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Complete closed-form and accurate solution to
pose estimation from 3D correspondences

Ezio Malis

Abstract— Computing the pose from 3D data acquired in
two different frames is of high importance for several robotic
tasks like odometry, SLAM and place recognition. The pose
is generally obtained by solving a least-squares problem given
points-to-points, points-to-planes or points to lines correspon-
dences. The non-linear least-squares problem can be solved by
iterative optimization or, more efficiently, in closed-form by
using solvers of polynomial systems. In this paper, a complete
and accurate closed-form solution for a weighted least-squares
problem is proposed. Adding weights for each correspondence
allow to increase robustness to outliers. Contrary to existing
methods, the proposed approach is complete since it is able to
solve the problem in any non-degenerate case and it is accurate
since it is guaranteed to find the global optimal estimate of the
weighted least-squares problem. Simulations and experiments
on real data demonstrate the superior accuracy and robustness
of the proposed algorithm compared to previous approaches.

I. INTRODUCTION

The use of 3D sensors (lidars [1], [2], stereo cameras [3],
[4], RGB-D cameras [5], [6], ...) has become mainstream in
autonomous robotics applications for their ability to accu-
rately localize the robot and measure the 3D structure of the
robot’s environment. These sensors are able to produce a set
of 3D points at each acquisition. Therefore, the registration
of two sets of 3D points is of high importance for several
tasks like odometry [7], SLAM [8], place recognition [9].
The problem is generally set as the solution of a non-
linear optimization problem (generally a least-squares) after
matching points to points [10], [11], [12], points to planes
[13], [14] or points to lines [15], [16].

A unified solution for the points-to-points, points-to-line
and points-to-plane registration problem was firstly proposed
in [17]. The authors proposed to use an iterative branch and
bound optimization solver [18] that is able to find global
optimum of non-convex problems. Such an algorithm is quite
slow and usually reach a suboptimal solution i.e. a solution
that is close to the global minimum within a given precision.
To overcome this problem and speed up the computation time
[19] and [20] use a Lagrangian dual relaxation solver. These
methods can find the global minimum but are iterative [21]
and therefore time consuming. Much faster algorithm can
be obtained by using solvers like in [22], [23], [24] that
solve the problem in ”closed-form” since they make use of
simple linear algebra operations only. Most solvers eliminate
the translation from the equations since it appears linearly
(quadratically in the least-squares problem), obtaining a
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simpler optimization problem depending from the rotation
only (3 d.o.f.). The non-linearities comes from the rotation
matrix since it must be an orthonormal matrix. Therefore, the
parametrisation of the rotation matrix is crucial to transform
the least-square optimisation into a polynomial problem.

The most common rotation parametrisation is obtained
by using unit quaternions [10], [23]. This representation
is complete but not minimal: all possible rotations can be
represented using 4 variables. Another possible representa-
tion is the Cayley-Gibbs-Rodrigues (C-G-R) parameters [22],
[24]. This representation is minimal but not complete: only
3 variables are necessary but it is impossible to represent
rotations with an angle of π around an arbitrary axis. Even
if minimal, the C-G-R parametrisation leads to a rational
representation of the rotation. Therefore, authors in [24]
were finally forced to introduce 4 intermediate variables to
transform the rational problem into a polynomial problem.
One of the intermediate variables depends on the three
others but it was considered as a free variable (therefore
ignoring the constraint). Experimental results in [24] shows
better accuracy than in [23] but using an additional Newton-
Raphson refinement of the solution given by the solver.

In order to understand which is the best combination
between solvers and rotation parametrisations in order to
have the best accuracy a different approach is proposed in
this paper. A quaternion parametrisation is used like in [10],
[23] but, contrarily to [23] the unit quaternion constraint is
properly imposed through Lagrangian optimization. More-
over, instead of the Gröebner-basis solver, a solver based
on the u-resultant MacAulay method [25] is proposed. The
method is improved in this paper in order to avoid degenerate
configurations that may occur with the u-resultant. The u-
resultant MacAulay method was successfully used by [22] to
solve the perspective-point pose determination problem (Pnp)
but jointly with a C-G-R parametrisation of the rotation.
Therefore, the key contribution of this paper is the com-
bination of a robust u-resultant solver with the quaternion
parametrisation of the rotation, that was not considered in
previous works as illustrated in Table I.

`````````Solver
Rotation C-G-R Quaternion

Gröebner Zhou [24] Wientapper [23]

Macaulay Hesch [22] This paper

TABLE I: Classification with state-of-the-art closed-form
methods depending on the chosen solver and on the chosen
rotation parametrisation.



II. THEORETICAL BACKGROUND

Let mc be a 3D point in a current frame Fc. The point
belongs to a line in the same frame with origin m (any point
on the line) and unitary direction vector d if and only if:

[d]
2
× (mc −m) = 0 (1)

And it belongs to a plane in the same frame with origin m
(any point on the plane) and with unitary normal vector n if
and only if:

n>(mc −m) = 0 (2)

We consider now the same point but in a different reference
frame Fr. Let cTr ∈ SE(3) the homogeneous transforma-
tion matrix between the two frames:

cTr =

[
R t
0 1

]
where R ∈ SO(3) is the 3×3 rotation matrix and t ∈ R3 is
the 3×1 translation vector. The current point mc is obtained
transforming the reference point mr as follows:

mc = R mr + t (3)

Plugging equation (3) into equation (1) we get:

[d]
2
× (R mr + t−m) = 0 (4)

And plugging equation (3) into equation (2) we get:

n>(R mr + t−m) = 0 (5)

Stacking the entries rij of the rotation matrix R, rows by
rows, into a 9× 1 vector:

r = [R]∨ = [r11; r12; r13; r21; r22; r23; r31; r32; r33] (6)

we can write:
R mr = M r

where M is the following 3× 9 matrix:

M =

 m>r 0 0
0 m>r 0
0 0 m>r


In order to get a similar notation for all cases (points, lines
and planes), equations (3), (4) and (5) can be rewritten as
follows:

M r+ t−m = 0 (7)

For point-to-point correspondences the point m is set to the
current points m = mc in equation (7).

For point-to-line correspondences m is an arbitrary point
on the current line, and from equation (4) we get:

[d]
2
× (M r+ t−m) = 0 (8)

For point-to-plane correspondences m is an arbitrary point
on the current plane, and from equation (5) we get:

n>(M r+ t−m) = 0 (9)

Our objective is to estimate the pose (rotation vector r
and translation vector t) given several measured points and
corresponding planes. Note that even if the equations are
linear in the vector r, the problem is non-linear.

A. Rotation parametrisation

The rotation matrix R ∈ SO(3) is a 3×3 matrix but it has
3 degrees of freedom only since it is orthonormal, R>R = I,
that means 6 constraints on the entries of the rotation: Instead
to represent the rotation by 9 entries subject to 6 constraints
we can use more compact representations.

1) Cayley-Gibbs-Rodrigues parametrisation: We can use
the the Cayley-Gibbs vector parametrisation for R :

R(g) =
1

1 + g>g
(I+ 2 [g]× + 2 [g]

2
× + (g>g)I) (10)

where g = u tan θ
2 . This parametrisation leads to a rational

form and is not complete since it cannot represent rotations
when θ = π (indeed tan θ

2 →∞ when |θ| → π).
2) Quaternion parametrisation: Another rotation

parametrisation is the quaternion q = [qr,qi] = [w;x; y; z]
for which we have:

R(q) = I+ 2qr [qi]× + 2 [qi]
2
× (11)

q>q = 1 (12)

We can stack all the rows of the rotation matrix in a (9× 1)
vector r(q) = [R]∨ that is quadratic in the 4 unknowns
x, y, z, w. This non minimal parametrisation has a 2-fold
symmetry since r(q) = r(−q).

B. The weighted least squares problem

Considering nm point to point correspondences, nl point
to line correspondences and np point to plane correspon-
dences the weighted least squares optimisation problem can
be written as follows:

min
r,t

1

2

nm∑
i=1

w2
mid

2
mi +

1

2

nl∑
j=1

w2
ljd

2
lj +

1

2

np∑
k=1

w2
kpd

2
pk (13)

where wm, wl and wp are weights. The squared distance
point to point is given by:

d2m = (M r+ t−m)>(M r+ t−m) (14)

the squared distance point to line is given by:

d2l = (M r+ t−m)> [d]
4
× (M r+ t−m) (15)

and the squared distance point to plane is given by:

d2p = (M r+ t−m)>(nn>)(M r+ t−m) (16)

Introducing a (3×3) symmetric weighting matrix W we can
define all possible squared distances with an unique equation:

d2 = (M r+ t−m)>W (M r+ t−m)

where the choice of the entries of the semi-definite positive
weighting matrix W determines a specific distance :
• for a distance point to point select W = w2

m I
• for a distance point to line select W = −w2

l [d]
2
×

• for a distance point to plane select W = w2
p nn

>

Therefore, the optimisation problem mixing points, lines and
plane can be generally written as follows:

min
r,t

n∑
k=1

(Mk r+ t−mk)
>Wk (Mk r+ t−mk) (17)



This optimisation problem can be solved iteratively starting
from an initial guess of the global optimum, or in a closed
form as proposed in the next section. The weights can be
used to implement robust M-estimators techniques [26].

III. LEAST SQUARE CLOSED-FORM SOLUTION

The first step to solve the problem (17) in closed-form is to
eliminate the translation vector that appears quadratically in
the cost function and then solve a new equivalent non-linear
problem that depends on the rotation only [17], [23], [24].
Again, even if the new equivalent problem is non-linear it can
be solved by finding the real roots of polynomial equations.

A. Separating rotation and translation

The least squares problem in equation (17) can be written
as a quadratic function of t:

c(r, t) = t>
n∑
k=1

Wkt+ 2

n∑
k=1

(Mk r−mk)
>
Wk t+

n∑
k=1

(Mk r−mk)
>
Wk (Mk r−mk) (18)

Therefore, the optimal solution for the translation can be
easily computed:

∂c(r, t)

∂t
=

n∑
k=1

Wk t+

n∑
k=1

W>
k (Mk r−mk) = 0

That is:

t = −

(
n∑
k=1

Wk

)−1 n∑
k=1

W>
k (Mk r−mk)

where t is a linear function in r. The translation can be
obtained as a linear function of the rotation vector r:

t = At r+ bt (19)

where the matrix At and vector bt are:

At = −

(
n∑
k=1

Wk

)−1 n∑
k=1

W>
k Mk (20)

bt = +

(
n∑
k=1

Wk

)−1 n∑
k=1

W>
k mk (21)

Plugging back the optimal translation into the cost function
we have now to solve the following optimisation problem:

min
r

n∑
k=1

(
Mkr−mk

)>
Wk

(
Mkr−mk

)
where:

Mk = Mk +At (22)
mk = mk − bt (23)

we can set the problem in the following canonical form:

min
r
c(r) = min

r
(r>Arr+ 2b>r r+ cr) (24)

where Ar is the following 9× 9 matrix:

Ar = +

n∑
k=1

M
>
kWkMk

br is the following 9× 1 vector:

br = −
n∑
k=1

M
>
kWkmk

and cr is the following scalar:

cr = +

n∑
k=1

m>kWkmk

B. Special case of point-to-point correspondences

As noticed by [23] when point-to-point correspondences
are used exclusively their in-homogeneous solver GAPS had
difficulties. Indeed, for a point-to-point correspondence the
matrix Ar has a very special block-diagonal structure:

Ar =

 S 0 0
0 S 0
0 0 S


where S is a 3 × 3 symmetric matrix. In this case we have
∀ r = [R]∨:

r>Arr =
1

3
tr(Ar)

Therefore the total degree of the system of equations point-
to-point correspondence drops from 4 to 2.

min
r
c(r) = min

r

(
2b>r r+ cr +

1

3
tr(Ar)

)
(25)

This explains the difficulties of using the same solver when
point-to-point correspondences are used exclusively. In this
case, the problem can be rewritten as follows:

min
q
c(q) = min

q

(
q>Bq+ cq

)
(26)

The cost function is quadratic in the quaternion q, B being
a symmetric (4 × 4) matrix. Therefore the solution of the
problem is straightforward and it is given to the unitary
eigenvalue of the symmetric matrix B corresponding to the
smallest eigenvalue [27]. This optimal result can also be
obtained by the method proposed in the following section.

C. Closed-form solutions for the rotation

Using the quaternion parametrisation, the vector r can
be written as a quadratic function of 4 unknowns q =
[w;x; y; z]. We can impose the constraint q>q = 1 using
the Lagrange multiplier method [21]:

min
λ,q
L(λ,q) = c(r(q)) + λ(1− q>q) (27)

The stationary points of the Lagrangian are found by solving
the following polynomial equations:

∂L(λ,q)
∂λ

= 1− q>q = 0 (28)

∂L(λ,q)
∂q

= g>(q)− λq> = 0 (29)



where g>(q) =
[
gw(q) gx(q) gy(q) gz(q)

]
is the

following (1× 4) vector:

g>(q) =
∂c(r)

∂r

∂r(q)

∂q

that is the multiplication of the following (1× 9) vector:

∂c(r)

∂r
= (Arr+ br)

>

and the following (9× 4) Jacobian matrix:

∂r(q)

∂q
= J(q) = 2



0 0 −2y −2z
−z y x −w
y z w x
z y x w
0 −2x 0 −2z
−x −w z y
−y z −w x
x w z y
0 −2x −2y 0


Note that one could compute λ as follows:

(Arr+ br)
>
J(q)q− λq>q = 0

therefore we could back-substitute λ in the optimization
problem:

λ = (Arr+ br)
>
J(q)q

This would lead to a system of 5th degree in 4 unknowns.
Another way to solve the problem is to consider equa-
tion (29):

g(q) = λq

and eliminate λ with the wedge product (or exterior product):

g(q) ∧ q = λq ∧ q = 0

which is a 4× 4 skew symmetric matrix:

g(q) ∧ q = q g>(q)− g(q) q> = 0

therefore obtaining the following 6 equations (of degree 4
in the general case and of degree 2 when considering only
point-to-point correspondences), jointly with the quaternion
constraint of degree 2:

f1(q) = x2 + y2 + z2 + w2 − 1 = 0 (30)
f2(q) = x gw − w gx = 0 (31)
f3(q) = y gw − w gy = 0 (32)
f4(q) = z gw − w gz = 0 (33)
f5(q) = x gy − y gx = 0 (34)
f6(q) = x gz − z gx = 0 (35)
f7(q) = y gz − z gy = 0 (36)

The Bezout theorem states that the system has at most
128 solutions in the general case and at most 16 solutions
when considering only point-to-point correspondences. We
use the u-resultant method proposed by [25]. This method
has already been used to solve a different problem (the
perspective-n-point camera pose estimation) by [22].

The u-resultant approach consist in adding an auxiliary
linear equation in the unknown q:

f0(q) = u>q = u0 + u1 w + u2 x+ u3 y + u4 z (37)

where the coefficients u = [u0, u1, u2, u3, u4] can be any.
Note that, in general, f0(q) will not be zero at the roots of the
system of polynomial equations (30-36). The second step is
to select n = 4 independent equations of degree di from (30-
36) and to define the total degree of the system of equations,
including the auxiliary polynomial as d = 1 +

∑n
i=1 di − n

(in our case d = 11). We multiply the equations fj will
all possible monomial mγ = wγ1xγ2yγ3zγ4 with degree
γ =

∑4
i=1 γi such that the obtained polynomials have degree

equal to the total degree. Grouping all the monomial in
a vector v = [1, w, x, y, z, w2, wx,wy,wz, x2, ...] we can
rewrite the obtained polynomials as M v, where M is
the Macaulay matrix depending on the coefficients c of
the original polynomials and on the coefficients u of the
auxiliary equation. In our case, we get a matrix M of size
1365× 1365 that can be partitioned as follows [25]:

M =

[
A(u) B(u)
C(c) D(c)

]
where size(A) = (128×128) and size(D) = (1237×1237).
The solutions of the problem are the eigenvectors of the
following 128× 128 multiplication matrix:

Q = A−BD−1C

In order to reduce the computation time and increase the ac-
curacy three main improvements over the original algorithm
[25] are proposed in this paper. First of all, to solve the
possible problem of rank deficiency of the D matrix [28]
when building the Macaulay matrix all possible equations
(30-36) are considered when selecting polynomials to form
the resultant. Secondly, notice that it is possible to reduce the
number of monomials by using the equation with the lowest
degree. In our case, we substitute w2 = 1 − x2 − y2 − z2
in the equations. Therefore, only monomial linear in w will
be present in the equations. The size of matrix M is then
reduced to 650 × 650, and size(D) = (522 × 522). The
third simplification is obtained by noticing that M matrix is
generally very sparse (in our case 95% of the matrix entries
are equal to 0) and that the matrix may be reordered in such
a way that it can be written as a block diagonal matrix:

M =

[
A(u) B1(u) B2(u)
C1(c) D1(c) 0
C2(c) 0 D2(c)

]
where in our case size(D1) = (222× 222) and size(D2) =
(300 × 300). Finally, the solutions are obtained computing
the eigenvectors of the following 128 × 128 multiplication
matrix that is much faster to compute:

Q = A−B1D
−1
1 C1 −B2D

−1
2 C2

Obviously we select only the real solutions and discard
complex-conjugate solutions. Note also that the possible
solutions can be reduced to 64 due to the two-fold symmetry
of quaternions [29], [30], [31].



IV. EXPERIMENTS

In this section, we compare our algorithm with the
state-of-the-art iterative algorithms (Olsson's algorithm using
Branch and Bound [18] and Briales's algorithm [20] using
Lagrangian duality) and with the state-of-the-art closed-
form algorithms (Wientapper's algorithm [23] and Zhou's
algorithm [24]). In the experiments with closed-form solvers,
only the closed-form solution of the least square problem
is considered. Therefore, in order to have a fair comparison
between the algorithms, the Newton-Raphson iterative refine-
ment, starting from the best pose found by the closed-form
optimization, is not performed as in [24]. Another solution
would have been to perform this iterative refinement step
after any of the algorithm but this may have hidden the true
performance of the solvers. We present experiments both on
simulated and real data.

A. Experiments with simulated data

The simulated data are generated similarly to [20] and
[24]. Specifically, 3D points are determined by randomly
sampling a sphere of radius 10m. Unit directions for lines and
normal for planes are generated randomly. Random rotations
are generated by uniformly sampling the Euler angles ϕ, θ
and ψ (ϕ, ψ ∈ [0◦; 360◦] and θ ∈ [0◦; 180◦]). The translation
displacements are uniformly distributed within [10m; 10m].
For np point-to-plane, nl point-to-line, and nm point-to-point
correspondences, the number of correspondences is calcu-
lated as N = np+2nl+3nm. Given an N, a combination of
point, line and point is randomly generated whose effective
number is N. The estimated rotation R̂ and translation t̂
are compared to the ground truth rotation R and translation
t. The rotation error is the absolute value of the rotation
angle computed as δr = ||logm(R̂ R>)||F , where logm is
the logarithm of a rotation matrix [32] that gives the skew-
symmetric matrix [uθ]× such that R̂ R> = expm([uθ]×)
and || • ||F is the Frobenius norm that gives the magnitude
of the rotation angle. The translation error is δt = ||̂t− t||.
For all experiments the average rotation error µ(δr) and the
average translation error µ(δt) are computed for 1000 trials.

1) Fixed number of correspondences, increasing noise: In
the first set of simulations the number of correspondences is
fixed while the noise standard deviation on the generated 3D
data increases from 0 to 0.2 m. Figure (1) shows the results
of a simulation where the rotation angle is fixed to θ = 180◦

and the rotation axis and the translation are random. The
number of correspondences is fixed to the minimum N = 6.
For more clarity, we separate the comparison of the proposed
method with closed-form algorithm from the comparison
with iterative algorithms that have much more computa-
tional complexity. The iterative algorithms show poor results
when considering the minimum number of correspondences
where multiple global minima may exist. As expected, the
method proposed in [24] is highly unstable since the C-G-R
parametrisation of the rotation cannot handle the case when
the rotation axis is fixed to 180◦. The proposed method
provide a better accuracy than [23] when the noise level
increases.

Figure (2) shows the results of a simulation where the
rotation and the translation are random. The number of cor-
respondences is again fixed to N=6. For iterative algorithms
we obtain similar results to the previous simulation. Note that
when the number of correspondences is minimal there may
be several possible global minima. The closed-form methods
provide all the possible solutions while iterative methods
may fail to find them all. Since the rotation angle is random
the method proposed by Zhou performs better than in the
previous simulation but it clearly has problems to handle the
minimal case. Wientapper's algorithm handles correctly this
minimal case, the proposed method even better.

(a) Comparison with iterative
methods, translation error (m).

(b) Comparison with iterative
methods, rotation error (degrees).

(c) Comparison with closed-form
methods, translation error (m).

(d) Comparison with closed-form
methods, rotation error (degrees).

Fig. 1: Simulation with a rotation angle fixed to θ = 180◦

around a random rotation axis. The number of correspon-
dences is fixed to the minimum N = 6.

(a) Comparison with iterative
methods, translation error (m).

(b) Comparison with iterative
methods, rotation error (degrees).

(c) Comparison with closed-form
methods, translation error (m).

(d) Comparison with closed-form
methods, rotation error (degrees).

Fig. 2: Simulation with a random rotation. The number of
correspondences is fixed to the minimum N = 6.



Figure (3) shows the results of a simulation where the
rotation angle is fixed to θ = 180◦ and the rotation axis and
the translation are random. The number of correspondences
is fixed to N=7. Contrarily to the simulation with the minimal
number of correspondences, iterative methods work well and
are almost equivalent. The proposed method provides better
results while having a much lower computational complexity.
Surprisingly, the method proposed by Zhou gives better
results even if the C-G-R parametrisation of the rotation may
not handle this case. Noise and numerical errors make that
the estimated error is never exactly 180◦ that would cause a
division by zero in the algorithm.

(a) Comparison with iterative
methods, translation error (m).

(b) Comparison with iterative
methods, rotation error (degrees).

(c) Comparison with closed-form
methods, translation error (m).

(d) Comparison with closed-form
methods, rotation error (degrees).

Fig. 3: Simulation with a rotation angle fixed to θ = 180◦

around a random rotation axis. The number of correspon-
dences is fixed to N = 7.

(a) Comparison with iterative
methods, translation error (m).

(b) Comparison with iterative
methods, rotation error (degrees).

(c) Comparison with closed-form
methods, translation error (m).

(d) Comparison with closed-form
methods, rotation error (degrees).

Fig. 4: Simulation with a random rotation. The number of
correspondences is fixed to N = 7.

Figure (4) shows the results of a simulation where the
rotation and the translation are random. The number of
correspondences is fixed to N=7. The proposed approach,
provides more accurate results than iterative and closed-form
methods for all noise levels.

2) Fixed noise, increasing number of correspondences :
In the second set of simulations the noise standard deviation
is fixed to 0.2 m while the number of correspondences
increases from 6 to 14. Figure (5) shows the results when the
rotation angle is fixed to θ = 180◦ around a random axis.

(a) Comparison with iterative
methods, translation error (m).

(b) Comparison with iterative
methods, rotation error (degrees).

(c) Comparison with closed-form
methods, translation error (m).

(d) Comparison with closed-form
methods, rotation error (degrees).

Fig. 5: Simulation with number of correspondences increas-
ing from 6 to 14. The rotation angle is fixed to θ = 180◦

and the noise standard deviation is fixed to 0.2 m.

(a) Comparison with iterative
methods, translation error (m).

(b) Comparison with iterative
methods, rotation error (degrees).

(c) Comparison with closed-form
methods, translation error (m).

(d) Comparison with closed-form
methods, rotation error (degrees).

Fig. 6: Simulation with number of correspondences increas-
ing from 6 to 14. The rotation is random. The noise standard
deviation is fixed to 0.2 m.



In this case the C-G-R rotation parametrisation provide
the worst results, especially when 6 to 8 correspondences are
considered. Note that the 180◦ degeneracy can be avoided
by randomly pre-rotating the points [23]. However, the
requirement to run the algorithm multiple times increases
the computation time and the number of solutions. Iterative
algorithms also provide poor results for few correspondences
confirming previous experiments. The proposed algorithm
provide the best results over all the algorithms even when
only few correspondences are used.

Figure (6) shows the results when the rotation is random.
The results are very similar to the previous experiment. In
particular, there is no improvement for Zhou’s algorithm
suggesting again that high level of noise in the data prevents
the C-G-R rotation parametrisation from failing. It must be
noticed that the difference from the results presented in
[24] is certainly due to the fact that the Newton-Raphson
refinement is not performed here.

3) Special case with points-to-points correspondences:
Simulations with points-to-points correspondences only con-
firmed that Wientapper's algorithm is not able to handle
this special case. In Figure (7) the results corresponding
to this method are not displayed since the Matlab function
provided by the authors does not give any results. Indeed,
the polynomials equations goes from degree 4 to degree
2 (see section III-B). Note that Zhou's algorithm does not
suffer from this problem and provide good results. On
the contrary, Olsson's algorithm provided poor results. The
proposed approach applied to this case provided the best
results similarly to Briales's algorithm.

(a) Comparison with iterative
methods, translation error (m).

(b) Comparison with iterative
methods, rotation error (degrees).

(c) Comparison with closed-form
methods, translation error (m).

(d) Comparison with closed-form
methods, rotation error (degrees).

Fig. 7: Simulation with number of 3D point correspondences
increasing from 3 to 11. The rotation and translation are
random. The noise standard deviation is fixed to 0.2 m.

4) Comparison of computation time: In this experiment,
we compare the computational time of closed-form algo-
rithms. The number of correspondences vary from 100 to

3000. Figure 8 illustrates the results averaging the running
time over 100 trials. In the current Matlab implementation
the proposed approach is slower than the others closed-form
methods below 1000 correspondences and faster above (e.g.
around 12 milliseconds for 1000 correspondences).

Fig. 8: Computational time of closed-form algorithms (ms)

B. Experiments with real data

Similarly to previous work [24], the KITTI dataset [33]
is used for experimental results. The current 3D points set
(lidar scan k+1) is segmented to extract lines and planes
and matched with the closest 3D points of the reference set
(lidar scan k). There are more than 50,000 correspondences
in each frame, with the majority being the point-to-plane
correspondences. For simplicity, only points-to-planes cor-
respondences are considered since they represent more than
99% of the found correspondences (i.e. points-to-points and
points-to-lines correspondences are only 1% of the found
correspondences). The planes are extracted from the point
cloud by performing least squares fitting on k-neighbors (k
= 8) around each point. If the least square error is below a
threshold the points are considered to be on the same plane.

To find the point-to-plane correspondences, a kd-tree
search is performed to find the current point closest (minimal
3D distance) to a given reference point. If the current point
belong to a plane, the reference point and the the current
plane are set as corresponding.

After finding the closest points-to-planes correspondences,
the optimal pose between scans k+1 and k is estimated and
used to register the reference 3D points into the current
frame. A robust Tukey M-estimator [26] is used to compute
the weights of the weighted least-square problem in equation
(13). This ICP process is repeated at most for 10 iterations
or stopped before if the computed incremental translation
displacement is less than 1 mm and the computed incre-
mental rotation displacement is less than 0.1 deg. Finally,
the optimal pose is compared to the ground truth and a
translation error δt (in meters) and a rotation error δR (in
degrees) are computed for each frame.

Table II show the mean and standard deviation of transla-
tion and rotation errors obtained on sequences 03, 04, and 07
of the KITTI dataset like in [24]. Iterative algorithms are not
considered here since they have a much higher computational
cost as pointed out in [24]. Finally, the proposed approach
is more accurate and robust than state-of-the-art closed-form
approaches.



method
Seq. 03 (800 frames) Seq. 04 (270 frames) Seq. 07 (1100 frames)

µ(δt)± σ(δt) (m) µ(δr)± σ(δr) (◦) µ(δt)± σ(δt) (m) µ(δr)± σ(δr) (◦) µ(δt)± σ(δt) (m) µ(δr)± σ(δr) (◦)
Wientapper [23] 0.020± 0.031 0.077± 0.126 0.091± 0.255 0.060± 0.080 0.012± 0.007 0.046± 0.034

Zhou [24] 0.018± 0.015 0.068± 0.090 0.030± 0.021 0.044± 0.035 0.012± 0.007 0.044± 0.038

This paper 0.017± 0.012 0.050± 0.036 0.026± 0.018 0.036± 0.022 0.011± 0.007 0.041± 0.029

TABLE II: Comparison with state-of-the-art closed-form algorithm on KITTI Dataset.

V. CONCLUSIONS

This paper presents a complete and accurate solution
for pose estimation from points-to-points, points-to-line and
points-to plane correspondences. The proposed approach is
also able to provide an accurate and robust solution to the
weighted least squares problem even when considering a
minimum number of correspondences and for any rotation.
Simulated and experimental results show that the proposed
algorithm outperforms state-of-the-art algorithms at the price
of a higher computational complexity in the current Matlab
implementation. Future research directions would be (i) to
study if the superior accuracy comes from the choice of
solver (Macaulay u-resultant instead of Gröebner basis) or
from the correct handling of the quaternion constraint with
the Lagrange multiplier, and (ii) to study how to reduce the
computational complexity of the solver.
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