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Introduction

The study of nonlinear ordinary di¤erential equations spans both theoretical and practical areas of engineering, physics, and pure mathematics. The characteristics of di¤erential equations of di¤erent sorts are a topic that is addressed by all these professions. While applied mathematics emphasizes the thorough explanation of the methods for approximating solutions, pure mathematics emphasizes the existence and uniqueness of solutions. Virtually every physical, technological, or biological process ranging from celestial motion to bridge construction to interactions between neurons can be modeled using nonlinear ordinary di¤erential equations. It's possible that nonlinear ordinary di¤erential equations employed to address real-world issues are not always immediately solvable or may not have closed form solutions. Numerical techniques can be used to approximate the solutions instead. Di¤erential equations are not solved in the same way as algebraic equations. Their answers are frequently ambiguous, but whether they are unique or even exist at all is a major subject of inquiry. The Peano existence theorem [START_REF] Peano | Demonstration de l'intégrabilité des équations di¤érentielles ordinaires[END_REF] provides one set of conditions under which a solution exists for …rst order initial value problems. An ordinary di¤erential equation's condition of existence and uniqueness can be determined using a variety of methods. One method is to design a sequence and demonstrate that it converges to a solution. In addition, the Lipschitz condition and boundness are utilized. In particular, the Picard-Lindelöf theorem in di¤erential equations provides a set of circumstances in which an initial value problem has a singular solution [START_REF] Lindelöf | Sur l'application de la méthode des approximations successives aux équations di¤érentielles ordinaires du premier ordre[END_REF]. The existence and uniqueness theorem, Cauchy-Lipschitz theorem, and Picard's existence theorem are some other names for it[[3]- [START_REF] Kirkwood | Introduction to Analysis[END_REF]]. This iteration has been employed with great success for the past ten years, but several other iterations have been proposed and found to be more suitable for supplying a condition of existence and uniqueness, such as the Tonelli sequence [START_REF] Tonelli | Su¤e equazio» i 6u» zio» a… def tipo de Vofte~~a[END_REF], which has been employed even within the context of fractional calculus. In this study, we propose a Picard-like iteration and use it to demonstrate that a particular Cauchy problem with a classical Caputo-Fabrizio derivative has a unique solution [START_REF] Caputo | A New De…nition of Fractional Derivative Without Singular Kernel[END_REF]. The study is organized as follows: in section 1, we o¤er some analysis and then compare the suggested sequence to the Picard version. We solve several fundamental linear and nonlinear ordinary di¤erential equations in section two, compare our …ndings to those of Picard and even Taylor series [START_REF] Taylor | Methodus Incrementorum Directa et Inversa [Direct and Reverse Methods of Incrementation[END_REF], and note that the comparisons are based on iterations. In Section 3, we focus on sequence analysis using the growth linear property. In the …nal section, we o¤er an analysis for the situation of Cauchy problems with the Caputo-Fabrizio derivative. The …rst four sections will be devoted to Cauchy problems with high orders.

Derivation of the iteration and comparison with Picard

We consider the following Cauchy problem

y 0 (t) = f (t; y (t)) y (t 0 ) = y 0 : (1) 
Here f : I R ! R is assumed to be Lipschitz and bounded. We wish to prove that the di¤erential equation ( 1) has a unique solution. One of the most used iterative methods is from Picard who suggested that, the equivalent of equation ( 1)

y (t) = y (t 0 ) + Z t t0 f (s; y (s)) ds (2) 
could be used to obtain the following sequence.

y 0 n (t) = f (t; y n 1 (t)) (3) 
or equivalently

y n (t) = y (t 0 ) + Z t t0 f (s; y n 1 (s)) ds: (4) 
It is clear that by imposing this, we use the previous functions to calculate the next. While this iteration has gained interest in many …elds due to its accuracy, it is alleged that in the de…nition some terms may be making the iteration less accurate as could be. In this paper, we suggest an iterative or sequence and compare it with the Picard version. To construct the sequence, we start with

dy 1 dt = f (t; y 1 ) ; y 1 (t 0 ) = y 0 ; (5) 
. . .

dy n dt = f (t; y n ) ; y n (t 0 ) = y 0 :
Indeed, this is a bit complex owing the fact that y n (t) is not known. Therefore, we replace y n (t) on the right hand side by y n (t) to have

dy n (t) dt = f (t; y n (t)) : (6) 
y n (t) will be de…ned using the terms of the past, here, we borrow the Picard

dy n (t) dt = f (t; y n 1 (t)) : (7) 
Indeed, the key part of this process is to show that, the suggested iteration converges and may be accurate than the Picard version. To di¤erentiate between the Picard iteration and the suggested one, we put y P n (t) for Picard and y A n (t) for the suggested one. Then, we write

y P n (t) = y (t 0 ) + Z t t0 f (s; y n 1 (s)) ds; (8) 
and

y A n (t) = y (t 0 ) + Z t t0 f (s; y n (s)) ds: (9) 
We now evaluate 

y A n (t) y P n (t) = Z t t0 (f (s; y n 1 (s)) f (s; y n (s))) ds (10) 
Here indeed j n (t 0 )j = 0; then 8t 2 (t 0 ; t 0 + ) ; we have

j n (t)j < L n 1 : (22) 
Indeed from the de…nition of n (t) the maximal value j n (t)j satis…es

n L n 1 : (23) 
If we choose :::

1 2 n 1 ": (24) 
We note that P y n (t) converges, the sequence n (t) also converges because

j n (t)j n (t) 1 2 n 1 ": (25) 
We have that

1 X n=1 j n (t)j 1 X n=1 n 1 X n=1 1 2 n 1 " = 2" (26) 
which is achieved via geometric series. Since the series P 1 n=0 j n j converges by the property of absolutely convergence P 1 n=0 n also converges. Therefore

y (t) = lim n!1 y n (t) = y 0 (t) + 1 X n=1 n (t) (27) 
exists, the sequence of y n (t) converges.

y (t) y n (t) = 1 X l=n+1 y l (t) . (28) 
We evaluate

jy (t) y n (t)j 1 X l=n+1 y l (t) 1 X l=n+1 1 2 l 1 " = 1 2 n 1 " (29) 
Then, we write

lim n!1 y n (t) = y 0 (t) + lim n!1 Z t t0 f (s; y n (s)) ds (30) = y 0 (t) + Z t t0 lim n!1 f (s; y n (s)) ds = y 0 + Z t t0 f (s; y (s)) ds = y (t) :
2.1 Application of the iteration for solving some ODE

We shall solve some ordinary di¤erential equations with the suggested iteration and the Picard version.

Example 1 We consider a simple decay equation

y 0 (t) = y (t) y (0) = 1 : (31) 
We recall that the Picard iteration and suggested one are given as

y P n (t) = y (t 0 ) + Z t t0 f (s; y n 1 (s)) ds; (32) and y A n (t) = y (t 0 ) + R t t0 f (s; y n (s)) ds; y n (s) = y P n : (33) 
We use the initial condition as initial guess

y P n (t 0 ) = y A n (t 0 ) = 1: (34) 
Then, we write

y P 1 (t) = y (0) + Z t 0 f (s; y 0 (s)) ds (35) = 1 t:
However, we write

y A 1 (t) = y (0) + Z t 0 f s; y P 1 (s) ds (36) = 1 t t 2 2 = 1 t + 2 t 2 2 
Next iteration can be done as

y P 2 (t) = 1 + Z t 0 f s; y P 1 (s) ds (37) = 1 t + 2 t 2 2 :
and

y A 2 (t) = y (0) + Z t 0 f s; y P 2 (s) ds (38) = 1 t t 2 2 + 2 t 3 6 = 1 t + 2 t 2 2 3 t 3 6 :
Using the iterations 8n 1, we have the following:

y P n (t) = n X j=0 ( t) j j! (39) while y A n (t) = n+1 X j=0 ( t) j j! : (40) 
Therefore

y A n (t) y P n (t) = ( t) n+1 n! : (41) 
The Cauchy sequence comparison test between Picard and our iteration is presented in Figure 1 and2. The red dot in the above …gures shows that the suggested ietration converges than the Picard.

Example 2 We consider the following equation

y 0 (t) = 1 + y (t) y (0) = y 0 : (42) 
For y (0) = 1, the exact solution is

y (t) = 2e t 1: (43) 
The initial guess is as follows:

y P n (t 0 ) = y A n (t 0 ) = 1: (44) 
We get iterations

y P 1 (t) = y (0) + Z t 0 f (s; y 0 (s)) ds (45) = y (0) + Z t 0 (1 + y 0 (s)) ds = 1 + Z t 0 2ds = 1 + 2t: while y A 1 (t) = y (0) + Z t 0 f s; y P 1 (s) ds (46) = 1 + Z t 0 1 + y P 1 (s) ds = 1 + Z t 0 (1 + 2t + 1) ds = 1 + 2t + 2t 2 2 :
For next step, we have

y P 2 (t) = y (0) + Z t 0 1 + y P 1 (s) ds (47) = 1 + 2t + 2t 2 2 and y A 2 (t) = y (0) + Z t 0 f s; y P 2 (s) ds (48) = 1 + Z t 0 2 + 2s + s 2 ds = 1 + 2t + 2t 2 2 + 2t 3 6 :
For 8n 1; we have the following:

y P n (t) = 1 + 2 n X j=1 t j j! = 2 n X j=0 t j j! 1 (49) while y A n (t) = 1 + 2 n+1 X j=1 t j j! = 2 n+1 X j=0 t j j! 1: (50) 
It can be easily seen that lim

n!1 y P n (t) = 2e t 1 (51) and lim n!1 y A n (t) = 2e t 1: (52) 
Therefore

y A n (t) y P n (t) = 2t n+1 (n + 1)! : (53) 
Example 3 We consider the following equation

y 0 (t) = 1 + y 2 (t) y (1) = y 0 : (54) 
By choosing y (1) = 0, we have the exact solution

y (t) = tan (t 1) : (55) 
We write

y P 1 (t) = 0 + Z t 1 f s; y 2 0 (s) ds (56) = t 1: while y A 1 (t) = 0 + Z t 0 f s; y P 1 (s) 2 ds (57) = Z t 1 1 + (s 1) 2 ds = t 3 3 t 2 + 2t 4 3 : 
Note that (t 1) + (t 1)

3 3 = t 3 3 t 2 + 2t 4 3 : (58) Therefore y A 2 (t) = (t 1) + (t 1) 3 3 : (59) 
Then, we have or 8n 1; we have the following:

y P 2 (t) = (t 1) + (t 1) 3 3 ; (60) y A 2 (t) = (t 1) + (t 1)
y P n (t) = n X j=1 ( 1) j 1 2 2j 2 2j 1 B 2j (t 1) 2j 1 (2j)! ; jt 1j < 2 (61)
where B 2j is Bernoulli number. For suggested one, we can have the following:

y A n (t) = n+1 X j=1 ( 1) j 1 2 2j 2 2j 1 B 2j (t 1) 2j 1 (2j)! ; jt 1j < 2 : (62)
Therefore, we get ! :

y A n (t) y P n (t) = (t 1)
In the next example, we shall compare Taylor'series method, Picard and our iteration.

Example 4 We now consider the following problem

y 0 (t) = t 2 y (t) y (0) = 1 : (64) 
Taylor series formula is achieved as y 0 = t 2 y; y 0 (0) = 1 y 00 = 2t y 0 ; y 00 (0) = 1 y 000 = 2 y 00 ; y 000 (0) = 1 y iv = y 000 ; y iv (0) = 1

y v = y iv ; y iv (0) = 1:
Then, we have

y (t) = 1 t + t 2 2! t 3 3! + t 4 4! t 5
5! :

By choosing y (1) = 0, we have the exact solution

y (t) = tan (t 1) : (65) 
We write

y P 1 (t) = 0 + Z t 1 f s; y 2 0 (s) ds (66) = t 1: while y A 1 (t) = 0 + Z t 0 f s; y P 1 (s) 2 ds (67) = Z t 1 1 + (s 1) 2 ds = t 3 3 t 2 + 2t 4 3 :
Note that

(t 1) + (t 1) 3 3 = t 3 3 t 2 + 2t 4 3 : (68) 
Therefore

y A 2 (t) = (t 1) + (t 1) 3 3 : (69) 
Then, we have

y P 2 (t) = (t 1) + (t 1) 3 3 ; 
(70) or 8n 1; we have the following:

y A 2 (t) = (t 1) + (t 1)
y P n (t) = n X j=1 ( 1) j 1 2 2j 2 2j 1 B 2j (t 1) 2j 1 (2j)! ; jt 1j < 2 (71)
where B 2j is Bernoulli number. For suggested one, we can have the following:

y A n (t) = n+1 X j=1 ( 1) j 1 2 2j 2 2j 1 B 2j (t 1) 2j 1 (2j)! ; jt 1j < 2 : (72)
Therefore, we get ! :

y A n (t) y P n (t) = (t 1)
In the next example, we shall compare Taylor'series method, Picard and our iteration.

Example 5 We now consider the following problem

y 0 (t) = t 2 y (t) y (0) = 1 : (74) 
By choosing y (0) = 1, we have the exact solution

y (t) = t 2 2t + 2 e t : (75) 
Taylor series formula is achieved as

y 0 = t 2 y; y 0 (0) = 1
y 00 = 2t y 0 ; y 00 (0) = 1 y 000 = 2 y 00 ; y 000 (0) = 1 y iv = y 000 ; y iv (0) = 1

y v = y iv ; y v (0) = 1:
Then, we have

y (t) = 1 t + t 2 2! + t 3 3! t 4 4! + t 5 5! : (76) 
Using Picard and our iteration, we write

y P 1 (t) = 1 + Z t 0 s 2 y 0 (s) ds (77) = 1 t + t 3 3 : while y A 1 (t) = 1 + Z t 0 f s; y P 1 (s) ds (78) = 1 + Z t 0 s 2 1 + s s 3 3 ds = 1 t + t 2 2 + t 3 3 t 4 12 :
Then, we have After arranging, we can get

y P 2 (t) = 1 t + t 2 2 + t 3 3 
jy n (t)j 2 2 jy 0 j 2 n X m=0 (2K) m (t t 0 ) m m! + n X m=0 (2K) m (t t 0 ) m m! (90) 2 4 exp h 2K (t t 0 ) (n+1;2K(t t0)) (n+1) i jy 0 j 2 + exp h 2K (t t 0 ) (n+1;2K(t t0)) (n+1) i 3 5 : 
Taking the limit n ! 1; we have Using the linear growth condition of f yields 

jy n (t)j 2 2 4 exp h 2K (t t 0 ) (n+1;2K(t t0)) (n+1) i jy 0 j 2 + exp h 2K (t t 0 ) (n+1;2K(t t0)) (n+1) i 3 5 ( 
) + 4K R t t0 [y (t 0 )] 2 ds +2K R t t0 2 R s t0 [f (l; y 0 (l))] 2 dlds # " 2 jy (t 0 )j 2 + 2K (t t 0 ) + 4K (t t 0 ) [y (t 0 )] 2 +4K R t t0 R s t0 K 1 + jy 0 (s)j 2 dlds # " 2 jy 0 j 2 + 2K (t t 0 ) + 4 (t t 0 ) K jy 0 j 2 +4K 2 1 + jy 0 j 2 (t t0) 2 2 # " 2 jy 0 j 2 + 2K (t t 0 ) + 4 (t t 0 ) K jy 0 j 2 +4K 2 (t t0) 2 2 + 4K 2 jy 0 j 2 (t t0) 2 2 # 2 4 2 jy 0 j 2 1 + 2K (t t 0 ) + 4K 2 (t t0) 2 2 + 1 + 2K (t t 0 ) + 4K
jy 2 (t)j 2 2 jy (t 0 )j 2 + 2 Z t t0 K 1 + jy 2 (s)j 2 ds (97) 2 jy (t 0 )j 2 + 2K (t t 0 ) + 2K Z t t0 y (t 0 ) + Z s t0 f (l; y 1 (l)) dl 2 ds 2 4 2 jy (t 0 )j 2 + 2K (t t 0 ) + 2K R t t0 2 [y (t 0 )] 2 ds +2K R t t0 2 R s t0 f (l; y 1 (l)) dl 2 ds 3 5 " 2 jy (t 0 )j 2 + 2K (t t 0 ) + 4K (t t 0 ) jy (t 0 )j 2 +4K R t t0 R s t0 K 1 + jy 0 j 2 1 + 2K (t t 0 ) + 4K 2 (t t0) 2 2 dlds # 2 6 4 2 jy (t 0 )j 2 + 2K (t t 0 ) +2K 2 (t t 0 ) 2 + 4K (t t 0 ) [y (t 0 )] 2 +4K 2 h jy 0 j 2 (t t0) 2 2 + 2K (t t0) 3 6 + 4K
) + 4K R t t0 [y (t 0 )] 2 ds +2K R t t0 2 R s t0 f (l; y 2 (l)) dl 2 ds 3 5 2 6 4 2 jy (t 0 )j 2 + 2K (t t 0 ) + 4K (t t 0 ) [y (t 0 )] 2 +4K 2 R t t0 R s t0 1 + jy 0 j 2 1 + 2K (t t 0 ) + 4K 2 (t t0) 2 2 +8K 3 (t t0) 3 6 + 16K 4 (t t0) 4 4 !! dlds 3 7 5 2 6 6 6 6 4 
jy 0 j 2 1 + 2K (t t 0 ) + 4K 2 (t t0) 2 2 + 8K 3 (t t0) 3 6 +16K 4 (t t0) 4 24 + 32K 5 (t t0) 5 5! + 64K 6 (t t0) 6 6! ! + 1 + 2K (t t 0 ) + 4K 2 (t t0) 2 2 + 8K 3 (t t0) 3 6 +16K 4 (t t0) 4 24 + 32K 5 (t t0) 5 5! + 64K 6 (t t0) 6 6! ! 3 7 7 7 7 5
When we proceed for n; we can get the following

jy n (t)j 2 2 jy (t 0 )j 2 + 2 Z t t0 K 1 + jy n (s)j 2 ds (100) 2 jy (t 0 )j 2 + 2K (t t 0 ) + 2K Z t t0 y (t 0 ) + Z s t0 f (l; y n 1 (l)) dl 2 ds 2 4 2 jy (t 0 )j 2 + 2K (t t 0 ) + 4K R t t0 [y (t 0 )] 2 ds +2K R t t0 2 R s t0 f (l; y n 1 (l)) dl 2 ds 3 5 " 2 jy (t 0 )j 2 + 2K (t t 0 ) + 4K (t t 0 ) [y (t 0 )] 2 +4K 2 R t t0 R s t0 1 + jy n 1 (s)j 2 dlds

#

After arranging, we can get

jy n (t)j 2 jy 0 j 2 2n X m=0 (2K) m (t t 0 ) m m! + 2n X m=0 (2K) m (t t 0 ) m m! (101) 2 4 exp 
h 2K (t t 0 ) (2n+1;2K(t t0)) (2n+1) 
i jy 0 j 2 + exp h 2K (t t 0 ) (2n+1;2K(t t0)) (2n+1) i 3 5 : 
Taking the limit n ! 1; we have

jy n (t)j 2 2 4 exp h 2K (t t 0 ) (2n+1;2K(t t0)) (2n+1) i jy 0 j 2 + exp h 2K (t t 0 ) (2n+1;2K(t t0)) (2n+1) i 3 5 (102) 
exp (2K (t t 0 )) + exp (2K (t t 0 )) jy 0 j 2 :

4 High order ordinary di¤erential equations

In this section, we examine the case of high order ODE. We consider the following IVP

y (n) (t) = f (t; y (t)) y j (t 0 ) = y j 0 ; 0 j n 1: : (103) 
The above equation using the fundamental theorem of calculus is equivalent to

( y (t) = P n 1 j=0 y j (t 0 ) (t t0) j j! + R t t0 R 1 t0
R 2 t0 :::

R n 1 t0 f ( n ; y ( n )) d n :::d 1 y j (t 0 ) = y j 0 ; 0 j n 1: : (104) 
We shall show that (y m (t)) is uniformly bounded.

jy m (t)j = e y 0 (t) + 1 (n 1)! Z t t0 (t ) n 1 f ( ; y m ( )) d (111) je y 0 (t)j + 1 (n 1)! Z t t0 (t ) n 1 f ( ; y m ( )) d je y 0 (t)j + 1 (n 1)! (t t 0 ) n n M je y 0 (t)j + M n! a n : Indeed e y 0 (t) is continuously di¤erentiable e y 0 (t) = n 1 X j=0 y j (t 0 ) (t t 0 ) j j! ; (112) 
then we apply absolute value on both sides

je y 0 (t)j = n 1 X j=0 y j (t 0 ) (t t 0 ) j j! (113) n 1 X j=0 y j (t 0 ) a j j! max 0 j n 1 y j (t 0 ) n 1 X j=0 a j j! max 0 j n 1 y j (t 0 ) e a :
Replacing all above together yields jy m (t)j max

0 j n 1 y j (t 0 ) e a + M n! a n e a max 0 j n 1 y j (t 0 ) + M : (114) 
Therefore, (y m (t)) is uniformly bounded. We now show that (y m (t)) is equicontinuous. Then, we write the following such that t 1 > t 2 2 [t 0 ; t 0 + a] jy m (t 1 ) y m (t 2 )j =

P n 1 j=0 y (j) (t 0 ) (t1 t0) j j! P n 1 j=0 y (j) (t 0 ) (t2 t0) j j! + 1 (n 1)! R t1 t0 (t 1 ) n 1 f ( ; y m ( )) d 1 (n 1)! R t2 t0 (t 2 ) n 1 f ( ; y m ( )) d (115) n 1 X j=0 y (j) (t 0 ) (t 1 t 0 ) j j! n 1 X j=0 y (j) (t 0 ) (t 2 t 0 ) j j! + 1 (n 1)! R t2 t0 (t 1 ) n 1 f ( ; y m ( )) d R t2 t0 (t 2 ) n 1 f ( ; y m ( )) d + R t2 t1 (t 1 ) n 1 f ( ; y m ( )) d n 1 X j=0 y (j) (t 0 ) (t 1 t 0 ) j j! n 1 X j=0 y (j) (t 0 ) (t 2 t 0 ) j j! + 1 (n 1)! Z t2 t0 (t 1 ) n 1 (t 2 ) n 1 jf ( ; y m ( ))j d + 1 (n 1)! Z t2 t1 (t 1 ) n 1 f ( ; y m ( )) d n 1 X j=0 max 0 j n 1 y j (t 0 ) ( (t 1 t 0 ) j j! (t 2 t 0 ) j j! ) + 1 (n 1)! (t 1 t 0 ) n n (t 1 t 2 ) n n (t 2 t 0 ) n n M + 1 (n 1)! (t 1 t 2 ) n n M:
Noting that the function (t t 0 ) j is di¤erentiable, therefore, by the Mean value theorem, we can …nd c 2 [t 1 t 0 ; t 2 t 0 ] such that j (c t 0 ) j 1 (t 1 t 2 ) = (t 1 t 0 ) j (t 2 t 0 ) j : Therefore

jy m (t 1 ) y m (t 2 )j n 1 X j=0 max 0 j n 1 y j (t 0 ) ( j (c t 0 ) j 1 j! (t 1 t 2 ) ) + 1 (n 1)! (t 1 t 0 ) n n (t 1 t 2 ) n n (t 2 t 0 ) n n M + 1 (n 1)! (t 1 t 2 ) n n M 1 X j=0 max 0 j n 1 y j (t 0 ) ( (c t 0 ) j 1 (j 1)! (t 1 t 2 )
)

+ (c t 0 ) n 1 (n 1)! (t 1 t 2 ) M + (t 1 t 2 ) n n! M max 0 j n 1 y j (t 0 ) e (c t0) (t 1 t 2 ) + (c t 0 ) n 1 (n 1)! (t 1 t 2 ) M + (t 1 t 2 ) n n! M:
If t 1 t 0 1; then jy m (t 1 ) y m (t 2 )j max

0 j n 1 y j (t 0 ) e (c t0) + (c t 0 ) n 1 (n 1)! M + M n! ! (t 1 t 2 ) < "; (116) 
implies < " max 0 j n 1 jy j (t 0 )j e (c t0)

+ (c t0) n 1 (n 1)! M + M n! : (117) 
If t 1 t 2 > 1; then jy m (t 1 ) y m (t 2 )j max

0 j n 1 y j (t 0 ) e (c t0) + (c t 0 ) n 1 (n 1)! M + M n! ! (t 1 t 2 ) n < "; (118) implies < 2 4 " max 0 j n 1 jy j (t 0 )j e (c t0) + (c t0) n 1 (n 1)! M + M n! 3 5 1=n : (119) 
Under the above condition, uniform continuity holds. By the Arzela-Ascoli theorem, some subsequence (y m k (t)) of y m (t) converges uniformly to y [[10], [START_REF] Ascoli | Le curve limite di una varietà data di curve[END_REF]]. The function f ( ; y ( )) is uniformly limit of f ( ; y m k ( )) on the [t 0 ; t 0 + a] : Let " > 0; since f is continuous on the compact set, we conclude that it is also uniformly continuous. Thus, by taking 1 > 0 such that jf ( ; y 1 ) f ( ; y 2 )j < " if jy 1 y 2 j < :

But we have that (y m k (t)) converges uniformly to y; there exists M 1 2 M such that

jy m k ( ) y ( )j < 1 ; 8 2 [t 0 ; t 0 + a] ; k M 1 : (121) 
Thus if k > M; then jy m k ( ) y ( )j < ":

Since is uniformly continuous, we have

k > M f ( ; y m k ) (t ) n 1 (n 1)! f ( ; y) (t ) n 1 (n 1)! < ": (123) 
We now …x t 2 [t 0 ; t 0 + a] : For t = t 0 ; we obtain the exact solution. If t > t 0 ; 8k large enough

y m k (t) = e y (t 0 ) + 1 (n 1)! Z t1 t0 (t ) n 1 f ( ; y m k ( )) d : (124) 
Taking limit

lim k!1 y m k (t) = e y (t 0 ) + lim k!1 1 (n 1)! Z t1 t0 (t ) n 1 f ( ; y m k ( )) d (125) 
and then

y m (t) = e y (t 0 ) + 1 (n 1)! Z t1 t0 (t ) n 1 lim k!1 f ( ; y m k ( )) d : (126) 
By uniform convergence theorem and uniform of f ( ; y m k ( )) the integral converges to

1 (n 1)! Z t1 t0 (t ) n 1 f ( ; y m ( )) d : (127) 
Therefore

y m (t) = e y (t 0 ) + 1 (n 1)! Z t1 t0 (t ) n 1 f ( ; y m ( )) d : (128) 
Therefore the solution exists. We shall next show the uniqueness.

Example 6 We next consider the following problem y 00 (t) = 4y y (0) = 0; y 0 (0) = 2: :

The exact solution is y (t) = sin (2t) : Then, we get jy n (t 1 ) y n (t 2 )j ( 1) jf (t 1 ; y n (t 1 )) f (t 2 ; y n (t 2 ))j (143)

+ Z t1 0 f ( ; y n ( )) d Z t2 0 f ( ; y n ( )) d (1 ) L jy n (t 1 ) y n (t 2 )j + Z t1 t2 jf ( ; y n ( ))j d (1 ) L jy n (t 1 ) y n (t 2 )j + M (t 1 t 2 ) :
Arranging above leads to

(1 + ( 1) L) jy n (t 1 ) y n (t 2 )j M (t 1 t 2 ) : (144) 
Therefore, we write

jy n (t 1 ) y n (t 2 )j M (1 + ( 1) L) (t 1 t 2 ) < " (145) 
< "

(1 + ( 1) L) M :
Here, we needed f to be bounded and Lipschitz with Lipschitz constant L: Therefore, the sequence is uniform equicontinuous. By the Arzela-Ascoli theorem, there exists some sequence (y n l ) of (y n ) that converges uniformly to y (t) on [t 0 ; t 0 + ]. Indeed, the function f ( ; y n ( )) is the uniform limit of f ( ; y n l ( )) : Let …x [t 0 ; t 0 + ] : 8l su¢ ciently large

y n l (t) = y (0) + (1 ) f (t; y n l (t)) + Z t 0 f ( ; y n l ( )) d : (146) 
Applying the limit on both sides

lim l!1 y n l (t) = y (0) + (1 ) lim l!1 f (t; y n l (t)) + Z t 0 lim l!1 f ( ; y n l ( )) d : (147) 
Then we get

y (t) = y (0) + (1 ) f (t; y (t)) + Z t 0 f ( ; y ( )) d : (148) 
For uniqueness, we de…ne the following norm To have a contraction, we can write

k'k = sup n e L(t t0) j' (t)j o j t 2 [t 0 ; t 0 + ] : (149 
((1 ) L + ) < 1 ) L < 1: (155) 
Therefore, our equation has a unique solution y (t) : Notice that all the presented proof presented above, the formula of y n (t) on the right hand side was not considered. In the next section, we present the proof by taking into account the de…nition of y n (t) on the right hand side. However, note that this will e¤ect mostly equicontinuity of the de…ned sequence jy n (t 1 ) y n (t 2 )j =

(1 ) (f (t 1 ; y n (t 1 )) f (t 
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	We now evaluate y 2		
	2 jf (s; y 2 (s))j f (s; y 2 (s)) ds 2 + 2 Z t 2 = y (t 0 ) + jy 2 (t)j t0 2 jy (t 0 )j Z t t0	2 ds:	(96)

)

  Let be the set of continuous function from [t 0 ; t 0 + ] to B ( ; ) : The above norm is equivalent to the common supremum norm k k 1 on C [[t 0 ; t 0 + ]] since Indeed if y 2 then ( 1 y) is valid. Since y 2 ; then obviously ( 1 y) is continuous 8t 2

		is therefore equipped with			
		d (y 1 ; y 2 ) = ky 1 y 2 k	(151)
	is complete metric space. We next de…ne the following mapping
					Z t
		( 1 y) (t) = y (0) + (1		) f (t; y (t)) +	f ( ; y ( )) d :	(152)
					0
	[t 0	; t 0 + ]			
					Z t
		j( 1 y) (t) y (0)j = (1	) jf (t; y (t))j +	0	jf ( ; y ( ))j d	(153)
		(1	) M + M < ;
		<	M	+	1 :
		M 1 k'k 1 k'k	M 2 k'k 1 :	(150)

Therefore, with the above condition

( 1 y) (t) 2 B ( ; ) ; therefore ( 1 y) (t) 2 : Let y 1 ; y 2 2 k 1 y 1 1 y 2 k = sup e Lt j(1 ) (f (t; y 1 (t)) f (t; y 2 (t)))j + R t 0 ff ( ; y 1 ( )) f ( ; y 2 ( ))g d

(154)

sup e Lt (1 ) L jy 1 y 2 j + e Lt R t 0 ff ( ; y 1 ( )) f ( ; y 2 ( ))g d (1 ) L ky 1 y 2 k + e Lt L Z t 0 ky 1 y 2 k e L d (1 ) L ky 1 y 2 k + ky 1 y 2 k 1 e Lt (1 ) L ky 1 y 2 k + ky 1 y 2 k ((1 ) L + ) ky 1 y 2 k :

  ; y n (t 1 )) f (t 2 ; y n (t 2 ))j + L jy n (t 1 ) y n (t 2 )j + M jt 1 t 2 jIn this section, we examine the convergence of Picard iteration and the suggested iteration. the If the function f (t; y (t)) satis…es the linear growth condition that is 8t 2 [t 0 ; T ], then, by recursive, we have

	+ (1	2 ; y n (t 2 ))) 0 f ( ; y n ( )) d R t2 ) jf (t 1 Z t2 R t1 0 f ( ; y n ( )) d t1	jf ( ; y n ( ))j d	(156)
	(1 ) (1 ) L	Z t1 0 Z t2	f ( ; y n 1 ( )) d	Z t2 0	f ( ; y n 1 ( )) d + M jt 1 t 2 j
	(1	) L			
			Z t2		
	(1	) L			
	Then			<	" M (L + )	:	(157)
	6 Application of the linear growth condition for Picard and
	our iteration				
				y (t 0 ) = y 0	:	(158)
	or equivalently				
	2 jf (s; y 0 (s))j f (s; y 0 (s)) ds 2 + 3 2 Z t t0 2 jf (t; y 0 (t))j ) f (t; y 0 (t)) + 2 + 3 (1 2 = y (t 0 ) + (1 jy 1 (t)j 3 jy (t 0 )j ) Z t t0 2 ds:	(159)

t1 jf ( ; y n 1 ( ))j d + M jt 1 t 2 j t1 jf ( ; y n 1 ( ))j d + M jt 1 t 2 j (1 ) LM jt 1 t 2 j + M jt 1 t 2 j (

(1

) LM + M ) < ": CF D t y (t) = f (t; y (t))

Assuming that f satis…es the condition under Cauchy formula of repeated integral, the above yields ( y (t) = P n 1 j=0 y j (t 0 ) (t t0) j j! + 1

(n 1)! R t t0 (t ) n 1 f ( ; y ( )) d y j (t 0 ) = y j 0 ; 0 j n 1:

Let e y 0 (t) = P n 1 j=0 y j (t 0 ) (t t0) j j!

: Thus, we have ( y (t) = e y 0 (t) + 1

(n 1)! R t t0 (t ) n 1 f ( ; y ( )) d y j (t 0 ) = y j 0 ; 0 j n 1:

To start our iterative method, we choose y 0 (t) = e y 0 (t) ;

(107) 8 > < > :

We shall prove that (y m (t)) is well-de…ned. However for simplicity, we show the proof when t 2

Providing that f is bounded

:

Using Cauchy formula yields 8 > < > :

:

For our iteration, we can have the following:

It can be easily seen that lim

The Cauchy sequence comparison test between Picard and our iteration is performed in Figure 3 and4.

5 Initial value problems with Caputo-Fabrizio derivative

In this section, we extend the proposed sequence to the Cauchy problem with the Caputo-Fabrizio fractional derivative. We consider the following nonlinear ordinary di¤erential equation

Integrating above yields

We create the following iteration

To avoid explicit case,we replace for the right hand side y n (t) by y n (t) to obtain

Here

Therefore, the iteration is given as 8 <

:

We should present few step to reach the existence and uniqueness of the equation.

Theorem 7 (Cauchy-Peano): Let us assume that f : [t 0 c; t 0 + c] B ( ; ) ! R is continuous and bounded by M > 0 then the Cauchy problem with Caputo-Fabrizio derivative has a solution.

Proof. Without loss of generality, we consider the analysis within [t 0 ; t 0 + ]. For each n 2 N; we want to show that (y n ) converges toward (y) which is the solution of our equation. For a …xed n 2 N;

When we proceed for n; we can get the following

After arranging, we can get

where B ;K is the maximum value of the coe¢ cients. Taking the limit n ! 1; we have

We can verify convergence for our sequence. If the function f (t; y (t)) satis…es the linear growth condition that is 8t 2 [t 0 ; T ], then, by recursive, we have

We next proceed for n

After arranging, we can get

Conclusion

The class with a classical derivative and the class with a fractional derivative based on the Caputo-Fabrizio derivative were the two types of initial value issues for ordinary nonlinear di¤erential equations that were taken into consideration. We o¤ered an iterative approach for resolving nonlinear di¤erential equations. For both situations, we have demonstrated that, under some circumstances, the sequence converges toward a solution. By resolving a few linear and nonlinear equations, we were able to compare our …ndings to those of Picard. The comparison's …ndings demonstrated that the recommended iteration converges more quickly than the Picard iteration.