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GRAPH CLASSES WITH FEW P4’S: UNIVERSALITY AND
BROWNIAN GRAPHON LIMITS

THÉO LENOIR

Abstract. We consider large uniform labeled random graphs in different classes with
few induced P4 (P4 is the graph consisting of a single line of 4 vertices) which generalize
the case of cographs. Our main result is the convergence to a Brownian limit object in the
space of graphons. As a by-product we obtain new asymptotic enumerative results for all
these graph classes. We also obtain typical density results for a wide variety of induced
subgraphs. These asymptotics hold at a smaller scale than what is observable through
the graphon convergence.

Our proofs rely on tree encoding of graphs. We then use mainly combinatorial argu-
ments, including the symbolic method and singularity analysis.

1. Introduction

1.1. Motivation. Random graphs are one of the most studied objects in probability theory
and in combinatorics. A natural question is to investigate the scaling limits of a uniformly
chosen graph in a given family (an important example for this paper are the cographs).

Cographs have been studied since the seventies by various authors, especially for their
algorithmic properties: recognizing cographs can be solved in linear time [4, 6, 12], and
many hard problems can be solved in polynomial time for cographs. Several equivalent
definitions exists of the class of cographs exists, here are two important ones:

• A graph is a cograph if and only if it has no induced P4 (a line of 4 vertices).
• The class of cograph is the smallest class containing every graph reduced to a single

vertex, and stable by union and by join1.
Simultaneously in [1] and [21], the authors exhibit a Brownian limit object for a uniform

cograph, called the Brownian cographon, which can be explicitly constructed from the
Brownian excursion and a parameter p ∈ [0, 1].

The convergence holds in distribution in the sense of graphons. Introduced in [2], graphon
is a well-established topic in graph theory but their probabilistic counterpart is more recent.
Graphon convergence can be seen as the convergence of the renormalized adjacency matrix
for the so-called cut metric (a good reference on graphon theory is [19]).

To go further than the case of cographs, we may investigate more complicated classes
with, in some specific sense, few P4’s. A natural question is to study classes of graphs
to which some algorithmic properties of cographs extend. Several classes characterized by

1the join of two graphs (G, H) is the graph obtained by adding an edge between every pair of vertices
(g, h) ∈ G×H

1
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properties of their induced P4’s have thus been considered in the graph theory literature.
The classes we will focus on here are the following: P4-reducible graphs [15,18], P4-sparse
graphs [13,17] P4-lite graphs [14], P4-extendible graphs [16] and P4-tidy graphs [10] which
can all be seen as classes defined by some constraints on the induced P4’s. All these classes
will be defined precisely in Section 3. The inclusion relations between these classes are
sketched in Figure 1.

P4-tidy

P4-lite

P4-sparse

P4-extendible

P4-reducible

P4-free
(=cographs)

Figure 1. Inclusion relations between the different classes of graphs

To our knowledge, these different classes have not been studied from a probabilistic point
of view. The main aim of this paper is to prove a result of universality of the Brownian
cographon: for every class previously mentioned, a random graph will converge towards the
Brownian cographon of parameter 1

2 (the rigorous construction is given by [1, Definition
10]). An intermediate result is the asymptotic enumeration of each of these classes, which
was unknown up to now.

1.2. Main results. For a finite graph G, let WG be the embedding of the finite graph G
in the set of graphon (the formal construction will be recalled in Definition 6.2). Our main
result is:
Theorem 1.1. Let G(n) be a graph of size n taken uniformly at random in one of the
following families: P4-sparse, P4-tidy, P4-lite, P4-extendible or P4-reducible. The following
convergence in distribution holds in the sense of graphons:

WG(n)
n→∞−→ W

1
2

where W 1
2 is the Brownian cographon of parameter 1

2 .
Graphon convergence is equivalent to the joint convergence of subgraphs density. Di-

aconis and Janson extended this criterion in [7] to random graphs: the convergence of a
family (H(n))n≥1 of random graphs is characterized by the convergence in distribution of
OccH(n) (H)

nk for every positive integer k and for every finite graph H of size k, where OccG(H)
is the number of induced subgraphs of G isomorphic to H. All the necessary material on
graphon will be recalled at the beginning of Section 6.
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Figure 2 shows an example of the adjacency matrix of a random P4-extensible graph of
size 200. This picture gives an idea of what a realization of the Brownian cographon could
look like.

Figure 2. The adjacency matrix of a random P4-extensible graph of size
200, simulation by Mickaël Maazoun

In the course of proving Theorem 1.1, we get an equivalent of the number of graphs in
the different classes.

Theorem 1.2. The number of labeled P4-sparse, P4-tidy, P4-lite, P4-extendible, P4-reducible
or the number of P4-free graphs of size n is asymptotically equivalent to

C
n!

Rnn
3
2
,

for some R,C > 0, depending on the class.

We can compute with arbitrary precision the numerical values of R and C (see Sec-
tion 4.2). All the numerical values of R and C vary according to each class which confirms
that all these classes are significantly different.

Theorem 1.1 provides a precise estimation of OccH(G(n)) for every cograph H. But for
every graph H which is not a cograph, the only information given by the convergence in
the sense of graphon is that the number of induced H in G(n) is typically o(n|H|). Quite
unexpectedly, thanks to the tools developed to prove Theorem 1.1, we are able to estimate
the expected number of induced subgraphs isomorphic to a specific class of graphs H in
G(n): the graphs that are called ”prime” for the modular decomposition (see Definition 2.8).

Theorem 1.3. Let G(n) be a graph of size n taken uniformly at random in one of the
following families: P4-sparse, P4-tidy, P4-lite, P4-extendible or P4-reducible. Let H be a
prime graph, denote by OccH(G(n)) the number of labeled subgraphs of G(n) isomorphic to
H.
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Then there exists KH ≥ 0 such that:

E[OccH(G(n))] ∼

 KHn
3
2 if H verifies condition (A)

KHn otherwise

where (A) is defined p.38 and constant KH is given in Theorem 6.9.

This results follows from Theorem 6.9 which is stated in a more general setting. The
condition (A) depends on the class of graphs, checking if H verifies condition (A) and if
KH is positive is quite straightforward.

To make things more concrete, let us apply Theorem 1.3 to the example of H = P4.
We can check that for each class P4 does not verify condition (A) and that KP4 > 0.
Thus a uniform random graph contains in average a linear number of induced P4, while
Theorem 1.1 only implies that this number is o(n4). The different numerical values of KP4

are explicitly computed p.41, and happen to take different values for each class. For each
class, the graph called bull (see Fig. 7) verifies condition (A) and that Kbull > 0. Thus
a uniform random graph contains in average a number of induced bulls growing as n3/2,
while Theorem 1.1 only implies that this number is o(n5). However, for non prime graphs
H, the behavior of the expected value of induced subgraphs of G(n) isomorphic to H is not
well-understood, which leads to interesting open questions.

1.3. Proof strategy. The proof is essentially combinatorial and is based on modular de-
composition, which allows to encode a graph with a decorated tree. Modular decomposition
is a standard tool in graph theory (it was introduced in the 60’s by Gallai [9]) but to our
knowledge it has been very little used in the context of random graphs. In this paper we
introduce an enriched modular decomposition which enables us to obtain exact enumer-
ations for a large family of graph classes. The five classes mentioned before fit in this
framework. We exploit those enumerative results with tools from analytic combinatorics
to get asymptotic estimates in order to prove Theorem 1.2.

The more technical part of the proof is, for every finite graph H, to estimate the number
of induced subgraphs of G(n) isomorphic to H. The enriched modular decomposition allows
us to count the number of graphs with a specific induced subgraph H. Again asymptotics
are derived with tools from combinatorics to prove Theorem 1.1 and Theorem 1.3.

1.4. Outline of the paper.
• In Section 2 we define the encoding of graphs with trees, the modular decomposition

and the enriched modular decomposition which will be used throughout the different
proofs.
• Section 3 presents the necessary material on the different classes of graphs studied:

results are already widely known, most of them are quoted from the litterature and
reformulated to suit our enriched modular decomposition.
• Sections 4 and 5 are about calculating generating series related to our graph classes:

in Section 4 we prove Theorem 1.2 and Section 5 deals with the generating series
of graphs with a given induced subgraph.
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• Section 6 presents the necessary material on graphons, and the proofs of Theo-
rem 1.1 and Theorem 1.3.

2. Modular decomposition of graphs: old and new

2.1. Labeled graphs. In the following all the graphs considered are simple and finite.
Each time a graph G is defined, we denote by V its set of vertices and E its set of edges.
Whenever there is an ambiguity, we denote by VG (resp. EG) the set of vertices (resp. edges)
of G.

Definition 2.1. We say that G = (V,E) is a weakly-labeled graph if every element of V
has a distinct label in N and that G = (V,E) is a labeled graph if every element of V has
a distinct label in {1, . . . , |V |}.

The size of a graph G, denoted by |G|, is its number of vertices.
The minimum of a graph G, denoted min(G), is the minimal label of its vertices.

In the following, every graph will be labeled, otherwise we will mention explicitly that
the graph is weakly-labeled.

Remark. We do not identify a vertex with its label. A vertex of label i will be denoted vi.
The label of a vertex v will be denoted `(v).

Definition 2.2. For any weakly-labeled object (graph or tree) of size n, we call reduction
the operation that reduces its labels to the set {1, . . . , n} while preserving the relative order
of the labels.

For example if G has labels 2, 4, 12, 63 then the reduced version of G is a copy of G in
which 2, 4, 12, 63 are respectively replaced by 1, 2, 3, 4.

2.2. Encoding graphs with trees.

Definition 2.3. Let G be a graph of size n and H1, . . . , Hn be weakly-labeled graphs such
that no label is given to two distinct vertices of ⋃ni=1 Hi. The graph G[H1, . . . , Hn] = (V,E)
is the graph whose set of vertices is V = ⋃n

i=1 VHi
and such that:

• for every i ∈ {1, . . . , n} and every pair (v, v′) ∈ V 2
Hi

, {v, v′} ∈ E if and only if
{v, v′} ∈ EHi

;
• for every (i, j) ∈ {1, . . . , n} with i 6= j, and every pair (v, v′) ∈ VHi

× VHj
, {v, v′} ∈

E if and only if {vi, vj} ∈ EG.

Notation. In Definition 2.3 we will use the shortcut ⊕ for the complete graph of size n.
Thus ⊕[H1, . . . , Hn] is the graph obtained from copies of H1, . . . , Hn in which for every
i 6= j every vertex of Hi is connected to every vertex of Hj. This graph is called the join
of H1, . . . , Hn

We use the shortcut 	 for the empty graph of size n. Thus 	[H1, . . . , Hn] is the graph
given by the disjoint union of H1, . . . , Hn This graph is called the union of H1, . . . , Hn.

This construction allows us to transform non-plane labeled trees with internal nodes
decorated with graphs, ⊕ and 	 into graphs.
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Definition 2.4. Let T0 be the set of rooted non-plane trees whose leaves have distinct labels
in N and whose internal nodes carry decorations satisfying the following constraints:

• internal nodes are decorated with ⊕, 	 or a graph;
• If a node is decorated with some graph G then |G| ≥ 2 and this node has |G|

children. If a node is decorated with ⊕ or 	 then it has at least 2 children.
A tree t ∈ T0 is called a substitution tree if the labels of its leaves are in {1, . . . , |t|}.
We call linear the internal nodes decorated with ⊕ or 	 and non-linear the other ones.

Notation. For a non-plane rooted tree t, and an internal node v of t, let tv be the multiset
of trees attached to v and let t[v] be the non-plane tree rooted at v containing only the
descendants of v in t.
Convention. We only consider non-plane trees. However it is sometimes convenient to
order the subtrees of a given node. The convention is that for some v in a tree t the trees
of tv are ordered according to their minimal leaf labels.
Definition 2.5. Let t be an element of T0, the weakly-labeled graph Graph(t) is inductively
defined as follows:

• if t is reduced to a single leaf labeled j, Graph(t) is the graph reduced to a single
vertex labeled j;
• otherwise, the root r of t is decorated with a graph H, and

Graph(t) = H[Graph(t1), . . . ,Graph(t|H|)]
where ti is the i-th tree of tr.

1

2

7 5

8
3 4

6

9

Root

1

9
6 2

3

8
7

5
4

t0

Graph(t0)

Figure 3. A substitution tree t0 and the corresponding graph Graph(t0)

Note that if t is a substitution tree then Graph(t) is a labeled graph.
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The following simple Lemma is essential to the study of the enriched decomposition of
graphs introduced in Section 2.4.

Lemma 2.6. Let t be a substitution tree such that the decoration of the root of t (resp. its
complementary) is connected. Then Graph(t) (resp. its complementary) is connected.

Proof. Since both cases are similar, we only deal with the case of a connected decoration.
Let r be the root of t, H its decoration and k the size of H. Let w1, . . . , wk be vertices of
Graph(t) such that for each i ∈ {1, . . . , k} there is a leaf labeled `(wi) in the i-th tree of tr.
Since the unlabeled graph induced by {wi | 1 ≤ i ≤ k} is isomorphic to H, it is connected.
Let C be the connected component of Graph(t) containing all wi’s. Note that for every
vertex v of Graph(t), there exists p ∈ {1, . . . k} such that the leaf labeled `(v) belongs to
the p-th tree of tr. Since H is connected and of size at least 2, there exists q 6= p such that
the vertices of label q and p are connected by an edge in H. Thus v and wq are connected
by an edge in Graph(t), which means that v ∈ C. This implies that C = Graph(t), thus
Graph(t) is connected. �

2.3. Modular decomposition. In this short section we gather the main definitions and
properties of modular decomposition. The historical reference is [9], the interested reader
may also look at [3] or [20].

The next definitions and theorems allows to get a unique recursive decomposition of any
graph in the sense of Definition 2.5, the modular decomposition, and to encode it by a
tree.

Definition 2.7. Let G be a graph (labeled or not). A module M of G is a subset of V
such that for every (x, y) ∈M2, and every z ∈ V \M , {x, z} ∈ E if and only if {y, z} ∈ E.

Remark. Note that ∅, V and {v} for v ∈ V are always modules of G. Those sets are called
the trivial modules of G.

Definition 2.8. A graph G is prime if it has at least 3 vertices and its only modules are
the trivial ones.

Definition 2.9. A graph is called 	-indecomposable (resp. ⊕-indecomposable) if it cannot
be written as 	[G1, . . . , Gk] (resp. ⊕[G1, . . . , Gk]) for some k ≥ 2 and weakly-labeled graphs
G1, . . . , Gk.

Note that a graph is	-indecomposable if and only if it is connected, and⊕-indecomposable
if and only if its complementary is connected.

Theorem 2.10 (Modular decomposition, [9]). Let G be a graph with at least 2 vertices,
there exists a unique partition M = {M1, . . . ,Mk} for some k ≥ 2 (where the Mi’s are
ordered by their smallest element), where each Mi is a module of G and such that either

• G = ⊕[M1, . . . ,Mk] and the (Mi)1≤i≤k are ⊕-indecomposable;
• G = 	[M1, . . . ,Mk] and the (Mi)1≤i≤k are 	-indecomposable;
• there exists a unique prime graph P such that G = P [M1, . . . ,Mk].
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This decomposition can be used to encode graphs by specific trees to get a one-to-one
correspondence.

Definition 2.11. Let t be a substitution tree. We say that t is a canonical tree if its
internal nodes are either ⊕, 	 or prime graphs, and if there is no child of a node decorated
with ⊕ (resp. 	) which is decorated with ⊕ (resp. 	).

To a graph G we associate a canonical tree by recursively applying the decomposition
of Theorem 2.10 to the modules (Mi)1≤i≤k, until they are of size 1. First of all, at each
step, we order the different modules increasingly according to their minimal vertex labels.
Doing so, a labeled graph G can be encoded by a canonical tree. The internal nodes are
decorated with the different graphs that are encountered along the recursive decomposition
process (⊕ if G = ⊕[M1, . . . ,Mk], 	 if G = 	[M1, . . . ,Mk], P if G = P [M1, . . . ,Mk]).
At the end, every module of size 1 is converted into a leaf labeled by the label of the vertex.

This construction provides a one-to-one correspondence between labeled graphs and
canonical trees that maps the size of a graph to the size of the corresponding tree.

Proposition 2.12. Let G be a graph, and t its canonical tree, then t is the only canonical
tree such that Graph(t) = G.

Remark. It is crucial to consider canonical trees as non-plane: otherwise, since prime graphs
can have several labelings, there would be several canonical trees associated with the same
graph.

2.4. Enriched modular decomposition. Unfortunately the modular decomposition alone
does not provide usable decompositions for the graph classes that we consider. The aim
of this section is to solve this issue: we will state and prove Proposition 2.18 which pro-
vides in a very general setting a one-to-one encoding of graphs with substitution trees with
constraints. In Section 3 we will show that P4-reducible graphs, P4-sparse graphs, P4-lite
graphs, P4-extendible graphs, P4-tidy graphs fit in the settings of Proposition 2.18.

Definition 2.13. We say that G is a graph with blossoms if there exists k ∈ {0, . . . , |V |}
such that exactly k vertices of G are labeled ∗, and the others ones have a distinct label in
{1, . . . , |V | − k}.

The vertices labeled ∗ are called the blossoms of G. Let BG the set of vertices that are
blossoms of G and N(G) := |V |− |BG| the number of vertices that are not a blossom of G.

Remark. In the above definition, we allow k = 0, then the definition reduces to the one of
a labeled graph.

Definition 2.14. Let G be a graph with blossoms and π be a permutation of {1, . . . , N(G)}.
The π-relabeling of G is the graph G′ such that:

• VG′ = VG and BG′ = BG;
• for every vertex v in VG′\BG′, we replace the label of the leaf v by π(`(v)).

We write G ∼ G′ if there exists a permutation π of {1, . . . , N(G)} such that G is iso-
morphic to the π-relabeling of G′.
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Note that ∼ is an equivalence relation.

Definition 2.15. Let G be a graph with blossoms, a permutation π of {1, . . . , N(G)} is an
automorphism of G if the π-relabeling of G is G.

Definition 2.16. A module of a graph with blossoms is called flowerless if it does not
contain any blossom.
Let G be a graph with blossoms and M a non-empty flowerless module of G. We define
bloM(G) to be the labeled graph obtained after the following transformations:

• M is replaced by a new vertex v, that is now labeled ∗;
• for every vertex w ∈ G\M , {w, v} is an edge if and only if {w,m} is an edge of G

for every m ∈M ;
• the graph obtained is replaced by its reduction as defined in Definition 2.2.

If G is a graph with one blossom and M is a non-empty flowerless module of G, we
define bloM,0(G) (resp. bloM,1(G)) to be the graph bloM(G) where the label of the initial
blossom of G is replaced by ∗0 (resp. ∗1) and the label of the new blossom is replaced by ∗1
(resp. ∗0).

1

2

3

4

5

∗

1

2

4

5

6

3

7

8

M = {v3, v7, v8}

bloM(G)

Figure 4. Illustration of Definition 2.16 Left: A graph G in which we have
highlighted the moduleM = {v3, v7, v8}. Right: The corresponding bloM(G).

In this paper, we only consider the construction bloM(G) for graphs with 0 or 1 blossom.
We are now ready to precise the general framework of our study. One of the key ingredient
is the following recursive definition of families of graphs.

Definition 2.17. Let P be a set of graphs with no blossom and P• be a set of graphs with
one blossom. A tree t ∈ T0 is called (P ,P•)-consistent if one of the following conditions
holds:

(D1) The tree t is a single leaf.
(D2) The root r of t is decorated with a graph H ∈ P and tr (the multiset of trees attached

to r) is a union of leaves.
(D3) The root r of t is decorated with ⊕ (resp. 	) and all the elements of tr are (P ,P•)-

consistent and their roots are not decorated with ⊕ (resp. 	).
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(D4) The root r of t is decorated with a graph H /∈ {⊕,	} and there exists at least
one index i ∈ {1, . . . , |H|} such that the i-th tree of tr is (P ,P•)-consistent, the
remaining trees in tr are reduced to a single leaf and blo{vi}(H) ∈ P•.

We define TP,P• to be the set of trees t that are (P ,P•)-consistent and such that each leaf
has a distinct label in {1, . . . , |t|}.

1

2

5

7 4 9 8

3

6

10 12 11

(D2)(D3) (D4)

(D3)

(D3)

Figure 5. An example of tree in some TP,P• . The different colours illustrate
the different cases of Definition 2.17. The subtree with leaves {5, 6} on the
top-right is attached to the vertex which is circled in red inside the vertex of
case (D4). This corresponds to the i-th subtree of case (D4)

A graph G is called (P ,P•)-consistent if there exists a (P ,P•)-consistent tree t such
that G = Graph(t). We let GP,P• be the set of Graph(t) for t ∈ TP,P• .

The map t 7→ Graph(t) from TP,P• to GP,P• is surjective, but without conditions on
(P ,P•) this map is not one-to-one. To solve this issue, we introduce the following additional
constraints on the set P ,P•:
Condition (C).

(C1) P and P• do not contain a graph of size 1.
(C2) For every F ∈ P and every module M of F , either bloM(F ) 6∈ P• or the subgraph

of F induced by M is not (P ,P•)-consistent.
(C3) For every F and F ′ in P•, and every flowerless modules M and M ′ of respectively

F and F ′ one of the following conditions is verified:
• bloM,0(F ) 6= bloM ′,1(F ′)
• The subgraph of F induced by M is not (P ,P•)-consistent.
• The subgraph of F ′ induced by M ′ is not (P ,P•)-consistent.

(C4) Every element of P and P• is ⊕-indecomposable and 	-indecomposable.
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(C5) For every G ∈ P•, the only modules of G containing the blossom are {∗} and G.
We say that (P ,P•) verifies condition (C) if (C1)− (C5) hold.

Remark. The last two constraints are not necessary to ensure that the map is bijective.
However, giving necessary and sufficient conditions to have unicity that can be checked
easily is quite complicated.

Note that if condition (C) is satisfied for a pair of sets (P ,P•) and Q ⊂ P and Q• ⊂ P•,
it is also verified by (Q,Q•).

Proposition 2.18. Let P be a set of graphs with no blossom and P• a set of graphs with
one blossom. Assume that (P ,P•) verifies condition (C). For any G ∈ GP,P•, there exists
a unique t ∈ TP,P• such that G = Graph(t). Moreover, for any element of TP,P• satisfying
case (D4) in Definition 2.17, the index i such that case (D4) holds is unique.

Proof. Existence is guaranted by definition of GP,P• .
We proceed by contradiction to prove the uniqueness of t. Let t be a smallest tree

in TP,P• such that there exists another t′ in TP,P• verifying Graph(t) = Graph(t′). Let
G = Graph(t).

The graph G cannot be reduced to a single vertex due to (C1), otherwise t and t′ would
be a single leaf with label 1. Thus we can assume that t and t′ are not in case (D1).

By Lemma 2.6 and (C4), G is ⊕-indecomposable (resp. 	-indecomposable) if and only
if t is not in case (D3) with a root decorated with ⊕ (resp. 	). Thus either t and t′ are
both in case (D3) and their roots are both decorated ⊕ or 	, or they are both in case
(D2) or (D4).
Case (i): t, t′ are both in case (D3) and their are both decorated ⊕ or 	.

Let r and r′ be the roots of respectively t and t′. Assume that both decorations are
	, the other case is similar. The elements of tr induce connected graphs by Lemma 2.6
as their roots are either decorated with ⊕, or 	-indecomposable by (C4). Since the roots
of t and t′ are decorated with 	, we have a one-to-one correspondence between trees
of tr and connected components of G. The same is true for t′r′ . Assume that two trees
corresponding to the same connected component of G are different. Since their set of labels
are the same (they correspond to the labels of the vertices in the connected component)
after reduction, one would obtain two trees t1, t2 that are different, (P ,P•)-consistent and
such that Graph(t1) = Graph(t2) since both are equal to the reduction of the corresponding
connected component of G. This contradicts the minimality of t. Therefore tr = t′r′ and
t = t′.
Case (ii): t, t′ are both in case (D2).

The graph G is just the decoration of both roots of t and t′ so t = t′.
Case (iii): t is in case (D4), t′ is in case (D2).

Since t′ is in case (D2), G is just the decoration of the root of t′ thus G ∈ P . Let r be
the root of t and H its decoration. Let i be one of the elements of {1, . . . |VH |} such that
(D4) holds for t,H and i. Let M be the set of vertices of G whose labels are labels of leaves
that belong to the i-th tree of tr: M is a module of G. Then bloM(G) is equal to blo{vi}(H)
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and thus belongs to P•. Moreover the subgraph of G induced by M is (P ,P•)-consistent
as the i-th subtree of t is also (P ,P•)-consistent. This contradicts (C2).
Case (iv): t, t′ are both in case (D4).

Let r and r′ be the roots of respectively t and t′ and H and H ′ be their decorations. Let
i be an element of {1, . . . , |VH |} such that (D4) is true for t,H and i, and i′ be an element
of {1, . . . , |VH′ |} such that (D4) is true for t′, H ′ and i′. Consider M (resp. M ′) the set of
vertices of G whose labels are labels of leaves that belong to the i-th tree of tr (resp. i′-th
tree of t′r′): M (resp. M ′) is a module of G. Since the i-th tree of tr (resp. the i′-th tree of
t′r′) is (P ,P•)-consistent the subgraph of G induced by M (resp. M ′) is (P ,P•)-consistent.

We now prove by contradiction that M = M ′. By symmetry we can assume that
M ′ 6⊂M .

First assume that M ∩M ′ = ∅. Note that bloM,1(bloM ′(G)) = bloM ′,0(bloM(G)). Since
bloM(G) = blo{vi}(H) and bloM ′(G) = blo{vi′}(H

′), we get that bloM ′,0(blo{vi}(H)) =
bloM,1(blo{vi′}(H

′)) which contradicts (C3) as both subgraphs of G induced by M and
M ′ are (P ,P•)-consistent.

Now assume that M ∩M ′ 6= ∅. Let L be the subset of VH such that v ∈ L if and only
if the `(v)-th tree of tr contains a leaf labeled with the label of an element of M ′. Since
M ′ is a module of G and M ∩M ′ 6= ∅, L is a module of blo{vi}(H) containing the blossom.
Since M ′ is not included in M , by (C5), L = H. Since M ′ 6= G, there exists a vertex w
in G such that w 6∈ M ′. Let w′ be the vertex of H such that w is in the `(w′)-th tree
of tr. Since M ′ is a module, every vertex of M ′ is either connected or not to w, thus w′
is connected to every vertex of H (except w′) or to none of them. This means that H is
either ⊕-decomposable or 	-decomposable, which is a contradiction.

Thus M = M ′ and blo{vi}(H) = bloM(G) = bloM ′(G) = blo{vi′}(H
′), and we get that

H = H ′, and that i = i′: thus i is unique.
We know that the i-th tree of tr and the i-th tree of t′r′ are (P ,P•)-consistent and the

associated graph is the one induced by M . By taking the reduction of the trees and the
graph, we get by minimality of t that the reductions of both trees are equal. Since M = M ′,
it implies that both subtrees are the same: thus t = t′. �

3. Zoology of graph classes with few P4’s

Several classes have been defined as generalizations of the class of P4-free graphs, the
cographs. Here the classes we will focus on are the following: P4-reducible graphs [15,18],
P4-sparse graphs [13,17] P4-lite graphs [14], P4-extendible graphs [16], P4-tidy graphs [10].

The aim of this section is to give explicit sets P and P• such that GP,P• is one of the
previously mentioned classes.

3.1. Basic definitions. The following results and definitions are from [3, Section 11.3].

Definition 3.1. A graph G is a Pk if it is a path of k vertices, and a Ck if it is a cycle of
k vertices.

The two vertices of degree one of a P4 are called the endpoints, the two vertices of degree
two are called the midpoints.
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Notation. For a graph G, we denote by G its complementary.

The modular decompositions of classes of graphs we consider are already well-known [10].
To explain the different properties, we need the notion of spider and bull.

Definition 3.2. A spider is a graph G, such that there exists a partition of VG in three
parts, K,S,R, verifying:

• |K| ≥ 2;
• K induces a clique;
• S induces a graph without edges;
• every element of R is connected to every element of K but to none of S;
• there exists a bijection f from K to S such that for every k ∈ K, k is only connected

to f(k) in S, or such that for every k ∈ K, k is connected to every element of S
except f(k). In the first case the spider is called thin, in the second one it is called
fat.

K

S

K

S

R R

1

1

2 2

3

3

4

4

5

5

6

6

7

7

Figure 6. Left: a thin spider. Right: a fat spider. Both with |K| = 3.

Remark. For every spiderG, the partition (K,S,R) is uniquely determined byG. Moreover,
the bijection f given by the definition is unique, except in the case |K| = 2. In this case,
since there is no difference between a thin and a fat spider, a spider with |K| = 2 is called
thin. A spider with |K| = 2 and |R| = 1 is called a bull, and a spider with |K| = 2 and
|R| = 0 is simply a P4.
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Figure 7. From left to right: a P4, a bull, a C5
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Proposition 3.3. A spider is prime if and only if |R| ≤ 1.
In the following, if |R| = 1, the vertex belonging to R will be a blossom of the spider,

and it will be its only blossom: such spiders will be called blossomed spiders. If |R| = 0,
the spider will have no blossom. This also applies for bulls and P4.
Definition 3.4. We call a graph H a pseudo-spider if there exists a prime spider G such
that, if we duplicate a vertex that is not a blossom of G (his label is the new number of
vertices), and if either by adding or not an edge between the vertex and its duplicate, the
graph obtained is a relabeling of H. If |K| = 2, we also call H a pseudo-P4.

Moreover, we say that H is a blossomed pseudo-spider if G is a blossomed spider. If
|K| = 2, we also call H a pseudo-bull.

1

2

3

45

1

2

3

4

5

∗

K

S

R

1

2

∗

3

4

5

6

Duplicate
7

Figure 8. A blossomed pseudo-spider, a pseudo-bull, a pseudo P4

Lemma 3.5. A prime spider with 0 or 1 blossom has |K|! automorphisms (as there is a
natural bijection between the automorphisms of the spider and the automorphisms of K).

A pseudo-spider with 0 or 1 blossom has 2× (|K| − 1)! automorphisms.
3.2. P4-tidy graphs.
Definition 3.6. A graph G is said to be a P4-tidy graph if, for every subgraph H of G
inducing a P4, there exists at most one vertex y ∈ VG\VH such that y is connected to at
least one element of H but not all, and y is not connected to exactly both midpoints of H.
Theorem 3.7. Let Ptidy be the set containing all C5, P5, P5, all prime spiders without
blossom and all pseudo-spiders without blossom. Let P•tidy be the set of all blossomed
prime spiders and all blossomed pseudo-spiders. Then the set of graphs that are P4-tidy is
GPtidy,P•tidy

.

Proof. It is simply a reformulation in our setting of [10, Theorem 3.3] that states that a
graph G is P4-tidy if and only if its canonical tree t verifies the following conditions:

• Every node in t is labeled with ⊕, 	, C5, P5, P5 or a prime spider.
• If a node w in t is decorated with C5, P5 or P5, every element of tw is reduced to a

single leaf.
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• If a node w in t is decorated with a prime spider with |R| = 0, every element of tw
is a tree of size at most two, and at most one is of size two.
• If a node w in t is decorated with a prime spider H with |R| = 1, let v be the vertex

of H in R, and t′ the `(v)-th tree of tw. Every element of tw\{t′} is a tree of size
at most two, and at most one is of size two. �

Proposition 3.8. The pair (Ptidy,P•tidy) verifies (C)

Proof. Note that all the graph in Ptidy or P•tidy are prime except the pseudo-spiders. The
only modules of the pseudo-spiders are the trivial ones, and the module formed by the
vertex that was duplicated and its duplicate, which implies (C5).
(C2) is also verified with the previous observation, as the modules of every graph in Ptidy
are trivial.
(C1) is clearly verified and (C4) can be checked easily as all the graphs in Ptidy ∪P•tidy are
connected, and their complementary is also connected.

For (C3), assume that for (F, F ′)2 ∈ P•tidy and M,M ′ are respectively flowerless modules
of F and F ′, bloM,0(G) = bloM ′,1(G). By cardinality argument, F and F ′ are either
both spiders, or both pseudo-spiders of same size. If both are spiders, as R is uniquely
determined by the spiders, and the only element of R does not have the same label in
bloM,0(G) and in bloM,1(G), we get a contradiction. If both are pseudo-spiders, note that
the original node and its duplicate form the only module of size 2 of bloM,0(G). Thus the
only element of R (in the original spiders) is uniquely determined by the pseudo-spiders,
and the only element of R does not have the same label in bloM,0(G) and in bloM,1(G), we
get a contradiction. �

3.3. P4-lite graphs.

Definition 3.9. A graph G is said to be a P4-lite graph if every subgraph of G of size at
most 6 does not contain three induced P4.

Theorem 3.10. Let Plite be the set containing all P5, P5, all prime spiders without blossom
and all pseudo-spiders without blossom. Let P•lite to be the set containing all blossomed
prime spiders and all blossomed pseudo-spiders. Then the set of graphs that are P4-lite is
GPlite,P•lite

.

Proof. It is simply a reformulation in our setting of [10, Theorem 3.8] that states that a
graph G is P4-lite if and only if its canonical tree t verifies the following conditions:

• Every node in t is labeled with ⊕, 	, P5, P5 or a prime spider.
• If a node w in t is decorated with P5 or P5, every element of tw is reduced to a

single leaf.
• If a node w in t is decorated with a prime spider with |R| = 0, every element of tw

is a tree of size at most two, and at most one is of size two.
• If a node w in t is decorated with a prime spider H with |R| = 1, let v be the vertex

of H in R, and t′ the `(v)-th tree of tw. Every element of tw\{t′} is a tree of size
at most two, and at most one is of size two. �
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By Proposition 3.8 since Plite ⊂ Ptidy, P•lite ⊂ P•tidy we get that the pair (Plite,P•lite)
verifies (C).

3.4. P4-extendible graphs.

Definition 3.11. A graph G is said to be a P4-extendible graph if, for every subgraph H
of G inducing a P4, there exists at most one vertex y ∈ VG\VH such that y belongs to an
induced P4 sharing at least one vertex with H.

Theorem 3.12. Let Pext be the set containing all C5, P5, P5, P4 and all pseudo-P4. Let
P•ext be the set containing all bulls and all pseudo-bulls. Then the set of graphs that are
P4-extendible is GPext,P•ext

.

Proof. It is simply a reformulation in our setting of [10, Theorem 3.7] that states that a
graph G is P4-extendible if and only if its canonical tree t verifies the following conditions:

• Every node in t is labeled with ⊕, 	, C5, P5, P5, P4 or a bull.
• If a node w in t is decorated with C5, P5 or P5, every element of tw is reduced to a

single leaf.
• If a node w in t is decorated with P4, every element of tw is a tree of size at most

two, and at most one is of size two.
• If a node w in t is decorated with a bull G, let v be the vertex of G in R, and t′

the `(v)-th tree of tw. Every element of tw\{t′} is a tree of size at most two, and
at most one is of size two. �

By Proposition 3.8 since Pext ⊂ Ptidy, P•ext ⊂ P•tidy we get that the pair (Pext,P•ext)
verifies (C).

3.5. P4-sparse graphs.

Definition 3.13. A graph G is said to be a P4-sparse graph if every subgraph of G of size
5 does not contain two induced P4.

Theorem 3.14. Let P be the set containing all prime spiders without blossom. Let P• be
the set containing all blossomed prime spiders. Then the set of graphs that are P4-sparse
is GP,P•.

Proof. It is simply a reformulation in our setting of [11, Theorem 3.4] that states that a
graph G is P4-sparse if and only if its canonical tree t verifies the following conditions:

• Every node in t is labeled with ⊕, 	 or a prime spider.
• If a node w in t is decorated with a prime spider with |R| = 0, every element of tw

is reduced to a single leaf.
• If a node w in t is decorated with a prime spider h with |R| = 1, let v be the vertex

of H in R, and t′ the `(v)-th tree of tw. Every element of tw\{t′} is reduced to a
single leaf. �

By Proposition 3.8 since Pspa ⊂ Ptidy, P•spa ⊂ P•tidy we get that the pair (Pspa,P•spa)
verifies (C).
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3.6. P4-reducible graphs.

Definition 3.15. A graph G is said to be a P4-reducible graph if every vertex of G belongs
to at most one induced P4.

Theorem 3.16. Let Pred be the set containing all P4. Let P•red be the set containing all
bulls. Then the set of graphs that are P4-reducible is GPred,P•red

.

Proof. It is simply a reformulation in our setting of [11, Theorem 4.2] that states that a
graph G is P4-reducible if and only if its canonical tree t verifies the following conditions:

• Every node in t is labeled with ⊕, 	, P4 or a bull.
• If a node w in t is decorated with a P4, every element of tw is reduced to a single

leaf.
• If a node w in t is decorated with a bull H, let v be the vertex of H in R, and t′

the `(v)-th tree of tw. Every element of tw\{t′} is reduced to a single leaf. �

By Proposition 3.8 since Pred ⊂ Ptidy, P•red ⊂ P•tidy we get that the pair (Pred,P•red)
verifies (C).

3.7. P4-free graphs (cographs).

Definition 3.17. A graph G is said to be a cograph if no subgraph of G induces a P4.

Theorem 3.18. Set Pcog = ∅ and P•cog = ∅. Then the set of graphs that are cographs is
GPcog,P•cog.

Proof. It is simply a reformulation in our setting of [5, Theorem 7] that states that a graph
G is a cograph if and only if its canonical tree t has no internal node decorated with a
prime graph. �

Clearly the pair (Pcog,P•cog) verifies (C).

4. Enriched modular decomposition: enumerative results

4.1. Exact enumeration. In the following, we establish combinatorial identities between
formal power series involving subsets of P and P•.

Throughout this section, we consider generic pairs (P ,P•) where P (resp. P•) is a set
of graphs with no blossom (resp. with one blossom) verifying condition (C) defined p.10.

Recall that for a graph G with blossoms, N(G) is the number of vertices that are not
a blossom: this will be the crucial parameter in the subsequent analysis. Let P •(z) :=∑
s∈P•

zN(s)

N(s)! and P (z) := ∑
s∈P

zN(s)

N(s)! .
For n ∈ N, let Pn (resp. P•n) be the set of graphs G in P (resp. P•) such that N(G) = n.
Note that, if both P and P• are stable under relabeling (which is the case for the classes

of graphs mentioned in Section 3), for each n ∈ N, there is a natural action Φn of the
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permutations of {1, . . . , n} over Pn and P•n. Let RPn and RP•n be a system of representants
of every orbit under this action, then

P •(z) =
∑
n∈N
|P•n|

zn

n! =
∑
n∈N

∑
s∈RP•n

|RP•n|
n!

|Aut(s)|
zn

n! =
∑
n∈N

∑
s∈RP•n

|RP•n|
zn

|Aut(s)| .

Similarly, we have:

P (z) =
∑
n∈N

∑
s∈RPn

|RPn|
zn

|Aut(s)| .

Theorem 4.1. For each graph class introduced in Section 3, we have the following expres-
sions for P and P •:

P4-tidy P •tidy(z) = (2 + 4z3) exp(z2)− 2− 2z2 − 4z3 − z4

2 − 2z5

Ptidy(z) = P •tidy(z) + z5 + z5

10
P4-lite P •lite(z) = (2 + 4z3) exp(z2)− 2− 2z2 − 4z3 − z4

2 − 2z5

Plite(z) = P •lite(z) + z5

P4-extendible P •ext(z) = z4

2 + 2z5

Pext(z) = P •ext(z) + z5 + z5

10
P4-sparse P •spa(z) = Pspa(z) = 2(exp(z2)− 1− z2 − z4

4 )
P4-reducible P •red(z) = Pred(z) = z4

2
P4-free P •cog(z) = Pcog(z) = 0

Proof. We only detail the computation of Ptidy and P •tidy for P4-tidy graphs as this is the
most involved case. According to Theorem 3.7, Ptidy is composed of one C5 that has 10
automorphisms and all its relabelings, one P5, and one P5 that both have 2 automorphisms
and all their relabelings.

For k ≥ 3 (resp. k = 2), there are thin and fat spiders corresponding to the 2 (resp. 1)
different orbits of the action Φ2k over prime spiders of size 2k, each having k! automor-
phisms.

For k ≥ 3 (resp. k = 2), there are thin and fat pseudo-spiders, the duplicated vertex can
come from K or S, and can be connected or not to the initial vertex. These 8 (resp. 4)
cases correspond to the 8 (resp. 4) different orbits of the action Φ2k+1 over pseudo-spiders
of size 2k + 1, each having 2(k − 1)! automorphisms.

Thus we have

Ptidy(z) = z5

10 + 2z5

2 + z4

2 + 2
∑
k≥3

z2k

k! + 4z
5

2 + 8
∑
k≥3

z2k+1

2(k − 1)!

= z5 + z5

10 + (2 + 4z3) exp(z2)− 2− 2z2 − 4z3 − z4

2 − 2z5.

Now let us compute P •tidy. For k ≥ 3 (resp. k = 2), there are thin and fat spiders with
blossom corresponding to the 2 (resp. 1) different orbits of the action Φ2k over blossomed
prime spiders G with 2k non blossomed vertices, each having k! automorphisms.
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For k ≥ 3 (resp. k = 2), there are thin and fat pseudo-spiders, the duplicated vertex can
come from K or S, and can be connected or not to the initial vertex. These 8 (resp. 4)
cases correspond to the 8 (resp. 4) different orbits of the action Φ2k+1 over blossomed
pseudo-spiders with 2k + 1 non blossomed vertices, each having 2(k − 1)! automorphisms.

Hence

P •tidy(z) = z4

2 +2
∑
k≥3

z2k

k! +4z
5

2 +8
∑
k≥3

z2k+1

2(k − 1)! = (2+4z3) exp(z2)−2−2z2−4z3− z
4

2 −2z5,

which gives the announced result. �

Let T be the exponential generating function of TP,P• , the set of trees defined in Def-
inition 2.17 counted by their number of leaves. Denote by Tnot⊕ (resp. Tnot	) the set of
all t ∈ TP,P• whose root is not decorated with ⊕ (resp. 	) and by Tnot⊕ (resp. Tnot	) the
corresponding exponential generating function.

Theorem 4.2. The exponential generating function Tnot⊕ verifies the following equation:
Tnot⊕ = z + P + (exp(Tnot⊕)− 1)P • + exp(Tnot⊕)− 1− Tnot⊕,(1)

and the series T and Tnot	 are simply given by the following equations:
T = exp(Tnot⊕)− 1(2)
Tnot	 = Tnot⊕(3)

Moreover, Eq. (1) with Tnot⊕(0) = 0 determines uniquely (as a formal series) the gener-
ating function Tnot⊕.

Proof. Note that there is a natural involution on TP,P• : the decoration of every linear node
can be changed to its opposite: ⊕ to 	, and 	 to ⊕. Therefore Tnot⊕ = Tnot	.

First, we prove that
T = z + T × P • + P + 2× (exp(Tnot⊕)− 1− Tnot⊕)(4)

We split the enumeration of the trees t ∈ TP,P• according to the different cases of
Definition 2.17.

(D1) The tree t is a single leaf (which gives the z in Eq. (4)).
(D2) The tree t has a root decorated with a graph H belonging to P . The exponential

generating function for a fixed H is zN(H)

N(H)! . Summing over all H and all n gives the
term P in Eq. (4).

(D3) The tree t has a root r decorated with ⊕ and having k children with k ≥ 2. In this
case, the generating function of the set of the k trees of tr is Tk

not⊕
k! . Summing over

all k implies that the exponential generating function of all trees in case (D3) with
a root labeled ⊕ is exp(Tnot⊕)− 1− Tnot⊕.

The tree t can also have a root r decorated with 	. Since Tnot⊕ = Tnot	, the
exponential generating function of all trees in case (D3) with a root labeled 	 is
exp(Tnot⊕)− 1− Tnot⊕.
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(D4) The tree t has a root r decorated with a graph H and there exists v ∈ VH such that
blov(H) = W where W ∈ P•. Denote t′ the `(v)-th tree of tr.

The exponential generating function corresponding to the set of leaves in t\t′
is zN(W )

N(W )! , and the exponential generating function corresponding to t′ is T . Note
that the tree t is uniquely determined by W , the labeled product of t′ and the
set of leaves of t\t′. Thus the corresponding generating function for a fixed W is
T × zN(W )

N(W )! . Summing over all W and all n gives the term T × P • in Eq. (4).
Summing all terms gives Eq. (4).
Similarly, we get

Tnot⊕ = z + T × P • + P + exp(Tnot⊕)− 1− Tnot⊕.(5)
Substracting Eq. (5) to Eq. (4) gives Eq. (2). Then Eq. (1) is an easy consequence from

Eqs. (2) and (5).
Note that Eq. (1) can be rewritten as:

Tnot⊕ = z + P +
∑
k≥1

T knot⊕
k! P • +

∑
k≥2

T knot⊕
k! .(6)

For every n ≥ 1, the coefficient of degree n of Tnot⊕ only depends on coefficients of lower
degree as P •(z) has no term of degree 0 or 1 and Tnot⊕(0) = 0. Thus Eq. (1) combined
with Tnot⊕(0) = 0 determines uniquely Tnot⊕. �

We are going to define the notions of trees with marked leaves, and of blossomed trees,
which will be crucial in the next section. We insist on the fact that the size parameter will
count the number of leaves including the marked ones but not the blossoms.

Definition 4.3. A marked tree is a pair (t, I) where t is a tree and I a partial injection
from the set of labels of leaves of t to N. The number of marked leaves is the size of the
domain of I denoted by |(t, I)|, and a leaf is marked if its label j is in the domain, its mark
being I(j).

Remark. In the following, we will consider marked trees (t, I), and subtrees t′ of t. The
marked tree (t′, I) will refer to the marked tree (t′, I′) where I′ is the restriction of I to
the set of labels of leaves of t′.

Remark. Let F ∈ {TP,P• , Tnot	, Tnot⊕}, and F be its generating exponential function. The
exponential generating function of trees in F with a marked leaf is zF ′(z): if there are fn
trees of size n in F , there are nfn trees with a marked leaf. Thus the generating exponential
function is ∑

n≥1

nfn

n! z
n = zF ′(z).

Blossoming transformation. Let t be a tree not reduced to a leaf in TP,P• , ` a leaf of t
and n the parent of `. If n is a linear node, we replace the label of ` by ∗, and do the
reduction on t. If v is a non-linear node, and ` is in the i-th tree of tn (where i is the
element such that (D4) holds in Definition 2.17), we replace the label of ` by ∗ and i by
∗ in the decoration of n, and do the reduction on both t and the decoration of v. If t is
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reduced to a leaf, we replace the leaf by a blossom. We call such this transformation the
blossoming of (t, `).

We extend this operation to internal node: if n is a internal node, we replace t[n] by its
leaf of smallest label, and do the blossoming operation on the tree obtained. The resulting
tree is still called the blossoming of (t, n).

Definition 4.4 (Blossomed tree). A blossomed tree is a tree that can be obtained by the
blossoming of a tree in TP,P•. Its size is its number of leaves without blossom.

A blossom is ⊕-replaceable (resp. 	-replaceable) if its parent is not decorated with ⊕
(resp. 	).

Remark. Similarly to a tree, a blossomed tree can be marked by a partial injection I.

We will denote T b and T ba with a ∈ {not⊕, not	}, and b ∈ {⊕,	, blo} the set of trees
whose root is not ⊕ (resp. 	) if a = not⊕ (resp. a = not	), and with one blossom that is
b-replaceable if b = ⊕ or 	, or just with one blossom if b = blo.

We define T b and T ba to be the corresponding exponential generating functions of trees,
counted by the number of non blossomed leaves.

However, we take the convention that T⊕not⊕(0) = 0 = T	not	. In other words, a single leaf
is neither in T ⊕not⊕ nor in T 	not	. The other series have constant coefficient 1.

Remark. From the previously defined involution, it follows that T	not⊕ = T⊕not	, T⊕not⊕ =
T	not	 et T⊕ = T	 and T blo

not⊕ = T blo
not	.

Theorem 4.5. The functions T⊕, T⊕not⊕, T
⊕
not	 are given by the following equations:

T⊕ = 1
2− exp(Tnot⊕)− P • exp(Tnot⊕)(7)

T	not⊕ = T⊕

exp(Tnot⊕)(8)

T⊕not⊕ = T⊕ − 1
exp(Tnot⊕)(9)

Proof. Let t be a tree in T ⊕not⊕. Note that it cannot be reduced to a single leaf, have a root
decorated with ⊕ or be in case (D2) of Definition 2.17.

(D3) The tree t can have a root r decorated with 	 and having k children with k ≥ 2.
There are k−1 subtrees without blossom, and 1 with a blossom. Thus the generating
function of the set of the k trees of tr is Tk−1

not	
(k−1)!T

⊕
not	. Summing over all k gives that

the exponential generating function of all trees in case (D3) with a root labeled 	
is ∑

k≥2

T k−1
not	

(k − 1)!T
⊕
not	 = (exp(Tnot	)− 1)T⊕not	
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⊕ or (D4)

⊖ or (D4) ⊖ or (D4)

not (D2)

(D4)

2

9
6

or

At least one tree, each does not
have a root decorated with ⊕

If the previous node is in (D4) the marked leaf must be in the i-th tree

Figure 9. Illustration of both cases in the proof of Theorem 4.5

(D4) The tree t can have a root r decorated with H and v ∈ VH such that blov(H) = W
with W ∈ P•. Then the blossom must be in the `(v)-th tree of tr that will be
denoted t′.

The exponential generating function corresponding to the set of leaves in t\t′
is zN(W )

N(W )! , and the exponential generating function corresponding to t′ is T⊕. Note
that the tree t is uniquely determined by W , the labeled product of t′ and the
set of leaves of t\t′. Thus the corresponding generating function for a fixed W is
T⊕× zN(W )

N(W )! . Summing over all W gives the exponential generating function T⊕×P •.
This implies the following equation:

T⊕not⊕ = (exp(Tnot	)− 1)T⊕not	 + P •T⊕ = (exp(Tnot⊕)− 1)T	not⊕ + P •T⊕(10)

We have similarly:

T	not⊕ = 1 + (exp(Tnot	)− 1)T	not	 + P •T	 = 1 + (exp(Tnot⊕)− 1)T⊕not⊕ + P •T⊕(11)
T⊕ = 1 + (exp(Tnot	)− 1)T⊕not	 + (exp(Tnot⊕)− 1)T⊕not⊕ + P •T⊕(12)

Thus:
T⊕ = 1 + (exp(Tnot⊕)− 1)(T⊕not⊕ + T	not⊕) + P •T⊕(13)

By substracting Eq. (11) to Eq. (13), we get T⊕ − T	not⊕ = (exp(Tnot⊕)− 1)T	not⊕ which
implies Eq. (8).

Using Eqs. (10) and (13), we get
T⊕ = 1 + (exp(Tnot⊕)− 1)T⊕not⊕ + T⊕not⊕ = 1 + exp(Tnot⊕)T⊕not⊕

which implies Eq. (9).
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Multiplying Eq. (10) by exp(Tnot⊕) and using Eqs. (8) and (9), it follows that:

T⊕ − 1 = (exp(Tnot⊕)− 1)T⊕ + exp(Tnot⊕)P •T⊕.

Thus T⊕(2− exp(Tnot⊕)− P • exp(Tnot⊕)) = 1 which implies Eq. (7). �

Theorem 4.6. We also have the following equations:

T blo = exp(Tnot⊕)
2− exp(Tnot⊕)− P • exp(Tnot⊕)(14)

T blo
not⊕ = 1

exp(Tnot⊕)T
blo(15)

Proof. By the same techniques used as those of the previous proof, we establish that:

T blo = 1 + 2(exp(Tnot⊕)− 1)T blo
not⊕ + P •T blo;(16)

T blo
not⊕ = 1 + (exp(Tnot⊕)− 1)T blo

not⊕ + P •T blo.(17)

By substracting Eq. (17) to Eq. (16), we get that:

T blo − T blo
not⊕ = (exp(Tnot⊕)− 1)T blo

not⊕

which implies Eq. (15).
By multiplying Eq. (17) by exp(Tnot⊕) and using Eq. (15) we get that:

T blo (2− P • exp(Tnot⊕)− exp(Tnot⊕)) = exp(Tnot⊕)

which implies Eq. (14). �

Combining Theorem 4.5 and Theorem 4.6 we obtain:

Corollary 4.7. We have the following equations:

T blo = exp(Tnot⊕)T⊕;(18)
T blo

not⊕ = T⊕.(19)

4.2. Asymptotic enumeration. In the following, we derive from the previously obtained
equations the radii of the different series introduced, the asymptotic behavior of the dif-
ferent series in R and an equivalent of the number of graphs in GP,P•

From now on, we assume that P and P • have a positive radius of convergence. Let R0
be the minimum of their radii of convergence. Denote by P (R0) and P •(R0) the limit in
[0,+∞] of P and P • at R−0 .

In the following, we assume that one of the conditions below is verified:
• P •(R0) ≥ 1
• R0 + P (R0) + 2 ln(1 + P •(R0))− P •(R0) > 2 ln(2)− 1
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Note that one of these conditions is verified in the different classes of graphs we study,
as R0 = +∞.

Denote by R the only solution in [0, R0) of the equation:
R + P (R) + 2 ln(1 + P •(R))− P •(R) = 2 ln(2)− 1(20)

such that P •(R) < 1 (unicity comes from the fact that z 7→ 2 ln(1 + z)− z is increasing in
[0, 1]). Note that by definition, 0 < R < R0.

Recall that a formal series A is aperiodic if there does not exist two integers r ≥ 0 and
d ≥ 2 and B a formal series such that A(z) = zrB(zd).

Lemma 4.8. The functions T , Tnot⊕, T⊕, T	not⊕, T⊕not⊕, T blo, T blo
not⊕ are aperiodic.

Proof. One can easily check that for each of the previous series, the coefficients of degree
3 and 4 are positive, and thus all the series are aperiodic. �

Definition 4.9. A set ∆ is a ∆-domain at 1 if there exist two positive numbers R and
π
2 < φ < π such that

∆ = {z ∈ C||z| ≤ R, z 6= 1, |arg(1− z)| < φ}
For every w ∈ C∗, a set is a ∆-domain at w if it is the image of a ∆-domain by the

mapping z 7→ zw.

Definition 4.10. A power series U is said to be ∆-analytic if it has a positive radius of
convergence ρ and there exists a ∆-domain D at ρ such that U has an analytic continuation
on D.

Theorem 4.11. Both T and Tnot⊕ have R as radius of convergence and a unique dominant
singularity at R. They are ∆-analytic. Their asymptotic expansions near R are:

Tnot⊕(z) = ln
(

2
1 + P •(R)

)
− κ

√
1− z

R
+ o

(√
1− z

R

)
(21)

T (z) = 2
1 + P •(R) − 1− 2

1 + P •(R)κ
√

1− z

R
+ o

(√
1− z

R

)
(22)

where κ is the constant given by:

κ =

√√√√R(1 + P ′(R) + (1− P •(R))(P •)′(R)
1 + P •(R)

)

Proof. We begin with the expansion of Tnot⊕ for which we apply the smooth implicit theo-
rem [8, Theorem VII.3, p.467]. Following [8, Sec VII.4.1] we claim that Tnot⊕ satisfies the
settings of the so-called smooth implicit-function schema: Tnot⊕ is solution of

T = G(z, T ),
where G(z, w) = z + P (z) + (exp(w)− 1)P •(z) + (exp(w)− 1− w).
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The singularity analysis of Tnot⊕ will go through the study of the characteristic system: G(r, s) = s,

Gw(r, s) = 1
with 0 < r < R, s > 0

where Fx = ∂F
∂x

.
Note that (r, s) =

(
R, ln

(
2

1+P •(R)

))
is a solution of the characteristic system of G since

• Gw(r, s) = exp(s)(1 + P •(R))− 1 = 2− 1 = 1
• G(r, s) = R+P (R)−P •(R)+∂wG(r, s)−s = 2 ln(2)−1−2 ln(1+P •(R))+1−s =

2s− s = s

Moreover
• Gz(r, s) = 1 + P ′(R) + (exp(s)− 1)(P •)′(R) = 1 + P ′(R) + (1−P •(R))(P •)′(R)

(1+P •(R))
• Gw,w(r, s) = exp(s)(1 + P •(r)) = 2

The expansion of T is then a consequence of Eq. (2) and of the expansion of Tnot⊕. �

Corollary 4.12. The radius of convergence of T⊕, T	not⊕, T⊕not⊕, T blo, and T blo
not⊕ is R

and R is the unique dominant singularity of these series. They are ∆-analytic and their
asymptotic expansions near R are:

T⊕ = 1
2κ

(
1− z

R

)− 1
2

+ o

((
1− z

R

)− 1
2
)

(23)

T	not⊕ = (1 + P•(R))
4κ

(
1− z

R

)− 1
2

+ o

((
1− z

R

)− 1
2
)

(24)

T⊕not⊕ = (1 + P•(R))
4κ

(
1− z

R

)− 1
2

+ o

((
1− z

R

)− 1
2
)

(25)

T blo = 1
(1 + P•(R))κ

(
1− z

R

)− 1
2

+ o

((
1− z

R

)− 1
2
)

(26)

T blo
not⊕ = 1

2κ

(
1− z

R

)− 1
2

+ o

((
1− z

R

)− 1
2
)

(27)

Proof. Note that, if |z| ≤ R,

|(1 + P •(z)) exp(Tnot⊕(z))| ≤ (1 + P •(|z|)) exp(|Tnot⊕(z)|) ≤ (1 + P •(R)) exp(Tnot⊕(R)) = 2

with equality if and only if z = R by aperiodicity from Daffodil lemma [8, Lemma IV.1]
and since Tnot⊕(R) > 0.

By Theorem 4.11

2− (1 + P •(z)) exp(Tnot⊕(z)) = 2κ
√

1− z

R
+ o

(√
1− z

R

)
.

Hence, by compactness, the LHS function can be extended to a ∆-domain D at R with
2− (1 + P •(z)) exp(Tnot⊕)(z) 6= 0 for every z ∈ D.
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Eq. (7) shows that T⊕ can be extended to D and yields the announced expansions when
z tends to R. These expansions show that all these series have a radius of convergence
exactly equal to R. �

Applying the Transfer Theorem [8, Corollary VI.1 p.392] to the results of Theorem 4.11,
we obtain an equivalent of the number of trees of size n in TP,P• . Since there is a one-to-one
correspondence between graphs in GP,P• and trees in TP,P• , we get the following result:

Corollary 4.13. The number of graphs in GP,P• of size n is asymptotically equivalent to

C
n!

Rnn
3
2

where C = κ√
π(1 + P •(R)) .

Here are the numerical approximations of R and C in the different cases:

class of graph R−1 R C
P4-tidy 2.90405818 0.34434572 0.40883495
P4-lite 2.90146936 0.34465296 0.40833239

P4-extendible 2.88492066 0.34662998 0.40351731
P4-sparse 2.72743550 0.36664478 0.37405701
P4-reducible 2.71715531 0.36803196 0.37115484
P4-free 1

2 ln(2)−1 ≈ 2.58869945 2 ln(2)− 1 ≈ 0.38629436 0.35065840

5. Enumeration of graphs with a given induced subgraph

5.1. Induced subtrees and subgraphs. We recall that the size of a graph is its number
of vertices, and the size of a tree is its number of leaves.

Definition 5.1 (Induced subgraph). Let G be a graph, k a positive integer and I a partial
injection from the set of labels of G to N. The labeled subgraph GI of G induced by I is
defined as:

• The vertices of GI are the vertices of G whose label ` is in the domain of I. For
every such vertex, we replace the label ` of the vertex by I(`);
• For two vertices v and v′ of GI, (v, v′) is an edge of GI if and only if it is an edge

of G.

Definition 5.2 (First common ancestor). Let t be a rooted tree and let `1, `2 be two distinct
leaves of t. The first common ancestor of `1 and `2 is the internal node of t that is the
furthest from the root and that belongs to the shortest path from the root to `1, and the
shortest path from the root to `2.

Definition 5.3 (Induced subtree). Let (t, I) be a marked tree in T0 (T0 is defined in
Definition 2.4, and the notion of marked tree in Definition 4.3). The induced subtree tI
of t induced by I is defined as:

• The leaves of tI are the leaves of t that are marked. For every such leaf labeled with
an integer `, the new label of ` is I(`);
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• The internal nodes of tI are the internal nodes of t that are first common ancestors
of two or more leaves of tI;
• The ancestor-descendent relation in tI is inherited from the one in t;
• For every internal node v of t that appears in tI, let H be its decoration in t. Denote

by J the set of positive integers k such that the k-th tree of tv contains a leaf of tI.
For every k in J , we define L(k) as the smallest image by I of a marked leaf label
in the k-th tree of tv. The decoration of v in tI is the reduction of HL.

For every internal node v (resp. leaf `) of tI, we also define φ(v) to be the only internal
node (resp. leaf) of t corresponding to v.
Remark. When (t, I) is a marked tree and t′ is a subtree of t, we will denote t′I the tree
induced by the restriction of I to the set of labels of leaves of t′.

As a consequence of Definitions 5.1 and 5.3, we obtain:
Lemma 5.4. Let (t, I) be a marked tree in T0. Then

Graph(t)I = Graph(tI).

8
3

7
26
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Graph(t)
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4 2

Figure 10. Relations between induced subgraph and induced subtree.

Definition 5.5. For every pair of graphs (G,H) such that G has no blossom and H has at
most one blossom, let OccG(H) be the number of partial injection I from the vertex labels
of H to N such that no blossom is marked and HI is isomorphic to G.
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Definition 5.6. For every pair of graphs (G,H) and a ∈ N such that G has no blossom,
H has exactly one blossom and a is the label of a vertex of G, let OccG,a(H) be the number
of partial injection I from the vertex labels of G to N such that the image of the blossom
by I is a and HI is isomorphic to G.

2

3 1 ∗

8

5 7 9

6

6

Figure 11. Two occurences of a P4 in a blossomed graph H. If G is a P4,
the blue one is counted twice in OccG(H), the red one in counted once in
OccG,a(H) iff a is the label of an extremity of G.

Definition 5.7. For every graph G without blossom, and every a ∈ {1, . . . , N(G) = |G|},
set:

OccG,P(z) :=
∑
H∈P

OccG(H)zN(H)−N(G)

N(H)! ; OccG,P•(z) :=
∑
H∈P•

OccG(H)zN(H)−N(G)

N(H)!

OccG,a,P•(z) :=
∑
H∈P•

OccG,a(H)zN(H)−N(G)+1

N(H)!
Notation. OccG,... will only be used for graphs G with no blossom.
Proposition 5.8. For every k ≥ 1 and every a ∈ {1, . . . , k}:∑

G: N(G)=k
OccG,P(z) = P (k)(z)(28)

∑
G: N(G)=k

OccG,P•(z) = (P •)(k)(z)(29)

∑
G: N(G)=k

OccG,a,P•(z) = (P •)(k−1)(z)(30)

Thus for every graph G with no blossom and every a ∈ {1, . . . , N(G)}, OccG,P , OccG,P•
and OccG,a,P• have a radius of convergence strictly greater than R, the radius of convergence
of T .
Proof. Let H be an element of P . Since there are N(H)!

(N(H)−k)! choices of partial injection
whose image is {1, . . . , k}, we have:∑

G: N(G)=k
OccG,P(z) =

∑
H∈P

∑
G: N(G)=k

OccG(H)zN(H)−k

N(H)! =
∑
H∈P

zN(H)−k

(N(H)− k)! = P (k)(z)
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The proofs of Eqs. (29) and (30) are similar. In Eq. (30), since I−1(a) must be ∗, there
are exactly N(H)!

(N(H)−(k−1))! choices for the partial injection.
For every graph G, OccG,P has non-negative coefficients and for every k ≥ 0, as men-

tioned in Section 4.2, P (k) has a radius of convergence at least R0, the minimum of the
radii of convergence P and P •, which is greater than R. This implies that OccG,P has a
radius of convergence greater than R. The proof for the other series is similar. �

5.2. Enumerations of trees with a given induced subtree. The key step in the proof
of our main theorem is to compute the limiting probability (when n→∞) that a uniform
induced subtree of a uniform tree in TP,P• with n leaves is a given substitution tree.

In the following, let τ ∈ T0 be a fixed substitution tree of size at least 2.
Definition 5.9. We define Tτ to be the set of marked trees (t, I) where t ∈ TP,P• and I
is such that tI is isomorphic to τ . We also define Tτ to be the corresponding exponential
generating function (where the size parameter is the total number of leaves, including the
marked ones).

The aim now is to decompose a tree admitting τ as a subtree in smaller trees. Let
(t, I) be in Tτ . A prime node v of τ is such that t[φ(v)] is either in case (D2) or (D4) of
Definition 2.17: in other word, φ(v) must be a prime node. In constrast, knowing that an
internal node v′ of τ is decorated with ⊕ or 	 does not give any information about the
decoration of φ(v′).

In order to state Theorem 5.11 below, we need to partition the internal nodes of τ :
Definition 5.10. Let (t, I) be in Tτ . We denote by V(t, I) the set of internal nodes v of
τ such that φ(v) is non-linear. The set V(t, I) can be partitioned in 4 subsets:

• V0(t, I) the set of internal nodes v such that t[φ(v)] is in case (D2);
• V1(t, I) the set of internal nodes v such that t[φ(v)] is in case (D4) and no marked

leaf is in the i-th tree of tφ(v) (where i is the element such that (D4) holds in
Definition 2.17);
• V2(t, I) the set of internal nodes v such that t[φ(v)] is in case (D4) and exactly

one marked leaf is in the i-th tree of tφ(v) (where i is the element such that (D4)
holds in Definition 2.17);
• V3(t, I) the set of internal nodes v such that t[φ(v)] is in case (D4) and at least

two marked leaves are in the i-th tree of tφ(v) (where i is the element such that (D4)
holds in Definition 2.17).

Note that the set of non-linear nodes of τ must be included in V(t, I). Since for every
element v of V(t, I) at most one element of tφ(v) is non trivial, at most one element of τv
is non trivial. Thus if τ has some non-linear nodes v such that two or more elements of τv
are not reduced to a single leaf, Tτ = ∅. In the following, we assume that it is not the case
for τ . If τv has exactly one non trivial tree, then v ∈ V3(t, I). Otherwise, τv is a union of
leaves.
Notation. We denote by U0 (resp. U1) the set of internal nodes v of τ such that no tree
(resp. exactly one tree) of τv has size greater or equal to 2.
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Note that by definition V0(t, I) ∪V1(t, I) ∪V2(t, I) ⊂ U0 and V3(t, I) ⊂ U1.
We also define rkt,I : V2(t, I) 7→ N as follows. Let v ∈ V2(t, I), we define rkt,I(v) to

be the only integer k such that, if ` is the label of the k-th leaf of τv then the leaf of label
I−1(`) in t belongs to the i-th tree of tφ(v) (where i is the element such that (D4) holds in
Definition 2.17). For every v ∈ V2(t, I), we have 1 ≤ rkt,I(v) ≤ |τv|.

Theorem 5.11. Let τ be a substitution tree of size at least 2 such that every non-linear
node of τ is in U0 ∪ U1. Let V0, V1 and V2 be three disjoint subsets of U0 and let V3 be a
subset of U1 such that every non-linear node of τ is in V := V0 ∪ V1 ∪ V2 ∪ V3. Let rk:
V2 → N be such that 1 ≤ rk(w) ≤ |τw| for every w ∈ V2.

Let Tτ,V0,V1,V2,V3,rk be the set of marked trees (t, I) in Tτ such that V0(t, I) = V0,V1(t, I) =
V1,V2(t, I) = V2,V3(t, I) = V3, rkt,I = rk, and let Tτ,V0,V1,V2,V3,rk be its exponential gener-
ating function.

Then

Tτ,V0,V1,V2,V3,rk = z|t|T root
(
T⊕not⊕

)d= (
T	not⊕

)d 6= (
T blo

not⊕

)dV→V (T ′not⊕

)dV→` exp(nLTnot⊕)

× T |V1|T ′|V2|(T⊕)n1(T blo)n2F

where

F :=
∏
v∈V0

Occdec(v),P
∏
v∈V3

Occdec(v),br(v),P•
∏
v∈V1

Occdec(v),P•
∏
v∈V2

Occdec(v),rk(v),P•

and:
• d= is the number of edges between two internal nodes not in V with the same deco-

ration (⊕ and ⊕, or 	 and 	);
• d 6= is the number of edges between two internal nodes not in V decorated with dif-

ferent decorations (⊕ and 	);
• dV→V is the number of edges between an internal node not belonging to V and one

of its children belonging to V;
• dV→` is the number of edges between an internal node not in V and a leaf;
• nL is the number of internal nodes not in V;
• dec(v) is the decoration of v;
• for every v ∈ V3, br(v) is the position of the tree of τv not reduced to a leaf;
• n1 (resp. n2) is the number of internal nodes v in V3 such that the root of the

br(v)-th tree of τv is not in V (resp. is in V);
• T root = T⊕ if the root of τ is not in V, T root = T blo otherwise.

Proof. Let t be a tree in Tτ,V0,V1,V2,V3,rk. We decompose t into several disjoints subtrees.
The blossoms are nodes where (the root of) an other tree will be glued (and thus they are
not counted in the generating series, to avoid counting them twice). In the following, every
defined tree will be assumed to be reduced.
We define t→root to be the tree t blossomed at φ(r0), where r0 is the root of τ .
For each v ∈ Vτ , we define the tree tv→ in the following way:
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V0

V0V1

V2

V3

V

V

Figure 12. A substitution tree τ and corresponding sets V0, V1, V2, V3

• If v is not in V , tv→ is the subtree of t containing φ(v) and all the trees of tφ(v) that
do not contain a marked leaf of t.
• If v is in V0 ∪ V1 ∪ V2, tv→ is the tree t[φ(v)].
• If v is in V3, tv→ is the tree t[φ(v)] obtained after blossoming the root of the non

trivial tree of tφ(v). The blossom is marked with the smallest mark in the non trivial
tree of tφ(v).

For every internal nodes v, v′ in τ such that v is not in V and v′ is a child of v, let tv→v′ be
the unique tree of tφ(v) containing φ(v′), blossomed at φ(v′).
For every internal node v in τ not in V , and every leaf f which is a child of v in τ , we
define tv→f to be the tree of tφ(v) containing φ(f).
For every internal node v in V3, we define tv→br(v) to be the non trivial tree of tφ(v) blossomed
at φ(v′), where v′ is the root of the br(v)-th tree of τv.

Now we need to analyze the properties of the trees that appear in this decomposition
and compute the corresponding exponential generating function. In the rest of the proof,
we will say abusively that every blossomed tree belongs to TP,P• , and that two nodes both
decorated with ⊕ or 	 have the same decoration, even if they do not have the same number
of children.
(i): analysis of t→root where v 6∈ V
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root
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iviv
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vii

vii
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viii

viiix

xi

of the form tv,f

of the form tv→

of the form tv,v′

of the form tv→br(v)

t→root

Figure 13. The decomposition of a tree admitting the graph τ of Fig. 12
as an induced tree. Roman numerals correspond to the different cases of the
proof of Theorem 5.11.

The tree t→root is a tree in TP,P• , it has no marked leaf and a unique blossom. If the root
is not in V and decorated with ⊕ (resp. 	), the blossom is ⊕-replaceable (see Definition 4.4)
(resp. 	-replaceable). If the root is in V , the blossom is replaceable.

The corresponding exponential generating function is equal to T⊕ if the root is not in V
and equal to T blo otherwise.
(ii): analysis of tv→v′ where v 6∈ V and v′ is a child of v not in V with the same
decoration

The tree tv→v′ is a tree in TP,P• whose root is not decorated with the same decoration as
v and with one blossom ⊕-replaceable if v′ is decorated with ⊕, 	-replaceable otherwise
and no marked leaf.

The exponential generating function of such trees is either T⊕not⊕ if both nodes are deco-
rated with ⊕ or T	not	 if both nodes are decorated with 	, which are both equal.
(iii): analysis of tv→v′ where v 6∈ V and v′ is a child of v not in V with a different
decoration

The tree tv→v′ is a tree in TP,P• whose root is not decorated with the same decoration as
v and with one blossom ⊕-replaceable if v′ is decorated with ⊕, 	-replaceable otherwise
and no marked leaf.
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The exponential generating function of such trees is either T	not⊕ if v is decorated with
⊕ and v′ with 	 or T	not	 if v is decorated with 	 and v′ with ⊕, which are both equal.
(iv): analysis of tv→v′ where v 6∈ V and v′ is a child of v in V

The tree tv→v′ is a tree in TP,P• whose root is not decorated with the decoration of v
with one blossom and no marked leaf.

The corresponding exponential generating function is T blo
not⊕.

(v): analysis of tv→f where v 6∈ V and f is a leaf which is a child of v
The tree tv→f is a tree in TP,P• whose root is not decorated with the decoration of v

with one marked leaf and no blossom.
The corresponding exponential generating function is zT ′not⊕.

(vi): analysis of tv→br(v) where v ∈ V3
The tree tv→br(v) is a tree with a blossom that is replaceable if the root of the br(v)-th

subtree of t[v] is in V , ⊕-replaceable (resp. 	-replaceable) if the root is not in V and labeled
⊕ (resp. 	), with no marked leaf.

The corresponding exponential generating function is equal to T⊕ if the root of the
br(v)-th tree of τv is not in V and equal to T blo otherwise.
(vii): analysis of tv→ where v 6∈ V

The tree tv→ is a tree whose root denoted is decorated with the same decoration as v, who
has no marked leaf and no blossom. It verifies all the conditions of being (P ,P•)-consistent,
except that the root can have 0 or 1 child.

The corresponding exponential generating function is ∑
k≥0

T knot⊕ = exp(Tnot⊕).

(viii): analysis of tv→ where v ∈ V0
The tree tv→ is a tree in TP,P• whose root is decorated with an element of P . The subtree

induced by the marked leaves of tv→ is τ [v]. Moreover tv→ has only one internal node.
The corresponding exponential generating function is

∑
H∈P

Occdec(v)(H)zN(H)

N(H)! = zN(dec(v))Occdec(v),P .

Indeed, for a given H ∈ P , the term zN(H)

N(H)! correspond to the set of leaves and the term
Occdec(v)(H) to the possible markings.
(ix): analysis of tv→ where v ∈ V3

The tree tv→ is a tree (P ,P•)-consistent in case (D4) of Definition 2.17. The subtree
induced by the marked leaves of tv→ is τ [v], where the non-trivial tree of τv is replaced by
a blossom, marked with the smallest mark in the non-trivial tree of τv. Moreover tv→ has
only one internal node.

Similarly to case (viii), the corresponding exponential generating function is:

∑
H∈P•

Occdec(v),br(v)(H)zN(H)

N(H)! = zN(dec(v))−1Occdec(v),rk(v),P• .

(x): analysis of tv→ where v ∈ V1
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The tree tv→ is a tree (P ,P•)-consistent in case (D4) of Definition 2.17. The subtree
induced by the marked leaves of tv→ is τ [v] and no marked leaf belongs to the i-th tree of
tφ(v) (where i is the element such that (D4) holds in Definition 2.17).

The corresponding exponential generating function is:

∑
H∈P•

Occdec(v)(H)zN(H)

N(H)! × T = zN(dec(v))Occdec(v),P• × T.

The sum corresponds to the choice of the root (as in the previous cases), and the factor
T to the potential non trivial tree of tv.
(xi): analysis of tv→ where v ∈ V2

The tree tv→ is a tree (P ,P•)-consistent in case (D4) of Definition 2.17. The subtree
induced by the marked leaves of tv→ is τ [v] and there is only one marked leaf ` in the i-th
tree of tφ(v) (where i is the element such that (D4) holds in Definition 2.17). Moreover, if
we denote by j the label of `, the label of the rk(v)-th leaf of τv is I(j).

Similarly to case (x), the corresponding exponential generating function is:

∑
H∈P•

Occdec(v),rk(v)(H)zN(H)

N(H)! × zT ′ = zN(dec(v))Occdec(v),rk(v),P• × T ′.

All these conditions ensure that we can recover t by gluing all the different trees and that
the subtree of t induced by I is τ . Thus, Tτ,V0,V1,V2,V3,rk is the product of the generating
functions and this concludes the proof of the theorem.

�

Corollary 5.12. The series Tτ,V0,V1,V2,V3,rk has radius at least R, is ∆-analytic and its
asymptotic expansion near R is:

Tτ,V0,V1,V2,V3,rk = Cτ,V0,V1,V2,V3,rk

(
1− z

R

)β
(1 + o(1))

where
Cτ,V0,V1,V2,V3,rk := ακγ(1 + P •(R))θ(1− P •(R))|V1|2λRµ × F (R)

with

β = −1 + d= + d 6= + dV→V + dV→` + |V2|+ |V3|
2

γ = dV→` + |V2| − d= − d 6= − dV→V − |V3| − 1
θ = d= + d6= − |V1| − |V2| − n2 − nL
λ = −dV→` − n1 − 2d= − 2d 6= − dV→V + nL

µ = −dV→` − |V2|+ l

and α = 1
2 if the root is not in V, 1

1+P •(κ) otherwise.
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6. Proof of the main theorems

6.1. Background on graphons. We now review the necessary material on graphons.
We refer the reader to [19] for a comprehensive presentation of deterministic graphons,
while [7] studies specifically the convergence of random graphs in the sense of graphons.
Here we will only recall the properties needed to prove the convergence of random graphs
toward the Brownian cographon (see [1]).

Definition 6.1. A graphon is an equivalence class of symmetric functions f : [0, 1]2 7→
[0, 1], under the equivalence relation ∼, where f ∼ g if there exists a measurable function
φ : [0, 1] 7→ [0, 1] that is invertible and measure preserving such that, for almost every
(x, y) ∈ [0, 1]2, f(φ(x), φ(y)) = g(x, y). We denote by W̃ the set of graphons.

Intuitively graphons can be seen as continuous analogous of graph adjacency matrices,
where graphs are considered up to relabeling (hence the quotient by ∼). There is a natural
way to embed a finite graph into graphons:

Definition 6.2. Let G be a (random) graph of size n. We define the (random) graphon
WG to be the equivalence class of wG : [0, 1]2 7→ [0, 1] defined by:

∀(x, y) ∈ [0, 1]2 wG(x, y) := 1dnxeconnected todnye

There exists a metric δ� on the set of graphons W̃ such that (W̃ , δ�) is compact [19,
Chapter 8], thus we can define for δ� the convergence in distribution of a random graphon.
If (G(n))n≥1 is a sequence of random graphs, there exists a simple criterion [7, Theorem
3.1] characterizing the convergence in distribution of (WG(n)) with respect to δ�:

Theorem 6.3 (Rephrasing of [7], Theorem 3.1). For any n, let G(n) be a random graph of
size n. Denote by WG(n) the random graphon associated to G(n). The following assertions
are equivalent:

(a) The sequence of random graphons (WG(n))n≥1 converges in distribution to some
random graphon W.

(b) The random infinite vector
(

OccG(n) (H)
n(n−1)...(n−|H|+1)

)
H finite graph

converges in distribution

in the product topology to some random infinite vector (ΛH)H finite graph.

For a finite graph H, the random variable ΛH can be seen as the density of the pattern
H in the graphon W: the variables (ΛH)H play the roles of margins of W in the space of
graphons.

For k ≥ 1 and W a random graphon, we denote by Samplek(W) the unlabeled random
graph built as follows: Samplek(W ) has vertex set {v1, v2, . . . , vk} and, letting (X1, . . . , Xk)
be i.i.d. uniform random variables in [0, 1], we connect vertices vi and vj with probability
w(Xi, Xj) (these events being independent, conditionally on (X1, · · · , Xk) and W). The
construction does not depend on the representation of the graphon.

With the notations of Theorem 6.3, we have for any finite graph H

ΛH = P(Sample|H|(W) = H |W).
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The article [1] introduces a random graphon W1/2 called the Brownian cographon which
can be explicitly constructed as a function of a realization of a Brownian excursion. Besides,
[1, Proposition 5] states that the distribution of the Brownian cographon is characterized2

by the fact that for every k ≥ 2, Samplek(W1/2) has the same law as the unlabeled
version of Graph(bk) with bk a uniform labeled binary tree with k leaves and i.i.d. uniform
decorations in {⊕,	}.

A consequence of this characterization is a simple criterion for convergence to the Brow-
nian cographon.
Lemma 6.4 (Rephrasing of [1] Lemma 4.4). For every positive integer n, let T(n) be a
uniform random tree in TP,P• with n vertices. For every positive integer `, I`

(n) be a
uniform partial injection from {1, . . . , n} to N whose image is {1, . . . , `} and independent
of T(n). Denote by T(n)

I`
(n) the subtree induced by I`

(n).
Suppose that for every ` and for every binary tree τ with ` leaves,

(31) P(T(n)
I(n) = τ) −−−→

n→∞

(`− 1)!
(2`− 2)! .

Then WGraph(T(n)) converges as a graphon to the Brownian cographon W1/2 of parameter
1/2.
6.2. Conclusion of the proof of Theorem 1.1.

Proposition 6.5. Let τ be a binary tree with ` ≥ 2 leaves. The series Tτ has radius of
convergence R, is ∆-analytic and its asymptotic expansion near R is:

Tτ = κ

(1 + P •(R))22`−2

(
1− z

R

)− 2`−1
2

(1 + o(1)) .(32)

Proof. As
Tτ =

∑
τ,V0,V1,V2,V3,rk

Tτ,V0,V1,V2,V3,rk,

the asymptotic expansions of the different series Tτ,V0,V1,V2,V3,rk yield the ∆-analyticity of
Tτ , its asymptotic expansion and its radius of convergence.

Note that β ≤ 1+e
2 where e is the number of edge of τ , with equality if and only if

V0, V1, V2 and V3 are all empty.
Therefore, only the series Tτ,∅,∅,∅,∅,rk contributes to the leading term of the asymptotic

expansion. In this case, dV→` = `, d= + d 6= = ` − 2 and nL = ` − 1 which gives the
announced expansion. �

Theorem 6.6. Let τ be a binary tree with ` ≥ 2 leaves. For n ≥ ` and T(n) be a
uniform random tree in TP,P• with n vertices. Let I`(n) be a uniform partial injection from
{1, . . . , n} to N whose image is {1, . . . , `} and independent of T(n). Denote by T(n)

I`
(n) the

subtree induced by I`
(n).

2This characterization is strongly linked to the remarkable property that k uniform leaves in the CRT
induce a uniform binary tree with k leaves, see again [1, Section 4.2].
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Then

P(T(n)
I`

(n) = τ) −−−→
n→∞

(`− 1)!
(2(`− 1))! .

Proof. Since I`
(n) is independent of T(n),

P(T(n)
I`

(n) = τ) = n![zn]Tτ
n(n− 1) . . . (n− `+ 1)n![zn]T = [zn]Tτ

n(n− 1) . . . (n− `+ 1)[zn]T
By applying the Transfer Theorem [8, Corollary VI.1 p.392] to Eq. (32), we get

[zn]Tτ ∼
κ

(1 + P •(R))22`−2
n

2`−3
2

Γ
(

2`−1
2

)
Rn

and by Corollary 4.13 we obtain

n× · · · × (n− `+ 1)[zn]T ∼ n`
κ√

π(1 + P•(R))
1

Rnn
3
2
.

Thus when n goes to infinity

P(T(n)
I`

(n) = τ)→
√
π

22`−2Γ
(

2`−1
2

) = (`− 1)!
(2(`− 1))! �

Combining Lemma 6.4 and Theorem 6.6 proves Theorem 6.7 of which Theorem 1.1 is a
particular case.

Theorem 6.7. Let G(n) be a uniform random graph in GP,P• with n vertices. We have the
following convergence in distribution in the sense of graphons:

WG(n)
n→∞−→ W

1
2

where W 1
2 is the Brownian cographon of parameter 1

2 .

6.3. Number of induced prime subgraphs. We now estimate for a prime graph H the
number OccH(G(n)) of induced occurences of H in G(n) and show that in average it is null,
linear or of order n 3

2 .
We first observe that substitution trees encoding prime graphs have a very simple struc-

ture.

Lemma 6.8. Let H be a prime graph. If t is a substitution tree such that H = Graph(t),
t is reduced to a single internal node decorated with a relabeling of H with |H| leaves.

Proof. Let t be such a tree and r its root. To every element t′ of tr we can associate a
module of H by taking the vertices whose labels are the labels of the leaves of t′. Thus tr
is a union of leaves, and the decoration of the root is a relabeling of H. �

We say that H verifies (A) if there exists a ∈ {1, . . . , `} such that OccG,a,P•(R) > 0.
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Theorem 6.9. Let H be a prime graph and let ` be its size. For n ≥ `, let G(n) be a
uniform random graph in GP,P• with n vertices.

Then if H verifies (A),

E[OccH(G(n))] ∼ KHn
3
2 with KH =

R`−1√π ∑
a∈{1,...,`}

OccH,a,P•(R)

κ(1 + P •(R))
otherwise,

E[OccH(G(n))] ∼ KHn with KH =
(

1− P •(R)
1 + P •(R)OccH,P•(R) + OccH,P(R)

)
R`

κ2

Proof. Let T(n) be a uniform random tree in TP,P• with n vertices .
Let τ be the canonical tree of H and NT(n),τ the number of induced subtrees of Tn

isomorphic to τ . Since τ is the unique substitution tree of G, E[OccH(G(n))] = E[NT(n),τ ].
By independence

E[OccH(G(n))] = n![zn]Tτ
n![zn]T = [zn]Tτ

[zn]T .

From Theorem 5.11, since in this case the only node of τ is either in V0, V1 or V2, we
have that:

Tτ = z`T blo

T ′
 ∑
a∈{1,...,`}

OccH,a,P•
+ TOccH,P• + OccH,P

 .
Thus
• in case (A), with Eqs. (22) and (26)

Tτ ∼
R`

R(1 + P•(R))2

 ∑
a∈{1,...,`}

OccH,a,P•(R)
(1− z

R

)−1
;

• otherwise, Tτ ∼
(

1−P •(R)
1+P •(R)OccH,P•(R) + OccH,P(R)

)
R`

κ(1+P •(R))

(
1− z

R

)− 1
2 .

By applying the Transfer Theorem [8, Corollary VI.1 p. 392],
• In case (A),

[zn]Tτ ∼
R`

Rn+1(1 + P•(R))2

∑
a∈{1,...,`}

OccH,a,P•(R)

• Otherwise,

[zn]Tτ ∼
(

1− P •(R)
1 + P •(R)OccH,P•(R) + OccH,P(R)

)
R`

√
πκ(1 + P•(R))

1
Rnn

1
2

.
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By Corollary 4.13,

[zn]T ∼ κ√
π(1 + P•(R))

1
Rnn

3
2
.

Thus:
• In case (A),

E[OccG(G(n))] ∼
R`−1√π ∑

a∈{1,...,`}
OccG,a,P•(R)

κ(1 + P •(R)) n
3
2 ,

• Otherwise,

E[OccG(G(n))] ∼
(

1− P •(R)
1 + P •(R)OccG,P•(R) + OccG,P(R)

)
R`

κ2 n,

concluding the proof. �

An interesting application of this theorem is the computation of the asymptotic number
of P̃4’s in a random uniform graph of each of the graph classes of Section 3, where P̃4 is
the only labeling of P4 with endpoints 1 and 4 and 2 connected to 1.

Lemma 6.10. A prime spider has exactly |K|(|K| − 1) induced P̃4. A pseudo-spider of
size k has exactly (|K|+ 2)(|K| − 1) induced P̃4.

Proof. One can check that for a prime spider, the P ′4s are induced by the partial injections
I whose domain is {k, k′, f(k), f(k′)} for every (k, k′) ∈ K2 with k 6= k′ (where f is the
function defined in Definition 3.2). For every such domain, only 2 partial injections are
such that the graph induced is P̃4. Since there is

(
|K|
2

)
possible choices for the domain, we

have |K|(|K| − 1) induced P̃4.
For a pseudo-spider, let d be the duplicate and d0 the original node (as defined in Defini-

tion 3.4). The P ′4s are induced by the partial injections I whose domain is {k, k′, f(k), f(k′)}
for every (k, k′) ∈ K2 with k 6= k′, and by the partial injections I whose domain is
{d, k′, f(d0), f(k′)} (resp. {f−1(d0), k′, d, f(k′)}) for every k′ ∈ K with k′ 6= d0 (resp. k′ 6=
f−1(d0)) if d0 is in K (resp. in S). For every such domain, only 2 partial injections are
such that the graph induced is P̃4. Since there is

(
|K|
2

)
+ K − 1 possible choices for the

domain, we have |K|(|K| − 1) + 2(|K| − 1) = (|K|+ 2)(|K| − 1) induced P̃4. �

Remark. Note that the proof of this lemma implies that OccP̃4,a,P• = 0 for all the graph
classes mentionned in Section 3.

Theorem 6.11. For each graph class introduced in Section 3, we have the following ex-
pressions for OccP̃4,P and OccP̃4,P•:
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P4-tidy OccP̃4,P•tidy
(z) = (2 + 16z + 4z3) exp(z2)− 1− 8z

OccP̃4,Ptidy
(z) = OccP̃4,P•tidy

(z) + 5z
P4-lite OccP̃4,P•lite

(z) = (2 + 16z + 4z3) exp(z2)− 1− 8z
OccP̃4,Plite

(z) = OccP̃4,P•lite
(z) + 4z

P4-extendible OccP̃4,P•ext
(z) = 1 + 8z

OccP̃4,Pext = OccP̃4,P•ext
(z) + 5z

P4-sparse OccP̃4,P•spa
(z) = OccP̃4,Pspa(z) = 2 exp(z2)− 1

P4-reducible OccP̃4,P•red
(z) = OccP̃4,Pred

= 1
P4-free OccP̃4,P•cog

(z) = OccP̃4,Pcog(z) = 0

Proof. We only detail the computation of OccP̃4,P•tidy
and OccP̃4,Ptidy

for P4-tidy graphs as
this is the most involved case. Note that, with the notations of Section 4.1,

OccP̃4,P(z) =
∑
n∈N

∑
H∈RPn

∑
H′∼H

OccP̃4
(H)zN(H)−4

N(H)! =
∑
n∈N

∑
H∈RPn

OccP̃4
(H)zN(H)−4

|Aut(H)|

and similarly

OccP̃4,P•(z) =
∑
n∈N

∑
H∈RP•n

∑
H′∼H

OccP̃4
(H)zN(H)−4

N(H)! =
∑
n∈N

∑
H∈RPn

OccP̃4
(H)zN(H)−4

|Aut(H)|

According to Theorem 3.7, Ptidy is composed of one C5 that has 10 automorphisms and
10 induced P̃4 and all its relabelings, one P5, and one P5 that both have 2 automorphisms
and 4 induced P̃4’s and all their relabelings.

For k ≥ 3 (resp. k = 2), there are thin and fat spiders corresponding to the 2 (resp. 1)
different orbits of the action Φ2k over prime spiders of size 2k, each having k! automorphisms
and k(k − 1) P̃4’s.

For k ≥ 3 (resp. k = 2), there are thin and fat pseudo-spiders, the duplicated vertex can
come from K or S, and can be connected or not to the initial vertex. These 8 (resp. 4)
cases correspond to the 8 (resp. 4) different orbits of the action Φ2k+1 over pseudo-spiders
of size 2k + 1, each having 2(k − 1)! automorphisms and (k + 2)(k − 1) P̃4’s.

Thus we have

OccP̃4,Ptidy
(z) = z + 4z

2 + 4z
2 + 2

2 + 2
∑
k≥3

k(k − 1)z2k−4

k! + 44z
2 + 8

∑
k≥3

(k + 2)(k − 1)z2k−3

2(k − 1)!

= 5z + 1 + 2
∑
k≥1

z2k

k! + 8z + 4
∑
k≥1

(k + 4)z2k+1

k!

= 5z + 1 + 2 exp(z2)− 2 + 8z + 4
∑
k≥0

z2k+3

k! + 16
∑
k≥1

z2k+1

k!
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= 5z + 2 exp(z2)− 1 + 4z3 exp(z2) + 16z exp(z2)− 8z
= 5z + (2 + 16z + 4z3) exp(z2)− 1− 8z

Now let us compute OccP̃4,P•tidy
(z). For k ≥ 3 (resp. k = 2), there are thin and fat

spiders with blossom corresponding to the 2 (resp. 1) different orbits of the action Φ2k over
blossomed prime spiders G with 2k non blossomed vertices, each having k! automorphisms
and k(k − 1) P̃4’s.

For k ≥ 3 (resp. k = 2), there are thin and fat pseudo-spiders, the duplicated vertex can
come from K or S, and can be connected or not to the initial vertex. These 8 (resp. 4)
cases correspond to the 8 (resp. 4) different orbits of the action Φ2k+1 over blossomed
pseudo-spiders with 2k + 1 non blossomed vertices, each having 2(k − 1)! automorphisms
and (k + 2)(k − 1) P̃4’s.

Hence

OccP̃4,P•tidy
(z) = 2

2 + 2
∑
k≥3

k(k − 1)z2k−4

k! + 44z
2 + 8

∑
k≥3

(k + 2)(k − 1)z2k−3

2(k − 1)!

Thus OccP̃4,P•tidy
(z) + 5z = OccP̃4,Ptidy

(z) which gives the announced result. �

Combining Theorem 6.9, Theorem 6.11 and the remark above, we get that P̃4 does not
verify (A), thus P̃4 belongs to the linear case of Theorem 6.9:

Corollary 6.12. Let G(n) be a graph of size n taken uniformly at random in one of the
following families: P4-sparse, P4-tidy, P4-lite, P4-extendible, P4-reducible or P4-free. Then
E[OccP̃4

(G(n))] ∼ KP̃4
n where KP̃4

is defined in Theorem 6.9.

Here are the numerical approximations of KP̃4
in the different cases:

class of graph KP̃4
P4-tidy 0.29200322
P4-lite 0.28507010

P4-extendible 0.24959979
P4-sparse 0.10280703
P4-reducible 0.08249263
P4-free 0
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