∈ P ⊂ R m , (1) 
Comme A est immense, on utilise un algorithme de plans coupants qui ajoute les contraintes une par une. À chaque itération it ≥ 1, cet algorithme construit une approximation extérieure P it ⊃ P ; grâce au sous-problème de séparation, il coupe la solution optimale opt (P it ) pour construire une approximation extérieure plus fidèle P it+1 de P. On construit ainsi une séquence d'approximations : P 1 P 2 P 3 • • • P p ⊇ P. L'algorithme s'arrête lorsqu'il devient impossible de séparer opt (P it ), ce qui signifie que max b opt (P it ) = b opt (P).

La méthode des points intérieurs (IPM, en abrégé, pour « Interior point method ») a été publiée en 1984 par N. Karmakar et elle a été un « breakthrough » qui a revitalisé l'étude des PL. Il s'agissait du premier algorithme à la fois théoriquement polynomial et capable de rivaliser en pratique avec l'algorithme du Simplexe. Dans cet étude on va utiliser la famille d'IPM appelle « primal-dual IPM » qui sont parmi les plus efficaces en pratique. Je préfère citer [START_REF] Nocedal | Chapitre 14, Numerical optimization[END_REF] : « By the early 1990s, a subclass of interior-point methods known as primal-dual methods had distinguished themselves as the most efficient practical approaches, and proved to be strong competitors to the simplex method on large problems. ».

Il existe déjà plusieurs travaux qui utilisent une IPM pour déterminer la solution optimale opt (P it ) à l'itération courante it, voir par exemple les travaux initiés par Jacek Gondzio au milieu des années 1990 [START_REF] Gondzio | Warm start of the primal-dual method applied in the cutting-plane scheme Mathematical Programming[END_REF]. En fait, il n'est même pas obligatoire d'exécuter l'IPM jusqu'à sa fin pour déterminer opt(P it ) : l'algorithme plus général de plans coupants peut se « contenter » d'une solution sous-optimale de P it et d'appeler le sous-problème de séparation sur celle ci. L'avantage des « dual-primal IPM » est qu'il est possible d'avoir un contrôle sur une mesure de dualité µ (cf. page suivante) entre une solution primale et une solution duale. Donc il est possible d'arrêter l'IPM lorsque la mesure de dualité est très petite, ce qui signifie que la solution sous-optimale courante n'est pas trop éloigné de opt(P it ). De toute façon, si cette solution sous-optimale peut être séparée, l'algorithme de plans coupants peut continuer normalement.

Je suis en train d'étudier une approche pour (essayer de) surmonter l'inconvénient suivant : Si on utilise une IPM pour déterminer opt(P it ) à l'itération it, les points intérieurs calculés par l'IPM seront intérieurs par rapport à P it , mais pas forcement intérieurs par rapport à P, car P it ⊃ P. C'est dans ce sens que je qualifie (dans le titre) la méthode proposée de « Globally-Interior Point ». Les points intérieurs générés seront intérieurs par rapport à P et pas seulement par rapport à P it . L'outil principal utilisé pour s'assurer que l'IPM exécuté à l'itération it ne sort pas de P est le sous-problème de projection présenté dans [START_REF] Porumbel | Projective Cutting-Planes[END_REF]. Étant donné un y ∈ P et une direction d ∈ R m , ce sous-problème demande de déterminer la longueur de pas maximale t tel que y+t•d ∈ P. J'ai présenté dans [START_REF] Porumbel | Projective Cutting-Planes[END_REF] et dans un « follow-up work » plusieurs algorithmes pour résoudre ce sous-problème dans diverses contextes ; le code est déjà fonctionnel et disponible en ligne.

Pour pouvoir utiliser la plate-forme IPM, on doit réécrire (1) sous la forme : max y,s b y tel que : A y + s = c, s ≥ 0 n , où A ∈ R m×n . Chaque colonne de A représente une contrainte écrite dans (1) sous la forme a y ≤ c a . On considère que n augmente (d'une unité) à chaque itération it de l'algorithme général de plans coupants ; m est toujours fixe. Pour un n et un m fixés à une itération donnée it, l'IPM vise à déterminer les vecteurs x, y et s qui satisfont :

A y + s = c (2a) Ax = b (2b) x i s i = 0 ∀i ∈ [1..n] (2c) (x, s) ≥ 0 n (2d)
Une IPM converge vers une solution de ce système en construisant une séquence de solutions primales-duales (x k , y k , s k ) qui satisfont la contrainte (2.d) de manière stricte, i.e., x k i , s k i > 0. La contrainte (2.c) n'est jamais forcement imposée par un IPM, mais on a la garantie que la mesure de dualité

µ k = 1 n n i=1 x k i s k i converge vers 0 lorsque k → ∞.
À chaque itération k, l'IPM résout un système d'équations qui lui permet de calculer le pas Newton (∆x k , ∆y k , ∆s k ) pour passer à l'itération suivante :

(x k+1 , y k+1 , s k+1 ) = (x k , y k , s k ) + (∆x k , ∆y k , ∆s k ). (3) 
L'algorithme proposé ici intègre (3) dans un contexte de plans coupants. Il démarre en fait avec une forme réduite de (2) où on a très peu de colonnes (un très petit n). Avant d'appliquer (3), on appelle le sous-problème de projection pour garantir que (3) ne mène pas à une solution y k+1 qui sort de P. Ce sous-problème détermine le pas maximal t tel que y k + t • y k ∈ P ainsi qu'une contrainte saturée par y k + t • y k , qui est aussi une nouvelle colonne à insérer dans la matrice A pour augmenter sa taille de n à n + 1. Une difficulté importante c'est de s'assurer que la contrainte ( Par la suite, j'ai étudié le problème de coloration de graphe. C'est plus difficile d'ajouter deux colonnes complémentaires à la fois, car le complémentaire 1 m -a stab d'un stable a stab ∈ {0, 1} m est un vertex-cover. Je pense m'orienter sur la résolution d'un nouveau problème de génération de colonnes où les colonnes seront associées à la fois aux stables et aux minimal vertex-covers.
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  2.b) reste satisfaite après cette extension. Pour cela, on propose d'ajouter deux colonnes à la fois, une colonne légitime a new et une colonne (artificielle ou naturelle) complémentaire a new = ba new . Il suffit ensuite de multiplier x avec t < 1 et d'élargir ce x avec deux positions de valeur 1 -t qui correspondent à ces deux colonnes a new et a new de A. 3 Tests numériques et conclusions D'abord, j'ai étudié le problème affiché comme exemple sur la fiche Wikipedia de l'IPM : max y 1 + y 2 : 2p • y 1 + y 2 ≤ p 2 + 1, ∀p ∈ [0, 1 z , 2 z , 3 z , . . . 1], où z peut être très élevé. Ce problème vérifie la propriété indiquée plus haut : si a new = [2p, 1] est une colonne légitime, la colonne complémentaire a new = [2(1 -p), 1] l'est aussi. Le nombre de pas de la nouvelle méthode augmente beaucoup mois vite que celui de l'algorithme de plans coupants (lorsque z → ∞).