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Abstract—This paper proposes a solution to minimize the 

learning time of a fully connected neural network. The paper 

presents a processing architecture in which the treatments 

applied to the examples of the learning base are strongly 

parallelized and anticipated, even before the parameters 

adaptation of the previous examples are completed. This 

strategy finally leads to a delayed adaptation and the impact of 

this delay on the learning performances is analysed through a 

simple replicable school case study. It is shown that a reduction 

of the adaptation step size could be proposed to compensate 

errors due to the delayed adaptation. Finally, the gain in 

processing time for the learning phase is analysed as a function 

of the network parameters chosen in this study. 

Keywords—Neural networks, Learning algorithms, 

Architecture, FPGA. 

I. INTRODUCTION 

Artificial intelligence algorithms based on neural networks 
[1] were introduced a long time ago. The founding paper is 
undoubtedly that of McCulloch and Pitts [2] entitled "A 
Logical Calculus of Ideas Immanent in Nervous Activity" 
which proposed the first mathematical model of an artificial 
neuron with a threshold response function. Since that time 
artificial intelligence has had an eventful history with cycles 
of significant advances and more stationary periods [3]. 
Currently, the surge in available labelled data, combined with 
the large computational capacities available, puts artificial 
intelligence back in the spotlight in many applications [4]. 

However, real-time learning remains a real challenge and 
in many of the applications currently proposed, the networks 
are trained off-line, and the real-time focus is mainly on the 
processing of the data by the network and not on the learning 
phase with the adaptation of the free network parameters. In 
this paper we focus on the learning phase and propose a 
processing architecture dedicated to this phase. We have 
chosen a perceptron type neural network with all layers fully 
connected. The analysed algorithm is the gradient 
backpropagation with a sigmoid activation function. 
Currently, the possible widely used processing architectures 
include Central Processing Unit (CPU), Graphics Processing 
Unit (GPU), Field Programmable Gate Array (FPGA), and 
Application Specific Integrated Circuit (ASIC) acceleration. 
Among them, GPU acceleration technology has frequently 
become the first choice for deep learning acceleration methods 
due to its powerful computing capabilities[5]. FPGA is 
composed of a logic cell array, which includes configurable 
logic modules, input and output modules, and internal 
connections. Compared with other acceleration methods, 
FPGA has the advantages of reconfigurability, high energy 
efficiency ratio, high performance, portability, and low 
latency. Based on these advantages, FPGA has developed 
rapidly in recent years and has gradually become a strong 

competitor of GPU in the field of algorithm acceleration. At 
present, there are many types of FPGA-based neural network 
accelerators with different design concepts [6][7] and 
acceleration schemes [8][9][10]. 

This article is organized as follows: in section II we 
introduce main notations and equations of the back 
propagation algorithm. In section III we propose the 
organisation of calculations and in section IV a pipeline FPGA 
implementation architecture is presented. A practical 
simulation case is described and given in section V, where a 
performance analysis is presented. Main conclusions are given 
in section VI. 

II. BACKPROPAGATION ALGORITHM 

A. Notations 

In the sequel of the paper, we consider a fully connected 
neural network with � layers numbered from 1 to �. 

 
Fig. 1. Fully connected neural network. 

We introduce the following notations: 
�� : the number of neurons of the Lth layer. 
���  : the input of the activation function of the ith neuron of 
the Lth layer. 
��� : the output of the ith neuron of the Lth layer. 
����  : the synaptic coefficient between the jth neuron of the (L-
1)th layer and the ith neuron of the Lth layer. 
	�� : the constant coefficient of the ith neuron of the Lth layer 
(bias). 

� : the ith desired values at the output of the neural network 
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B. Algorithm’s equations 

Concerning the activation function in the neuron, we 
consider either a sigmoid [11] function �(�)  defined as 
follows: 

 �(�) = ��
���� (1) 

or a linear function, especially for the last layer:  

 �(�) = � (2) 

The first input layer is fed with � =  ��!, ��!, … , �
$
! %. The free 

parameters are all "synaptic coefficients": ����  and the 
constant parameters 	��, for all layers & ∈ (1, �). 
The main objective is to apply a gradient descent algorithm 
to find all ����  and 	��  terms and, for that purpose, we will 
have to calculate the derivative of the error with respect to the 
synaptic coefficients and the constant parameters. This partial 

derivative will be written as 
*+

*,-.
 in the paper. 

The complete algorithm considered in this paper is given 
in the table I, hereafter: 

TABLE I.  BACKPROPAGATION EQUATIONS 

inputs: /��!, ��!, … , �
$
! 0 

Forward propagation, 
for & = 1 
1 � 

��� = 2 ���� ���3�

.4�

�5�
+ 	�� 

��� = �(���) 
Error calculation 

7(�) = 1
2 2 ��

� − 
�%�

�

�5�
 

Backward propagation 

Initialization with a sigmoid function for the last layer (9 ∈
:1, ��;): 

<7
<��

� =  ��
� − 
�

�%��
� 1 − ��

�% 

Or initialization with a linear function for the last layer: 
<7
<��

� =  ��
� − 
�

�% 

for & = � − 1 
1 1, for all j indexes of the concerned layer: 

<7
<���

= ��� 1 − ���% 2 <7
<����� ����� �


.=�

�5�
 

 
Adaptation, for & = 1 
1 �, for all i and j indexes of the 
concerned layer: 

���� = ���� − > <7
<���

���3� 

	�� = 	�� − > <7
<���

 

III. ORGANIZATION AND GROUPING OF CALCULATIONS 

We propose to use an architecture such that a set of 
calculations are performed on each clock period. The 
organization is presented in table II hereafter. Most operations 
can be performed by dedicated hardware resources on one 
clock period. Some functions, more complicated to obtain, 
will require several clock periods. This is typically the case for 
the sigmoid function which is often approximated using a 
Look Up Table (LUT) and requires 3 clock periods [12]. 

TABLE II.  CLOCK TIME PERIODES REQUIRED FOR ALGORITHM 
EQUATIONS 

inputs: /��!, ��!, … , �
$
! 0 

CLK   

1 ∀9 ∈ (1, �!) 

∀� ∈ (1, ��) 

���� ��! 

2 ∀� ∈ (1, ��) ��� = 2 ���� ��!

$

�5�
+ 	�� 

3,4,5 ∀� ∈ (1, ��) ��� = �(���) 

6 ∀9 ∈ (1, ��) 

∀� ∈ (1, ��) 
���� ��� and  1 − ���% 

7 ∀� ∈ (1, ��) ��� = 2 ���� ���

�

�5�
+ 	�� 

and 

��� 1 − ���% 

8,9,10 ∀� ∈ (1, ��) ��� = �(���) 

11 ∀9 ∈ (1, ��)  ��� − 
��% and  1 − ���% 

12 ∀9 ∈ (1, ��) <7
<���

=  ��� − 
��%��� 1 − ���% 

13 ∀9 ∈ (1, ��) 

∀@ ∈ (1, ��) 

<7
<���

����  

∀� ∈ (1, ��) 	�� = 	�� − > <7
<���

 

∀9 ∈ (1, ��) 

∀� ∈ (1, ��) 
<7
<���

��� 

14 ∀9 ∈ (1, ��) 2 <7
<���


A

�5�
����  

∀9 ∈ (1, ��) 

∀� ∈ (1, ��) ���� = ���� − > <7
<���

��� 

15 ∀9 ∈ (1, ��) <7
<���

= ��� 1 − ���% 2 <7
<���


A

�5�
����  

16 ∀� ∈ (1, ��) 

∀9 ∈ (1, �!) 

<7
<���

��! 

∀� ∈ (1, ��) 	�� = 	�� − > <7
<���

 

17 ∀� ∈ (1, ��) 

∀9 ∈ (1, �!) 
���� = ���� − > <7

<���
��! 

For the sake of simplicity for the paper presentation and 
without any loss of generalization we consider a 2 layers 
neural network (� = 2) in the sequel of the presented tables. 

To carry out the algorithm on a structure with calculations in 
parallel and with anticipation it is thus necessary to introduce 
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new variables identified by letters in table III. These variables 
must be saved in dedicated memories. In our example, the 
worst case corresponds to B�(
 + 6)) that will be calculated 
at (
 + 6)  and used at (
 + 7)  and (
 + 15).  It is also 
necessary to memorize the synaptic coefficients of layer 2 
 GHIJ % that are used in forward propagation at time (
 + 5) 
and used in backward error updates at time (
 + 13). 

TABLE III.  VARIABLES USED IN THE ARCHITECTURE AND RESSOURCES 
INVOLVED 

inputs: /��!(
), ��!(
), … , �
$
! (
)0 

CLK  

1 L��(
 + 1) = GHIM (N)��!(
) 

2 O�(
 + 2) = 2 L��(
 + 1)

$

�5�
+ PHM(N + M) 

5 Q�(
 + 5) = �(O�(
 + 2)) 
6 R��(
 + 6) = GHIJ (N + S)Q�(
 + 5) 

B�(
 + 6) =  1 − Q�(
 + 5)% 

7 T�(
 + 7) = 2 R��(
 + 6)

�

�5�
+ PHJ(N + U) 

V�(
 + 7) = Q�(
 + 5)B�(
 + 6) 

10 W�(
 + 10) = �(T�(
 + 7)) 
11 X�(
 + 11) =  W�(
 + 10) − NIJ(N)% 

Y�(
 + 11) =  1 − W�(
 + 10)% 

12 &�(
 + 12) = X�(
 + 11)W�(
 + 10)Y�(
 + 11) 

13 Z��(
 + 13) = &�(
 + 12)G[IJ (N + S) 

	��(
 + 13) = 	��(
 + 12) − >&�(
 + 12) 

���(
 + 13) = &�(
 + 12)Q�(
 + 5) 

14 \�(
 + 14) = 2 Z��(
 + 13)

A

�5�
 

���� (
 + 14) = ���� (
 + 13) − >���(
 + 13) 

15 �̂(
 + 14) = B�(
 + 6)\�(
 + 14) 

16 _��(
 + 16) = �̂(
 + 14)��!(
) 

	��(
 + 16) = 	��(
 + 15) − > �̂(
 + 14) 

17 ���� (
 + 17) = ���� (
 + 16) − >_��(
 + 16) 

Considering table IIII it appears necessary to have dedicated 
hardware processing resources to calculate the 17 variables 
of the table. It’s shown on table IV that, thanks to a hardware 
resource allocation algorithm, the treatment can be done with 
16 hardware dedicated processing resources, identified as `� 
to `�a. Some of them are loaded at 100%, it is typically the 
case for `b and `a that must calculate the sigmoid function 
[11], while others are loaded at 66 % as `�, `�, `c and `d. 
All other resources are loaded at 33 %. The global load of 
hardware resources `� being equal to 50.7 %. 

The time necessary for the propagation of calculations is 
equal, for this � = 2 layers-network, to 17 clock cycles. 

This result can be extended for any value for �  and the 
processing time e is equal to: 

  e = 8� + 1 (3) 

 

TABLE IV.  TEMPORAL IMPLEMENTATION ON DEDICATED HARDWARE 
PROCESSING RESOURCES (green: data of time t, red: data of time t+1, blue: 

data of time t+2, brown: data of time t+3, yellow: data of time t+4) 

C

L

K 

`� `� `b `c `d `a `g `h `i `�! `�� `�� `�b `�c `�d `�a 

1 A G C  H I   M N θ   Q θ  

2  B C K  I J     O w   w 

3 D  C F P I  L         

4 A G C  H I   M N θ   Q θ  

5  B C K  I J     0 w   w 

6 D  C F P I  L         

7 A G C  H I   M N θ   Q θ  

8  B C K  I J     O w   w 

9 D  C F P I  L         

1

0 
A G C  H I   M N θ   Q θ  

1

1 
 B C K  I J     O w   w 

1

2 
D  C F P I  L         

1

3 
A G C  H I   M N θ   Q θ  

1

4 
 B C K  I J     O w   w 

1

5 
D  C F P I  L         

1

6 
A G C  H I   M N θ   Q θ  

1

7 
 B C K  I J     O w   w 

1

8 
D  C F P I  L         

1

9 
A G C  H I   M N θ   Q θ  

2

0 
 B C K  I J     O w   w 

2

1 
D  C F P I  L         

2

2 
A G C  H I   M N θ   Q θ  

2

3 
 B C K  I J     0 w   w 

IV. FPGA ARCHITECTURE 

According to the previous section, a general fully 
connected neural network pipeline hardware architecture 
based on FPGA is proposed and presented in figure 2. All the 
inputs: /��!, ��!, … , �
$

! 0  will be charged in the memory “z-
buffer”, the initial "synaptic coefficients": ����  and the 

constant parameters 	�� will be saved in register ���  and 
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register 	 and finally the desired values at the output of the 
neural network 
� will be charged to the memory “t-buffer”.  

 
Fig. 2. FPGA Architecture. 

A generic component “FP Module” must be created to 
realize the following operation: 

 � = �(∑ ��� ��

$
�5� + 	� ) (4) 

For the forward propagation implementation, we need to 
implement one “FP Module” (component created in an 
FPGA) for each neuron of each layer. The inputs of each “FP 
Module” are the outputs of the neurons of the previous layer, 
the corresponding "synaptic coefficients" ���� , the constant 
parameters 	��. The “FP Module” output will be used as input 
of the neurons of the next layer. A “Delay module” is created 
to hold the values (such as ����  in clock time 6), to use them 
later (in clock time 13 for ���� ). The output of the last layer and 
the “t-buffer” are the inputs of the component “Cost Unit” and 
the output &�  of “Cost Unit” is connected to the first 
component “BP module” to start the process of 
backpropagation, it is connected also with the “ �, 	 adapt 
module” to adapt the coefficients � and bias 	 of the last 
layer, the new coefficients and the bias will be saved in the 
register ���  and 	  of each layer respectively. The same 
structure will be repeated as many times as the number of 
layers. All modules are controlled by the “Control Unit” 
which provides the control signals to read or write weights (�) 
and bias (	� . In this pipeline structure, once the training 
process is starting, the training data can be charged one by one 
for each system clock. The specification of FPGA offers the 
possibility to hold the data for each system clock (T), the data 
will be transferred to the next component for next system 
clock (T+1), and free the register to receive the new data. 
Thus, from the 18th clock, all the operations from 1 to 17 of 
TABLE III will be running parallelly, in this way, we optimize 
the use of resources and accelerate the training process. 

V. SIMULATION RESULTS 

To test the algorithm, we have chosen to ask the neural 
network to learn how to calculate a Discrete Fourier 
Transform. The interest of this choice is to have a perfectly 
replicable simulation without the need to refer to a training 
base and to a generalization base. The simulation is also not 
dependent on the size of the existing databases because the 
training vectors can be generated randomly in a quasi-infinite 
way. For each iteration of the training, we therefore randomly 
generate a vector of �kkl  Gaussian random complex terms 
m��n�∈(!,
oop3�) . Each term having zero mean and unity 
variance for its real and imaginary parts. Then, for each 
iteration, we compute the Fourier Transform of this Gaussian 
vector: 

 mq�n�∈(!,
oop3�) � BBe/m��n�∈(!,
oop3�). 0 (5) 

and use the terms of this Fourier Transform as the desired 
signal (
�→
��. The input and output signals being Gaussian 
we present in input a vector made up of the real parts then the 
imaginary parts. The input vector and the output vector are 
thus of size �! � 2 s �kkl  and �� � 2 s �kkl . 

TABLE V.  COMPLEX TO REAL MAPPING 

�
�→
$

�

! � `tuv/�!→
oop3�0 

�
$
� ��→
$

! � Wwux/�!→
oop3�0 



�→


�
�

� `tuv/q!→
oop3�0 



�
� ��→
�

� Wwux/q!→
oop3�0 

We let the training run for several million examples 
(between 50 and 5 million depending on the simulations) for 
different values of the training delay and we varied the 
gradient adaptation step size >. Finally, at each iteration, we 
took the squared error 7  which we integrated over an 
exponential window with a forgetting factor λ by means of the 
following equation: 

 7�
 6 1� � �7�
� 6 �1 8 �� ∑  ��
� 8 
�%

�
�
�5�  (6) 

We then divided this error by the power of the desired 
signal to obtain a normalized mean squared error (NMSE) that 
we plotted in logarithm in base 10. Main simulation 
parameters are summarized in table VI. 

TABLE VI.  MAIN SIMULATION PARAMETERS 

�kkl � 16 
� � 2 
� � 0,9999 
> � 103c 1z 5. 103c 
1st layer: sigmoid, 2nd layer: linear 

It appears on figure 3 that the adaptation delay degrades 
the performances rather quickly and can even block the 
convergence of the adaptation. This is very noticeable as soon 
as this delay exceeds about ten clock cycles. However, the 
simulation results presented in figure 4 were obtained with a 
> adaptation step size of the gradient equals to 5. 103c. It can 
be seen, in figure 4, that reducing this step size to 103c  is 
sufficient to improve the performances very significantly, to 
solve the non-convergence problem and to allow the 
adaptation with delay to have performances very close to the 
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adaptation without delay. However, this reduction of the 
adaptation step increases the convergence time of the learning. 
We can see that for an objective of the logarithm of the 
normalized mean squared error equals to 82.4, we need to 
present 5 million examples with an adaptation step size of 
5. 103c and 20 million examples with an adaptation step size 
of 103c. In the simple example presented, we can therefore 
conclude that the implementation architecture proposed in this 
article optimizes the processing time but at the cost of an 
increase in convergence time by a factor of 4 . Globally 
without pipeline the time of an iteration is equal to 17 clock 
cycles compared to one clock cycle with the pipeline. We must 
therefore compare 17 times 5 million to 1 times 20 million, 
which leads to an overall gain in processing time equal to 4,25 
for the example presented. 

 
Fig. 3. Logarithm of  the normalized mean squared error vs number of 

iterations with > � 5. 103c (NFFT=16) 

TABLE VII.  NMSE WITH AN ADAPTATION STEP SIZE EQUALS TO 5.10-4 

delay Normalized mean squared error 
1 4,337 10-3 

21 6,90 10-3 
41 11,775 10-3 
61 16,0375 10-3 
81 20,875 10-3 
101 25,212 10-3 

 

 
Fig. 4. Logarithm of the normalized mean squared error vs number of 

iteration ith > � 103c (NFFT=16) 

TABLE VIII.  NMSE WITH AN ADAPTATION STEP SIZE EQUALS TO 10-4 

delay Normalized mean squared error 
1 1,8575 10-3 

11 1,8735 10-3 
21 1,8909 10-3 
31 1,9099 10-3 
41 1,9301 10-3 
101 2,1437 10-3 

VI. CONCLUSION 

In this paper we have proposed a hardware decomposition 
of the computations of a learning algorithm based on the 
gradient backpropagation algorithm. We have shown, in the 
case of a simple and perfectly replicable example, that a 
complete step of coefficient adaptation could be performed in 
23 clock cycles. The proposed parallelization leads to an 
anticipation of the computations and to a delayed update of the 
free coefficients of the network. It was shown on this simple 
example that the effects of this adaptation delay could be 
compensated by a reduction of the adaptation step size. We 
finally conclude that by slightly slowing down the adaptation 
phase, we can propose a parallelized architecture which will 
significantly accelerate the processing time with a positive 
overall result. 
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