
HAL Id: hal-03956819
https://hal.science/hal-03956819

Submitted on 3 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Learning Architecture for Neural Networks
Ming Jun Zhang, Samuel Garcia, Michel Terre

To cite this version:
Ming Jun Zhang, Samuel Garcia, Michel Terre. Fast Learning Architecture for Neural Networks. 2022
30th European Signal Processing Conference (EUSIPCO), Aug 2022, Belgrade, Serbia. pp.1611-1615,
�10.23919/EUSIPCO55093.2022.9909812�. �hal-03956819�

https://hal.science/hal-03956819
https://hal.archives-ouvertes.fr

Fast Learning Architecture for Neural Networks

ZHANG Ming Jun
CEDRIC/Laetitia

DGUT-CNAM

Dongguan, China
ming-jun.zhang@lecnam.net

GARCIA Samuel
CEDRIC/Laetitia
HESAM/CNAM

Paris, France
samuel.garcia@lecnam.net

TERRÉ Michel
CEDRIC/Laetitia
HESAM/CNAM

Paris, France
michel.terre@lecnam.net

Abstract—This paper proposes a solution to minimize the

learning time of a fully connected neural network. The paper

presents a processing architecture in which the treatments

applied to the examples of the learning base are strongly

parallelized and anticipated, even before the parameters

adaptation of the previous examples are completed. This

strategy finally leads to a delayed adaptation and the impact of

this delay on the learning performances is analysed through a

simple replicable school case study. It is shown that a reduction

of the adaptation step size could be proposed to compensate

errors due to the delayed adaptation. Finally, the gain in

processing time for the learning phase is analysed as a function

of the network parameters chosen in this study.

Keywords—Neural networks, Learning algorithms,

Architecture, FPGA.

I. INTRODUCTION

Artificial intelligence algorithms based on neural networks
[1] were introduced a long time ago. The founding paper is
undoubtedly that of McCulloch and Pitts [2] entitled "A
Logical Calculus of Ideas Immanent in Nervous Activity"
which proposed the first mathematical model of an artificial
neuron with a threshold response function. Since that time
artificial intelligence has had an eventful history with cycles
of significant advances and more stationary periods [3].
Currently, the surge in available labelled data, combined with
the large computational capacities available, puts artificial
intelligence back in the spotlight in many applications [4].

However, real-time learning remains a real challenge and
in many of the applications currently proposed, the networks
are trained off-line, and the real-time focus is mainly on the
processing of the data by the network and not on the learning
phase with the adaptation of the free network parameters. In
this paper we focus on the learning phase and propose a
processing architecture dedicated to this phase. We have
chosen a perceptron type neural network with all layers fully
connected. The analysed algorithm is the gradient
backpropagation with a sigmoid activation function.
Currently, the possible widely used processing architectures
include Central Processing Unit (CPU), Graphics Processing
Unit (GPU), Field Programmable Gate Array (FPGA), and
Application Specific Integrated Circuit (ASIC) acceleration.
Among them, GPU acceleration technology has frequently
become the first choice for deep learning acceleration methods
due to its powerful computing capabilities[5]. FPGA is
composed of a logic cell array, which includes configurable
logic modules, input and output modules, and internal
connections. Compared with other acceleration methods,
FPGA has the advantages of reconfigurability, high energy
efficiency ratio, high performance, portability, and low
latency. Based on these advantages, FPGA has developed
rapidly in recent years and has gradually become a strong

competitor of GPU in the field of algorithm acceleration. At
present, there are many types of FPGA-based neural network
accelerators with different design concepts [6][7] and
acceleration schemes [8][9][10].

This article is organized as follows: in section II we
introduce main notations and equations of the back
propagation algorithm. In section III we propose the
organisation of calculations and in section IV a pipeline FPGA
implementation architecture is presented. A practical
simulation case is described and given in section V, where a
performance analysis is presented. Main conclusions are given
in section VI.

II. BACKPROPAGATION ALGORITHM

A. Notations

In the sequel of the paper, we consider a fully connected
neural network with � layers numbered from 1 to �.

Fig. 1. Fully connected neural network.

We introduce the following notations:
�� : the number of neurons of the Lth layer.
��� : the input of the activation function of the ith neuron of
the Lth layer.
��� : the output of the ith neuron of the Lth layer.
���� : the synaptic coefficient between the jth neuron of the (L-
1)th layer and the ith neuron of the Lth layer.
	�� : the constant coefficient of the ith neuron of the Lth layer
(bias).

� : the ith desired values at the output of the neural network

����

�
���
�
�

�

inputs 1st layer

��0

��0
0

��1

�
1
1

2nd layer qth layer

(output layer)

��
�

���
2

���1
�

1611ISBN: 978-1-6654-6798-8 EUSIPCO 2022

B. Algorithm’s equations

Concerning the activation function in the neuron, we
consider either a sigmoid [11] function �(�) defined as
follows:

 �(�) = ��
���� (1)

or a linear function, especially for the last layer:

 �(�) = � (2)

The first input layer is fed with � = ��!, ��!, … , �
$
! %. The free

parameters are all "synaptic coefficients": ���� and the
constant parameters 	��, for all layers & ∈ (1, �).
The main objective is to apply a gradient descent algorithm
to find all ���� and 	�� terms and, for that purpose, we will
have to calculate the derivative of the error with respect to the
synaptic coefficients and the constant parameters. This partial

derivative will be written as
*+

*,-.
 in the paper.

The complete algorithm considered in this paper is given
in the table I, hereafter:

TABLE I. BACKPROPAGATION EQUATIONS

inputs: /��!, ��!, … , �
$
! 0

Forward propagation,
for & = 1
1 �

��� = 2 ���� ���3�

.4�

�5�
+ 	��

��� = �(���)
Error calculation

7(�) = 1
2 2 ��

� −
�%�

�

�5�

Backward propagation

Initialization with a sigmoid function for the last layer (9 ∈
:1, ��;):

<7
<��

� = ��
� −
�

�%��
� 1 − ��

�%

Or initialization with a linear function for the last layer:
<7
<��

� = ��
� −
�

�%

for & = � − 1
1 1, for all j indexes of the concerned layer:

<7
<���

= ��� 1 − ���% 2 <7
<����� ����� �

.=�

�5�

Adaptation, for & = 1
1 �, for all i and j indexes of the
concerned layer:

���� = ���� − > <7
<���

���3�

	�� = 	�� − > <7
<���

III. ORGANIZATION AND GROUPING OF CALCULATIONS

We propose to use an architecture such that a set of
calculations are performed on each clock period. The
organization is presented in table II hereafter. Most operations
can be performed by dedicated hardware resources on one
clock period. Some functions, more complicated to obtain,
will require several clock periods. This is typically the case for
the sigmoid function which is often approximated using a
Look Up Table (LUT) and requires 3 clock periods [12].

TABLE II. CLOCK TIME PERIODES REQUIRED FOR ALGORITHM
EQUATIONS

inputs: /��!, ��!, … , �
$
! 0

CLK

1 ∀9 ∈ (1, �!)

∀� ∈ (1, ��)

���� ��!

2 ∀� ∈ (1, ��) ��� = 2 ���� ��!

$

�5�
+ 	��

3,4,5 ∀� ∈ (1, ��) ��� = �(���)

6 ∀9 ∈ (1, ��)

∀� ∈ (1, ��)
���� ��� and 1 − ���%

7 ∀� ∈ (1, ��) ��� = 2 ���� ���

�

�5�
+ 	��

and

��� 1 − ���%

8,9,10 ∀� ∈ (1, ��) ��� = �(���)

11 ∀9 ∈ (1, ��) ��� −
��% and 1 − ���%

12 ∀9 ∈ (1, ��) <7
<���

= ��� −
��%��� 1 − ���%

13 ∀9 ∈ (1, ��)

∀@ ∈ (1, ��)

<7
<���

����

∀� ∈ (1, ��) 	�� = 	�� − > <7
<���

∀9 ∈ (1, ��)

∀� ∈ (1, ��)
<7
<���

���

14 ∀9 ∈ (1, ��) 2 <7
<���

A

�5�
����

∀9 ∈ (1, ��)

∀� ∈ (1, ��) ���� = ���� − > <7
<���

���

15 ∀9 ∈ (1, ��) <7
<���

= ��� 1 − ���% 2 <7
<���

A

�5�
����

16 ∀� ∈ (1, ��)

∀9 ∈ (1, �!)

<7
<���

��!

∀� ∈ (1, ��) 	�� = 	�� − > <7
<���

17 ∀� ∈ (1, ��)

∀9 ∈ (1, �!)
���� = ���� − > <7

<���
��!

For the sake of simplicity for the paper presentation and
without any loss of generalization we consider a 2 layers
neural network (� = 2) in the sequel of the presented tables.

To carry out the algorithm on a structure with calculations in
parallel and with anticipation it is thus necessary to introduce

1612

new variables identified by letters in table III. These variables
must be saved in dedicated memories. In our example, the
worst case corresponds to B�(
 + 6)) that will be calculated
at (
 + 6) and used at (
 + 7) and (
 + 15). It is also
necessary to memorize the synaptic coefficients of layer 2
 GHIJ % that are used in forward propagation at time (
 + 5)
and used in backward error updates at time (
 + 13).

TABLE III. VARIABLES USED IN THE ARCHITECTURE AND RESSOURCES
INVOLVED

inputs: /��!(
), ��!(
), … , �
$
! (
)0

CLK

1 L��(
 + 1) = GHIM (N)��!(
)

2 O�(
 + 2) = 2 L��(
 + 1)

$

�5�
+ PHM(N + M)

5 Q�(
 + 5) = �(O�(
 + 2))
6 R��(
 + 6) = GHIJ (N + S)Q�(
 + 5)

B�(
 + 6) = 1 − Q�(
 + 5)%

7 T�(
 + 7) = 2 R��(
 + 6)

�

�5�
+ PHJ(N + U)

V�(
 + 7) = Q�(
 + 5)B�(
 + 6)

10 W�(
 + 10) = �(T�(
 + 7))
11 X�(
 + 11) = W�(
 + 10) − NIJ(N)%

Y�(
 + 11) = 1 − W�(
 + 10)%

12 &�(
 + 12) = X�(
 + 11)W�(
 + 10)Y�(
 + 11)

13 Z��(
 + 13) = &�(
 + 12)G[IJ (N + S)

	��(
 + 13) = 	��(
 + 12) − >&�(
 + 12)

���(
 + 13) = &�(
 + 12)Q�(
 + 5)

14 \�(
 + 14) = 2 Z��(
 + 13)

A

�5�

���� (
 + 14) = ���� (
 + 13) − >���(
 + 13)

15 �̂(
 + 14) = B�(
 + 6)\�(
 + 14)

16 _��(
 + 16) = �̂(
 + 14)��!(
)

	��(
 + 16) = 	��(
 + 15) − > �̂(
 + 14)

17 ���� (
 + 17) = ���� (
 + 16) − >_��(
 + 16)

Considering table IIII it appears necessary to have dedicated
hardware processing resources to calculate the 17 variables
of the table. It’s shown on table IV that, thanks to a hardware
resource allocation algorithm, the treatment can be done with
16 hardware dedicated processing resources, identified as `�
to `�a. Some of them are loaded at 100%, it is typically the
case for `b and `a that must calculate the sigmoid function
[11], while others are loaded at 66 % as `�, `�, `c and `d.
All other resources are loaded at 33 %. The global load of
hardware resources `� being equal to 50.7 %.

The time necessary for the propagation of calculations is
equal, for this � = 2 layers-network, to 17 clock cycles.

This result can be extended for any value for � and the
processing time e is equal to:

 e = 8� + 1 (3)

TABLE IV. TEMPORAL IMPLEMENTATION ON DEDICATED HARDWARE
PROCESSING RESOURCES (green: data of time t, red: data of time t+1, blue:

data of time t+2, brown: data of time t+3, yellow: data of time t+4)

C

L

K

`� `� `b `c `d `a `g `h `i `�! `�� `�� `�b `�c `�d `�a

1 A G C H I M N θ Q θ

2 B C K I J O w w

3 D C F P I L

4 A G C H I M N θ Q θ

5 B C K I J 0 w w

6 D C F P I L

7 A G C H I M N θ Q θ

8 B C K I J O w w

9 D C F P I L

1

0
A G C H I M N θ Q θ

1

1
 B C K I J O w w

1

2
D C F P I L

1

3
A G C H I M N θ Q θ

1

4
 B C K I J O w w

1

5
D C F P I L

1

6
A G C H I M N θ Q θ

1

7
 B C K I J O w w

1

8
D C F P I L

1

9
A G C H I M N θ Q θ

2

0
 B C K I J O w w

2

1
D C F P I L

2

2
A G C H I M N θ Q θ

2

3
 B C K I J 0 w w

IV. FPGA ARCHITECTURE

According to the previous section, a general fully
connected neural network pipeline hardware architecture
based on FPGA is proposed and presented in figure 2. All the
inputs: /��!, ��!, … , �
$

! 0 will be charged in the memory “z-
buffer”, the initial "synaptic coefficients": ���� and the

constant parameters 	�� will be saved in register ��� and

1613

register 	 and finally the desired values at the output of the
neural network
� will be charged to the memory “t-buffer”.

Fig. 2. FPGA Architecture.

A generic component “FP Module” must be created to
realize the following operation:

 � = �(∑ ��� ��

$
�5� + 	�) (4)

For the forward propagation implementation, we need to
implement one “FP Module” (component created in an
FPGA) for each neuron of each layer. The inputs of each “FP
Module” are the outputs of the neurons of the previous layer,
the corresponding "synaptic coefficients" ���� , the constant
parameters 	��. The “FP Module” output will be used as input
of the neurons of the next layer. A “Delay module” is created
to hold the values (such as ���� in clock time 6), to use them
later (in clock time 13 for ����). The output of the last layer and
the “t-buffer” are the inputs of the component “Cost Unit” and
the output &� of “Cost Unit” is connected to the first
component “BP module” to start the process of
backpropagation, it is connected also with the “ �, 	 adapt
module” to adapt the coefficients � and bias 	 of the last
layer, the new coefficients and the bias will be saved in the
register ��� and 	 of each layer respectively. The same
structure will be repeated as many times as the number of
layers. All modules are controlled by the “Control Unit”
which provides the control signals to read or write weights (�)
and bias (� . In this pipeline structure, once the training
process is starting, the training data can be charged one by one
for each system clock. The specification of FPGA offers the
possibility to hold the data for each system clock (T), the data
will be transferred to the next component for next system
clock (T+1), and free the register to receive the new data.
Thus, from the 18th clock, all the operations from 1 to 17 of
TABLE III will be running parallelly, in this way, we optimize
the use of resources and accelerate the training process.

V. SIMULATION RESULTS

To test the algorithm, we have chosen to ask the neural
network to learn how to calculate a Discrete Fourier
Transform. The interest of this choice is to have a perfectly
replicable simulation without the need to refer to a training
base and to a generalization base. The simulation is also not
dependent on the size of the existing databases because the
training vectors can be generated randomly in a quasi-infinite
way. For each iteration of the training, we therefore randomly
generate a vector of �kkl Gaussian random complex terms
m��n�∈(!,
oop3�) . Each term having zero mean and unity
variance for its real and imaginary parts. Then, for each
iteration, we compute the Fourier Transform of this Gaussian
vector:

 mq�n�∈(!,
oop3�) � BBe/m��n�∈(!,
oop3�). 0 (5)

and use the terms of this Fourier Transform as the desired
signal (
�→
��. The input and output signals being Gaussian
we present in input a vector made up of the real parts then the
imaginary parts. The input vector and the output vector are
thus of size �! � 2 s �kkl and �� � 2 s �kkl .

TABLE V. COMPLEX TO REAL MAPPING

�
�→
$

�

! � `tuv/�!→
oop3�0

�
$
� ��→
$

! � Wwux/�!→
oop3�0

�→

�
�

� `tuv/q!→
oop3�0

�
� ��→
�

� Wwux/q!→
oop3�0

We let the training run for several million examples
(between 50 and 5 million depending on the simulations) for
different values of the training delay and we varied the
gradient adaptation step size >. Finally, at each iteration, we
took the squared error 7 which we integrated over an
exponential window with a forgetting factor λ by means of the
following equation:

 7�
 6 1� � �7�
� 6 �1 8 �� ∑ ��
� 8
�%

�
�
�5� (6)

We then divided this error by the power of the desired
signal to obtain a normalized mean squared error (NMSE) that
we plotted in logarithm in base 10. Main simulation
parameters are summarized in table VI.

TABLE VI. MAIN SIMULATION PARAMETERS

�kkl � 16
� � 2
� � 0,9999
> � 103c 1z 5. 103c
1st layer: sigmoid, 2nd layer: linear

It appears on figure 3 that the adaptation delay degrades
the performances rather quickly and can even block the
convergence of the adaptation. This is very noticeable as soon
as this delay exceeds about ten clock cycles. However, the
simulation results presented in figure 4 were obtained with a
> adaptation step size of the gradient equals to 5. 103c. It can
be seen, in figure 4, that reducing this step size to 103c is
sufficient to improve the performances very significantly, to
solve the non-convergence problem and to allow the
adaptation with delay to have performances very close to the

1614

adaptation without delay. However, this reduction of the
adaptation step increases the convergence time of the learning.
We can see that for an objective of the logarithm of the
normalized mean squared error equals to 82.4, we need to
present 5 million examples with an adaptation step size of
5. 103c and 20 million examples with an adaptation step size
of 103c. In the simple example presented, we can therefore
conclude that the implementation architecture proposed in this
article optimizes the processing time but at the cost of an
increase in convergence time by a factor of 4 . Globally
without pipeline the time of an iteration is equal to 17 clock
cycles compared to one clock cycle with the pipeline. We must
therefore compare 17 times 5 million to 1 times 20 million,
which leads to an overall gain in processing time equal to 4,25
for the example presented.

Fig. 3. Logarithm of the normalized mean squared error vs number of

iterations with > � 5. 103c (NFFT=16)

TABLE VII. NMSE WITH AN ADAPTATION STEP SIZE EQUALS TO 5.10-4

delay Normalized mean squared error
1 4,337 10-3

21 6,90 10-3
41 11,775 10-3
61 16,0375 10-3
81 20,875 10-3
101 25,212 10-3

Fig. 4. Logarithm of the normalized mean squared error vs number of

iteration ith > � 103c (NFFT=16)

TABLE VIII. NMSE WITH AN ADAPTATION STEP SIZE EQUALS TO 10-4

delay Normalized mean squared error
1 1,8575 10-3

11 1,8735 10-3
21 1,8909 10-3
31 1,9099 10-3
41 1,9301 10-3
101 2,1437 10-3

VI. CONCLUSION

In this paper we have proposed a hardware decomposition
of the computations of a learning algorithm based on the
gradient backpropagation algorithm. We have shown, in the
case of a simple and perfectly replicable example, that a
complete step of coefficient adaptation could be performed in
23 clock cycles. The proposed parallelization leads to an
anticipation of the computations and to a delayed update of the
free coefficients of the network. It was shown on this simple
example that the effects of this adaptation delay could be
compensated by a reduction of the adaptation step size. We
finally conclude that by slightly slowing down the adaptation
phase, we can propose a parallelized architecture which will
significantly accelerate the processing time with a positive
overall result.

REFERENCES
[1] G. G. Towell et J. W. Shavlik, "Knowledge-based artificial neural

networks," Artificial Intelligence, Elsevier, vol. 70, no 1, p. 119‑165,
oct. 1994, doi: 10.1016/0004-3702(94)90105-8.

[2] W. S. McCulloch, W. Pitts, "A logical calculus of the ideas immanent
in nervous activity," Bull. Math. Biophys., vol. 5, no 4, p. 115‑133, déc.
1943, doi: 10.1007/BF02478259.

[3] N. Muthukrishnan, F. Maleki, K. Ovens, C. Reinhold, B. Forghani, et
R. Forghani, "Brief History of Artificial Intelligence," Neuroimaging

Clin. N. Am., vol. 30, no 4, p. 393‑399, nov. 2020, doi:
10.1016/j.nic.2020.07.004.

[4] D. Nahavandi, R. Alizadehsani, A. Khosravi, U. R. Acharya,
"Application of artificial intelligence in wearable devices:
Opportunities and challenges," Comput. Methods Programs Biomed.,
vol. 213, p. 106541, janv. 2022, doi: 10.1016/j.cmpb.2021.106541.

[5] W. Jeon, G. Ko, J. Lee, H. Lee, D. Ha, W. W. Ro, "Chapter Six - Deep
learning with GPUs," Advances in Computers, vol. 122, S. Kim et G.
C. Deka, Éd. Elsevier, 2021, p. 167‑215. doi:
10.1016/bs.adcom.2020.11.003.

[6] K. Guo, S. Zeng, J. Yu, Y. Wang, H. Yang, "A Survey of FPGA-based
Neural Network Inference Accelerators," ACM Trans. Reconfigurable

Technol. Syst., vol. 12, no 1, p. 1‑26, avr. 2019, doi: 10.1145/3289185.

[7] R. Xie, H. Huttunen, S. Lin, S. S. Bhattacharyya, J. Takala, "Resource-
constrained implementation and optimization of a deep neural network
for vehicle classification," 2016 24th European Signal Processing

Conference (EUSIPCO), 2016, pp. 1862-1866, doi:
10.1109/EUSIPCO.2016.7760571.

[8] A. Shawahna, S. M. Sait, A. El-Maleh, " FPGA-Based Accelerators of
Deep Learning Networks for Learning and Classification: A Review,"
IEEE Access, vol. 7, p. 7823‑7859, 2019, doi:
10.1109/ACCESS.2018.2890150.

[9] A. Tisan, J. Chin, "An End-User Platform for FPGA-Based Design and
Rapid Prototyping of Feedforward Artificial Neural Networks With
On-Chip Backpropagation Learning," IEEE Trans. Ind. Inform., vol.
12, no 3, p. 1124‑1133, juin 2016, doi: 10.1109/TII.2016.2555936.

[10] A. R. Omondi, J. Rajapakse, "Neural Networks in FPGAs", in Proc. of

the 9th International Conference on Neural Information Processing

(ICONIP), Singapore, 18-22 November, 2002, pp. 954-959.

[11] M. Zhang, S. Vassiliadis, J. G. Delgado-Frias, "Sigmoid Generators for
Neural Computing Using Piecewise Approximations," IEEE Trans.

Comput., vol. 45, 1996, pp. 1045-1049.

[12] S. Ngah, R. Abu Bakar, "Sigmoid Function Implementation Using the
Unequal Segmentation of Differential Lookup Table and Second Order
Nonlinear Function," Journal of Telecommunication, Electronic and

Computer Engineering (JTEC),vol. 9, n° 2-8, 2017, pp 103-108.

lo
g

(N
o
rm

a
liz

e
d
 m

e
a
n
 s

q
u
a
re

 e
rr

o
r)

lo
g

(N
o
rm

a
liz

e
d
 m

e
a
n
 s

q
u
a
re

 e
rr

o
r)

1615

