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Abstract. We consider skew metrics (equivalently, transitive relations
that are tournaments, linear orderings) valued in Sugihara semigroups
on autodual chains. We prove that, for odd chains and chains without a
unit, skew metrics classify certain tree-like structures that we call perfect
augmented plane towers. When the chain is finite and has cardinality
2K + 1, skew metrics on a set X give rise to perfect rooted plane trees
of height K whose frontier is a linear preorder of X.
Any linear ordering on X gives rise to an ordering on the set of its skew
metrics valued in an arbitrary involutive residuated lattice Q. If Q sat-
isfies the mix rule, then this poset is most often a lattice. We study this
lattice for X = {1, . . . , n} and Q the Sugihara monoid on the chain of
cardinality 2K + 1. We give a combinatorial model of this lattice by de-
scribing its covers as moves on a space of words coding perfect augmented
plane trees. Using the combinatorial model, we develop enumerative con-
siderations on this lattice.

1 Introduction

Linear orders and trees are fundamental structures in Computer Science and
Mathematics. We might consider linear orders using some object of truth values
different from the classical two-element Boolean algebra. The theory of linear
orders in an intuitionistic setting intrinsically suffers from the lack of a well-
behaved negation; a striking consequence of this is the existence of different
types of intuitionistic ordinals [11,24]. However, when the object of truth values
is an involutive residuated lattice or a Girard quantale, negation is again fully
operative, generalized linear orders are easily axiomatized, and a rich theory can
be developed, capable to generalize non trivial results on classical linear orders.

For such object of truth values, linear orders can be equivalently defined ei-
ther as some kind of metric valued in the quantale where the symmetry property
of the distance is replaced by skewness—that is, we require δ(y, x) = δ(x, y)

∗

where (− )
∗

is the negation—or as transitive relations on the quantale obeying
this law, analogous to the requirement that a binary relation is a tournament.

As part of a general investigation of these objects, see [9,20], we investigate
in this paper skew metrics valued in Sugihara monoids and, more generally, in
Sugihara semigroups. Research on Sugihara monoids can be traced back to [5]
and constitutes nowadays a quite active domain, see e.g. [7,6]. More importantly,
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Sugihara semigroups arise as the unique idempotent involutive residuated lattice
structure that can be given to an autodual chain. Linear orders on the Sugihara
chain with three elements—that is, linear preorders or pseudo-permutations—
have already been investigated [14,2], partly motivated from complexity issues
related to the representation of temporal reasoning [25]. The importance of linear
preorders in relation with the combinatorics and geometry of Coxeter groups and
hyperplane arrangements was remarked already in [2] and has been once more
emphasized in [4]. For us, it is the canonicity of Sugihara semigroups and the
use of these structures in combinatorics that motivates further investigations of
linear orders on arbitrary Sugihara semigroups.

We focus in this paper on autodual chains C for which either the positive
cone C+ has no least element, or satisfying C+∩C− 6= ∅, C− being the negative
cone. We claim that the cases left can be easily studied from the present research.
We show that skew metrics on a set X valued in the Sugihara semigroup on C
are in bijection with some tree-like objects that we call augmented perfect towers
and can be neatly described as functors from the poset C+ to the category of
linearly ordered sets with few additional properties and structure. In particular
all the maps involved in such a functor T are surjective and, moreover, a cone
from X to T (in the category of sets) is given, reflecting the fact that leaves are
labeled by subsets of X.

Once this correspondence is established, we further study the case where
X = { 1, . . . , n } and C = {−K, . . . ,−1, 0, 1, . . . ,K }, in which case augmented
towers are indeed rooted plane trees, that are perfect (meaning that each branch
has equal length) of height K + 1 and leaves are labelled by subsets of X,
so the frontier forms an ordered partition of X. When X is linearly ordered,
skew metrics defined on X can be ordered and most often this ordering yields a
lattice. For such choice of X and C, we describe the poset of skew metrics and,
by representing trees as words, we determine covers of this poset as moves or
rewrites on these words.

Relying on the combinatorial description of skew metrics as words, we give
enumerative results on these combinatorial objects and these posets such as
determining the size and the length.

Let us mention that the combinatorial model obtained is unavoidably close
to the one of [14,2]. In these works the combinatorial model is given and the
algebra of Sugihara monoids is mostly used for proving the lattice property of
pseudo-permutations. Here the flow has opposite direction: the algebraic frame-
work is given, and the problem, solved, is to instantiate the algebra into the
combinatorics.

In this work converge our previous research on the lattice structures that
arise from linear orders [21,22,9,20] and research on the algebraic structures
of logic that are in use in combinatorics, see e.g. [18,19]. W.r.t. the first line of
research, a main advance here is the recognition of the primary role of the notion
of skew metric or linear order on an involutive residuated lattice, compared to
closed/open constructions, and its framing in a relational setting. W.r.t. the
second line of research, we identify via [8] a connection of Sugihara monoids to
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the combinatorics of hyperplane arrangements, thus witnessing once more the
value of algebraic structures of logic in the realm of combinatorics.

The paper is structured as follows. In Section 2 we recall the definition of
involutive residuated lattices, of Sugihara semigroups, state their canonicity and
few properties needed in the rest of the paper. In Section 3 we develop and
exemplify the elementary theory of skew metrics. In Section 4 we characterize
skew metrics as perfect augmented towers. In Section 5 we recall results on the
ordering on the set of skew metrics valued in an arbitrary involutive residuated
lattice. In Section 6 we give a combinatorial model of this poset in the case
X = { 1, . . . , n } and Q is the Sugihara monoid on a chain of size 2K + 1. We
conclude in Section 7 with enumerative results concerning these posets.

2 Sugihara semigroups on autodual chains

In this section we recall elementary facts on Sugihara semigroups, which are in-
volutive residuated lattices on autodual chains. We take the view that residuated
lattices might not have units, as indeed it will be the case for many autodual
chains that we consider.

Definition 1. An involutive residuated lattice is a structure 〈L,∧,∨,⊗, (− )
∗〉

such that 〈L,∧,∨〉 is a lattice, ⊗ is a semigroup operation on L compatible with
the order, (− )

∗
is an antitone involution such that

x⊗ y ≤ z iff y ⊗ z∗ ≤ x∗ iff z∗ ⊗ x ≤ y∗ . (1)

We call the relations in (1) the shift relations. Let us define

x⊕ y := (y∗ ⊗ x∗)∗ , x\y := x∗ ⊕ y , x/y := x⊕ y∗ .

It is easy to see that the shift relations are equivalent to asking that the semi-
group operation is residuated in both variables:

x⊗ y ≤ z iff y ≤ x\z iff x ≤ z/y , for each x, y, z ∈ L.

By an autodual chain we mean a totally ordered set C coming with an an-
titone involution (− )

∗
: C −→ C. For C such an autodual chain we define the

absolute value as expected: |x| := max(x, x∗), for each x ∈ C. Notice then that
we also have |x|∗ = min(x, x∗). If we let

C+ := {x ∈ C | x∗ ≤ x } , C− := {x ∈ C | x ≤ x∗ } ,

then C = C+∪C−, and C+∩C− is either empty, or it is the singleton containing
the unique fixed point of (− )

∗
. On C we can define the following two operations:

x⊗ y :=


x , |y| < |x| ,
y , |x| < |y| ,
min(x, y) , |x| = |y| ,

x⊕ y :=


x , |y| < |x| ,
y , |x| < |y| ,
max(x, y) , |x| = |y| .

(2)

These operations are associative, commutative, idempotent, and dual. Moreover,
they satisfy the mix rule, meaning that x⊗ y ≤ x⊕ y, for each x, y ∈ C.
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Example 2. On the chain {−1, 0, 1 } these two idempotent semigroup structures
are as follows:

⊗ −1 0 1
−1 −1 −1 −1

0 −1 0 1
1 −1 1 1

⊕ −1 0 1
−1 −1 −1 1

0 −1 0 1
1 1 1 1

Proposition 3. For any autodual chain C, the structure 〈C,min,max,⊗, (− )
∗〉

is an involutive residuated lattice.

The next statement, possibly part of the folklore, witnesses the canonicity of
this semigroup structure.

Proposition 4. If C is an autodual chain, then there is exactly one idempotent
semigroup operation ⊗ on C making 〈C,min,max,⊗, (− )

∗〉 into an involutive
residuated lattice.

This canonical semigroup structure is known as the Sugihara monoid on the
autodual chain C, see e.g. [7]. Indeed, units are usually considered in involutive
residuated lattices, so we characterise next when such a semigroup structure has
a unit.

Lemma 5. The semigroup structure ⊗ has a unit ι if and only if the set C+

has a greatest lower bound
∧
C+. In either case, we have ι =

∧
C+.

As a consequence of the lemma, each auto-dual chain C has at most one
unital idempotent involutive residuated lattice structure on it, and exactly one
if C is a complete chain.

In the following, we let 3 be the chain {−1, 0, 1 }, which we consider with its
Sugihara semigroup structure. For C an autodual chain and k ∈ C+, we define
χk : C −→ 3 as follows:

χk(x) :=


1 , k < x ,

0 , k∗ ≤ x ≤ k ,
−1 , x < k∗ .

(3)

The map χk is monotone, thus a lattice homomorphism. Let us remark that χk

is not a semigroup homomorphism since, for example, if x, y, k are such that
x∗ < y < k∗ ≤ k < y∗ < x, then χk(x ⊗ y) = χk(x) = 1, while χk(x) ⊗
χk(y) = 1⊗−1 = −1. Yet, χk satisfies the two properties stated in the following
proposition, relevant for the considerations to come.

Proposition 6. For each x, y ∈ C, we have

χk(x∗) = χk(x)
∗
, χk(x)⊗ χk(y) ≤ χk(x⊗ y) .
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3 Skew metrics valued in an involutive residuated lattice

In this section, we let Q = 〈Q,∧,∨,⊗, (− )
∗〉 be a fixed involutive residuated

lattice. For a set X, we let ∆X := { (x, x) | x ∈ X }.

Definition 7. A Q-relation on X is a map f : X2 \∆X −→ Q. A Q-relation f
is

– transitive if f(x, y)⊗ f(y, z) ≤ f(x, z),
– cotransitive if f(x, z) ≤ f(x, y)⊕ f(y, z),
– skew if f(x, y) = f(y, x)

∗
,

for each pairwise distinct x, y, z ∈ X.

The reader might be surprised about our choice of the domain of a Q-relation.
Indeed, we could have defined a Q-relation as a map f : X2 −→ Q and, for
example, said it is reflexive if 1 ≤ f(x, x), so a reflexive and transitive Q-relation
is nothing else than a category enriched over Q, see [13]. However, we shall
insist on the last property, skewness.1 If f is skew and also defined on ∆X , then
f(x, x) = f(x, x)

∗
, for each x ∈ X, that is, the duality coming from Q has at

least one fixed point. Moreover, if we ask the relation 1 ≤ f(x, x) to hold, then
1 ≤ f(x, x) = f(x, x)

∗ ≤ 1∗. This leaves out many involutive residuated lattices
that either do not have units or, for example, for which 1∗ < 1. Our choice is
therefore dictated by the aim to consider the largest number of examples. On
the other hand, if Q has a unit 1 such that 1∗ = 1, we can freely assume that f
is defined on the entire X2 with f(x, x) = 1, for each x ∈ X.

Lemma 8. If a Q-relation is skew, then it is transitive if and only if it is co-
transitive.

Definition 9. A skew Q-metric (or skew metric, if Q is understood) on X is a
cotransitive skew Q-relation.

By the previous lemma, a skew metric is transitive. We prefer the name skew
metric (to cotransitive skew Q-relation), since the conditions

f(x, z) ≤ f(x, y)⊕ f(y, z) , f(y, x) = f(x, y)
∗
,

satisfied by a skew metric suggest that f is a distance where symmetry of a
distance is being replaced by skewness, see e.g. [15,12]. The next examples explain
why skew metrics are generalized linear orders.

Example 10. Let 2 be the two element Boolean algebra. Skew 2-metrics on X
bijectively correspond to (strict) linear orders on X. Indeed, consider a function
f : X2\∆X −→ 2 and define Rf := { (x, y) | f(x, y) = 1 }. Then f(x, y)∧f(y, z) ≤
f(x, z) holds iff Rf is transitive, f(x, y) ≤ ¬f(y, x) holds iff Rf is antisymmetric
(where ¬ stands for Boolean complement), and f(x, y) ≥ ¬f(y, x) holds iff Rf

is total (or linear). Indeed, skew 2-relations correspond to tournaments.
1 In [12] a property analogous to skewness is considered. In this work the star operation

appearing in the relation f(y, x) = f(x, y)∗ is monotone.



6 L. Santocanale

Example 11. This example is the most relevant for the following. A linear pre-
order on a set X is a transitive relation R which is total: for each x, y, xRy or
yRx. Let 3 be the Sugihara monoid on the chain {−1, 0, 1 }. Skew 3-metrics on
X bijectively correspond to linear preorders on X via the mapping sending f :
X2\∆(X) −→ 3 to Rf := { (x, y) | f(x, y) ≥ 0 }. Again, f(x, y)⊗f(y, x) ≤ f(x, z)
yields transitivity of Rf , while f(x, y) = f(y, x)

∗
, that is, f(x, y) + f(y, x) = 0,

yields totality of Rf . Let us remark that, in turn, linear preorders bijectively
correspond to ordered partitions of the set X. We can directly define an or-
dered partition of X from a skew metric f : X2 \∆X −→ 3 as follows. Say that
x ∼0 y if x = y or f(x, y) = 0. Then ∼0 is an equivalence relation, so the
blocks of the partition are the equivalence classes of ∼0. If x ∼0 x

′ and y ∼0 y
′,

then f(x′, y′) = f(x, y), as witnessed by the following computation: f(x, y) =
f(x′, x) ⊗ f(x, y) ⊗ f(y, y′) ≤ f(x′, y′) ≤ f(x′, x) ⊕ f(x, y) ⊕ f(y, y′) = f(x, y).
That is, we can define f on the set of equivalence classes X/∼0 and then the
map from the quotient f : (X/∼0)2 \∆(X/∼0) −→ 2 yields a total ordering on the
blocks.

Example 12. It was shown in [20] that if X is finite, then skew metrics valued in
the involutive residuated lattice of sup-preserving maps from the unit interval
[0, 1] bijectively correspond to images of continuous (in the topological sense)
maps [0, 1] −→ [0, 1]X that are isotone, and preserve the endpoints. Alternatively,
they correspond to maximal chains in the cube [0, 1]X .

The statements below, whose proofs are straightforward, illustrate the ele-
mentary algebra that can be developed around skew metrics.

Lemma 13. Let f : X2 \∆X −→ Q be a skew metric. If g : Y −→ X is injective,
then f ◦ g : Y 2 \ ∆Y −→ Q is also a skew metric. If Q is commutative, then
f∗ : X2 \∆X −→ Q, defined by f∗(x, y) := f(y, x), is a skew metric.

Definition 14. A monoidal map from an involutive residuated lattice Q to an
involutive residuated lattice Q′ is a function h : Q −→ Q′ such that h(x∗) = h(x)

∗

and h(x)⊗ h(y) ≤ h(x⊗ y).

Lemma 15. If f : X2\∆X −→ Q is a skew metric and h : Q −→ Q′ is a monoidal
function, then h ◦ f : X2 \∆X −→ Q′ is a skew metric.

Remark 16. Let C be an autodual chain and k ∈ C+. As we have seen in Propo-
sition 6, the map χk : C −→ 3 defined in equation (3) is monoidal. According
to Lemma 15, χk ◦ f : X2 \ ∆X −→ 3 is a skew metric, for each skew metric
f : X2 \∆X −→ C.

4 Augmented plane towers

We characterise in this section the combinatorial objects arising from skew met-
rics valued in Sugihara semigroups that are either unitless or odd. Let us make
these notions precise.
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Definition 17. An autodual chain C is even if C+ ∩C− = ∅ and, otherwise, it
is odd. We say that C is interesting if either C is even and

∧
C+ does not exist

(so the idempotent semigroup structure on C is unitless) or C is odd.

The reader can easily verify that a finite autodual chain is odd if and only
if it has odd cardinality and, otherwise, it is even. In the following we fix an
interesting autodual chain C. Observe that if C is finite, then it is odd. Let us
use LinOrd to denote the category of linearly ordered sets and order preserving
maps, and U : LinOrd −→ Set to denote the forgetful functor from this category
to the category of sets and functions. For the next definition, recall that a poset
can be regarded as a category whose objects are the elements of the poset and
for which there is exactly one arrow between two elements x, y when x ≤ y.

Definition 18. A plane tower is a functor T : C+ −→ LinOrd. For X any set,
an augmented plane tower on X is a pair (τ, T ) with T a plane tower and
τ : X −→ U ◦ T a cone.

We spell out what the definition means. A plane tower T is a pair of collections
{Tk | k ∈ C+ } and {Tj,k | j, k ∈ C+, j ≤ k }. For each k ∈ C+, Tk is a linearly
ordered set; for j, k ∈ C+ and j ≤ k, Tj,k : Tj −→ Tk is an order preserving
map. These data satisfy the following constraints: Tk,k is the identity and, for
j ≤ k ≤ u, Tj,u = Tk,u ◦Tj,k. A cone τ : X −→ U ◦T is a collection { τk | k ∈ C+ }
of functions such that τk : X −→ Tk and, for j ≤ k, τk = Tj,k ◦ τj . Let us insist
on the fact that X is just a set, it is not linearly ordered, while all the sets Tk
are linearly ordered.

Remark 19. For T a plane tower, let El(T ) be the poset whose elements are
pairs (k, x) with x ∈ Tk and for which (k1, x1) ≤ (k2, x2) if k2 ≥ k1 and x2 =
Tk1,k2

(x1). It easily verified that the C+ is dually well-founded (e.g. Noetherian)
if and only if El(T ) is a tree in the sense of set theory—that is, each downset
↓ (k, x) = { (k′, x′) | k ≤ k′, x′ = Tk,k′(x) } is well-ordered. Thus, if C+ is dually
well-founded and in particular if C+ is finite, then we call T a plane tree instead
of a plane tower.

Definition 20. An augmented plane tower (τ, T ) is perfect if each map τi is
surjective. An augmented plane tower is complete if, for each x, y ∈ X, the set
Eg(x, y) := { k ∈ C+ | τk(x) = τk(y) } has a least element.2

It is an elementary exercise to verify that if an augmented plane tower (τ, T ) is
perfect, then also the maps Tj,k : Tj −→ Tk, j ≤ k, are surjective. The following
lemma exemplifies some consequences of these conditions.

Lemma 21. If (τ, T ) is a perfect complete augmented tower from X, then,
whenever k =

∧
J , the canonical map Tk −→ limj∈J Tj is injective.

2 For finite binary trees, the adjectives perfect, full, and complete have precise yet
distinct meanings. We adopt the wording perfect for a (non necessarily binary) tree
(or a tower) all of whose branches have equal length. The wording complete refers
here to a completeness property of the poset C+.
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Next, for a skew metric f : X2 \∆X −→ C, we give the following definitions:

x ∼f
k y if x = y or |f(x, y)| ≤ k , [x]fk := { y ∈ X | y ∼f

k x } .

T f
k := { [x]fk | x ∈ X } , [x]fk <

f
k [y]fk if k < f(x, y) .

Notice that, for j ≤ k, we have [x]fj ⊆ [x]fk and so, for such j, k, we can define

T f
j,k([x]fj ) := [x]fk , τfk (x) := [x]fk .

Proposition 22. tf := (τf , T f ) is a perfect and complete augmented plane
tower from X.

Proof. Quite obviously T f is a functor and τf is a cone from X to T f
k .

Every set T f
k is linearly ordered by <f

k , since this ordering is induced by the
skew metric χk ◦ f : X −→ 3, see Example 11 and Remark 16. Moreover, for
j, k ∈ C+ and j ≤ k, j < f(x, y) and |f(x, y)| 6≤ k imply k < f(x, y). That

is, for such j, k, [x]fj <
f
j [y]fj implies [x]fk ≤

f
k [y]fk , so we can take as codomain

of the functor T f the category of linearly ordered sets and isotone functions.

The maps τfk are surjective, so tf is perfect. For completeness, observe that∧
{ k ∈ C+ | [x]fk = [y]fk } = |f(x, y)|, since by definition [x]fk = [y]fk if and only

if |f(x, y)| ≤ k. ut

For t = (τ, T ) a complete augmented tower, we set

δt(x, y) :=
∧
{ k ∈ C+ | τk(x) = τk(y) } .

Notice that δt is an ultrametric on X valued in C+, meaning that, for each
x, y, z ∈ X, δt(x, y) = δt(y, x) and δt(x, z) ≤ max(δt(x, y), δt(y, z)). If C+ has a
least element 0, then the condition δt(x, y) = 0 implies x = y holds if and only
if the map τ0 : X −→ T0 is injective.

Let now t = (τ, T ) be a perfect and complete augmented plane tower. Observe
that if k < δt(x, y), then we have either τk(x) < τk(y), or τk(y) < τk(x), but
not both. Moreover, if k, k′ < δt(x, y) and τk(x) < τk(y), then τk′(x) < τk′(y)
as well. Indeed, if τk(x) < τk(y) and τk′(y) < τk′(x), then, for K = max(k, k′),
τK(x) ≤ τK(y) and τK(y) ≤ τK(x), thus τK(x) = τK(y) with K < δt(x, y), a
contradiction. Therefore, we define

ςt(x, y) :=

{
−1 , if, for some k < δt(x, y), τk(y) < τk(x) ,

1 , otherwise .

We define then ft : X2 \∆X −→ C by

ft(x, y) := ςt(x, y) · δt(x, y) ,

where the action of {−1, 1 } on C is as expected: 1 · k = k, and −1 · k = k∗.
Accordingly, we use the notation −k as equivalent to k∗.
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Proposition 23. ft so defined is a skew-metric on C.

Proof. Firsty we argue that, for x, y, z ∈ X arbitrary pairwise distinct, ft(x, y)⊗
ft(y, z) ≤ ft(x, z). Recalling that ft(x, y) ⊗ ft(y, z) ∈ { ft(x, y), ft(y, z) }, we
suppose that ft(x, y)⊗ft(y, z) = ft(x, y) (if ft(x, y)⊗ft(y, z) = ft(y, z), then the
argument is similar). Under this assumption, we have either (i) δt(x, y) > δt(y, z),
or (ii) δt(x, y) = δt(y, z) and ςt(x, y) = −1. Suppose (i). Since δt(x, y) > δt(y, z),
then δt(x, z) = δt(x, y): indeed, δt(x, z) ≤ max(δt(x, y), δt(y, z)) = δt(x, y), and
δt(x, y) ≤ max(δt(x, z), δt(y, z)) implies δt(x, y) ≤ δt(x, z). Therefore, in order
to show that ft(x, y) ≤ ft(x, z), we need to argue that ςt(x, y) = 1 implies
ςt(x, z) = 1. Assume therefore that ςt(x, y) = 1 and let k = δt(y, z); we have
then τk(x) < τk(y) = τk(z), so ςt(x, z) = 1. We suppose now (ii), that is,
δt(x, y) = δt(y, z) and ςt(x, y) = −1. If ςt(x, z) = 1, then we obviously have
ft(x, y) ≤ ft(x, z). Thus, we can assume that ςt(x, z) = −1. Considering that
δt(x, z) ≤ max(δt(x, y), δt(y, z)) = δt(x, y), then we immediately have ft(x, y) =
−1 · δt(x, y) ≤ −1 · δt(x, z) = ft(x, z).

Next, we argue that ft(y, x) = ft(x, y)
∗
. Clearly, we have δt(x, y) = δt(y, x).

If ςt(x, y) = −1, then, for some k < δt(x, y), τk(y) < τk(x), thus ςt(y, x) = 1
and ft(y, x) = −ft(x, y). Suppose, therefore, that ςt(x, y) = 1, so τk(x) < τk(y)
for all k < δt(x, y). If δt(x, y) is not the least element of C+, then we deduce
ςt(y, x) = −1, so ft(y, x) = −ft(x, y). Otherwise, δt(x, y) is the least element
of C+ and therefore ςt(x, y) = ςt(y, x) = 1, but also C+ ∩ C− = { δt(x, y) },
since we assume that C is interesting, thus odd if C+ has a least element. Then
ft(x, y) = δt(x, y) = −δt(x, y)− δt(y, x) = −ft(y, x). ut

Proposition 24. For f : X2 \∆X −→ C a skew metric, we have ftf = f .

Proof. As we already observed, δtf (x, y) = |f(x, y)|. Moreover, ςtf (x, y) = −1

iff for some k < |f(x, y)| we have [y]fk <f
k [x]fk , where the last inequality is

equivalent, by definition, to k < f(y, x). Now saying that, for some k ∈ C+,
k < f(y, x), that is, f(x, y) < −k, is equivalent to saying that f(x, y) is strictly
negative, i.e. f(x, y) ∈ C− \ C+. Then, if f(x, y) is strictly negative, then
f(x, y) = −|f(x, y)| = ςtf (x, y) · δtf (x, y) = ftf (x, y). If f(x, y) is positive, then
ςtf (x, y) = 1, δtf (x, y) = f(x, y), and again f(x, y) = ςtf (x, y) · δtf (x, y) =
ftf (x, y). ut

Let T, T ′ be two plane towers. Recall that a natural transformation α : T −→
T ′ is a collection {αk : Tk −→ T ′k | k ∈ C+ } such that αk is order preserving
and such that, for j ≤ k, T ′j,k ◦ αj = αk ◦ Tj,k. Such a natural transformation is
a natural isomorphism if each αk has an order preserving inverse. We say that
(τ, T ), (τ ′, T ′) are isomorphic if there is such a natural isomorphism α : T −→ T ′

such that τ ′ = α ◦ τ , that is, τ ′k = αk ◦ τk for each k ∈ C+.

Proposition 25. If t = (τ, T ) is a perfect and complete augmented plane tower,
then tft is naturally isomorphic to t.

Proof. Observe that x ∼ft
k y iff |ft(x, y)| = δtft(x, y) ≤ k iff τk(x) = τk(y). That

is, the equivalence relation ∼ft
k is the kernel of τk. Since moreover τk is surjective,

the function αk sending [x]ftk to τk(x) is bijection from T ft
k to Tk.
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Something more can be said: [x]ftk <ft
k [y]ftk iff k < ft(x, y), iff τk(x) < τk(y).

Threfore αk is a bijective embedding of posets, whence an invertible map in the
category of linear orders and isotone maps.

It is also obvious that τ = α ◦ τft ,
since this relation amounts to αk(τftk (x)) =

αk([x]ftk ) = τk(x). From this relation and

surjectivity of τftk it also follows that α :
T ft −→ T is natural, which can be verified by
inferring commutativity of the inner square
from commutativity of the outer triangle in
the diagram on the right.

X T ftj Tj

T ftk Tk

τ
ft
j

τ
ft
k

τj

τk

T
ft
j,k

αj

Tj,k

αk

ut

5 The posets of skew metrics

In this section we consider again an arbitrary involutive residuated lattice Q
and recall more advanced algebraic properties of skew metrics valued in Q. More
precisely, we pinpoint that skew metrics can be ordered and that most often this
ordering is a lattice.

Observe that it is not interesting to order skew metrics pointwise. For ex-
ample, if f, g : X2 \ ∆X −→ Q and f(x, y) < g(x, y), then g(y, x) = g(x, y)

∗
<

f(x, y)
∗

= f(y, x). That is, a pointwise ordering is necessarily discrete (all the
elements are incomparable). We can get a more interesting ordering if we assume
that X is totally ordered. In this case, we let IX := { (x, y) ∈ X2 \∆X | x < y }
and also introduce the following concept:

Definition 26. A map f : IX −→ Q is clopen if, whenever x < y < z ∈ X,

f(x, y)⊗ f(y, z) ≤ f(x, z) ≤ f(x, y)⊕ f(y, z) . (4)

We let ClopX(Q) be the set of clopen maps f : IX −→ Q.

Roughly speaking (and up to a choice of a total ordering on X) clopen maps
and skew metrics are the same kind of objects, as stated below:

Proposition 27. Every clopen map f : IX −→ Q extends uniquely to a skew
metric f : X2 \ ∆X −→ Q. Therefore, every total order on X determines a
bijection from the set ClopX(Q) to the set of skew metrics on X valued in Q.

The set ClopX(Q) can be ordered pointwise in a non trivial way. It was argued
in [20, see Theorem 21] that if X = { 1, . . . , n } and Q is any involutive residuated
lattice satisfying the mix rule, then ClopX(Q) is a lattice. By inspecting the proof
of this result, it is not difficult to generalize it as follows:

Theorem 28. Let X be a totally ordered set. If Q is an involutive residuated
lattice satisfying the mix rule, and every interval of X is finite or Q is complete
as a lattice, then ClopX(Q) is a lattice.
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As we have insisted on skew metrics, we can rephrase the previous statement in
terms of skew metrics.

Theorem 29. Let X be a totally ordered set, let Q be an involutive residuated
lattice satisfying the mix rule. Let SMetX(Q) be the set of skew metrics on X
valued in Q. Order SMetX(Q) as follows:

f ≤ g iff g(x, y) ≤ f(x, y) , for each x, y such that x < y . (5)

If every interval of X is finite or Q is complete as a lattice, then SMetX(Q) is
a lattice.

Let us remark that, for coherence with existing literature, we are considering
in (5) the opposite ordering of the pointwise ordering on the restriction to IX .

Example 30. Suppose X = { 1, . . . , n }. If Q = 2, then SMetX(Q) is the lattice
all permutations of X, known as the Permutohedron or the weak Bruhat order
on the symmetric group, see e.g. [10,3,22]. If Q = 3 is the Sugihara semigroup on
the three element chain, then SMetX(Q) is isomorphic to the lattice of pseudo-
permutations of X, see [14,2,21]. For Q the lattice of sup-preserving maps from
the chain [0, 1] to itself, the poset ClopX(Q)—and therefore SMetX(Q)—was
studied in [9,20]. We study in the next section the lattice SMetX(Q) for Q a
Sugihara monoid on an odd finite chain.

Remark 31. For X a finite total order, the construction sending Q to SMetX(Q)
can be made into a limit preserving functor from the category of involutive resid-
uated lattices satisfying the mix rule into the category of lattices, see [20]. As a
consequence, given that a Sugihara monoid on the finite even chain 2k can be em-
bedded in the Sugihara monoid on the odd chain 2k + 1, the lattice SMetX(2k)
can be described as a sublattice of SMetX(2k + 1). For this reason we have given
priority to the investigation of the lattices of the form SMetX(2k + 1).

6 The poset of augmented plane trees

In this section we study the ordered set SMetX(Q), with X = { 1, . . . , n } and Q
the Sugihara monoid on the finite chain of size 2K + 1, denoted henceforth by
SMetn,K . The aim is to give a combinatorial model of this poset, by describing
its covers as moves (i.e. elementary transformations or rewrite rules) on a set
of combinatorial objects, in the spirit of [16]. Since skew metrics correspond—
under the bijection described in Section 4—to K + 1-level plane trees whose
leaves are labelled by subsets of X, these subsets forming a partition of X,3 we
should describe the ordering directly on this kind of objects. However, mostly
for compactness, we prefer to code trees as words and handle the latter.

3 These objects are called K+ 1-level labeled linear rooted trees with n leaves on The
On-Line Encyclopedia of Integer Sequences [1], cf. Figure 2.
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Coding trees as words. We fix n and K and consider disjoint alphabets Σ0 :=
{ 1, . . . , n } and Σ1 := { |1, . . . , |K }. We think of Σ1 as an alphabet of walls of
distinct heights. If w ∈ (Σ0∪Σ1)∗, then the walls from Σ1 “split w into blocks”.
More precisely if w′ is obtained from w by erasing letters from Σ1, then w′ can
subdivided into blocks of contiguous letters from Σ0. We define the set Tw(n,K)
(of tree-words) as the set of words w over the alphabet Σ0 ∪ Σ1 satisfying the
following conditions:

(i) The blocks of w are non-empty. That is, there are no contiguous walls, and
walls do appear neither in first nor in last position.

(ii) The word obtained from w by erasing the walls is a permutation.
(iii) If two letters x, y ∈ Σ0 are in the same block of w and x < y, then x

appears on the left of y in w.

Example 32. The word 2|213|14 belongs to Tw(4, 2). The words 2|2134|1 and
2|2|313|14 violate the first constraint. The word 2|223|14 violates the second
constraint. The word 2|231|14 violates the third constraint.

We take for granted that a word in Tw(n,K) codes a perfect plane tree of height
K augmented from { 1, . . . , n }, see Figure 1 for examples. Yet, a few remarks
are due. By identifying a word w ∈ Tw(n,K) with the augmented tree it codes,
we have

δw(x, y) = max{ k | the symbol |k separates x from y in w } ,

and, for x, y such that 1 ≤ x < y ≤ n,

ςw(x, y) = −1 iff y appears before x in the permutation underlying w ,

where the latter relation is a consequence of the fact that letters belonging to
the same block appear in increasing order.

Positive and negative walls, enabled walls. For w ∈ Tw(n,K) and k ∈ { 1, . . . ,K },
let w↑k be the word in Tw(n,K) obtained by first erasing all the walls |j ∈ Σ1

with j < k, and then by reorganising contiguous blocks so to satisfy the third
constraint. For example, (1|13|22) ↑2= 13|22. For w ∈ Tw(n,K) and an occur-
rence of a letter |k ∈ Σ1 in w, the left (resp., right) scope of this occurrence is the
block on its left (resp., right) in w↑k; we say that such an occurrence is positive
(resp., negative) if all the letters in its left scope are smaller (resp., greater) than
those in its right scope. If such an occurrence is either positive or negative, then
we say that it is enabled. For example, by 1 |23|12 is positive, 2|13 |22 is negative,

2|33 |22 is neither negative nor positive, so it is not enabled.

Moves. An erosion move replaces a positive occurrence of a wall |k by |k−1,
if k > 1, or deletes it, if k = 1. For k = 1, we call such an instance of an
erosion move a join move, for obvious reasons. Dually, a build move occurs when
a negative occurrence of a wall |k (with 0 < k < K) is replaced by |k+1. We



Skew metrics valued in Sugihara semigroups 13

can also consider the case when k = 0, which amounts to (i) inserting a wall |1,
thus splitting a block into two new blocks and then (ii) swapping the relative
positions of these two new blocks. We call this a split move. Moves are illustrated
in Figure 1.

2 1,3 4

2|213 |2
•
4

 

2 1,3 4

2|213 |1
•
4

 

2 1,3,4

2|21
•
34

 

2 3,4 1

2|234 |1
•
1

 

2 3,4 1

2|234|21

Fig. 1. Erosion, join, split, build moves, exemplified in the order

As from equation (5), we order Tw(n,K) by saying that w ≤ u if, whenever
x < y, fu(x, y) ≤ fw(x, y), where fw, fu are the skew metrics corresponding to
w and u, respectively.

Theorem 33. A word u is an upper cover of w in the poset Tw(n,K) if and
only if u is obtained from w by one of these moves.

The theorem is an immediate consequence of the following two propositions,
together with the straightforward observation that distinct moves from the same
word yield incomparable words.

Proposition 34. For each w, u ∈ Tw(n,K), if u can be obtained from w by
any of these moves, then w < u.

Proof. Let w, u ∈ Tw(n,K) be as stated, we need to show that, for each (x, y) ∈
IX , fu(x, y) ≤ fw(x, y), and fu(x, y) < fw(x, y) for some (x, y) ∈ IX . Notice
that if x, y are on the opposite scopes of the wall |k whose value k is being
decreased or increased, then δu(x, y) 6= δw(x, y). Therefore, we shall show that,
for all (x, y) ∈ IX , fu(x, y) ≤ fw(x, y).

If the relative positions of x, y are not changed, that is, if ςu(x, y) = ςw(x, y),
and if δu(x, y) = δw(x, y), then fu(x, y) = fw(x, y). If ςu(x, y) 6= ςw(x, y), then
this happens with a split move and in this case we also have δw(x, y) 6= δu(x, y).
We suppose therefore that δw(x, y) 6= δu(x, y).
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If δu(x, y) < δw(x, y), then u is obtained from w by erosion of a positive
occurrence of a wall |k with k := δw(x, y). Then, x, y appear in the scopes
of this wall, and since this occurrence is positive, x appear on the left and y
appears on the right of the wall. Thus, we have ςw(x, y) = ςu(x, y) = 1 and
fu(x, y) < fw(x, y).

If δu(x, y) > δw(x, y), then u is obtained from w by a build move of a negative
occurrence of a wall |k with k := δw(x, y). Let us suppose first that k > 0.
Thus, x, y appear in the scopes of this occurrence and, since this occurrence is
negative, x appears in the right scope and y in the left scope. Thus we have
ςw(x, y) = ςw(x, y) = −1, δu(x, y) = k + 1, and therefore fu(x, y) < fw(x, y).
Let us suppose finally that k = 0, that is, u is the result of a split move, so
δw(x, y) = 0 and δu(x, y) = 1. Therefore, fw(x, y) = 0, x, y belong to the same
block of w, while x, y are separated by a wall |1 in u, x being on its right scope
and y being on its left scope. We have therefore ςu(x, y) = −1, δu(x, y) = 1, and
therefore fu(x, y) = −1 < 0 = fw(x, y). ut

Proposition 35. If w < u, then there exists w′, obtained from w by one of
these moves, such that w′ ≤ u.

Proof. For this proof, recall that x ≤w
0 y if and only if 0 ≤ fw(x, y). Even if

this is just a preorder, but we can still define standard notions, such as the
closed interval [x, y]w0 := { z | x ≤w

0 z ≤ y }, using which, the block of x is
[x]w0 := [x, x]w0 .

Since w < u, the set A := { (x, y) ∈ IX | fu(x, y) < fw(x, y) } is non-
empty. Consider a pair (x, y) ∈ A minimizing the function δw on A. Moroever,
among all such pairs, choose (x, y) such that the cardinality of [x, y]w0 ∪ [y, x]w0
is minimum. We suppose firstly that δw(x, y) = 0, that is, x, y belong to the
same block [x]w0 . We split this block in two so to obtain w′ with fu ≤ fw′ . To
achieve this, consider that the restriction of the equivalence relation ∼u

0 to [x]w0
splits it into blocks, say b1, . . . , bm. If x′, y′ ∈ [x]w0 , x′ < y′, and x′ ∈ bi, y′ ∈ bj
with i 6= j, then ςu(x′, y′) = −1. This is a consequence of δu(x′, y′) > 0 (since
[x′]u0 6= [y′]u0 ) and fu(x′, y′) ≤ fw(x′, y′) = fw(x, y) = 0. Therefore, we can
order the blocks so that bi < bj if, for some y′ ∈ bi, x′ ∈ bj , x′ < y′. Without
loss of generality, we can assume that b1 < b2 < . . . < bm. Therefore, if we
let s := card(bm), then we can split [x]w0 at position s to obtain w′. We have
fw′(x′, y′) = −1 for each (x′, y′) ∈ IX with x′ ∈ bm and y′ ∈ [x]0 \ bm and,
otherwise, fw′(x′, y′) = fw(x′, y′). This shows that fu ≤ fw′ .

Suppose now that δw(x, y) > 0 and let k := δw(x, y). By minimality of the
cardinal of [x, y]w0 ∪ [y, x]w0 , it follows that there is at most one wall |k separating
x from y in w ↑k. We claim that this occurrence is enabled. Indeed, take x′, y′

on the opposite scopes of the wall and observe that max(δw(x, x′), δw(y, y′)) <
δw(x, y) = δw(x′, y′). From this, it follows that

fw(x′, y′) = fw(x, x′)⊗ fw(x′, y′)⊗ fw(y′, y) ≤ fw(x, y) ,

and, dually, fw(x, y) ≤ fw(x′, y′). Thus fw(x, y) = fw(x′, y′) and, consequently,
ςw(x′, y′) = ςw(x, y). Therefore, if ςw(x, y) = 1, that is, if x ≤w

0 y, the occurrence
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of |k is positive, and if ςw(x, y) = −1 (i.e. y ≤w
0 x), the occurrence of |k is

negative. Suppose that the occurrence of |k is positive. We have fw′(x′, y′) =
k − 1, for each (x′, y′) ∈ IX with x′ in the left scope of this wall and y′ in its
right scope and, otherwise, fw′(x′, y′) = fw(x′, y′). This shows that fu ≤ fw′ . A
similar argument shows that fu ≤ fw′ if the occurrence of |k is negative. ut

7 Enumerative considerations

Several enumerative questions concerning the lattices SMetn,K may be answered
via the combinatorial model. We can determine the length of the posets SMetn,K ,
that is, the length of a longest chain. It is easily seen that a chain cannot have

length greater than 2K n(n−1)
2 and we claim that this is the length of some

chain. We construct such a chain in SMetn+1,K by concatenating a longest chain
SMetn,K with n sequences of 2K moves switching contiguous letters, as suggested
below:

1|K2 . . . |Kn|Kn+ 1 ∗ n|K . . . 2|K1|Kn+ 1

 2Kn|K . . . 2|Kn+ 1|K1 (n−1)2K n+ 1|Kn|Kn− 1 . . . |Kn+ 1 .

Letting `n,K be the length of such a sequence, we have the recurrence `1,K = 0
and `n+1,K = `n+1,K + 2nK, yielding `n,K = Kn(n− 1). Notice that a minimal
sequence of moves from the bottom to the top elements of this poset has length
2K(n− 1), so in particular these posets are not ranked.

The cardinalities f(n,K) := card(SMetn,K) can be computed by

f(n,K)
(a)
=

n∑
i=1

i!

{
n

i

}
Ki−1 (b)

=

n−1∑
i=0

〈
n
i

〉
Ki(K + 1)n−1−i ,

where in these equalities
{
n
i

}
is the Stirling number of the second kind, count-

ing the number of partitions of an n-element set into i blocks, while 〈ni 〉 is the

Eulerian number, counting the number of permutations of n-elements with i
descent positions.4 Both formulas for f(n,K) immediately follows from the cor-
respondence with words in Tw(n,K) given in the previous section. Equality (a)
can be understood as follows. The number j!

{
n
j

}
counts the number of ordered

partitions of an n-element set into j blocks and Kj−1 counts the ways we can
assign heights to the separating walls. Equality (b) stems from a well-known rela-
tion between ordered partitions and permutations. It can be read out as follows:
given a permutation with i descent positions, we construct a word in Tw(n,K)
by (i) inserting a wall at each descent position and chosing an height for it in K
different ways, (ii) for the other n−1− i positions, either we do not insert a wall

4 A descent position in a permutation σ1σ1 . . . σn is an index i ∈ { 1, . . . , n− 1 } such

that σi > σi+1. The numbers 〈ni 〉 can be easily computed via the alternating formula

〈ni 〉 =
∑i

j=0(−1)j
(
n+1
j

)
(k + 1− j)n, see e.g. [17].
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or we insert a wall and assign it an height, resulting in K + 1 choices. Inspect-
ing the values of the function f(n,K) on The On-Line Encyclopedia of Integer
Sequences [1], see Figure 2, we came across the reference [8]. This work, which

n/K 1 2 3 4 5 6 7 OEIS

2 3 5 7 9 11 13 15
3 13 37 73 121 181 253 337 A003154
4 75 365 1015 2169 3971 6565 10095 A193252
5 541 4501 17641 48601 108901 212941 378001
6 4683 66605 367927 1306809 3583811 8288293 16984815
7 47293 1149877 8952553 40994521 137595781 376372333 890380177

OEIS A000670 A050351 A050352 A050353

Fig. 2. Cardinalities of SMetn,K

also pinpoints the recursion f(1,K) = 1, f(n + 1,K) = 1 + K
∑n

i=1 f(i,K),
allows to establish a connection between skew metrics on Sugihara monoids and
the geometry of hyperplane arrangements, see e.g. [23], a connection already
known for the Sugihara monoid 3, see e.g. [2,4]. It is proved in [8] that f(n,K)
is the number of maximal elements of the intersection poset of the affine braid
arrangement {Hi,j,k | 1 ≤ i < j ≤ n,−K ≤ k ≤ K }, with Hi,j,k being the
affine hyperplane of equation xj = xi + k. Sugihara monoids (and, more gener-
ally, involutive residuated lattices, as argued in [20]) therefore appear to have a
pervasive role in this realm of geometry and in the related combinatorics. It is
still a long way towards making this role fully explicit, but surely it is a research
path that we want to pursue.
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