𝑅 ) = (0.2, 0.8), computed by the Godunov and HW schemes at 𝑇 = 0.5 with Δ𝑥 = 1 800 , compared to the analytical solutions.

Fig. 5

 5 Fig. 5 Test 3 (A) Solutions of the Riemann problem with (𝜌 𝐿 , 𝑤 𝐿 ) = (0.3, 0.5), (𝜌 𝑅 , 𝑤 𝑅 ) = (0, 0.7), computed by the Godunov and HW schemes at 𝑇 = 0.5 with Δ𝑥 = 1 800 , compared to the analytical solutions.

Fig. 6

 6 Fig. 6 Test 3 (B) Solutions of the Riemann problem with (𝜌 𝐿 , 𝑤 𝐿 ) = (0.5, 0.7), (𝜌 𝑅 , 𝑤 𝑅 ) = (0, 0.4), computed by the Godunov and HW schemes at 𝑇 = 0.5 with Δ𝑥 = 1 800 , compared to the analytical solutions.
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Fig. 7

 7 Fig. 7 Test 3 (C) Solutions of the Riemann problem with (𝜌 𝐿 , 𝑤 𝐿 ) = (0.3, 0.8), (𝜌 𝑅 , 𝑤 𝑅 ) = (0, 0.3), computed by the Godunov and HW schemes at 𝑇 = 0.5 with Δ𝑥 = 1 800 , compared to the analytical solutions.

Table 1 L 1 -L 1 (L 1 (

 1111 error and numerical order of accuracy for the Godunov and HW schemes at 𝑇 = 0.5. Δ𝑥 ) 𝛾 (Δ𝑥 ) L 1 (Δ𝑥 ) 𝛾 (Δ𝑥 ) 100 15.37 • 10 -3 -13.52 • 10 -3 -200 10.66 • 10 -3 0.5283 9.50 • 10 -3 0.5153 400 7.32 • 10 -3 0.5427 6.67 • 10 -3 0.5037 800 5.02 • 10 -3 0.5439 4.74 • 10 -3 0.4950 1600 3.47 • 10 -3 0.5303 3.37 • 10 -3 0Δ𝑥 ) 𝛾 (Δ𝑥 ) L 1 (Δ𝑥 ) 𝛾 (Δ𝑥 ) 100 20.85 • 10 -3 -10.25 • 10 -3 -200 12.36 • 10 -3 0.7548 5.37 • 10 -3 0.9320 400 6.23 • 10 -3 0.9880 2.76 • 10 -3 0.9631 800 3.06 • 10 -3 1.0237 1.37 • 10 -3 1.0091 1600 1.44 • 10 -3 1.0857 0.65 • 10 -3 1.0678

Fig. 8

 8 Fig. 8 Space-time density visualization of the simulated data and their difference.

  𝑘 (𝑡 𝑖 , 𝑥 𝑖 ) -𝑦 𝑠𝑖𝑚 𝑘 (𝑡 𝑖 , 𝑥 𝑖 , 𝜃 𝜃 𝜃 * )| 2 1/2

  𝑈 𝑀 defines the intermediate state of the solution to the Riemann problem corresponding to 𝑈 𝐿 and 𝑈 𝑅 = (𝜌 𝑛

		𝜌,𝑛 𝑗+1/2 , 𝐹	𝑦,𝑛 𝑗+1/2 ) 𝑇 , where				
	𝐹	𝜌,𝑛 𝑗+1/2 = 𝜌 𝑛 𝑗 V + (𝜌 𝑛 𝑗+1 , 𝑤 𝑛 𝑗+1 )	and	𝐹	𝑦,𝑛 𝑗+1/2 = 𝑤 𝑛 𝑗 𝐹	𝜌,𝑛 𝑗+1/2	(5)

are the flow respectively of 𝜌 and 𝑦 at 𝑥 = 𝑥 𝑗+1/2 in the time interval [𝑡 𝑛 , 𝑡 𝑛+1 [, and we set V + (𝜌, 𝑤) := max{V (𝜌, 𝑤), 0}. Indeed, since contact discontinuity waves have positive speed and the variable 𝑤 is advected with 𝜌𝑣, the choice (5) gives a good approximation of the flux at the interface, which corresponds to the Riemann problem given by 𝑈 𝐿 = (𝜌 𝑛 𝑗 , 𝑤 𝑛 𝑗 ) and 𝑈 𝑀 = (𝜌 𝑛 𝑗+1/2 , 𝑤 𝑛 𝑗 ). Here, 𝑗+1 , 𝑤 𝑛 𝑗+1 ), where 𝜌 𝑛 𝑗+1/2 is implicitly defined by V (𝜌 𝑛 𝑗+1/2 , 𝑤 𝑛 𝑗

Table 2

 2 Calibration parameter, root-mean square error and computational time (in seconds) for the Godunov and HW schemes. RTMC traffic data. In bold: value with a lower error.V max C R max 𝐸 flow 𝐸 speed 𝐸density 𝜏 HW 92.23 24.16 442.14 395.89 5.66 20.43 298.87 Godunov 94.98 21.39 454.49 396.69 5.50 20.35 518.34

We remark that, in the general case, 𝑅(𝑤) ≠ R max for all 𝑤 ∈ [𝑤 𝑚𝑖𝑛 , 𝑤 𝑚𝑎𝑥 ], the positivity of the speed cannot be guaranteed. This is why we take V + in (5).

Acknowledgements This work has been supported by the French government, through the 3IA Côte d'Azur Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-19-P3IA-0002. ; the Inria Associated Team "NOLOCO -Efficient numerical schemes for non-local transport phenomena" (2018-2022); the MATH-Amsud 22-MATH-05 "NOTION -NOn-local conservaTION laws for engineering, biological and epidemiological applications: theoretical and numerical" (2022-2023). LMV was partially supported by Centro de Modelamiento Matemático (CMM) FB210005 BASAL funds for centers of excellence from ANID-Chile.

Numerical tests 4.1 Riemann problems

In this section, we consider the Riemann problem for [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF] with the ARZ speed function V (𝜌, 𝑤) = 𝑤 -𝑝(𝜌) with 𝑝(𝜌) = 𝜌 and initial data of the form (𝜌, 𝑤) (0, 𝑥) = (𝜌 𝐿 , 𝑤 𝐿 ) if 𝑥 ≤ 0.5 and (𝜌, 𝑤) (0, 𝑥) = (𝜌 𝑅 , 𝑤 𝑅 ) if 𝑥 > 0.5. We compare the solutions at 𝑇 = 0.5 computed on the interval [0, 1] by the Godunonv and HW schemes with absorbing boundary conditions. The numerical solutions are also compared with the entropy admissible analytical solutions proposed by [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF] (denoted as Analitical Solution 1 -AS1) and [START_REF] Fan | Data-fitted generic second order macroscopic traffic flow models[END_REF] (AS 2).

Solutions involving vacuum states

Since the numerical scheme is expressed in conservative variables (𝜌, 𝑦 = 𝜌𝑤), the Lagrangian vehicle property 𝑤 is not defined whenever 𝜌 = 0. Thus, we demonstrate in this subsection that, whenever 𝜌 𝑛 𝑗 = 0, setting

, is coherent with the density component of the Riemann solution stated in [9, Definition 1] in the cases involving vacuum states. Notice that, due to numerical viscosity, density at vacuum states may be not exactly zero, affecting the 𝑤 and 𝑣 = V (𝜌, 𝑤) components.

In the following, we analyse the solution of the numerical solutions for different initial data.

• Test 1: middle vacuum state 𝜌 𝑀 = 0, see Figure 2. AS1 consists of a rarefaction from 𝑈 𝐿 = (0.4, 0.5) to (0, 0.5) followed by a contact discontinuity to 𝑈 𝑅 = (0.1, 0.9) travelling with speed V (𝑈 𝑅 ) = 0.8; AS2 is composed of a rarefaction wave connecting 𝑈 𝐿 to (0, 0.5), followed by a vacuum wave and a contact discontinuity between (0, 0.8) and 𝑈 𝑅 . While the 𝜌 component is the same for all solutions, the 𝑤 and 𝑣 components of the numerical solutions match AS2, which is L 1 -stable in the Riemann invariants.

• Test 2: left vacuum state 𝜌 𝐿 = 0, see Figures 3 and4.

(A) Both analytical solutions are the juxtaposition of a shock from 𝑈 𝐿 to (0.5, 0.7) and a contact discontinuity, moving at the same speed V (𝑈 𝑅 ) = 0.2. (B) AS1 consists of a discontinuity between 𝑈 𝐿 = (0, 0.4) and 𝑈 𝑅 = (0.2, 0.8) travelling with speed V (𝑈 𝑅 ) = 0.6; AS2 is a vacuum wave from 𝑈 𝐿 to (0, 0.6) followed by a contact discontinuity. We observe that the numerical schemes capture the 𝜌 component, but there is a discrepancy in the Riemann invariants: indeed, due to numerical viscosity, the