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AN INTERFACE FORMULATION FOR THE POISSON EQUATION IN THE
PRESENCE OF A SEMICONDUCTING SINGLE-LAYER MATERIAL

Clément Jourdana1,* and Paola Pietra2

Abstract. In this paper, we consider a semiconducting device with an active zone made of a single-
layer material. The associated Poisson equation for the electrostatic potential (to be solved in order
to perform self-consistent computations) is characterized by a surface particle density and an out-of-
plane dielectric permittivity in the region surrounding the single-layer. To avoid mesh refinements in
such a region, we propose an interface problem based on the natural domain decomposition suggested
by the physical device. Two different interface continuity conditions are discussed. Then, we write
the corresponding variational formulations adapting the so called three-fields formulation for domain
decomposition and we approximate them using a proper finite element method. Finally, numerical
experiments are performed to illustrate some specific features of this interface approach.
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1. Introduction

Two-dimensional (2D) materials such as the most well-known graphene are crystal structures made of a
single layer of atoms. With the recent progress to isolate, stack and characterize them, they are promising for
a wide range of applications (see e.g. the reviews [10,30]). In particular they become an option to design post-
silicon nanoelectronic devices. Field-Effect Transistors (FETs) based on graphene (GFETs) or, more generally,
on semiconducting 2D materials (2D-FETs) give the possibility to have a channel thickness on the atomic
scale which ideally should reduced short-channel effects while maintaining high carrier mobility. However, the
performance of various 2D-FETs is still difficult to predict and accurate numerical simulations can take part in
a better understanding.

A first focus is on transport properties in such a device. For instance, graphene is characterized by a zero
bandgap and chiral massless carriers. It leads to unusual transport properties such as integer quantum Hall
effect or Klein tunneling [11]. Different transport models have been recently derived or investigated ranging
from the two dimensional Dirac equation [11, 17] to sophisticated drift-diffusion and hydrodynamical systems
such that e.g. [24,27,31,32]. Another focus is on the Poisson equation for the electrostatic potential that has to
be solved to perform self-consistent computations. In particular, the dielectric response of 2D layered structures
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single-layer material, graphene field-effect transistor.
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has to be properly taken into account. It is this aspect that we tackle in this work proposing to model the
single-layer as an interface and leading to a Poisson problem that can be solved numerically in an efficient way.

More precisely, we consider a device with an active zone made of a single-layer material sandwiched between
two thick insulator regions (oxide). The associated Poisson equation is characterized by a surface particle density
and an out-of-plane dielectric permittivity exhibited in a region of effective dielectric thickness surrounding the
single-layer material, as discussed in [16]. Both these characteristics require an extremely fine mesh around the
2D material in order to provide an accurate approximate solution of this equation. To avoid it, we propose,
averaging the potential across the dielectric effective region, an interface problem based on the natural domain
decomposition suggested by the physical device. It is made of two Laplace equations in the oxide subdomains
coupled with an effective Poisson equation on the interface with an extra source term that represents the
contribution of the surrounding environment to the channel material. This approach is inspired by [1] where it
is used to model fractures in porous media. It is worth mentioning that, contrary to compact models of GFETs
(e.g. [21, 29]), it leads to a full multidimensional Poisson problem.

For the treatment of the Poisson equation in self-consistent models for graphene based devices, we recall also
[27], where authors assume that the carrier charge is uniformly distributed in the volume between the two oxide
regions and [14], where authors prove existence and uniqueness results for a Dirac-Poisson problem and consider
the self-consistent potential as the trace in the plane of the graphene of the 3D Poisson potential and thus as
the solution of a fractional Laplacian equation. Finally, we mention [20] where the Poisson equation is written
in an integral form and the method of moments is used.

In order to match the interface potential to the oxide potentials, we first consider a simple continuity condition,
obtaining an interface model that indeed takes into account the effective dielectric thickness, but it does not
retain the information of the out-of-plane permittivity when a channel dielectric diagonal tensor is considered.
That is why we also introduce a Robin type continuity condition, following a work on fractured porous media
[25] again.

A discrete fracture-matrix model for flow in porous media is considered in [22], where the exchange between
the fracture and the matrix is imposed using a Lagrange multiplier, in the spirit of a fictitious domain approach.
Here, to analyze and discretize our interface model, we write the corresponding variational formulations adapting
the so called three-fields formulation for domain decomposition in the form introduced and analyzed in [4] (see
also [5, 8]). It is a non conforming formulation of non-overlapping domain decomposition that introduces the
space of traces of functions in 𝐻1(Ω) on the interface. The weak continuity between the 2D subdomains and the
interface is then imposed by means of Lagrange multipliers. This variational formulation enters in the framework
of saddle point problems [7] which gives existence and uniqueness results as well as error estimates when the
problem is approximated using a proper finite element method. Interestingly, the interface discretization does
not need to match with the one of the subdomains and we take advantage of this flexibility in the numerical
experiments we are performing to illustrate the approach.

The paper is organized as follows. The interface model with the two continuity conditions is introduced in
Section 2. The variational formulation of the problem with the simple continuity condition adapted from the so
called three-fields formulation is presented and analyzed in Section 3 and then discretized in Section 4. Section 5
is dedicated of the Robin type continuity condition that can be used to tackle an anisotropic permittivity. Finally,
some numerical experiments are performed in Section 6.

2. Interface model presentation

As we said, we consider a device with an active zone made of a single-layer material sandwiched between two
oxide regions. We assume the single-layer is large enough to be just considered as a one dimensional (1D) line
along the direction 𝑥, the transport along the other direction being free and boundary effects being neglected.
We denote by 𝑦 the direction perpendicular to the single-layer plane made of oxide/single layer/oxide slices. It
gives a 2D domain Ω =]0, 𝐿[×]− 𝑙

2 , 𝑙
2 [ where 𝐿 is the longitudinal device length and 𝑙 the transversal one.
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Figure 1. An example of configuration for Γ𝐷 (thick line) and Γ𝑁 (thin line).

The electrostatic potential 𝑢 created by such a device is solution to the 2D Poisson equation

−∇ ·
(︁
𝜖(𝑥, 𝑦)∇𝑢(𝑥, 𝑦)

)︁
= 𝜌(𝑥)𝛿(𝑦), in Ω, (2.1)

where 𝜌 is the surface particle density, 𝛿 the Dirac distribution imposing that the particles are confined to the
single-layer plane and 𝜖 the dielectric permittivity. This equation is completed by boundary conditions. We
assume that the boundary 𝜕Ω splits into two parts: the Ohmic contacts Γ𝐷 ̸= ∅ and the insulating parts Γ𝑁 ,
with 𝜕Ω = Γ𝐷 ∪ Γ𝑁 and Γ𝐷 ∩ Γ𝑁 = ∅. The potential is prescribed on Γ𝐷 while there are no-flux boundary
conditions on Γ𝑁 :

𝑢 = 𝑢𝐷, on Γ𝐷, (2.2)
∇𝑢 · 𝜈 = 0, on Γ𝑁 , (2.3)

where 𝜈 is the outward unit normal on Γ𝑁 and 𝑢𝐷 represents Source, Drain and Gate potentials. Since Source
and Drain contacts touch the single-layer material, we assume that Γ𝐷 contains the single-layer boundary
points. An example of configuration we consider for Γ𝐷 and Γ𝑁 is given in Figure 1 (in relation with the device
considered in Sect. 6).

Due to single-layer/oxide interactions, the permittivity in the oxide is affected in a region surrounding the
single-layer material. The choice of the permittivity 𝜖(𝑥, 𝑦) is a delicate modeling issue. Here, we introduce an
effective dielectric thickness 𝑑 and we assume one dielectric constant for the channel and another one for the
oxide:

𝜖(𝑥, 𝑦) =

{︃
𝜖𝑐ℎ for |𝑦| < 𝑑

2

𝜖𝑜𝑥 otherwise
.

Such an approach has been used in [18, 28], e.g, and it is often referred to as “box assumption”. The somehow
arbitrariness in the choice of the discontinuity lines in [18, 28] is mitigated by using the results in [16], where
studies of the atomic-scale Poisson equation provide values for the dielectric thickness, validating somehow the
“box assumption”.

Our objective is not to deal directly with the computationally demanding transmission problem that con-
sists in imposing, along 𝛾± = {(𝑥,±𝑑

2 ), 𝑥 ∈]0, 𝐿[}, continuity of the potential and of the transversal electric
displacement, as summarized in the following equations:

−∇ · (𝜖𝑜𝑥∇𝑢±) = 0, in ]0, 𝐿[×
(︀
±]𝑑

2 , 𝑙
2 [

)︀
, (2.4)

−∇ · (𝜖𝑐ℎ∇𝑢𝑐ℎ) = 𝜌(𝑥)𝛿(𝑦), in ]0, 𝐿[×]−𝑑
2 , 𝑑

2 [, (2.5)
𝑢± = 𝑢𝑐ℎ, 𝜖𝑜𝑥𝜕𝑦𝑢± = 𝜖𝑐ℎ𝜕𝑦𝑢𝑐ℎ on 𝛾± (2.6)

where 𝛿 is the Dirac delta function.
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Instead, inspired by [1] to model fractures in porous media, we propose to consider an interface problem
obtained by averaging the potential across the dielectric effective region and considering 𝑑 small enough to
assume a matching between 𝛾+ and 𝛾−. Introducing

𝑢𝛾(𝑥) =
1
𝑑

∫︁ 𝑑
2

− 𝑑
2

𝑢𝑐ℎ(𝑥, 𝑦) 𝑑𝑦,

performing integration in the transversal direction of equation (2.5) and using the flux continuity in (2.6), we
obtain the 1D effective equation

−𝑑(𝜖𝑐ℎ𝑢′𝛾)′ = 𝜌− 𝜖𝑜𝑥

(︁
∇𝑢1(𝑥, 0) · 𝑛1 +∇𝑢2(𝑥, 0) · 𝑛2

)︁
, in 𝛾,

where the symbol ′ denotes a derivation with respect to 𝑥, 𝛾 =]0, 𝐿[ represents the single-layer line, 𝑢𝑖, 𝑖 = 1, 2,
are the potentials associated to each oxide subdomain Ω𝑖 (Ω1 =]0, 𝐿[×]0, 𝑙

2 [ and Ω2 =]0, 𝐿[×]− 𝑙
2 , 0[) and 𝑛𝑖 are

the two outward unit normals on 𝜕Ω𝑖 ∩ 𝛾. One should notice in this 1D equation the presence of the dielectric
thickness 𝑑. Indeed, −𝑑𝜖𝑐ℎ𝑢′𝛾 represents the electric displacement through the cross section of the dielectric
effective region. Also, we emphasize that the extra source term appearing in the right-hand side (in addition
to the 1D charge density 𝜌) represents the contribution to the interface of the transversal electric displacement
from the surrounding environment.

Consequently, the interface model that we analyze and discretize in the next sections consists in two Laplace
equations in the oxide subdomains

−∇ · (𝜖𝑜𝑥∇𝑢𝑖) = 0, in Ω𝑖, 𝑖 = 1, 2, (2.7)

and the effective Poisson equation in the single-layer line

−𝑑(𝜖𝑐ℎ𝑢′𝛾)′ = 𝜌− 𝜖𝑜𝑥(∇𝑢1 · 𝑛1 +∇𝑢2 · 𝑛2), in 𝛾, (2.8)

the potentials associated to the three domains being connected by the continuity conditions

𝑢𝑖 = 𝑢𝛾 , on 𝛾, 𝑖 = 1, 2. (2.9)

This system is completed by the following mixed boundary conditions for the oxide potentials

𝑢𝑖 = 𝑢𝐷, on Γ𝑖
𝐷 = 𝜕Ω𝑖 ∩ Γ𝐷, 𝑖 = 1, 2, (2.10)

∇𝑢𝑖 · 𝜈𝑖 = 0, on Γ𝑖
𝑁 = 𝜕Ω𝑖 ∩ Γ𝑁 , 𝑖 = 1, 2, (2.11)

𝜈𝑖 being the outward unit normal on 𝜕Ω ∩ 𝜕Ω𝑖, and by the following Dirichlet boundary condition for the
interface potential

𝑢𝛾(0) = 𝑢𝐷(0, 0), 𝑢𝛾(𝐿) = 𝑢𝐷(𝐿, 0). (2.12)

In a more physically relevant setting the channel dielectric permittivity is given by a diagonal tensor

𝜖𝑐ℎ =
(︂

𝜖// 0
0 𝜖⊥

)︂
(2.13)

rather than by a dielectric constant, introducing an in-plane permittivity 𝜖// and an out-of-plane permittivity
𝜖⊥. In that case, in the effective equation (2.8) only 𝜖// appears. To retain the information about 𝜖⊥, we replace
the continuity conditions (2.9) by a Robin type condition as done in [25] to model fractures in porous media.
Formally, we say that

𝑢𝛾(𝑥) ≈ 𝑢𝑐ℎ(𝑥,±𝑑

2
)∓ 𝑑

2
𝜕𝑦𝑢𝑐ℎ(𝑥,±𝑑

2
)
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and we use this approximation into the continuity of the transversal electric displacement along 𝛾± (2.6). It
gives

𝜖𝑜𝑥𝜕𝑦𝑢± = 𝜖⊥𝜕𝑦𝑢𝑐ℎ ≈ ±𝜖⊥
𝑢± − 𝑢𝛾

𝑑/2
.

Assuming a matching between 𝛾+ and 𝛾−, we obtain the Robin type condition

(𝑢𝑖 − 𝑢𝛾) + 𝛼 𝜖𝑜𝑥∇𝑢𝑖 · 𝑛𝑖 = 0, on 𝛾, 𝑖 = 1, 2, (2.14)

with 𝛼 = 𝑑
2𝜖⊥

. As we will see in Section 5, this Robin condition at interface changes only slightly the mathematical
analysis. Moreover, a numerical comparison of the two continuity conditions (2.9) and (2.14) will be performed
in Section 6.

3. Variational formulation

Let us first introduce some notation needed in the rest of the paper. For any domain ̂︀Ω and 𝑚 ≥ 0, we denote
by ‖·‖𝑚,̂︀Ω the 𝐻𝑚(̂︀Ω) norm. For a convex Lipschitz Ω ⊂ R2, we denote by Γ0 and Γ1 two subsets of the boundary,
with 𝜕Ω = Γ0 ∪ Γ1 and Γ0 ∩ Γ1 = ∅. We shall employ the notation 𝐻1

0,Γ1
(Ω) = {𝑣 ∈ 𝐻1(Ω), 𝑣 = 0 on Γ1} and

define 𝐻
1/2
00 (Γ0) as the trace space of 𝐻1

0,Γ1
(Ω) equipped with the norm

‖𝜎‖1/2,Γ0 = inf
𝑣∈𝐻1

0,Γ1
, 𝑣|Γ0=𝜎

‖𝑣‖1,Ω. (3.1)

Finally, duality between 𝐻
1/2
00 (Γ0) and its dual space

(︁
𝐻

1/2
00 (Γ0)

)︁′
is written < ·, · >Γ0 and we shall use as

norm in the dual space the equivalent norm ‖ · ‖−1/2,Γ0 defined as:

‖𝜇‖−1/2,Γ0 = sup
𝑣∈𝐻1

0,Γ1
(Ω)

< 𝜇, 𝑣 >Γ0

‖𝑣‖1,Ω
· (3.2)

Also, we denote by 𝐶 > 0 a generic constant with values that may change from line to line.

Remark 3.1. Notice that the norm (3.2) is equivalent to the dual norm defined by

sup
𝜎∈𝐻

1/2
00 (Γ0)

< 𝜇, 𝜎 >Γ0

‖𝜎‖1/2,Γ0

·

Indeed, on one hand, given 𝑣 ∈ 𝐻1
0,Γ1

, its trace on Γ0 (still denoted 𝑣) is in 𝐻
1/2
00 (Γ0) and verifies

‖𝑣‖1/2,Γ0 ≤ 𝐶‖𝑣‖1,Ω.

Therefore, for all 𝑣 ∈ 𝐻1
0,Γ1

(Ω),
< 𝜇, 𝑣 >Γ0

‖𝑣‖1,Ω
≤ 𝐶 sup

𝜎∈𝐻
1/2
00 (Γ0)

< 𝜇, 𝜎 >Γ0

‖𝜎‖1/2,Γ0

·

On the other hand, given 𝜎 ∈ 𝐻
1/2
00 (Γ0), we can construct a lifting function in 𝐻1

0,Γ1
, denoted 𝑣𝜎, such that

𝑣𝜎|Γ0 = 𝜎 and −∆𝑣𝜎 + 𝑣𝜎 = 0 in Ω. Then, we have

< 𝜇, 𝜎 >Γ0=< 𝜇, 𝑣𝜎|Γ0 >Γ0

and
‖𝜎‖1/2,Γ0 = ‖𝑣𝜎‖1,Ω.

Therefore, for all 𝜎 ∈ 𝐻
1/2
00 (Γ0),

< 𝜇, 𝜎 >Γ0

‖𝜎‖1/2,Γ0

≤ sup
𝑣∈𝐻1

0,Γ1
(Ω)

< 𝜇, 𝑣 >Γ0

‖𝑣‖1,Ω
.
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For simplicity of the presentation, we consider the problem (2.7)–(2.12) with homogeneous Dirichlet conditions
on Γ𝐷. It writes
Find (𝑢1, 𝑢2, 𝑢𝛾) s.t.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∇ · (𝜖𝑜𝑥∇𝑢𝑖) = 0 in Ω𝑖, 𝑖 = 1, 2,
−𝑑(𝜖𝑐ℎ𝑢′𝛾)′ = 𝜌− 𝜖𝑜𝑥(∇𝑢1 · 𝑛1 +∇𝑢2 · 𝑛2) on 𝛾,

𝑢𝑖 = 𝑢𝛾 on 𝛾,
𝑢𝑖 = 0 on Γ𝑖

𝐷,
𝜖𝑜𝑥∇𝑢𝑖 · 𝑛𝑖 = 0 on Γ𝑖

𝑁 ,
𝑢𝛾(0) = 𝑢𝛾(𝐿) = 0.

(3.3)

The functional setting we choose in order to write a variational formulation of the interface problem (3.3) is the
following. We define the spaces:
- V = 𝑉 1 × 𝑉 2 × 𝑉 𝛾 , with 𝑉 𝑖 = 𝐻1

0,Γ𝑖
𝐷

(Ω𝑖), 𝑖 = 1, 2 and 𝑉 𝛾 = 𝐻1
0 (𝛾), equipped with the norm

||u||V =
(︁ 2∑︁

𝑖=1

||𝑢𝑖||21,Ω𝑖
+ ||𝑢𝛾 ||21,𝛾

)︁1/2

,

- Λ = Λ1 × Λ2, with Λ𝑖 =
(︀
𝐻

1/2
00 (𝛾)

)︀′ equipped with the norm

||𝜆||Λ =
(︁ 2∑︁

𝑖=1

||𝜆𝑖||2−1/2,𝛾

)︁1/2

,

where ‖𝜆𝑖‖−1/2,𝛾 = sup
𝑣∈𝐻1

0,𝜕Ω𝑖∖𝛾
(Ω𝑖)

< 𝜆𝑖, 𝑣 >𝛾

‖𝑣‖1,Ω𝑖

.

For u = (𝑢1, 𝑢2, 𝑢𝛾) ∈ V, v = (𝑣1, 𝑣2, 𝑣𝛾) ∈ V and 𝜇 = (𝜇1, 𝜇2) ∈ Λ, we define the bilinear forms

a(u,v) =
2∑︁

𝑖=1

∫︁
Ω𝑖

𝜖𝑜𝑥∇𝑢𝑖 · ∇𝑣𝑖 𝑑𝑥𝑑𝑦 + 𝑑

∫︁
𝛾

𝜖𝑐ℎ𝑢′𝛾𝑣′𝛾 𝑑𝑥,

b(𝜇,u) =
2∑︁

𝑖=1

< 𝜇𝑖, 𝑢𝑖|𝛾 − 𝑢𝛾 >𝛾 .

Notice that 𝑢𝑖 ∈ 𝑉 𝑖 implies 𝑢𝑖|𝛾 ∈ 𝐻
1/2
00 (𝛾) (see [15, 23]). Therefore, with 𝑢𝛾 ∈ 𝑉 𝛾 , the duality pairing is

meaningful. In the following, we will use 𝑢𝑖 instead of 𝑢𝑖|𝛾 in the duality pairing unless it might create some
confusion.

We consider the following variational problem:
Variational formulation:
Find (u, 𝜆) ∈ V ×Λ s.t. {︂

a(u,v)− b(𝜆,v) =
∫︀

𝛾
𝜌 𝑣𝛾 𝑑𝑥, ∀v ∈ V,

b(𝜇,u) = 0, ∀𝜇 ∈ Λ.
(3.4)

In this formulation, the continuity 𝑢𝑖 = 𝑢𝛾 on 𝛾 is imposed as a constraint through the Lagrange multipliers 𝜆.
The first equation is associated to the two Laplace equations in the oxide subdomains as well as the effective
Poisson equation on the interface. Indeed, a regular solution (u, 𝜆) to (3.4) is linked to a solution to (3.3) in
the following sense. Taking 𝑣𝛾 = 0 in the first equation of (3.4) gives∫︁

Ω𝑖

𝜖𝑜𝑥∇𝑢𝑖 · ∇𝑣𝑖 𝑑𝑥𝑑𝑦− < 𝜆𝑖, 𝑣𝑖 >𝛾= 0 ∀𝑣𝑖 ∈ 𝑉 𝑖, 𝑖 = 1, 2.
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Since Γ
𝑖

𝑁 ∩ 𝛾 is empty, a Green formula gives for 𝑣𝑖 ∈ 𝑉 𝑖∫︁
Ω𝑖

𝜖𝑜𝑥∇𝑢𝑖 · ∇𝑣𝑖 𝑑𝑥𝑑𝑦 = −
∫︁

Ω𝑖

∇ · (𝜖𝑜𝑥∇𝑢𝑖)𝑣𝑖 𝑑𝑥𝑑𝑦+ < 𝜖𝑜𝑥∇𝑢𝑖 · 𝑛𝑖, 𝑣𝑖 >𝛾 + < 𝜖𝑜𝑥∇𝑢𝑖 · 𝑛𝑖, 𝑣𝑖 >Γ𝑖
𝑁

.

Choosing first 𝑣𝑖 ∈ 𝐻1
0 (Ω𝑖) ⊂ 𝑉 𝑖, we obtain −∇ · (𝜖𝑜𝑥∇𝑢𝑖) = 0, 𝑎.𝑒. in Ω𝑖. Then, for 𝑣𝑖 ∈ 𝐻1

0,𝛾∪Γ𝑖
𝐷

(Ω𝑖) ⊂ 𝑉 𝑖, we

have 𝑣𝑖|Γ𝑖
𝑁
∈ 𝐻

1/2
00 (Γ𝑖

𝑁 ) and consequently

< 𝜖𝑜𝑥∇𝑢𝑖 · 𝑛𝑖, 𝑣𝑖 >Γ𝑖
𝑁

= 0, for all 𝑣𝑖 ∈ 𝐻
1/2
00 (Γ𝑖

𝑁 ).

Next, for 𝑣𝑖 ∈ 𝑉 𝑖, we obtain

< 𝜆𝑖, 𝑣𝑖 >𝛾=< 𝜖𝑜𝑥∇𝑢𝑖 · 𝑛𝑖, 𝑣𝑖 >𝛾 , for all 𝑣𝑖 ∈ 𝐻
1/2
00 (𝛾). (3.5)

It links 𝜆𝑖 to 𝜖𝑜𝑥∇𝑢𝑖 · 𝑛𝑖. Finally, taking 𝑣𝑖 = 0 for 𝑖 = 1, 2 in the first equation of (3.4) and using (3.5), we
obtain

𝑑

∫︁
𝛾

𝜖𝑙
𝑔𝑟𝑢

′
𝛾𝑣′𝛾 𝑑𝑥 +

2∑︁
𝑖=1

< 𝜖𝑜𝑥∇𝑢𝑖 · 𝑛𝑖, 𝑣𝛾 >𝛾=
∫︁

𝛾

𝜌𝑣𝛾 𝑑𝑥

which is a weak form for the second equation of (3.3). The second equation of (3.4) imposes the continuity
𝑢𝑖 = 𝑢𝛾 on 𝛾 in a weak form.

Remark 3.2. Formulation (3.4) is an adaptation to the interface problem of the so called three-fields-
formulation in the form introduced and analyzed in [4] (see also [5, 8]). We notice however, that, for the
peculiarity of our setting that provides directly coercivity of the bilinear form a(u,v) on the whole space
V, we don’t really introduce three fields, but rather work with two spaces only: V (space for the potentials on
Ω𝑖’s and on 𝛾) and Λ (Lagrange multipliers for the Dirichlet BC’s on 𝛾, to be interpreted as conormal derivative
of 𝑢𝑖 as seen in (3.5)).

Existence and uniqueness results follow from the theory for saddle point problems [7] as stated by Theorem 3.5,
thanks to the properties of the bilinear forms a(u,v) and b(𝜇,v) collected in the next Lemma.

Lemma 3.3. The bilinear form a(u,v) is continuous on V ×V and coercive, that is

∃𝛼1 > 0 : a(u,v) ≤ 𝛼1||u||V||v||V, for all u ∈ V, for all v ∈ V, (3.6)
∃𝛼2 > 0 : a(u,u) ≥ 𝛼2||u||2V, for all u ∈ V. (3.7)

The bilinear form b(𝜇,v) is continuous on Λ×V, that is

∃𝑀 > 0 : b(𝜇,v) ≤ 𝑀 ||𝜇||Λ||v||V, for all 𝜇 ∈ Λ, for all v ∈ V (3.8)

and it satisfies the inf-sup condition

∃𝛽 > 0 : inf
𝜆∈Λ

sup
v∈V

b(𝜆,v)
||𝜆||Λ||v||V

≥ 𝛽. (3.9)

Proof. Properties (3.6)–(3.8) follow easily. It is also the case for the inf-sup condition (3.9) since, choosing
successively v = (𝑣1, 0, 0) and v = (0, 𝑣2, 0), we obtain

sup
v∈V

𝑏(𝜆,v)
||v||V

= sup
v∈V

∑︀
𝑖 < 𝜆𝑖, 𝑣𝑖 − 𝑣𝛾 >𝛾

||v||V
≥ 1

2

(︁
sup

𝑣1∈𝑉 1

< 𝜆1, 𝑣1 >𝛾

||𝑣1||1,Ω1

+ sup
𝑣2∈𝑉 2

< 𝜆2, 𝑣2 >𝛾

||𝑣2||1,Ω2

)︁
≥ 1

2

(︁
sup

𝑣1∈𝐻1
0,𝜕Ω1∖𝛾

(Ω1)

< 𝜆1, 𝑣1 >𝛾

||𝑣1||1,Ω1

+ sup
𝑣2∈𝐻1

0,𝜕Ω2∖𝛾
(Ω2)

< 𝜆2, 𝑣2 >𝛾

||𝑣2||1,Ω2

)︁
=

1
2

(︁
‖𝜆1‖−1/2,𝛾 + ‖𝜆2‖−1/2,𝛾

)︁
≥ 1

2
‖𝜆‖Λ.

�
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Remark 3.4. A constant 𝛽 = 1 could be obtained following [5] where a constant independent of the number
of subdomains is needed. It relies on the definition of a lifting function for functions in 𝐻

1/2
00 (𝛾) as introduced in

Remark 3.1. Since for our application this constant does not play any role, we do not present this calculation.

Theorem 3.5. For 𝜌 ∈ 𝐿2(𝛾), there exists a unique solution (u, 𝜆) ∈ V × Λ to problem (3.4). Moreover, the
following bounds hold

||u||V ≤ 1
𝛼2
||𝜌||0,𝛾 , (3.10)

||𝜆||Λ ≤ 1
𝛽

(1 +
𝛼1

𝛼2
)||𝜌||0,𝛾 . (3.11)

Proof. Existence and bounds (3.10)–(3.11) follow simply from the general theory [7] thanks to Lemma 3.3. �

Remark 3.6. Notice that Theorem 3.5 needs only an inf-sup condition relating the Lagrange multipliers space
Λ𝑖 to 𝑉 𝑖, space of functions on Ω𝑖. This fact, together with the coercivity of a(u,v) on the whole V, will allow
us to choose the finite dimensional subspace of 𝑉 𝛾 independently of the other spaces.

4. Finite element approximation

We introduce here a Galerkin discretization of problem (3.4), with care in the need of compatibility between
the discrete approximations of 𝑉 𝑖 and Λ𝑖. Let {𝒯ℎ𝑖

(Ω𝑖)}ℎ𝑖
be a shape regular family of decompositions of Ω𝑖

into triangles and {ℰℎ𝛾 (𝛾)}ℎ𝛾 be a regular family of decompositions of 𝛾 into intervals. Moreover, we denote by
{𝒯ℎ𝑖

(𝛾)}ℎ𝑖
the family of decompositions of 𝛾 induced by {𝒯ℎ𝑖

(Ω𝑖)}ℎ𝑖
.

The discrete spaces for the potential in the domains Ω𝑖’s and on 𝛾 are chosen as follows:
𝑉 𝑖

ℎ𝑖
= {𝑣 ∈ 𝒞0(Ω𝑖), 𝑣|𝑇 ∈ P1(𝑇 ) for all 𝑇 ∈ 𝒯ℎ𝑖

(Ω𝑖), 𝑣 = 0 on Γ𝑖
𝐷},

𝑉 𝛾
ℎ𝛾

= {𝑣 ∈ 𝒞0(𝛾), 𝑣|𝑒 ∈ P1(𝑒), for all 𝑒 ∈ ℰℎ𝛾
(𝛾), 𝑣(0) = 𝑣(𝐿) = 0},

Vℎ = 𝑉 1
ℎ1
× 𝑉 2

ℎ2
× 𝑉 𝛾

ℎ𝛾
⊂ V.

On the interface 𝛾 the discrete spaces for the Lagrange multipliers are made of linear functions on the intervals
𝑒 ∈ 𝒯ℎ𝑖(𝛾), modified to be constant in the limit intervals. Therefore, denoting by 𝑒𝑖

0 and 𝑒𝑖
𝐿 the first and the

last interval of 𝒯ℎ𝑖
(𝛾), we introduce

Λ𝑖
ℎ𝑖

= {𝜆 ∈ 𝒞0(𝛾), 𝜆|𝑒 ∈ P0(𝑒) for all 𝑒 ∈ {𝑒𝑖
0, 𝑒

𝑖
𝐿}, 𝜆|𝑒 ∈ P1(𝑒) for all 𝑒 ∈ 𝒯ℎ𝑖(𝛾)∖{𝑒𝑖

0, 𝑒
𝑖
𝐿}},

Λℎ = Λ1
ℎ1
× Λ2

ℎ2
⊂ Λ.

Since the elements of Λ𝑖
ℎ𝑖

are p.w. polynomials, the duality pairing is an integral and we can write, for 𝜆𝑖
ℎ𝑖
∈ Λ𝑖

ℎ𝑖
,

< 𝜆𝑖
ℎ𝑖

, 𝑣𝑖 >𝛾=
∫︁

𝛾

𝜆𝑖
ℎ𝑖

𝑣𝑖 𝑑𝑥, ∀𝑣𝑖 ∈ 𝑉 𝑖. (4.1)

In the following, to simplify the presentation, we use the notation ℎ instead of ℎ𝑖, unless it might create some
confusion.

4.1. Discrete problems

The discrete variational problem corresponding to (3.4) is
Discrete variational formulation:

Find (uℎ, 𝜆ℎ) ∈ Vℎ ×Λℎ s.t. {︂
a(uℎ,vℎ)− b(𝜆ℎ,vℎ) =

∫︀
𝛾

𝜌 𝑣𝛾
ℎ𝛾

𝑑𝑥, ∀vℎ ∈ Vℎ,

b(𝜇ℎ,uℎ) = 0, ∀𝜇ℎ ∈ Λℎ.
(4.2)
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First of all we want to enlighten the interface structure of formulation (4.2), starting from its algebraic form.
We introduce the following bilinear forms

𝑎𝑖(𝑢𝑖
ℎ, 𝑣𝑖

ℎ) =
∫︀
Ω𝑖

𝜖𝑜𝑥∇𝑢𝑖
ℎ · ∇𝑣𝑖

ℎ 𝑑𝑥𝑑𝑦, 𝑎𝛾(𝑢𝛾
ℎ𝛾

, 𝑣𝛾
ℎ𝛾

) = 𝑑
∫︀

𝛾
𝜖𝑐ℎ(𝑢𝛾

ℎ𝛾
)′(𝑣𝛾

ℎ𝛾
)′ 𝑑𝑥,

𝑏𝑖(𝜇𝑖
ℎ, 𝑢𝑖

ℎ) =
∫︀

𝛾
𝜇𝑖

ℎ𝑢𝑖
ℎ 𝑑𝑥, 𝑏𝑖

𝛾(𝜇𝑖
ℎ, 𝑢𝛾

ℎ𝛾
) =

∫︀
𝛾

𝜇𝑖
ℎ𝑢𝛾

ℎ𝛾
𝑑𝑥,

with 𝑖 = 1, 2. Then, problem (4.2) can be written in matrix form as follows⎡⎢⎢⎢⎢⎣
A1 0 −B𝑇

1 0 0
0 A2 0 −B𝑇

2 0
B1 0 0 0 −B1

𝛾

0 B2 0 0 −B2
𝛾

0 0 (B1
𝛾)𝑇 (B2

𝛾)𝑇 A𝛾

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

𝑢1
𝑢2
𝜆1
𝜆2
𝑢𝛾

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0
0
0
0
𝑟

⎤⎥⎥⎥⎦ , (4.3)

where 𝑢𝑖, 𝜆𝑖, 𝑢𝛾 denote the unknown coefficient vectors of 𝑢𝑖
ℎ, 𝜆𝑖

ℎ, 𝑢𝛾
ℎ𝛾

, respectively, A𝑖, A𝛾 , B𝑖, B𝑖
𝛾 correspond

to the different bilinear forms defined above, and 𝑟 is the vector corresponding to the right hand side.
Since A𝑖’s are obviously positive definite, we can first eliminate the unknown vectors 𝑢𝑖’s. Then, we can

eliminate the unknown vectors 𝜆𝑖’s since it is easy to check that Ker B𝑇
𝑖 = 0. It leads to the following linear

system acting only on the unknown vector 𝑢𝛾(︁
A𝛾 +

2∑︁
𝑖=1

(B𝑖
𝛾)𝑇 (B𝑖A−1

𝑖 B𝑇
𝑖 )−1B𝑖

𝛾

)︁
𝑢𝛾 = 𝑟. (4.4)

We can reinterpret (4.4) in terms of a bilinear form acting on 𝑉 𝛾
ℎ𝛾
× 𝑉 𝛾

ℎ𝛾
. It is not difficult to see that, starting

from the first equation of (4.2), with vℎ = (0, 0, 𝑣𝛾
ℎ𝛾

), we obtain the following problem:
Find 𝑢𝛾

ℎ𝛾
∈ 𝑉 𝛾

ℎ𝛾
s.t.

𝑎𝛾(𝑢𝛾
ℎ𝛾

, 𝑣𝛾
ℎ𝛾

) +
2∑︁

𝑖=1

𝑏𝑖
𝛾(𝜆𝑖

ℎ(𝑢𝛾
ℎ𝛾

), 𝑣𝛾
ℎ𝛾

) =
∫︁

𝛾

𝜌𝑣𝛾
ℎ𝛾

𝑑𝑥 ∀𝑣𝛾
ℎ𝛾
∈ 𝑉 𝛾

ℎ𝛾
. (4.5)

For a given 𝑢𝛾
ℎ𝛾

, 𝜆𝑖
ℎ(𝑢𝛾

ℎ𝛾
) in (4.5) is the second component of the solution to the following 2D problem :

Find (𝑢𝑖
ℎ(𝑢𝛾

ℎ𝛾
), 𝜆𝑖

ℎ(𝑢𝛾
ℎ𝛾

)) ∈ 𝑉 𝑖
ℎ × Λ𝑖

ℎ s.t.{︂
𝑎𝑖(𝑢𝑖

ℎ(𝑢𝛾
ℎ𝛾

), 𝑣𝑖
ℎ)− 𝑏𝑖(𝜆𝑖

ℎ(𝑢𝛾
ℎ𝛾

), 𝑣𝑖
ℎ) = 0 ∀𝑣𝑖

ℎ ∈ 𝑉 𝑖
ℎ ,

𝑏𝑖(𝜇𝑖
ℎ, 𝑢𝑖

ℎ(𝑢𝛾
ℎ𝛾

)) = 𝑏𝑖
𝛾(𝜇𝑖

ℎ, 𝑢𝛾
ℎ𝛾

) ∀𝜇𝑖
ℎ ∈ Λ𝑖

ℎ.
(4.6)

The matrix form of (4.5) (with (4.6)) is indeed (4.4).
We see that in order to solve the interface problem (4.5) (which is a well posed problem for a given 𝜆𝑖

ℎ), we
need to solve the saddle point problems (4.6) for 𝑖 = 1, 2, for which an inf-sup condition linking only 𝑉 𝑖

ℎ and
Λ𝑖

ℎ is required (without connection with 𝑉𝛾). It was already anticipated in Remark 3.6 and it will be explicit in
the next subsection, where the analysis of formulation (4.2) is done.

Remark 4.1. Notice that the 1D interface problem (4.5) includes (through 𝜆𝑖
ℎ(𝑢𝛾

ℎ𝛾
) ) a discrete Poincaré-

Steklov operator that maps the Dirichlet datum 𝑢𝛾
ℎ𝛾

on 𝛾 into 𝜆𝑖
ℎ which, as explained in (3.5) at the continuous

level, is linked to the conormal derivative of 𝑢𝑖
ℎ on 𝛾. Since the Poincaré-Steklov operator is an operator of order

1, with a strict analogy to the 1/2-Laplacian, we observe that equation (4.5) is related to the “confined Poisson
equation” studied in [14]. There, authors consider a 2D graphene sheet (without oxide layers) and construct
the selfconsistent potential generated by the surface particle density as the solution on the plane of a fractional
Laplacian.
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4.2. Well-posedness and error estimates

To prove existence and uniqueness of a solution to (4.2) as stated by Theorem 4.4, we resort to Fortin’s
argument. More precisely, in order to obtain the discrete inf-sup condition (written later on in (4.22)) as well
as some error estimates, we introduce in the following Lemma a projector 𝜋𝑖

ℎ : 𝐿2(𝛾) −→ 𝑊 𝑖
ℎ for the interface

functions, where
𝑊 𝑖

ℎ = 𝑉 𝑖
ℎ |𝛾

is the trace space of 𝑉 𝑖
ℎ on 𝛾. Notice that, due to the homogeneous conditions on Γ𝑖

𝐷 in the definition of 𝑉 𝑖
ℎ , a

function 𝑤𝑖
ℎ ∈ 𝑊 𝑖

ℎ satisfies 𝑤𝑖
ℎ(0) = 𝑤𝑖

ℎ(𝐿) = 0. So the dimension of 𝑊 𝑖
ℎ is equal to the number of intervals of

𝒯ℎ𝑖(𝛾) minus 1, matching the dimension of Λ𝑖
ℎ.

Lemma 4.2. There exists 𝜋𝑖
ℎ : 𝐿2(𝛾) −→ 𝑊 𝑖

ℎ defined by∫︁
𝛾

𝜆𝑖
ℎ(𝜋𝑖

ℎ𝜂 − 𝜂) 𝑑𝑥 = 0, ∀𝜆𝑖
ℎ ∈ Λ𝑖

ℎ, (4.7)

such that, for all 𝜂 ∈ 𝐻
1/2
00 (𝛾),

||𝜋𝑖
ℎ𝜂||1/2,𝛾 ≤ 𝐶||𝜂||1/2,𝛾 . (4.8)

Proof. For any 𝑤𝑖
ℎ ∈ 𝑊 𝑖

ℎ, there exists 𝜆𝑖
ℎ(𝑤𝑖

ℎ) ∈ Λ𝑖
ℎ, such that∫︁

𝛾

𝜆𝑖
ℎ(𝑤𝑖

ℎ)𝑤𝑖
ℎ 𝑑𝑥 ≥ ||𝑤𝑖

ℎ||20,𝛾 , (4.9)

which implies uniqueness (and consequently existence) of the linear operator 𝜋𝑖
ℎ. Indeed, by choosing 𝜆𝑖

ℎ(𝑤𝑖
ℎ)|𝑒 =

𝑤𝑖
ℎ|𝑒 for 𝑒 ∈ 𝒯ℎ𝑖(𝛾)∖{𝑒𝑖

0, 𝑒
𝑖
𝐿}, noting that the constant value 𝜆𝑖

ℎ(𝑤𝑖
ℎ)|𝑒𝑖

0
coincides with 𝑤𝑖

ℎ evaluated in the end

point of 𝑒𝑖
0 (and analogously for 𝜆𝑖

ℎ(𝑤𝑖
ℎ)|𝑒𝑖

𝐿
), we can easily obtain (4.9) and the following bound

||𝜆𝑖
ℎ(𝑤𝑖

ℎ)||0,𝛾 ≤ 𝐶||𝑤𝑖
ℎ||0,𝛾 . (4.10)

Then, (4.9) and (4.10) give

sup
𝜆𝑖

ℎ∈Λ𝑖
ℎ

∫︀
𝛾

𝜆𝑖
ℎ𝑤𝑖

ℎ 𝑑𝑥

||𝜆𝑖
ℎ||0,𝛾

≥ 1
𝐶
||𝑤𝑖

ℎ||0,𝛾 . (4.11)

In order to get the uniform bound (4.8), we use an interpolation argument. Since 𝐻
1/2
00 (𝛾) is the interpolation

space of exponent 1/2 between 𝐿2(𝛾) and 𝐻1
0 (𝛾), we need to check that

||𝜋𝑖
ℎ𝜂||0,𝛾 ≤ 𝐶||𝜂||0,𝛾 , ∀𝜂 ∈ 𝐿2(𝛾) (4.12)

and that
||𝜋𝑖

ℎ𝜂||1,𝛾 ≤ 𝐶||𝜂||1,𝛾 , ∀𝜂 ∈ 𝐻1
0 (𝛾). (4.13)

For any 𝜂 ∈ 𝐿2(𝛾), by using (4.7), (4.11) gives immediately (4.12) since

||𝜋𝑖
ℎ𝜂||0,𝛾 ≤ 𝐶 sup

𝜆𝑖
ℎ∈Λ𝑖

ℎ

∫︀
𝛾

𝜆𝑖
ℎ(𝜋𝑖

ℎ𝜂) 𝑑𝑥

||𝜆𝑖
ℎ||0,𝛾

= 𝐶 sup
𝜆𝑖

ℎ∈Λ𝑖
ℎ

∫︀
𝛾

𝜆𝑖
ℎ𝜂 𝑑𝑥

||𝜆𝑖
ℎ||0,𝛾

≤ 𝐶||𝜂||0,𝛾 .

Analogously, for any 𝜂ℎ ∈ 𝑊 𝑖
ℎ, we have

||𝜂ℎ − 𝜋𝑖
ℎ𝜂||0,𝛾 ≤ 𝐶 sup

𝜆𝑖
ℎ∈Λ𝑖

ℎ

∫︀
𝛾

𝜆𝑖
ℎ(𝜂ℎ − 𝜋𝑖

ℎ𝜂) 𝑑𝑥

||𝜆𝑖
ℎ||0,𝛾

= 𝐶 sup
𝜆𝑖

ℎ∈Λ𝑖
ℎ

∫︀
𝛾

𝜆𝑖
ℎ(𝜂ℎ − 𝜂) 𝑑𝑥

||𝜆𝑖
ℎ||0,𝛾

≤ 𝐶||𝜂 − 𝜂ℎ||0,𝛾 . (4.14)
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Next, to obtain (4.13), we introduce ̂︀𝜋𝑖
ℎ : 𝐻1

0 (𝛾) −→ 𝑊 𝑖
ℎ as the projection induced by the 𝐻1

0 (𝛾) norm, defined
by

||̂︀𝜋𝑖
ℎ𝜂 − 𝜂||1,𝛾 = inf

𝜂ℎ∈𝑊 𝑖
ℎ

||𝜂 − 𝜂ℎ||1,𝛾 , ∀𝜂 ∈ 𝐻1
0 (𝛾).

Since trivially ||̂︀𝜋𝑖
ℎ𝜂||1,𝛾 ≤ 𝐶||𝜂||1,𝛾 , by applying triangular inequalities and a classical inverse inequality, we

obtain, for any 𝜂 ∈ 𝐻1
0 (𝛾),

||𝜋𝑖
ℎ𝜂||1,𝛾 ≤ 𝐶||𝜂||1,𝛾 + ℎ−1

𝑖 (||𝜋𝑖
ℎ𝜂 − 𝜂||0,𝛾 + ||𝜂 − ̂︀𝜋𝑖

ℎ𝜂||0,𝛾). (4.15)

On one hand, using (4.14), a triangular inequality and classical approximation results, see [12] e.g., we have

||𝜂 − 𝜋𝑖
ℎ𝜂||0,𝛾 ≤ 𝐶 inf

𝜂ℎ∈𝑊 𝑖
ℎ

||𝜂 − 𝜂ℎ||0,𝛾 ≤ 𝐶ℎ𝑖||𝜂||1,𝛾 . (4.16)

On the other hand, using a classical duality argument, it is possible to prove that

||𝜂 − ̂︀𝜋𝑖
ℎ𝜂||0,𝛾 ≤ 𝐶ℎ𝑖||𝜂||1,𝛾 . (4.17)

Indeed, let 𝜒(𝑓) ∈ 𝐻1
0 (𝛾) be the solution of the problem∫︁

𝛾

(𝜒(𝑓))′𝜉′𝑑𝑥 =
∫︁

𝛾

𝑓𝜉𝑑𝑥, ∀𝜉 ∈ 𝐻1
0 (𝛾). (4.18)

If 𝑓 ∈ 𝐿2(𝛾) then 𝜒(𝑓) ∈ 𝐻2(𝛾) and the following bound holds

||𝜒(𝑓)||2,𝛾 ≤ ||𝑓 ||0,𝛾 . (4.19)

Since
∫︀

𝛾
𝜒′ℎ(𝜂 − ̂︀𝜋𝑖

ℎ𝜂)′ = 0 for all 𝜒ℎ ∈ 𝑊 𝑖
ℎ, starting from (4.18) with 𝑓 = 𝜉 = 𝜂 − ̂︀𝜋𝑖

ℎ𝜂, we obtain

||𝜂 − ̂︀𝜋𝑖
ℎ𝜂||20,𝛾 =

∫︁
𝛾

(𝜒(𝜂 − ̂︀𝜋𝑖
ℎ𝜂))′(𝜂 − ̂︀𝜋𝑖

ℎ𝜂)′𝑑𝑥

= inf
𝜒ℎ∈𝑊 𝑖

ℎ

∫︁
𝛾

(𝜒(𝜂 − ̂︀𝜋𝑖
ℎ𝜂)− 𝜒ℎ)′(𝜂 − ̂︀𝜋𝑖

ℎ𝜂)′𝑑𝑥.

Then, using a classical approximation result, it gives the following estimate

||𝜂 − ̂︀𝜋𝑖
ℎ𝜂||20,𝛾 ≤ inf

𝜒ℎ∈𝑊 𝑖
ℎ

||𝜒(𝜂 − ̂︀𝜋𝑖
ℎ𝜂)− 𝜒ℎ||1,𝛾 ||𝜂 − ̂︀𝜋𝑖

ℎ𝜂||1,𝛾

≤ 𝐶ℎ𝑖||𝜒(𝜂 − ̂︀𝜋𝑖
ℎ𝜂)||2,𝛾 ||𝜂 − ̂︀𝜋𝑖

ℎ𝜂||1,𝛾 .

Thus (4.17) follows thanks to (4.19) and to the boundedness of ||̂︀𝜋𝑖
ℎ𝜂||1,𝛾 .

Consequently, using (4.16) and (4.17) in (4.15), we obtain the bound (4.13) and conclude the proof. �

Remark 4.3. A projector with similar properties could be also obtained for a more general definition of Λ𝑖
ℎ

(and of 𝑊 𝑖
ℎ). For instance, Λ𝑖

ℎ could be defined on a decomposition ℰℎ𝜆
(𝛾) different from 𝒯ℎ𝑖

(𝛾), with the only
requirement that all nodes of ℰℎ𝜆

(𝛾) are also nodes of 𝒯ℎ𝑖(𝛾) and 𝑊 𝑖
ℎ could be a subspace of the trace space

𝑉 𝑖
ℎ𝑖
|𝛾 defined on the same decomposition ℰℎ𝜆

(𝛾). Since, for our application, 𝜆𝑖
ℎ plays only the role of a working

quantity, we do not discuss this issue further.

Theorem 4.4. For 𝜌 ∈ 𝐿2(𝛾), there exists a unique solution (uℎ, 𝜆ℎ) ∈ Vℎ ×Λℎ to problem (4.2). Moreover,
the following error estimate holds

||u− uℎ||V + ||𝜆− 𝜆ℎ||Λ ≤ 𝐶
(︀

inf
vℎ∈Vℎ

||u− vℎ||V + inf
𝜇ℎ∈Λℎ

||𝜆− 𝜇ℎ||Λ
)︀
. (4.20)
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Proof. Since the embedding Vℎ ⊂ V implies immediately the coerciveness

a(uℎ,uℎ) ≥ 𝛼2||uℎ||2V ∀uℎ ∈ Vℎ, (4.21)

we only have to prove the discrete inf-sup condition

∃𝛿 > 0, inf
𝜆ℎ∈Λℎ

sup
vℎ∈Vℎ

b(𝜆ℎ,vℎ)
‖vh‖V‖𝜆ℎ‖Λ

≥ 𝛿. (4.22)

As for the continuous case, it is enough to show that it exists 𝛿 > 0 such that, for all 𝜆𝑖
ℎ ∈ Λ𝑖

ℎ,

||𝜆𝑖
ℎ||−1/2,𝛾 ≤ 𝛿 sup

𝑣𝑖
ℎ∈𝑉 𝑖

ℎ

∫︀
𝛾

𝜆𝑖
ℎ𝑣𝑖

ℎ𝑑𝑥

||𝑣𝑖
ℎ||1,Ω𝑖

, (4.23)

where we used (4.1). This inequality relies on the existence of a bounded projector Π𝑖
ℎ : 𝑉 𝑖 −→ 𝑉 𝑖

ℎ such that,
for all 𝑣𝑖 ∈ 𝑉 𝑖, ∫︁

𝛾

𝜆𝑖
ℎ(Π𝑖

ℎ𝑣𝑖 − 𝑣𝑖)𝑑𝑥 = 0 ∀𝜆𝑖
ℎ ∈ Λ𝑖

ℎ, (4.24)

||Π𝑖
ℎ𝑣𝑖||1,Ω𝑖

≤ 𝜅||𝑣𝑖||1,Ω𝑖
, (4.25)

with 𝜅 > 0 constant independent of ℎ. Given 𝑣𝑖 ∈ 𝑉 𝑖, let us define Π𝑖
ℎ𝑣𝑖 in 𝑉 𝑖

ℎ as the discrete lifting of 𝜋𝑖
ℎ𝑣𝑖,

that is

𝑎𝑖(Π𝑖
ℎ𝑣𝑖, 𝑣

𝑖
ℎ) = 0 ∀𝑣𝑖

ℎ ∈ 𝑉 𝑖
ℎ ,

(Π𝑖
ℎ𝑣𝑖)|𝛾 = 𝜋𝑖

ℎ(𝑣𝑖|𝛾).

We emphasize that, due to the homogeneous boundary condition on Γ𝑖
𝐷, such a lifting exists thanks to the null

value of 𝜋𝑖
ℎ𝑣𝑖 at the end points of 𝛾. (4.24) is trivially satisfied because of (4.7). The bound (4.25) is obtain

combining the classical result ||Π𝑖
ℎ𝑣𝑖||1,Ω𝑖

≤ 𝐶||𝜋𝑖
ℎ𝑣𝑖||1/2,𝛾 (that can be found e.g. in [6], Lem. 3.2), the bound

(4.8) that holds since 𝑣𝑖|𝛾 ∈ 𝐻
1/2
00 (𝛾) and the trace theorem.

Now, since Λ𝑖
ℎ ⊂ Λ𝑖, we have

||𝜆𝑖
ℎ||−1/2,𝛾 ≤ sup

𝑣𝑖∈𝑉 𝑖

∫︀
𝛾

𝜆𝑖
ℎ𝑣𝑖𝑑𝑥

||𝑣𝑖||1,Ω𝑖

.

Using (4.24) and (4.25) , we obtain that, for all 𝑣𝑖 ∈ 𝑉 𝑖,∫︀
𝛾

𝜆𝑖
ℎ𝑣𝑖𝑑𝑥

||𝑣𝑖||1,Ω𝑖

≤ 𝜅

∫︀
𝛾

𝜆𝑖
ℎΠ𝑖

ℎ𝑣𝑖𝑑𝑥

||Π𝑖
ℎ𝑣𝑖||1,Ω𝑖

≤ 𝜅 sup
𝑣𝑖

ℎ∈𝑉 𝑖
ℎ

∫︀
𝛾

𝜆𝑖
ℎ𝑣𝑖

ℎ𝑑𝑥

||𝑣𝑖
ℎ||1,Ω𝑖

.

Thus, (4.23) follows with 𝛿 = 𝜅. The discrete inf-sup condition (4.22) and the coerciviness (4.21) imply existence
and uniqueness of the discrete solution as well as the error bound (4.20). �

Remark 4.5. As for the continuous case and as suggested by the formulation (4.5)–(4.6), the discrete inf-sup
condition (4.22) relates only the Lagrange multipliers space Λ𝑖

ℎ to the space 𝑉 𝑖
ℎ . It allows us to choose 𝑉 𝛾

ℎ𝛾

independently of the other spaces. This point is particularly interesting when the density 𝜌 appearing in the
second member of (4.2) requires a refinement of the interface discretization.

An optimal order of convergence is obtained for a regular 𝑢𝑖 as in the next theorem.
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Theorem 4.6. Assume 𝑢𝑖 ∈ 𝐻2(Ω𝑖), 𝑖 = 1, 2. Then,

||u− uℎ||V + ||𝜆− 𝜆ℎ||Λ ≤ 𝐶
(︁ ∑︁

𝑖

ℎ2
𝑖 ||𝑢𝑖||22,Ω𝑖

+ ℎ2
𝛾 ||𝑢𝛾 ||22,𝛾

)︁1/2

.

Proof. If 𝑢𝑖 ∈ 𝐻2(Ω𝑖) then 𝜖𝑜𝑥∇𝑢𝑖 · 𝑛𝑖 ∈ 𝐻1/2(𝛾) and 𝑢𝛾 ∈ 𝐻2(𝛾). Let us introduce the Lagrange interpolation
operators ℐ𝑖

ℎ𝑖
: 𝑉 𝑖 −→ 𝑉 𝑖

ℎ𝑖
and ℐ𝛾

ℎ𝛾
: 𝑉 𝛾 −→ 𝑉 𝛾

ℎ𝛾
, and the 𝐿2-projector 𝒫𝑖

ℎ𝑖
: 𝐿2(𝛾) −→ Λ𝑖

ℎ𝑖
, for which the

following bounds are classical
‖𝑢𝑖 − ℐ𝑖

ℎ𝑖
𝑢𝑖‖1,Ω𝑖 ≤ 𝐶ℎ𝑖||𝑢𝑖||2,Ω𝑖 ,

‖𝑢𝛾 − ℐ𝛾
ℎ𝛾

𝑢𝛾‖1,𝛾 ≤ 𝐶ℎ𝛾 ||𝑢𝛾 ||2,𝛾 ,

‖𝜆𝑖 − 𝒫𝑖
ℎ𝑖

𝜆𝑖‖0,𝛾 ≤ 𝐶ℎ
1/2
𝑖 ‖𝜆𝑖‖1/2,𝛾 .

For completing the bound for the 𝜆 component of the error we again follow [4]. Due to the regularity of
𝜖𝑜𝑥∇𝑢𝑖 · 𝑛𝑖, equation (3.5) becomes, for 𝑣𝑖 ∈ 𝑉 𝑖,

< 𝜆𝑖, 𝑣𝑖 >𝛾=
∫︁

𝛾

𝜖𝑜𝑥∇𝑢𝑖 · 𝑛𝑖 𝑣𝑖 𝑑𝑥.

Thus, we can write

‖𝜆𝑖‖−1/2,𝛾 ≤ sup
𝑣𝑖∈𝑉 𝑖

∫︀
𝛾

𝜖𝑜𝑥∇𝑢𝑖 · 𝑛𝑖 𝑣𝑖 𝑑𝑥

||𝑣𝑖||1,Ω𝑖

.

It gives

inf
𝜇𝑖

ℎ𝑖
∈Λ𝑖

ℎ𝑖

‖𝜆𝑖 − 𝜇𝑖
ℎ𝑖
‖−1/2,𝛾 ≤ sup

𝑣𝑖∈𝑉 𝑖

∫︀
𝛾

(︀
𝜖𝑜𝑥∇𝑢𝑖 · 𝑛𝑖 − 𝒫𝑖

ℎ𝑖
(𝜖𝑜𝑥∇𝑢𝑖 · 𝑛𝑖)

)︀
𝑣𝑖 𝑑𝑥

||𝑣𝑖||1,Ω𝑖

= sup
𝑣𝑖∈𝑉 𝑖

∫︀
𝛾

(︀
𝜖𝑜𝑥∇𝑢𝑖 · 𝑛𝑖 − 𝒫𝑖

ℎ𝑖
(𝜖𝑜𝑥∇𝑢𝑖 · 𝑛𝑖)

)︀
(𝑣𝑖 − 𝒫𝑖

ℎ𝑖
(𝑣𝑖)) 𝑑𝑥

||𝑣𝑖||1,Ω𝑖

≤ ℎ𝑖‖𝜖𝑜𝑥∇𝑢𝑖 · 𝑛𝑖‖1/2,𝛾 sup
𝑣𝑖∈𝑉 𝑖

‖𝑣𝑖‖1/2,𝛾

||𝑣𝑖||1,Ω𝑖

≤ 𝐶ℎ𝑖‖𝑢𝑖‖2,Ω𝑖
.

Recalling then (4.20), the desired estimate easily follows. �

5. Robin type condition at interface

We now consider the Robin type condition introduced in (2.14) rather than the condition (2.9). It is especially
interesting to tackle an anisotropic channel permittivity given by the diagonal tensor (2.13). With homogeneous
Dirichlet conditions on Γ𝐷, the problem writes
Find (𝑢1, 𝑢2, 𝑢𝛾) s.t.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∇ · (𝜖𝑜𝑥∇𝑢𝑖) = 0 in Ω𝑖, 𝑖 = 1, 2,
−𝑑(𝜖//𝑢

′
𝛾)′ = 𝜌− 𝜖𝑜𝑥(∇𝑢1 · 𝑛1 +∇𝑢2 · 𝑛2) on 𝛾,

(𝑢𝑖 − 𝑢𝛾) + 𝛼 𝜖𝑜𝑥∇𝑢𝑖 · 𝑛𝑖 = 0, on 𝛾,
𝑢𝑖 = 0 on Γ𝑖

𝐷,
𝜖𝑜𝑥∇𝑢𝑖 · 𝑛𝑖 = 0 on Γ𝑖

𝑁 ,
𝑢𝛾(0) = 𝑢𝛾(𝐿) = 0.

(5.1)

We introduce the space 𝑄 =
(︀
𝐿2(𝛾)

)︀2 ⊂ Λ and we consider the following variational problem:
Variational formulation - Robin type condition:
Find (u, 𝜆) ∈ V ×𝑄 s.t. {︂

a(u,v) − b(𝜆,v) =
∫︀

𝛾
𝜌 𝑣𝛾 𝑑𝑥, ∀v ∈ V,

b(𝜇,u) + 𝛼 c(𝜆, 𝜇) = 0, ∀𝜇 ∈ Q,
(5.2)
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where c is the bilinear form defined by

c(𝜆, 𝜇) =
2∑︁

𝑖=1

∫︁
𝛾

𝜆𝑖𝜇𝑖 𝑑𝑥.

Notice that due to the bilinear form c, this formulation requires more regularity on the Lagrange multipliers 𝜆,
compared to (3.4).

The problem is coercive on 𝑉 ×𝑄, so we easily have existence and uniqueness of the solution by Lax-Milgram
theorem, with the following bound

‖u‖2V + 𝛼‖𝜆‖2Q ≤ 𝐶‖𝜌‖20,𝛾 .

In order to retrieve a control on 𝜆 independent on 𝛼 (and thus on the effective dielectric thickness 𝑑), following
[7], we can use the inf-sup condition on the largest space Λ introduced in (3.9). Indeed,

𝛽‖𝜆‖Λ ≤ sup
v∈V

b(𝜆,v)
||v||V

= sup
v∈V

a(u,v)−
∫︀

𝛾
𝜌 𝑣𝛾 𝑑𝑥

||v||V
≤ 𝐶(||u||V + ‖𝜌‖0,𝛾).

Putting the two estimates together, we obtain the result summarized in the following theorem:

Theorem 5.1. For 𝜌 ∈ 𝐿2(𝛾), there exists a unique solution (u, 𝜆) ∈ V ×𝑄 to problem (5.2). Moreover, the
following bound holds

‖u‖2V + ‖𝜆‖2Λ + 𝛼‖𝜆‖2Q ≤ 𝐶‖𝜌‖20,𝛾 . (5.3)

At the discrete level, we notice that Λℎ defined in Section 4 is contained in Q. Consequently, a discrete
variational problem associated to (5.2) is
Discrete variational formulation - Robin type condition:
Find (uℎ, 𝜆ℎ) ∈ Vℎ ×Λℎ s.t.{︂

a(uℎ,vℎ) − b(𝜆ℎ,vℎ) =
∫︀

𝛾
𝜌 𝑣𝛾

ℎ𝛾
𝑑𝑥, ∀vℎ ∈ Vℎ,

b(𝜇ℎ,uℎ) + 𝛼 c(𝜆ℎ, 𝜇ℎ) = 0, ∀𝜇ℎ ∈ Λℎ.
(5.4)

Using the coerciveness of a in V and c in 𝑄 and the continuity bounds of the three bilinear forms, we obtain
after standard computations

‖u− uℎ‖2V + 𝛼‖𝜆− 𝜆ℎ‖2Q ≤ 𝐶( inf
vℎ∈Vℎ

‖u− vℎ‖2V + 𝛼 inf
𝜇ℎ∈Λℎ

‖𝜆− 𝜇ℎ‖2𝑄).

Again, an error estimate independent on 𝛼 can then be obtained using the discrete inf-sup condition (4.22).
Indeed, for any 𝜇ℎ ∈ Λℎ, we have

𝛽‖𝜆ℎ − 𝜇ℎ‖Λ ≤ sup
vℎ∈Vℎ

b(𝜆ℎ − 𝜇ℎ,vℎ)
‖vℎ‖V

≤ sup
vℎ∈Vℎ

b(𝜆− 𝜇ℎ,vℎ) + a(uℎ − u,vℎ)
‖vℎ‖V

≤ 𝑀‖𝜆− 𝜇ℎ‖Λ + 𝛼1‖u− uℎ‖V,

where 𝑀 and 𝛼1 are positive constants defined in Lemma 3.3. With these estimates, we easily obtain the result
summarized in the following theorem:

Theorem 5.2. For 𝜌 ∈ 𝐿2(𝛾), there exists a unique solution (uℎ, 𝜆ℎ) ∈ Vℎ × Λℎ to problem (5.4) and the
following error estimate holds

||u− uℎ||2V + ‖𝜆− 𝜆ℎ‖2Λ + 𝛼||𝜆− 𝜆ℎ||2𝑄
≤ 𝐶

(︀
inf

vℎ∈Vℎ

||u− vℎ||2V + inf
𝜇ℎ∈Λℎ

‖𝜆− 𝜇ℎ‖2Λ + 𝛼 inf
𝜇ℎ∈Λℎ

||𝜆− 𝜇ℎ||2𝑄
)︀
. (5.5)
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As for the case of the continuity condition (2.9) discussed in the previous section, we can write the algebraic
form of (5.4), emphasizing the interface structure of the formulation. We introduce first the bilinear form

𝑐𝑖(𝜆𝑖
ℎ, 𝜇𝑖

ℎ) =
∫︁

𝛾

𝜆𝑖
ℎ𝜇𝑖

ℎ 𝑑𝑥,

as well as the associated matrix C𝑖, with 𝑖 = 1, 2. Then, problem (5.4) can be written in matrix form as follows⎡⎢⎢⎢⎢⎣
A1 0 −B𝑇

1 0 0
0 A2 0 −B𝑇

2 0
B1 0 𝛼C1 0 −B1

𝛾

0 B2 0 𝛼C2 −B2
𝛾

0 0 (B1
𝛾)𝑇 (B2

𝛾)𝑇 A𝛾

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

𝑢1
𝑢2
𝜆1
𝜆2
𝑢𝛾

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0
0
0
0
𝑟

⎤⎥⎥⎥⎦ . (5.6)

Doing the same eliminations than the ones leading to (4.4) and using the fact that C𝑖’s are positive definite, we
obtain the following linear system acting only on the unknown vector 𝑢𝛾(︁

A𝛾 +
2∑︁

𝑖=1

(B𝑖
𝛾)𝑇 (B𝑖A−1

𝑖 B𝑇
𝑖 + 𝛼C𝑖)−1B𝑖

𝛾

)︁
𝑢𝛾 = 𝑟. (5.7)

Again, we can reinterpret (5.7) in terms of a bilinear form acting on 𝑉 𝛾
ℎ𝛾
× 𝑉 𝛾

ℎ𝛾
. More precisely, 𝑢𝛾

ℎ𝛾
is still

solution of (4.5) depending on 𝜆𝑖
ℎ(𝑢𝛾

ℎ𝛾
) that is now the second component of the solution to the following 2D

problem:
Find 𝑢𝛾

ℎ𝛾
∈ 𝑉 𝛾

ℎ𝛾
s.t. {︂

𝑎𝑖(𝑢𝑖
ℎ(𝑢𝛾

ℎ𝛾
), 𝑣𝑖

ℎ)− 𝑏𝑖(𝜆𝑖
ℎ(𝑢𝛾

ℎ𝛾
), 𝑣𝑖

ℎ) = 0 ∀𝑣𝑖
ℎ ∈ 𝑉 𝑖

ℎ ,

𝑏𝑖(𝜇𝑖
ℎ, 𝑢𝑖

ℎ(𝑢𝛾
ℎ𝛾

)) + 𝛼𝑐𝑖(𝜆𝑖
ℎ(𝑢𝛾

ℎ𝛾
), 𝜇𝑖

ℎ) = 𝑏𝑖
𝛾(𝜇𝑖

ℎ, 𝑢𝛾
ℎ𝛾

) ∀𝜇𝑖
ℎ ∈ Λ𝑖

ℎ.
(5.8)

6. Numerical experiments

To illustrate the approach, we present some numerical tests for a Graphene Field-Effect Transistor (GFET).
Self-consistent simulations for such a structure are performed for instance in [20, 27]. Here, we consider a
longitudinal length 𝐿 = 60 nm and a transversal length 𝑙 = 4 nm. In the 𝑦 direction, it contains a single
layer of graphene, characterized by an effective dielectric thickness 𝑑 = 0.2 nm and a graphene permittivity
constant 𝜖𝑐ℎ = 13.9 𝜖0 sandwiched between two layers of dielectric 𝑆𝑖𝑂2 (𝜖𝑜𝑥 = 3.9 𝜖0) [16], 𝜖0 being the
permittivity in vacuum. Only in Subsection 6.4, where the condition (2.9) is replaced by the Robin condition
(2.14) (as analyzed in Sect. 5), the permittivity constant 𝜖𝑐ℎ is replaced by a diagonal tensor with an in-plane
permittivity 𝜖// = 13.9 𝜖0 and an out-of-plane permittivity 𝜖⊥ = 6.9 𝜖0. As proposed in [20] and schematically
represented in Figure 2, the transport direction 𝑥 is composed of a 20 nm active zone, with a doping concentration
𝑁−

𝑑𝑜𝑝 = 1014 m−2, sandwiched between a 20 nm Source region and a 20 nm Drain region, both highly doped
(𝑁+

𝑑𝑜𝑝 = 1017 m−2). Source and Drain potentials are imposed on the entire vertical edges {0} × (− 𝑙
2 , 𝑙

2 ) and
{𝐿}× (− 𝑙

2 , 𝑙
2 ). Most of the results presented here correspond to thermal equilibrium (zero applied Drain-Source

voltage 𝑉𝐷𝑆 = 𝑉𝐷 − 𝑉𝑆 = 0.0 V). For out-of-equilibrium results, we use an iterative process, starting with
𝑉𝐷𝑆 = 0 V and then incrementing 𝑉𝐷𝑆 with an increment step of 0.01 V. Finally, a Gate potential 𝑉𝐺 is
imposed on {± 𝑙

2}×]𝑥𝐺, 𝐿 − 𝑥𝐺[, with 𝑥𝐺 = 10 nm, to modulate the particle transport. Since the effect of
changing the gate voltage is as expected for a double gate device and it does not infer on the interface approach,
we only consider here the case 𝑉𝐺 = 0 V.

In the experiments presented below, we use a regular uniform discretization. More precisely, the triangulation
{𝒯ℎ𝑖(Ω𝑖)}ℎ𝑖 is obtained defining a cartesian grid with 𝑁𝑥 and 𝑁𝑦 edges respectively in the 𝑥 and in the 𝑦

direction. We define ℎ𝑖 as the scaled triangle diameter
√︁

1
𝑁2

𝑥
+ 𝑙2

𝐿2
1

𝑁2
𝑦

. Moreover, the decomposition {ℰℎ𝛾
(𝛾)}ℎ𝛾

is a uniform decomposition of 𝛾 that uses 𝑁𝛾 intervals and we define ℎ𝛾 as 1
𝑁𝛾

.
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Figure 2. Schematic representation of the GFET.

6.1. Drift-Diffusion Poisson coupling

In this paper, we consider that the surface particle density 𝜌 is defined by 𝜌(𝑥) = 𝑁𝑑𝑜𝑝(𝑥)− 𝑛(𝑥) where the
electron density 𝑛 is the solution of the classical stationary drift-diffusion equation

𝐽 ′(𝑥) = 0, with 𝐽(𝑥) = 𝑞𝜇
(︁
𝑈𝑇 𝑛′(𝑥)− 𝑛(𝑥)𝑢′𝛾(𝑥)

)︁
, (6.1)

completed with the neutrality boundary conditions

𝑛(0) = 𝑛(𝐿) = 𝑁+
𝑑𝑜𝑝. (6.2)

In the expression of the electron current density 𝐽 , 𝑞 is the elementary charge, 𝑘𝐵 the Boltzmann constant, 𝑇
the temperature taken equal to 77 K, 𝑈𝑇 = 𝑘𝐵𝑇

𝑞 the thermal potential and 𝜇 the (constant) electron mobility
that we choose equal to 4.5× 103 cm2.V−1.s−1 as proposed in [13].

Different transport models, that have been recently derived or investigated, can be used to perform accurate
self-consistent simulations of a GFET. For instance, a bipolar drift-diffusion model with peculiar mobility
functions deduced from semiclassical Boltzmann equations have been considered in [27]. Quantum effects can
be added to such a drift-diffusion model or to a hydrodynamical models (see e.g. [24,31,32]). At a microscopic
level, a full quantum description can be done using a Dirac-like equation that describes the chiral character
of massless fermions in graphene [11, 20]. A phase-space formulation can also be considered thanks to the
Wigner formalism as proposed for instance in [26]. Finally, we mention that different description levels can be
spatially coupled deriving quantum interface conditions as done in [2, 3] in the case of graphene. In this work,
since our aim is to focus on the numerical resolution of the Poisson equation and to present the efficiency of
the proposed interface approach, we have chosen not to enrich the transport description and to perform (non
realistic) self-consistent computations using (6.1).

Notice that, at thermal equilibrium, the solution of (6.1)–(6.2) is explicitly expressed with respect to 𝑢𝛾 by

𝑛(𝑥) = 𝑁+
𝑑𝑜𝑝𝑒

𝑢𝛾 (𝑥)
𝑈𝑇 . (6.3)

Out-of-equilibrium, we use the decomposition {ℰℎ𝛾 (𝛾)}ℎ𝛾 (same decomposition than the one used for 𝑢𝛾
ℎ𝛾

) to
discretize equation (6.1) by means of a Scharfetter-Gummel scheme (see e.g. [9] for details).

To treat the nonlinearity of the Drift-Diffusion Poisson coupling, we use the linearized Gummel iterative
process as in [19]. In this interface context, it amounts to solve, for a given 𝜌𝑘 = 𝑁𝑑𝑜𝑝−𝑛𝑘, the modified Poisson
equation {︂

a(u𝑘+1,v)− b(𝜆𝑘+1,v) + 1
𝑈𝑇

∫︀
𝛾

𝑛𝑘𝑢𝑘+1
𝛾 𝑣𝛾 𝑑𝑥 =

∫︀
𝛾

𝜌𝑘𝑣𝛾 𝑑𝑥 + 1
𝑈𝑇

∫︀
𝛾

𝑛𝑘𝑢𝑘
𝛾𝑣𝛾 𝑑𝑥

b(𝜇𝑘+1,u𝑘+1) = 0
, (6.4)
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Figure 3. Non zeros entries for the case 𝑁𝑥 = 60, 𝑁𝑦 = 16 and 𝑁𝛾 = 240 (variable ordering:
(𝑢1

ℎ, 𝑢2
ℎ, 𝜆1

ℎ, 𝜆2
ℎ, 𝑢𝛾

ℎ𝛾
)). Entries affected by the Gummel iterative process are indicated in red.

Figure 4. 2D potential energy −𝑢(𝑥, 𝑦) (left) and interface potential energy −𝑢𝛾(𝑥) (right) at
thermal equilibrium.

iteratively followed by the resolution of the transport equation (6.1). We emphasize that, in (6.4), only the
interface variable 𝑢𝛾 appears in the additional terms (compared to (3.4)). Consequently, the costly assembling
of the matrix can be done once at the beginning of the code and, at each Gummel iteration 𝑘, only few entries
have to be updated for taking care of the non-linearity, as illustrated in Figure 3. The assembling cost is
then comparable to the one for a linear problem, contributing to the computational efficiency of our interface
approach.

First, we present the potential and the density profiles obtained for our test case. Figure 4 represents the
self-consistent potential at thermal equilibrium, showing that its shape is clearly driven by the chosen doping
profile. Different applied voltages are then considered in Figure 5 revealing the particle transport from Source
to Drain.

6.2. Convergence history

We study the numerical convergence of our approach. At thermal equilibrium, the density depends non
linearly on the potential, with 𝜌(𝑢) = 𝑁𝑑𝑜𝑝 − 𝑒𝑢, as expressed in (6.3). It fulfills the properties of boundedness
and monotonicity in the sense that for 𝑢𝛾 , 𝑣𝛾 ∈ 𝑉 𝛾 ⊂ 𝐿∞(𝛾) there exist 𝜅1, 𝜅2 > 0 such that

‖𝜌(𝑢𝛾)− 𝜌(𝑣𝛾)‖0,𝛾 ≤ 𝜅1‖𝑢𝛾 − 𝑣𝛾‖0,𝛾 , (6.5)
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Figure 5. Interface potential energy−𝑢𝛾(𝑥) (left) and electron density 𝑛(𝑥) (right) for different
applied voltages.

−
∫︁

𝛾

(𝜌(𝑢𝛾)− 𝜌(𝑣𝛾))(𝑢𝛾 − 𝑣𝛾) 𝑑𝑥 ≥ 𝜅2‖𝑢𝛾 − 𝑣𝛾‖20,𝛾 . (6.6)

Thus, results obtained in Theorem 4.4 (and therefore in Thm. 4.6) can be extended to this case. In addition,
we are also interested in studying numerically the behavior for non-zero applied voltages.

We compute the solution for different meshes defined by 𝑁𝑥 = 𝑁𝛾 = 60 × 2𝑖 and 𝑁𝑦 = 2𝑖+2, 𝑖 = 0, . . . , 4
and we choose the one obtained for 𝑖 = 4 (𝑁𝑥 = 𝑁𝛾 = 960 and 𝑁𝑦 = 64) as reference solution. Relative errors
corresponding to

ℰ1𝐷 =
‖𝑢𝛾

ℎ𝛾,𝑟𝑒𝑓
− 𝑢𝛾

ℎ𝛾
‖1,𝛾

‖𝑢𝛾
ℎ𝛾,𝑟𝑒𝑓

‖1,𝛾
and ℰ2𝐷 =

(︁ ∑︀2
𝑖=1 ‖𝑢𝑖

ℎ𝑖,𝑟𝑒𝑓
− 𝑢𝑖

ℎ𝑖
‖21,Ω𝑖

)︁1/2

(︁ ∑︀2
𝑖=1 ‖𝑢𝑖

ℎ𝑖,𝑟𝑒𝑓
‖21,Ω𝑖

)︁1/2
, (6.7)

are presented in Figure 6, looking respectively at the interface component 𝑢𝛾
ℎ𝛾

(left) and at the oxide components
𝑢𝑖

ℎ𝑖
(right). As expected, straight lines of slope 1 are obtained for thermal equilibrium, in both cases. For non-

zero applied voltages, we observe however a slightly lower slope for the oxide components. This behavior can
be explained by a deterioration of the regularity of the solution at the junctions between the Neumann and the
Dirichlet boundary conditions (and in particular at gate extremities). Indeed, we see that the maximum error is
located along 𝑦 = 0 at the end of the channel for thermal equilibrium and at 𝑦 = ± 𝑙

2 around the gate extremity
for non-zero applied voltages. A stronger loss in the convergence rate is then evident when considering 𝐿∞ and
𝐿2 errors (see Fig. 7).

In self-consistent computations it is also interesting to look at the error behavior for the density, as done in
Figure 8. The rate of convergence for the 𝐻1 error is shown to be 1, both at thermal equilibrium (i.e. when 𝑛
is explicitly expressed with respect to 𝑢𝛾 by (6.3)) and with different applied voltages.

6.3. Number of discretization points

Next, we discuss the effect of the number of discretization points 𝑁𝑦, 𝑁𝑥 and 𝑁𝛾 on the error. We present
results at thermal equilibrium and for 𝑉𝐷𝑆 = 0.04 V. Similar results are obtained for other non-zero applied
voltages. The reference solution is chosen as in the previous subsection.
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Figure 6. Relative 𝐻1 errors with respect to ℎ in logarithmic scale for the interface component
(left) and the oxide ones (right).

Figure 7. Relative 𝐿∞ errors (left) and 𝐿2 errors (right) with respect to ℎ in logarithmic scale
for the oxide components.

Figure 8. Relative 𝐻1 errors with respect to ℎ in logarithmic scale for the electron density 𝑛.
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Table 1. Relative 𝐻1 errors varying 𝑁𝑦 for 𝑁𝑥 = 𝑁𝛾 = 60.

𝑉𝐷𝑆 = 0 𝑉 𝑉𝐷𝑆 = 0.04 𝑉

𝑁𝑦 ℰ1𝐷 ℰ2𝐷 ℰ1𝐷 ℰ2𝐷

8 1.9557e-01 8.7731e-02 1.6695e-01 1.6448e-01
16 1.9567e-01 8.1467e-02 1.6707e-01 1.5721e-01
32 1.9570e-01 7.8688e-02 1.6711e-01 1.5496e-01
64 1.9571e-01 7.7546e-02 1.6713e-01 1.5387e-01

Table 2. Relative 𝐻1 errors of the interface potential 𝑢𝛾
ℎ𝛾

and the electron density 𝑛 in the
case 𝑁𝑥 = 𝑁𝛾 .

𝑉𝐷𝑆 = 0 𝑉 𝑉𝐷𝑆 = 0.04 𝑉

𝑁𝑥 = 𝑁𝛾 ℰ1𝐷
‖𝑛−𝑛𝑟𝑒𝑓‖1,𝛾

‖𝑛𝑟𝑒𝑓‖1,𝛾
ℰ1𝐷

‖𝑛−𝑛𝑟𝑒𝑓‖1,𝛾

‖𝑛𝑟𝑒𝑓‖1,𝛾

60 1.9567e-01 2.5930e-01 1.6707e-01 2.6920e-01
120 1.0079e-01 1.2674e-01 8.4934e-02 1.3105e-01
240 4.9450e-02 6.2400e-02 4.1631e-02 6.4557e-02
480 2.2167e-02 2.7980e-02 1.8681e-02 2.8969e-02

Table 3. Relative 𝐻1 errors of the interface potential 𝑢𝛾
ℎ𝛾

and the electron density 𝑛 for a
given 𝑁𝑥 and different 𝑁𝛾 .

𝑉𝐷𝑆 = 0 𝑉 𝑉𝐷𝑆 = 0.04 𝑉

𝑁𝑥 𝑁𝛾 ℰ1𝐷
‖𝑛−𝑛𝑟𝑒𝑓‖1,𝛾

‖𝑛𝑟𝑒𝑓‖1,𝛾
ℰ1𝐷

‖𝑛−𝑛𝑟𝑒𝑓‖1,𝛾

‖𝑛𝑟𝑒𝑓‖1,𝛾

30 3.3376e-01 5.4465e-01 2.7736e-01 5.5921e-01
120 1.0177e-01 1.2709e-01 8.7112e-02 1.3215e-01

60 240 5.3930e-02 6.4590e-02 4.8621e-02 6.9023e-02
480 3.2494e-02 3.3796e-02 3.2738e-02 3.9536e-02
960 2.4381e-02 1.9597e-02 2.7391e-02 2.7634e-02

First, we fix 𝑁𝑥 = 𝑁𝛾 and we look at the errors varying 𝑁𝑦. Results are presented in Table 1 for 𝑁𝑥 = 𝑁𝛾 = 60.
The process bringing to the interface model reduces the importance of the transversal discretization around the
single layer material and, indeed, we observe that the choice of 𝑁𝑦 slightly affects the result. It is especially true
when we do not consider the coarser mesh (𝑁𝑦 = 8). That is why, in the following, we fix 𝑁𝑦 = 16 and focus
on the discretization along the transport direction.

As we mentioned, an interesting point of this approach is that the interface grid does not need to match with
the one of the oxide subdomains. In other words, 𝑁𝛾 can be chosen different from 𝑁𝑥. In Tables 2 and 3, we
present the 𝐻1 errors for the interface component 𝑢𝛾

ℎ𝛾
as well as the electron density 𝑛 for a fixed 𝑁𝑦 = 16

either taking 𝑁𝑥 = 𝑁𝛾 (Tab. 2) or fixing 𝑁𝑥 and varying 𝑁𝛾 (Tab. 3).
We observe that the error for the 1D component decreases when increasing the grid points on the interface.

In particular, the errors obtained for 𝑁𝑥 = 60 and 𝑁𝛾 = 240 are smaller than the ones for 𝑁𝑥 = 𝑁𝛾 = 60 and
comparable to the ones for 𝑁𝑥 = 𝑁𝛾 = 240. Since the cost of solving the linear system is driven by the number
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Figure 9. Vertical potential slice 𝑢(𝐿
2 , 𝑦) at thermal equilibrium obtained for the transmission

problem (2.4)–(2.6) (solid blue line) and for the interface approach with condition (2.9) (left)
or condition (2.14) (right) for the case 𝜖// = 13.9 𝜖0 and 𝜖⊥ = 6.9 𝜖0.

of degrees of freedom in the oxide region, it is therefore very appealing to use a relatively coarse mesh in the
oxide region and a finer grid on the interface.

6.4. Anisotropic permittivity

We now consider the case where the channel dielectric permittivity is given by the diagonal tensor (2.13). We
have seen that the effective equation (2.8) contains only the in-plane permittivity 𝜖// and that a possibility to
retain the information of the out-of-plane permittivity 𝜖⊥ is to replace the Dirichlet type continuity conditions
(2.9) by the Robin type condition (2.14). In this part, we perform a comparison between these two continuity
conditions. To estimate the differences, we compare them with an approximate solution of the transmission
problem (2.4)–(2.6) obtained with a very fine mesh (a cartesian grid with around 60 000 grid points (𝑁𝑥 = 300
and 𝑁𝑦 = 208) taking a discretization step of 0.2 nm in 𝑥 and of 0.005 nm for 𝑦 ∈ [−0.15, 0.15] nm and 0.025 nm
otherwise). For that, the delta function in the second member of equation (2.5) is approximated by 1

𝑎
√

𝜋
𝑒−(𝑦/𝑎)2

with 𝑎 = 0.008 nm (25 times smaller than 𝑑). Since the numerical convergence and the effect of the number
of discretization points discussed in the previous subsections are not affected by the choice of the continuity
conditions, we do not present them again. Instead, we concentrate on the vertical potential slice 𝑢(𝐿

2 , 𝑦) at
thermal equilibrium and on the current-voltage characteristics to analyze the effect of the continuity conditions.

Obtained results are presented in Figures 9 and 10 for the case 𝑁𝑥 = 𝑁𝛾 = 240 and 𝑁𝑦 = 16. Solid blue lines
correspond to the transmission problem, dashed red lines to the interface approach with the continuity condition
(2.9) and dashdotted purple lines to the interface approach with (2.14). We observe only slightly changes between
the three approaches, both at thermal equilibrium in Figure 9 and with applied voltages in Figure 10. In
particular, for 𝑉𝐷𝑆 = 0 V, we have |𝑢𝑐ℎ( 1

2 , 0)−𝑢𝛾(0)| = 3.0×10−5 with (2.9) and |𝑢𝑐ℎ( 1
2 , 0)−𝑢𝛾(0)| = 9.83×10−5

with (2.14).
However, to overemphasize the effect of the continuity condition, we then choose an artificial extreme out-of-

plane permittivity 𝜖⊥ = 0.1 𝜖0. Obtained results are presented in Figures 11 and 12. They clearly show that the
discontinuity allowed by the condition (2.14) between the interface component 𝑢𝛾 and the oxide components 𝑢𝑖

is essential to capture the effects due to a strong anisotropy.
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Figure 10. Current-voltage characteristics for the case 𝜖// = 13.9 𝜖0 and 𝜖⊥ = 6.9 𝜖0.

Figure 11. Vertical potential slice 𝑢(𝐿
2 , 𝑦) at thermal equilibrium obtained for the transmission

problem (2.4)–(2.6) (solid blue line) and for the interface approach with condition (2.9) (left)
or condition (2.14) (right) for the case 𝜖// = 13.9 𝜖0 and 𝜖⊥ = 0.1 𝜖0.

7. Conclusion

We discussed on the numerical resolution of a Poisson equation describing the electrostatics of devices in the
presence of a semiconducting single-layer material. The proposed interface approach provides a good framework
for the mathematical analysis and for the approximation of its variational formulation. A Robin type continuity
condition along 𝛾 (with a Robin coefficient depending on the effective dielectric thickness 𝑑) can be imposed to
consider out-of-plane/in-plane permittivities for a better description of the single-layer/oxide interactions. The
presented numerical scheme has the advantage to avoid the need of a fine mesh in a 2D region around the single
layer material. Moreover, the assembling of the associated matrix is done at a cost comparable with the linear
case, even when a coupled transport-Poisson model is considered. Finally, it is worth mentioning the possibility
of using a relatively coarse mesh in the oxide region and a finer grid on the interface. As continuation of this
work, we expect to take great advantage of these interesting features of the interface approach for the resolution



AN INTERFACE FORMULATION FOR THE POISSON EQUATION 855

Figure 12. Current-voltage characteristics for the case 𝜖// = 13.9 𝜖0 and 𝜖⊥ = 0.1 𝜖0.

of the Poisson equation in the context of a Dirac-Poisson coupling to perform self-consistent computations of a
GFET with an enriched description of the particle transport.
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[24] L. Luca and V. Romano, Quantum corrected hydrodynamic models for charge transport in graphene. Ann. Phys. 406 (2019)
30–53.
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