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Abstract: Adhesively bonded composite reinforcements have been increasingly used in civil engi-
neering since the 1980s. They depend on the effective transfer of forces throughout the adhesive joint
that may be affected by defects or damages. It is therefore necessary to provide methods to detect
and/or identify these defects present in the bonded joints without affecting their future use. This
should be carried out through nondestructive methods (NDT) and should be able to discriminate the
different types of defects that may be encountered. The acousto-ultrasonic technique shows good
potential to answer to this challenge, as illustrated in recent studies led on small-scale model samples.
In this paper, we assess the robustness of this methodology on larger scale samples using reinforced
concrete beams (RC beam), that is a mandatory step prior to on-site applications. A mono-parametric
analysis allows the detection of all types of defects using a simple criterion set. For the identification,
it was necessary to conduct a data-driven strategy by means of a Principal Component Analysis
(PCA) and a random forest (RF) method used from extracted parameters.

Keywords: acousto-ultrasonic; non-destructive technique (NDT); adhesively bonded joint; diagnostic;
data-driven model; PCA; random forest

1. Introduction

Thanks to their ultra-light weight and durability, composite materials are increasingly
used as bonded reinforcements for civil engineering structures [1–3]. This solution makes
it possible to adapt many existing structures to more severe conditions (increased traffic or
seismic risks). It is also used in the repair and rehabilitation of structures to extend their
life-service. This solution is more economical than the construction of a new structure and
limits traffic interruption. It also tends to decrease environmental impacts that such a repair
project could cause. Yet, the mechanical performance of bonded joints can be compromised
due to the presence of adhesion defects or damage such as voids, porosity, poor adhesion,
or low cohesion strength [4–10]. Those defects are mostly internal to the joint structure and
are not visible. It is therefore necessary to use a non-destructive technique to assess the
quality of the adhesive joint.

Several works has been conducted to evaluate the adhesion levels of joined assemblies
using different nondestructive techniques, such as IR thermography [11–13], optical meth-
ods (holography and shearography) [14], radiography (RX,Rγ) [15], or using ultrasonic
testing methods including acoustic emission (EA) [16], bulk and guided (longitudinal,
shear and Lamb) waves ultrasound (US) [17–24]. US methods show good potential for the
characterization of the adhesive joint’s properties. In their study, Korzeniowski et al. [23]
evaluated the suitability of the pulse-echo method to detect voids of different shapes and
sizes present in assemblies composed of a methacrylic resin-based structural adhesive,
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between 60 mm by 60 mm steel sheets and being 1 mm thick. Castaings [19] used SH-
guided ultrasonic waves to evaluate the mechanical properties of a bonded joint between
two aluminum plates with different degrees of adhesion subjected to shear stresses. He
materialized the different degrees of adhesion by neglecting the surface treatment on a test
specimen and by covering an oily agent at the adhesive/adhesion interface on another test
specimen. The study concludes that the technique offers good potential for assessing the
level of interphase degradation. Li et al. [24] were able to detect a failure of adhesion by
estimating ToF (time-of-flight) of the antisymmetric modes of Lamb waves. This type of
defect was simulated in their steel/composite bonded test specimen with a Teflon insertion.
They were able to correlate the decrease in ToF with the increase in the size of the defect.
Attar et al. [18] studied the quality of bonding in a metal/adhesive/carbon-epoxy com-
posite structure using Lamb guided waves. Yilmaz et al. [20] compared the performance
of immersion, air-coupled, and contact ultrasonic testing techniques in bonding quality
evaluation. Their tested samples were aluminum-epoxy-aluminum single lap adhesive
joint containing debonding. These studies demonstrate a good potential of the US method
to detect defects of void types, but encounter locks concerning other types of defects such
as kissing-bonds. This conclusion is all the truer especially when the latter are materialized
by an insertion of viscous matter. Additionally, the viscous matter is more representative of
the actual surface contamination conditions that may induce a kissing-bond on site.

Yet, it is difficult to control FRP reinforcements adhesively bonded on concrete struc-
tures [25,26]. For such a structure, operators have indeed access to only one side for the
measurements. In such conditions, the acousto-ultrasonic (AU) technique is one of the NDT
methods that shows good potential to diagnose the bonded joint. This diagnostic aims at
detecting and locating a defect, determining its size, classifying its type, and evaluating
its severity. It combines an active phase (AU emission) and a passive phase with acoustic
emission (AE) monitoring, getting the benefit of both AE and US techniques. The ultrasonic
wave is emitted through the studied material and received after its propagation using
piezoelectric transducers. The received signal is then analyzed using the AE method by
processing the associated acoustic parameters. Thus, this technique works in a frequency
domain similar to the one used in AE. Yet, to be able to detect damage, it is needed to
dispose of the baseline data or the reference signal corresponding to the healthy state.
Damage detection is carried out by comparing the parameters of the signals received from
the tested samples with those from the reference signals.

The acousto-ultrasonic (AU) method was used by several authors [27–38] to detect
and assess defects in assemblies. Wang et al. [30] evaluated matrix cracks in cross-ply
Carbon Fiber Reinforced Polymer (CFRP) laminates using linear and nonlinear acousto-
ultrasonic methods. Tanary et al. [30] used the acousto-ultrasonic technique to evaluate
mechanical performance, such as the shear strength of composite single lap bonded joints.
Kwon and Lee [34] investigated the correlation between the number of artificial defects
and the acousto-ultrasonic parameters in CFRP-aluminum joints. This correlation could be
established mainly with frequency parameters based on a spectral study of the detected
signals. Barile et al. [35,36] used AU measurements to characterize the interlaminar strength
of CFRP laminates in longitudinal and transverse directions, and to assess the detection
of artificially induced impact barely visible on CFRP specimens. Zhang et al. [38] used
the AU method combined with phase-shifted fiber Bragg grating to evaluate damage
and delamination within complex composite structures. Vary and Lark [34] also used
this technique to estimate the mechanical characteristics (tensile and shear strength) of a
multi-layer composite (8-ply) with different fiber orientations on each layer.

The defect identification problem can be addressed using model-based approaches
with a physical model, or by data-driven approaches based on a statistical model. The
second approach is used in this work. The present work is dedicated to the application of
three developed methodologies for the detection and classification of defects in adhesively
bonded joints between CFRP laminate and RC beam using features extracted from AU
signal. The main goal of this work is to present a robust methodology allowing the detection
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and classification of the different bonded joint states. The approach should maintain or
increase reliability and robustness in the treatment of data for analyzing the state of the
bonded joint. In previous works [27–29], the authors used a methodology for defect
classification on model specimens using mono-parametric analysis, PCA, and classification
with a random forest approach. Their results showed a critical comparison between these
methods for the defect detection and its identification. There are still challenges to overcome
to reach a mature application level on site.

This paper deals with the application of the methodology developed in [28] onto
large-scale specimens consisting in RC beams with adhesively bonded composite laminates.
The objective of this study is to evaluate the robustness of the methodology regarding the
combination of multiple defects in a single-lap adhesive joint, and the increase of substrate
thickness. Combinations of three types of defects are investigated: voids, cohesive defects,
and kissing-bond defects. The paper is structured as follows. The sample characteristics
and experimental set-up are described in Section 2. In Section 3, we discuss the detec-
tion and the identification of all studied defects. The main conclusions are summarized
in Section 4.

2. Materials and Experimental Set-Up
2.1. Samples

In this investigation, we studied reinforced concrete beams (C35/45 and
3400 mm × 200 mm × 200 mm dimensions) on which we bonded FLT S512 compos-
ite plates (3000 mm × 50 mm × 1.2 mm dimensions). This composite is unidirectional
and constituted of T700 carbon fiber and epoxy matrix. It is pultruded with 60% of fiber
content. Prior to their assembly, we increased the adhesion of both substrate surfaces by
removing the brass on the concrete surface by sanding and performing a slight abrasion,
followed by acetone cleaning of the composite plate. A two-component cold curing epoxy
resin (Sikadur30), with an elastic modulus of 12.8 GPa, was employed as adhesive. For a
good polymerization of the adhesive, a minimum of one week has been set before taking
the measurements. The mechanical characteristics of the plates, adhesive joint, and beams,
are summarized in Table 1.

Table 1. Composite, concrete beam, and epoxy properties.

Longitudinal
Young’s Modulus

(GPa)

Transversal
Young’s Modulus

(GPa)

Longitudinal
Poisson’s Ratio

Longitudinal
Shear Modulus

(GPa)

Transverse
Poisson’s Ratio

Density
(g/cm3)

Beam (C35/45) 34.1 34.1 0.2 - - 2.5

Composite
(FLT S512) 160 12.3 0.25 5.02 0.25 1.6

Adhesive joint- epoxy
(Sikadur 30) 12.8 12.8 0.29–0.34 - - 1.95 at 20 ◦C

We realized for a first campaign three samples (beams) with these materials (Figure 1).
On each sample, we materialized two different defects located at 75 cm from the extrem-
ities of the composite plate. We also made sure on each beam to leave a healthy central
area, in addition to the two areas with defects. As shown in Figure 2, each sample was
divided onto three investigated zones: a zone without a defect (α-type zone) at the center
of the sample, and two zones with defects. In Table 2, we listed the different studied
samples regarding their implemented defects and their average adhesive thickness (over
18 measurement points).
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Figure 2. Schematic representation of the composite/beam assemblies with the location of the defects
and sensors (T: transmitter, sensor #2 and sensor #1 denote the position of the receivers during
the tests).

Table 2. Defects’ sizes on different samples.

Voids:
β-Type Zone

PU:
γ-Type Zone

Kissing Bond:
δ-Type Zone

Adhesive Average
Thickness (mm)

1s
t

ca
m

pa
ig

n Beam #1 50 × 50 mm2 50 × 50 mm2 - 0.94

Beam #2 - 50 × 50 mm2 50 × 50 mm2 0.9

Beam #3 50 × 50 mm2 - 50 × 50 mm2 1

2n
d

ca
m

pa
ig

n Beam #4 50 × 50 mm2 50 × 50 mm2 50 × 50 mm2 0.79

Beam #5 - - - 0.86

Beam #6 25 × 25 mm2 25 × 25 mm2 25 × 25 mm2 0.84

To reproduce the most encountered defects, we investigated four types of zone:

- Reference zones with no defect in the adhesive joint (α-type zone). Guaranteed by
strict compliance with the surface preparation conditions listed above.

- Zones with voids in the joint (β-type zone).
- Zones with the incorporation of polyurethane resin (8 MPa elastic modulus) on the

whole thickness to materialize a poor cure defect or a softening of the resin (γ-type
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zone), which could be, for example, due to ageing, with the presence of high moisture
or poor cure.

- Zones with a lack of adhesion (kissing bond) between the epoxy joint and the compos-
ite substrate (δ-type zone). The adherent surfaces were partially contaminated with
grease before applying the adhesive to create these weak interfaces.

2.2. Acousto-Ultrasonic Technique

The signals’ emission is generated by an ARB-1410 card, with a high precision of
14-bit and a high speed of 100 MSample/second. The WaveGen software associated with
this card was used to generate a one-cycle square signal with a frequency of 150 kHz and
an amplitude of 10 Volts The emitting sensor is a piezoelectric S9204 with a bandwidth
from 20 to 1000 kHz centered at 150 kHz. For the reception’s system, we used a PCI-2 AE
System card with 2-channel data acquisition coupled with two piezoelectric R15 sensors
(bandwidth 50–200 kHz, resonance 150 kHz) and operated by AEWin software (Figure 3).
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Figure 3. Experimental setup for acousto-ultrasonic measurements. Figure 3. Experimental setup for acousto-ultrasonic measurements.

The sensors are coupled on the surface of the composite plate using a low-melting
crystal, phenyl salicylate. They are placed aligned along the composite fiber direction:
sensor #1 (receiver) is located at 230 mm away from the sensor T (transmitter), and sensor #2
(second receiver) is located at the center of the investigated zone. For the zones with defects,
sensor #2 is located at the epicenter of the defect. We also use an IL40S-HT bandwidth
preamplifier (32–1100 kHz) between the receiving sensors (#1 and #2) and the PCI-2 card,
allowing us to acquire signals with a gain of 40 dB. We set the recording threshold at 45 dB.

For repeatable AU measurements, test conditions such as temperature, sensor location,
spacing, and the type of coupling are kept constant. We conducted seven independent
measurements on each zone to simulate the effects of the coupling procedure, and to
measure the obtained dispersion. These measurements are carried out removing completely
the sensors before repositioning them again. This implies a cleaning of the sensors and
the specimen surface between each measurement. Their repeatability was assessed by a
Pearson cross-correlation calculation between the signals received in the same studied zone.
Those signals were recorded with a sampling frequency of 5 MSPS over a maximum length
of 15 k points.
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2.3. Defect Detection and Classification Methodology

In previous works [28], the authors used a methodology for defect detection and
classification on a model specimen based on the combination of mono-parametric analy-
sis, PCA, and classification with a random forest approach. Each signal is described by
10 descriptors or features: eight features from the time domain, and two from the frequency
domain (amplitude, duration, rise time, counts, energy, counts to peak, peak frequency,
centroid frequency, signal strength, absolute energy).

The damage detection and identification approaches in the mono-parametric analysis
and the PCA are based on the separation of the collected data on two different sensor
positions. The PCA has the objective to reduce the space’s size by distorting reality as low
as possible. In our case, we tried to reduce the 10 parameters in two or three dimensions by
normalizing and centering the data.

An important advantage of using the random forest classification in our study is
based on the use of the data collected from all the sensors. The random forest is a robust
machine-learning algorithm consisted of two phases: a training phase, and a testing phase.
During the training phase, a set of data is used to build the model consisting of multiple
decision trees, a forest formed by T trees. From the training set, T bootstraps (resampled
datasets with replacement) are then built. These are of the same size as the learning data
but consist of randomly selected signals from the library. A tree consists of several nodes
where the data are separated. At each node, n descriptors such as amplitude, frequency, . . .
are randomly chosen from the set of descriptors. The algorithm will then determine which
descriptor permits the optimal separation of the data. In our case, a model is built using
the data recorded by sensors during the experiments on the first three beams (#1, #2 et #3).
During the testing phase, another set of data is used to evaluate the classification error rate
of the model. The testing then proceeds, with other measurements realized on the same
beams. Thus, at each node of the trees, a criterion on the value of a descriptor is determined.
Signals that are not assigned to a class at this node pass to the next node, where another
n-descriptor is drawn, and so on until all signals have been separated. To label a dataset,
each unlabeled signal traverses the T trees. Each tree issues a vote, the signal is assigned
to the class that is most represented among the T votes. This algorithm has the benefit of
being very fast. The testing is proceeded with other measurements realized on the same
beams. Then, for more accuracy, we tested measurements realized on the other beams
(#4, #5 et #6), which were not used for the training of the model.

3. Results and Discussions
3.1. Detection of the Defects

In Figures 4 and 5 we represent the signals received in the different zones of our
assemblies using two of the most discriminating AE parameters. The comparison between
healthy zones and zones with defects for the first three reinforced beams (Bm) was con-
ducted via box and whiskers plots, in Figures 4 and 5 for sensor #1 and #2, respectively.
The central mark on the box indicates the median, and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively.

We conducted the analysis of these figures considering the data from each beam
separately. The data on one beam corresponds to three successive boxes, the first one
concerning the signals received in the healthy zone and the other two, the signals received
in the zones with defects. The figures show the dashed lines representing the detection
criterion set by the methodology (20% deviation from the healthy zone) whose red color
represents beam #1 (Bm1), while blue represents beam #2 (Bm2) and yellow represents
beam #3 (Bm3).

We notice in Figure 4a that for Bm1 and Bm3, all the studied defects are detectable
using the signal strength. For Bm2, combining cohesion (γ-type) and adhesion (δ-type)
defects, we have a maximum difference of −10.5% between the α-type zone and the
γ-type zone for this parameter. We note that to detect defects in this beam according to the
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criterion we have set, the rise time can be used (Figure 4b). For this parameter, we observe
a difference of 37.5% for the γ-type defect.
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For sensor #2 located at the epicenter of defects (Figure 5), we note that on the first
two beams (Bm1 and Bm2), the studied defects are detectable using the signal strength
(Figure 5a) as parameter. This is not the case, however, for the void in the third beam,
where we obtained a difference between α-type and β-type zones of 18% for this parameter.
This defect in this beam is, however, well detected using the rise time for which we observe
a difference of 31.2% between α-type and β-type zones. We notice, however, that the rise
time is very dispersed for this sensor position in Bm3.

Using a simple mono-parametric criterion, we succeeded in detecting all the defect
combinations studied for both sensor positions, as in [28]. It should be noted, however,
that depending on the combination of defects, the suitability of the parameters to be used
as indicators varies, and also depends on the position of the sensor. We also note that the
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parameters considered as being the most relevant in [28], such as the peak frequency, are
not necessarily relevant for this application. In practice, it is difficult to find one universal
feature that is sensitive to all defects and for any geometry.
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However, the boxes corresponding to the defect are not distinctive one from another.
Thus, it seems difficult with this methodology to determine a simple criterion for the
identification of the defects. More sophisticated methods are necessary for this purpose,
such as PCA, and random forest.

3.2. Identification of the Defects
3.2.1. PCA

The received signals can be analyzed using a Principal Component Analysis (PCA)
applied to AE parameters. The PCA is conducted considering the data from each beam
separately for the two sensors’ positions. The signal distributions in the PCA plane for
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the first three beams are respectively illustrated in Figures 6 and 7 for sensor positions
#1 and #2. The data are described by the 10 parameters. For all PCA, we chose principal
components to achieve a minimum 80% of the variance.

J. Compos. Sci. 2022, 6, x FOR PEER REVIEW 9 of 15 
 

 

3.2. Identification of the Defects 

3.2.1. PCA 

The received signals can be analyzed using a Principal Component Analysis (PCA) 

applied to AE parameters. The PCA is conducted considering the data from each beam 

separately for the two sensors’ positions. The signal distributions in the PCA plane for the 

first three beams are respectively illustrated in Figures 6 and 7 for sensor positions #1 and 

#2. The data are described by the 10 parameters. For all PCA, we chose principal compo-

nents to achieve a minimum 80% of the variance. 

Figure 6 shows globally for each beam a separation of the clusters formed by the 

signals received on the healthy zones (red cross) from the clusters of the signals received 

on the zones with defects. Thus, we can conclude that the PCA makes it possible to detect 

the presence of a defect for sensor position #1 on the three beams. 

On beams #2 and #3 (Figure 6b,c), we record a good separation of the clusters of sig-

nals received in zones with defect. This result is quite contrary in the case of beam #1 

(Figure 6a). Thereby, for this sensor position, we could identify defects according to the 

beam where it is located. 

  
(a) (b) 

 
(c) 

Figure 6. First principal component as a function of second principal component for signals received 

in sensor #1 (a) beam #1 (b) beam #2 (c) beam #3. 

Bm1-α 
Bm1-β 
Bm1-γ Bm2-α 

Bm2-γ 
Bm2-δ 

Bm3-α 
Bm3-β 
Bm3-δ 

Figure 6. First principal component as a function of second principal component for signals received
in sensor #1 (a) beam #1 (b) beam #2 (c) beam #3.

Figure 6 shows globally for each beam a separation of the clusters formed by the
signals received on the healthy zones (red cross) from the clusters of the signals received
on the zones with defects. Thus, we can conclude that the PCA makes it possible to detect
the presence of a defect for sensor position #1 on the three beams.

On beams #2 and #3 (Figure 6b,c), we record a good separation of the clusters of
signals received in zones with defect. This result is quite contrary in the case of beam #1
(Figure 6a). Thereby, for this sensor position, we could identify defects according to the
beam where it is located.

In comparison with the data collected for sensor #1, we find for sensor #2 a better
distinction between clusters for beam #1 (Figure 7a). For beam #2 (Figure 7b), the clusters
of the signals collected from the zones with defects are also clearly discernable one from
another, and from the cluster of signals collected on the healthy zone. The identification of
the defects in these beams therefore seem clearly possible for this sensor position. We can
note for beam #3 (Figure 7c) that the cluster formed by the signals received on the zones
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with a defect of adhesion (dots in magenta) is not obviously discernable from the cluster of
collected signals from the zone containing a void (blue dots).
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Though the scale is different, this result is similar with the study realized on small-
scale assemblies with similar materials [28]. Indeed, in [28], for this sensor located at
the epicenter of the defect, we found that the δ-type defect was more difficult to identify
using PCA.

The first method of identification consisting in an analysis of the main components
reveals a possibility of identifying, more or less clearly, all the simulated defects when
we analyze results for each beam, and depending on the position of the sensor. Contrary
to the conclusion of our previous article [28], it is impossible in this case study to fix a
common reference for the three beams. This assertion is confirmed by the results of the
overall PCA carried out for the nine zones of the first three beams. When analyzing the data
obtained from all these zones simultaneously, it is indeed not straightforward to establish a
clear separation between the zones without defect, and those containing defects (Figure 8).
These results show the need to use a stronger method, such as random forest, for accurate
classification of defects.
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3.2.2. Random Forest Classification
First Campaign of Classification

This analysis method of the received signals consists in setting a supervised classifi-
cation using a decision tree forest (RFCAM, [39]). This approach first requires a training
step based on the data acquired by both receiver sensors simultaneously. The classifi-
cation method is then applied to signals different than those used for the training stage
disregarding the sensors’ position.

During the training stage, we constructed our classification model according to four
classes (healthy, void, PU and kissing bond). For the “healthy” class, we used two series
of measurements carried out on each healthy zone of the first three beams (1st campaign),
and for each defect class, three series of measurements performed on each zone with
defect. Therefore, each class is generated using six series of measurements (two series
of measurements of the three healthy zones and three series of measurements of the two
zones with the same type of defect). We generate a model consisting in 200 trees with a
random selection of three descriptors on each tree’s node. The remaining five series of
measurements per healthy zone, and the four series of measurements per defective zone,
are used to test the model on the first campaign. They constitute our testing data set.

Table 3 shows the results of the classification of the received signals over the different
studied zones in the first campaign. In each row, the signals of the testing data set have been
stored on the corresponding classes. We found that a large number of the studied signals
are well labeled in their respective classes, which gives us overall recognition rates up to
95% (Table 4). The δ-type zone of beam #3 has the lowest recognition rate by majority vote
(i.e., 49%). However, for this case, we note that the next highest class is the “PU class”, which
contains only 23% of the signals. In view of these results, it is then possible to accurately
identify this defect without great difficulty. We note in this study that classification errors
are most often in favor of a class whose defect is present in the same bundle. For example,
we have the four signals received on the β zone of beam #3 that are incorrectly stored in
the class “kissing bond” while for the same type of defect but which is on beam #1, we
recorded the majority of classification errors on the “PU Class” with the 18 signals stored
there. This observation seems to confirm that the propagation conditions in the beam has a
major influence on the signal. This would imply that the selection of the reference zone
(α-type) of our measurements must always be reset and could constitute a major bias for
the extension of the technique on site.
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Table 3. Classification results from majority voting rule of the signals of the testing stage on the
1st campaign.

Class “Healthy” Class “Void” Class “PU” Class “Kissing Bond”

Testing data set from
beam #1

Healthy α 70 27 3 -

Void β - 61 18 2

PU γ - 20 64 -

Testing data set from
beam #2

Healthy α 89 - - 15

PU γ - 10 50 20

Kissing bond δ 17 - - 65

Testing data set from
beam #3

Healthy α 52 15 10 24

Void β - 78 - 4

Kissing bond δ 9 14 19 40

Table 4. Recognition and error rates corresponding to classification results.

Classification Rate Error Rate

Testing data set from
beam #1

Healthy α 70% 30%

Void β 75% 25%

PU γ 76% 24%

Testing data set from
beam #2

Healthy α 86% 14%

PU γ 63% 37%

Kissing bond δ 79% 21%

Testing data set from
beam #3

Healthy α 51% 49%

Void β 95% 5%

Kissing bond δ 49% 51%

Second Campaign of Classification

During the second campaign of classification, we tested the model with the data
recorded on new specimens that did not particpate in the training of the model (beam #4,
beam #5 and beam #6). Table 5 shows the results of the classification of the received signals
over the different studied zones on these three beams of the second campaign. In this case,
the identification of the defects proved to be more difficult. However, we detetected all
the studied defects of the same size (those of the beam #4) as the ones used to train the
model. The γ-type defect’s identification is shown to be the most occurate in our study
with a classification rate of 47%.

Table 5. Classification results from majority voting rule of the signals of the testing stage on the
2nd campaign.

Class “Healthy” Class “Void” Class “PU” Class “Kissing Bond”

Testing data set from
beam #4

Void β - 78 84 7

PU γ 62 11 75 11

Kissing bond δ 56 - 98 -

Testing data set from
beam #5 Healthy α 72 - - 72

Testing data set from
beam #6

1
4 Void β 3 48 - 98
1
4 PU γ 10 75 46 11

1
4 Kissing bond δ 116 1 18 6
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On beam #5 free of defects, the healthy zone is barely recognized. This result confirms
that it is crucial to assign a new reference area each time for any new study. For smaller
defect sizes (beam #6), they cannot be recognized correctly. The β and γ type defects are
still detected as a defect, which was not the case for the δ type defect.

4. Conclusions

The main purpose of this article was to evaluate the robustness of the diagnosis
methodology (detection/identification for three types of joint defects) implemented in a
previous study [28], when applied to large-scale specimens (concrete beams reinforced by
adhesively bonded composite plate).

The mono-parametric analysis applied to these measurement data revealed that for
all the performed defect combinations, the method remains effective in detecting these
defects per beam. However, the parameters relevant for this detection vary one beam from
the other and the defect influence is not always reproducible. Thus, for the position of the
sensor located at 230 mm from the transmitter (sensor #1), the energy parameter shows
rather upward values in the presence of defect (contrary in [28]).

With a PCA method applied per beam, defect identification is possible depending on
the position of the sensor. We have seen that, depending on the studied beam, we can have
a good distinction of clusters for one sensor position and not for the other. Thus, for beam
#1 having the couple of defects void-cohesion, the defect’s clusters are not discernible using
sensor #1. For beam #3, combining the void and kissing bond defects, the clusters are also
not discernible for sensor #2 located at the epicenter of the defect.

Using the random forest classification method, we are able to identify all defects
combining the data from the two sensors for all the beams. Nevertheless, we obtained
lower recognition rates than those found in [28]. Moreover, we noted that the recognition
rate of a type of defect was variable depending on the size of defects.

In general, we note a slight decrease in the effectiveness of this methodology in
detecting and identifying the studied defects due to the larger scale specimens (beams), the
presence of multiple types of defects on the same beam, and the influence of the propagation
conditions of ultrasonic waves. However, compared to commonly used techniques such as
IR thermography, the AU technique show better potential to evaluate the bonded joints
quality. Nevertheless, a global analysis is not yet possible due to the fact that each type of
defect must be analyzed using its own 35 reference beam, a common reference having not
been able to be defined because of the different propagation conditions between the beams.
This could also affect the enrichment of the learning library for supervised classification. It
is therefore important to quantify the influence of the propagation conditions on the AU
signals with the help of a modelling work in order to improve the proposed methodology.
Additionally, it should be interesting to evaluate the acousto-ultrasonic activities under
mechanical testing on the assemblies.
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