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Abstract

In this paper, we present several new theoretical measures based on informa-

tion entropy that can be used to analyze the information content of a chiral

molecule. Starting from a differentiation between “chiral” and “achiral” por-

tions in a chiral molecule, we define a new concept that allows us to quantify

the complexity of chiral constitutional 2D-isomers of C10 to C20 alkanes. Vari-

ous new chiral and achiral information measures founded on joint entropy,

mutual information, and conditional entropy are presented providing an

access to a set of regression equations. Then, introducing a case-based measure

of entropy, we demonstrate that the distribution of the chiral complexity in

these molecules is mostly skewed-right: 60% of the chiral isomers follow a

60/40 distribution rule, which indicates a concentration of chiral complexity in

a small number of topological features. Furthermore, by replacing 2D topologi-

cal distances by 3D distances, the application of these new information mea-

sures goes from conformational to racemization and deracemization studies.

Interestingly, when the geometrical distances between atoms and the chiral

center(s) are taken into account when determining the chiral information

entropy, one can observe a significative Pearson correlation coefficient

(R = 0.70) between the chiral entropy of 3D molecules and the continuous

chirality measure. Finally, we show that our approach is applicable to almost

any type of chiral organic chemical structures if in the entropy equation, atoms

are represented by their electrotopological state (E-state) index instead of

connectivity.
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1 | INTRODUCTION

1.1 | Thermodynamic entropy

Entropy is the most enigmatic of the physical quantities
such as temperature, pressure, or volume defining the
state of a thermodynamic system. Entropy designates the
inability of the energy contained in a system to provide

work: the higher this quantity, the more the energy is
dispersed, homogenized and therefore less usable. When
a thermodynamic system is isolated, that is, without pos-
sible exchange with the outside, it can only evolve spon-
taneously toward the maximum of its entropy to tend to
a state of definitive equilibrium (second law of thermody-
namics), whereas its internal energy remains conserved
(first law of thermodynamics). In thermodynamics,



entropy is a state function introduced in the middle of
the 19th century by Rudolf Clausius as part of the second
principle.1 Clausius showed that the ratio Q=T (where Q
is the quantity of heat exchanged by a system at the tem-
perature T) corresponds, in classical thermodynamics, to
the variation of a state function which he called entropy
(S) and whose unit is the joule per kelvin (JK�1).

Statistical thermodynamics then shed a new light on
this abstract physical quantity: entropy measures the
degree of disorder of a system at the microscopic level.
The higher the entropy of the system, the less its ele-
ments are ordered, interrelated, capable of producing
mechanical effects, and the greater the exchange of
energy unused or used inconsistently. Boltzmann2 formu-
lated a mathematical expression of statistical entropy as a
function of the number of microscopic states W defining
the equilibrium state of a given system at the macro-
scopic level: S¼ k logW . In Boltzmann's formula, the
entropy S of a system of N particles, distributed over i
states, having N1;N2; ::: ;Ni particles with energies
E1;E2; ::: ;Ei, is related to the total number W of physical
states of the system. For an isolated system, microscopic
states are equiprobable (pi ¼ 1=wwith

P
pi ¼ 1).

This definition of entropy is not inconsistent with that
of Clausius. The two expressions of entropy simply result
from two different points of view, depending on whether
one considers the thermodynamic system at the macro-
scopic level or at the microscopic level. Later, Gibbs
extended Boltzmann's equation to non-equiprobable
microstates: S¼�k

P
pi log pið Þ where pi is the probabil-

ity of occurrence of each microstate i.

1.2 | Information entropy

The Gibbs definition of entropy can be readily related to
the entropy of information introduced by Shannon in
1948.3 In information theory, entropy is a quantitative
measure of information. Shannon developed this mathe-
matical theory for quantifying the information loss in
transmitting a message in a communication. According
to this theory, the total entropy of information H of a sys-
tem (message) composed of N elements is defined by the
relation4:

H¼N log2N�
Xn

i¼1
Nilog2Ni ð1Þ

where Ni is the number of elements in the ith group of
elements and n is the number of different groups of
elements.

By taking the average H, we obtain the well-known
equation of Shannon's theory:

H¼�
Xn

i¼1
pilog2pi ð2Þ

where pi ¼ Ni
N , N ¼PNi and

P
pi ¼ 1, pi being the proba-

bility of the ith group of elements.
In Shannon's convention, logarithmic base 2 is used,

and the unit of information is called a bit (binary digit).
Let us note that the quantities pi are determined by the
chosen partitions.

In 1955, Rashevsky5 was the first to apply entropy to
quantify the information content of a molecular graph
using topological properties and the symmetry of the
graph defined by vertex orbits. One year later, Trucco6

also used symmetry using the set of all edge automor-
phisms to determine the complexity of a graph. In 1968,
entropy was generalized by Mowshovitz7 to the quantity
of the information content of any system of N elements
partitioned into equivalent classes according to a crite-
rion α based on the orbits of the automorphism group of
a graph G:

Iα Gð Þ¼�
Xk

i¼1

Vij j
Vj j log

Vij j
Vj j ð3Þ

where Vij j is the cardinality of the ith orbit of G and k is
the number of different orbits.

Bonchev and Trinajstic8 introduced magnitude-based
information indices extending Mowshovitz probability
scheme to a weighted probability scheme which is a new
generalization of the previous measures to any property
of magnitude M.

Since then, many entropy measures have been
applied to graphs. We refer the reader to more general
articles on this topic.7,9,10 Today, information theory
covers a variety of processes in all areas of science with
impressive applications in biological systems.11

1.3 | Our approach

In this article, we will deal with the idea of applying
Shannon's theory to measure the structural information
content of chiral molecules. In 1995, Collet et al.12

highlighted the importance of thermodynamic aspects in
the prevalence of heterochiral crystals versus their homo-
chiral crystals (conglomerate). Collet proposed that the
entropy of mixing of liquid enantiomers �Rlog2ð Þ could
be related to the cost of the phase separation which is not
favoring the crystallization of a conglomerate. Let us
remember that in Boltzman's theory, particles are inde-
pendent and do not interact with each other. In these
conditions, enantiomers are not distinguishable, and
thus, homochiral, scalemic, or racemic mixtures should



have an equivalent entropy. In Gibbs's equation of
entropy, the entropy S of a gas mixture is equal to the
sum of the entropies of individual components:

S¼m�Hþm� clog tþm�a log
v
m

ð4Þ

where t and v are the temperature and the volume of the
system, m is the quantity of the gas and a,c,H are con-
stants. Clearly, from Equation 4, chirality cannot be dis-
tinguished by the ideal gas equation of entropy because
enantiomers share the same physical properties, that is,
same mass, same kinetic energy and other physical char-
acteristics. This problem can be related to the Gibbs para-
dox. When mixing two separated products A and B of
equal volume V , each expands from V to 2V . The Gibbs
paradox postulates that if the two products are identical
(A¼B), entropy will not change (ΔSAA ¼ΔSBB ¼ 0Þ. But
if A and B are different, mixing AþB (1 mol of A and
1 mol of B) will give

ΔSAB ¼ 2Rln2¼ 11:53 JK�1 ð5Þ

where R is the gas constant (8:314 JK�1mol�1).
Gibbs's thought experiment adapted to enantiomers is

illustrated in Figure 1, that is, when the two considered
substances are two equal volumes of enantiomers R and
S. For Gibbs, there will be no increase of entropy in the
mixing of the two enantiomers because reinserting the
partition would lead to the same thermodynamic state as
the previous one from a macroscopic scale point of view.
We cannot observe an increase of entropy in the mixing
of enantiomers R and S because macroscopic properties
have not changed. The thermodynamic entropy change
ΔSSR is equal to zero. But we know that for a chiral mole-
cule the situation is not so simple. In Figure 1, one can
see that in an actual (R,S) enantiomeric mixture, the sys-
tem is more complex. Because of enthalpic effects, differ-
ent homochiral and heterochiral interactions can occur
on a microscopic level.

Later, Gibbs related the mixing process to the concept
of impossibility of separating identical substances. We
have seen that Collet found the entropy of mixing is
equal and of opposite sign to the process of restoring the
original microstate. Indubitably, enantiomers can be
separated through chiral recognition processes. Hence,
homochiral and heterochiral interactions make enantio-
mers distinguishable and an increase in entropy naturally
can take place despite them being identical in the ther-
modynamic point of view. As recently raised by Rib�o,13

“the ultimate chemical definition of chemical chirality
should be the existence of enantiomeric discrimination
between enantiomers.”

Here is where the concept of information entropy
becomes important. In thermodynamics, only the energy
level is considered and we have seen that chirality has
nothing to do with energy. Clearly, chirality is a geomet-
ric property which can be translated into information.14

This means that entropy of mixing of enantiomers, that
is, entropy due to chiral interactions as proposed by
Collet can be approached in term of the information loss
characterized by Shannon's equation. This is the key idea
of our approach: to analyze chiral molecules with regard
to molecular information and not upon geometry. In
what follows, we will show that Shannon entropy offers
an original way to quantify the complexity of a chiral
molecule possessing one or more stereogenic elements.
More precisely, entropy measures will be built upon the
partitioning of atom pairs which may be considered as
functionally equivalent to two-point enantioselective or
non-enantioselective interactions. Moreover, we will
establish that the total information entropy H of chiral
molecules also called joint entropy can be decomposed
into a sum of chiral and achiral contributions. This new
concept will allow us to access to various new 2D and 3D
topological chiral and achiral information measures
capable of capturing the complexity of a chiral molecule.
The data set consists of all the chiral constitutional

FIGURE 1 Application of the Gibbs paradox to a mixture of

enantiomers



isomers of C10 to C20 alkanes. The advantage of studying
alkane isomers is that each C10 to C20 series is a set of all
the possible isomers and thus covers an entire chemical
feature space. This makes them particularly suitable for
the discovery of mathematical rules.

2 | MATHEMATICAL
PRELIMINARIES

Base 2 logs are generally used in information theory and
information units are called “bit.” Thus, any notation log
stands for the logarithm in base 2 throughout this paper.

Definition 2.1. Undirected graph

An undirected graph G¼ V ,Eð Þ consists of a set V ¼
V Gð Þ of vertices and a set E¼E Gð Þ of unordered pairs of
vertices called edges. An edge e�E has the form e¼ u,vð Þ
for vertices u,vð Þ�V ,u≠ v; u and v are said to be adja-
cent in G.

Definition 2.2. Chemical graph

A chemical graph is a graph G¼ V ,Eð Þ, where V is an
atom set and E is a chemical bond set.

Definition 2.3. Alkane

An alkane is an acyclic saturated hydrocarbon.

Definition 2.4. Adjacency matrix

The adjacency matrix (Table S5) of an n-vertex graph
is an (nX n) symmetric matrix A¼ aij

� �
whose typical

entry aij is defined as

aij ¼
1 if i≠ j

0 if i¼ j

�

Definition 2.5. Shortest path

For a graph G¼ V ,Eð Þ, d u,vð Þ represents the distance
between u � V and v�V expressed as the minimum
length of a path between u and v.

Definition 2.6. Degree of a vertex

The degree of a vertex v is the number of edges at v
and is denoted by deg vð Þ:

Definition 2.7. Distance matrix

The distance matrix (Table S6) of an n-vertex graph G
is an (nX n) symmetric matrix D¼ dij

� �
whose typical

entry dij is defined as

dij ¼ d vi,vj
� �

if i≠ j

0 if i¼ j

(

where d vi,vj
� �

is the shortest path between vi � G and
vj �G.

Definition 2.8. Eigenvalue

Let A a n�n matrix with real entries, where n is a
positive integer. A number λ is an eigenvalue of A if there
exists a nonzero n�1 column vector x such that Ax¼ λx.
A vector x≠ 0 with this property is an eigenvector of A
for the eigenvalue λ.

Definition 2.9. Graph Laplacian

The Laplacian L of a graph G is the operator

L Gð Þ¼D Gð Þ�A Gð Þ ð6Þ

where D Gð Þ¼Diag deg v1ð Þ;deg v2ð Þ; ::: ;deg vnÞð Þð is the
degree matrix of G and A Gð Þ is the adjacency matrix.

L Gð Þ is a positive semidefinite and singular M-matrix.
Thus, all the eigenvalues of L Gð Þ are real and usually
arranged in a nonincreasing order

λn ≥ λn�1 ≥ � � �≥ λ2 ≥ λ1 ¼ 0 ð7Þ

Definition 2.10. General definition of
Shannon's entropy of a finite probability
space

Let X ¼ x1, � � �,xnf g be a nonempty finite set of ele-
ments with a discrete probability p x1ð Þ, � � �,p xnð Þf g
assigned to each, such that p xið Þ≥ 0 for all 1≤ i≤n and
p x1ð Þþ � � �þp xnð Þ¼ 1. Then, the Shannon entropy H of
the ensemble is the real number

H Xð Þ¼�
Xn

i¼1
p xið Þlog2p xið Þ ð8Þ



Remark:

• The function H Xð Þ, defined on the set of all probability
laws P¼ p x1ð Þ, � � �,p xnð Þð Þ on X, is strictly concave.
Hence, it possesses a unique maximum and the maxi-
mum possible value of H Xð Þ is log2 nð Þ. This occurs
when the distribution is uniform, that is, p xið Þ¼ 1=n
for all i.

• In entropy calculations, we always use the following
convention: 0 log2 0ð Þ¼ 0 according to nlog2 1=nð Þ!
0asn! 0.

Definition 2.11. Entropy of a graph

The entropy of a graph G is:

H/ Gð Þ¼�
Xk

i¼1
pilog2pi ¼�

Xk

i¼1

Xij j
Xj j log2

Xij j
Xj j ð9Þ

where X is a collection of graph invariants of G, α is the
criterion that partitions X into k equivalent classes of car-
dinality Xij j and pi ¼ Xij j

Xj j is the probability value of the ith
partition.

Definition 2.12. Joint entropy

Let X ,Y discrete random variables with joint distribu-
tion p x,yð Þ. The joint entropy H X ,Yð Þ is the real number

H X ,Yð Þ¼�
X

x

X
y
p x,yð Þlog2p x,yð Þ ð10Þ

where x and y are particular values of X and Y and
p x,yð Þ is the probability of these values occurring
together. If variables X and Y are independent, the joint
entropy is the sum of individual entropies, that is,
H X ,Yð Þ¼H Xð Þ + H Yð Þ.

Definition 2.13. Conditional entropy

For two random variables X and Y , the conditional
entropy of Y given X (or vice versa) is defined as

H Y jXð Þ¼�
X

x
p xð Þ

X
y
p yjxð Þlog2p yjxð Þ ð11Þ

where p yjxð Þ is the conditional probability. The condi-
tional entropy is a measure of how much uncertainty
remains about the random variable Y when we know the
value of X .

3 | METHOD

In this article, we take advantage of the Shannon concept
of self-information, that is, the information provided by a
random process about itself.

3.1 | First theoretical experiment
(isolated molecule)

In a first experiment, we will only consider intramolecu-
lar atom–atom topological features in the calculation of
information entropy in an isolated chiral molecule. In
this context, one can observe that a chiral molecule
which possesses at least one stereogenic element can con-
tain more or less large “achiral portions” that are isolated
areas comprising no chiral center, axis or plane. This con-
cept is illustrated in Figure 2. In these “achiral portions,”
there is no stereogenic element in the shortest path
between two atoms. In return, we can also identify “chi-
ral” atom pairs which fall within the surrounding of at
less one chiral element of the molecule, that is, there is at
least one stereogenic element in the shortest path

FIGURE 2 Example of “achiral portions” that can be isolated

in a chiral molecule. Any atom pairs randomly selected in these

regions have no stereogenic element in their shortest path



between the two atoms. Another way to visualize this
concept is by considering the following chiral alkanes
which possesses one asymmetric center at the end of the
chain:

CH3�CH2�CH� CH3ð Þ�CH2� CH2ð Þn�CH3

When the length of the alkyl chain increases, that is,
n !þ∞, the probability that any enantioselective inter-
action with a chiral target occurs relative to a non-
enantioselective interaction decreases. So, one may claim
that when n !þ∞ the “achiral” characteristics of this
chemical structure become more and more preponderant
than its “chiral” characteristics.

In discrete probability, a sample space Ω, is the set of
all possible outcomes of an experiment. In the atom pair
space of a chiral compound, we will assume there exist
two independent subsets: Schiral and Sachiral. Accepting
this concept and as entropy preserves the additivity of
independent events, the joint entropy H� Schiral,Sachiralð Þ
of a chiral molecule is the sum of individual Schiral and
Sachiral entropies (Definition 2.12):

H� Schiral,Sachiralð Þ¼H� Schiralð ÞþH� Sachiralð Þ ð12Þ

where the asterisk means H� Schiralð Þ and H� Sachiralð Þ are
independent variables.

Using Shannon entropy (Definition 2.10), we obtain:

H� Schiral,Sachiralð Þ
¼�

Xk

i¼1
pchirali logpchirali þ

X l

i¼1
pachirali logpachirali

� �
ð13Þ

where k and l are respectively the number of chiral and
achiral partitions.

pi ¼ Xij j
Xj j is the probability value assigned to the ith chi-

ral or achiral partitions.where X is a collection of all
atom-atom pairs and Xij j is the cardinality of the ith
equivalent class of atom pairs.

As X is a finite set, then

Xk

i¼1
pchirali þ

Xl

i¼1
pachirali ¼ 1 ð14Þ

3.2 | Second theoretical experiment
(molecule in interaction)

In the introduction, we have seen that chiral discrimina-
tion can emerge from the intermolecular interaction of
two chiral compounds. Then, in a second experiment, we

will suppose that the entropy measure depends on the
interaction of a guest chiral molecule with a chiral host.
This means that there is an effect of the interactions of
the chiral molecules with its chiral anisotropic surround-
ings. In that situation, one can consider that there exist
equivalent “chiral” and “achiral” atom pairs which can
compete on the same binding sites of a chiral ligand or
receptor, that is, the two subspaces Schiral and Sachiral
share common structural features. Consequently, individ-
ual Schiral and Sachiral entropy contributions are not inde-
pendent of one another. We have seen that entropy is
only additive in systems without interaction. Since, in
this second experiment, to measure the joint entropy
H Schiral,Sachiralð Þ we must subtract one overlap of entropy
I Schiral : Sachiralð Þ as visualized in the Venn diagram of
Figure 3.

H Schiral,Sachiralð Þ¼H Schiralð ÞþH Sachiralð Þ
� I Schiral : Sachiralð Þ ð15Þ

where I Schiral : Sachiralð Þ is the mutual information which
measures the information shared by Schiral and Sachiral.

By reorganizing Equation 15, the mutual information
I Schiral : Sachiralð Þ can be defined as follows:

I Schiral : Sachiralð Þ¼H Schiralð ÞþH Sachiralð Þ
�H Schiral,Sachiralð Þ ð16Þ

From Figure 3, the following relationships between the
various information measures are straightforward but
interesting to note:

FIGURE 3 Venn diagram of the joint entropy H Schiral,Sachiralð Þ
for a chiral molecule in interaction with the environment. The

area where both circles overlap is the mutual information

I Schiral : Sachiralð Þ of the Schiral and Sachiral subset distributions. In case

of an isolated molecule, H Schiralð Þ and H Sachiralð Þ are separated, that
is, I S_chiral : S_achiralð Þ¼ 0



H Schiral,Sachiralð Þ¼H Schiralð ÞþH SachiraljSchiralð Þ ð17Þ

H Schiral,Sachiralð Þ≤H Schiralð ÞþH Sachiralð Þ ð18Þ

H SchiraljSachiralð Þ≤H Schiralð Þ ð19Þ

where H SachiraljSchiralð Þ and H SchiraljSachiralð Þ are the con-
ditional entropies (Definition 2.13).

Equality holds in Equations 18 and 19 if and only if
Schiral and Sachiral are independent as it was assumed in
the theoretical experiment 1. It is also interesting to note
that the inequality 18 provides a bound to the joint
entropy of a chiral molecule.

Let us notice some remarks on interpreting these
equations:

• Shannon entropy presents several advantages in com-
parison with other reported graph complexity mea-
sures: (1) It has an additive property which permits to
distinguish between chiral and achiral structural fea-
ture contributions; (2) it has a physical meaning
thanks to the relationship between thermodynamic
entropy and information (e.g., Maxwell's demon15);
(3) by taking the stereogenic element as a reference in
entropy formula, it is able to take into account the
symmetry of the structure (Figure S5).

• These definitions refer to chiral molecules which have
stereogenic elements and those characterize the vast
majority of chiral molecules. For Inherently chiral
molecules such as helicenes or fullerenes where chiral-
ity only arises from the overall molecular arrangement,
one can consider that H Sachiralð Þ is equal to 0 and thus
the joint entropy is equal to H Schiralð Þ:

• In the kinetic theory of gases, the notion of molecular
chaos is historically attributed to Boltzmann: the
higher the entropy, the greater the disorder. In infor-
mation theory, a more chaotic system means more
complexity and more richness in information. Accord-
ingly, for a chiral molecule, a higher value of the
entropy will be related to a lower symmetry, a higher
molecular complexity and thus a greatest diversity.

• If one admits that “chiral” atom pairs are functionally
equivalent to two-point enantioselective interactions,
then a single additional interaction is sufficient to pro-
vide a chiral recognition.

This last remark suggests that a possible way to improve
the recognition ability of a chiral selector or the substrate
universality of a chiral catalyst may be to increase its
joint entropy, that is, decrease the mutual information
between Schiral and Sachiral (see Venn diagram). Indeed, by
acting on the mutual information, one could reduce the

redundancy. Redundancy means at the same time less
information content and more molecular interaction
competition between “chiral” and “achiral” atom pairs of
a chemical structure.

One interesting problem that derives from the exis-
tence of the two different subsets Schiral and Sachiral is to
see if one of the two subset distributions is far from
the optimal and thus if the joint entropy can be maxi-
mized. Furthermore, in maximizing for instance the
chiral entropy H Schiralð Þ, one expects minimizing the
mutual information and at the same time increasing
the performance of a chiral selector or catalyst. It will be
shown in the next section that this problem of finding
the maximum joint entropy distribution has a unique
solution due to the concavity of Shannon entropy
function.

3.3 | Maximum entropy approaches

The maximum entropy principle was introduced by
Jaynes in 1957.16 Jaynes stated that the most appropriate
distribution to model a given set of data is the one with
highest entropy. Jaynes formulates this problem as
maximizing the entropy function in the presence of the
following constraints:

X
i
pi ¼ 1 and ⟨ f ⟩¼

Xn

i
pi f xi:ð Þ

where
P

ipi is the normalization constraint and ⟨ f ⟩ is the
first moment (average) of the distribution imposed by the
knowledge one has about the data. To this end, Jaynes
used the Lagrangian method.

In our first theoretical experiment, we have no infor-
mation except the normalization constraint which is the
sum

Pk
i¼1p

chiral
i þP l

i¼1p
achiral
i ¼ 1:0. Our goal here is to

estimate the maximum value of the chiral entropy
H� Schiralð Þ under the hypothesis that there is no inter-
action between the “chiral” and the “achiral” parts
of the molecule (first theoretical experiment). Using
λ0 as Lagrange multiplier, the Lagrangian L of
H� Schiral,Sachiralð Þ is

L Schiral,Sachiral,λ0ð Þ

¼ �
Xk

i¼1
pchirali logpchirali þ

Xl

i¼1
pachirali

 

logpachirali

!
� λ0

Xk

i¼1
pchirali þ

X l

i¼1
pachirali �1

� �
ð20Þ



Being interested in finding the value of entropy
H� Schiralð Þ that maximizes the entropy H� SchiralSachiralð Þ,
we take the partial derivative of the Lagrangian L with
respect to pchirali and setting it equal to zero

∂

∂pchirali

L Schiral,Sachiral,λ0ð Þð Þ¼ 0 ð21Þ

yields

� log pchirali þ1
� �� λ0 ¼ 0 ð22Þ

Rearranging gives:

pchirali ¼ e�λ0�1

λ0 ¼ const thenpchirali ¼ const
ð23Þ

This implies that pchiral1 ¼ pchiral2 …¼ pchiralk and as a
result, Schiral distribution should be as uniform as possible
to enable H� Schiralð Þ to reach a maximum entropy.

Then, using the normalization constraint we find:

ke�λ0�1þ
X l

i¼1
pachirali ¼ 1 ð24Þ

Rearranging, we have:

e�λ0�1 ¼ 1�P l
i¼1p

achiral
i

k
¼
Pk

i¼1p
chiral
i

k
ð25Þ

From Equation (25) one can now express the maximum
chiral entropy H�

max Schiralð Þ

H�
max Schiralð Þ¼�

Xk

i¼1
pchirali

� �
log

Pk
i¼1p

chiral
i

k
ð26Þ

The above expression allows us to estimate the maximum
entropy of H� Schiralð Þ in the achiral environment fixed by
H� Sachiralð Þ. An equivalent relationship is found for
H�

max Sachiralð Þ if we solve the partial derivative of the
Lagrangian L with respect to pachirali

H�
max Sachiralð Þ¼�

X l

i¼1
pachirali

� �
log

P l
i¼1p

achiral
i

l
ð27Þ

According to Shannon entropy definition and from
Brown and Martin,17 to obtain a maximum H� Schiralð Þ
joint entropy

pchirali ¼ pachirali ¼ e�λ0�1 ¼ 1
kþ l

ð28Þ

From Equation (28) the following expressions can be
derived

H�
max Schiral,Sachiralð Þ¼ λ0þ1ð Þe�λ0�1 kþ lð Þ¼ λ0þ1 ð29Þ

H�
max Schiral,Sachiralð Þ¼�

Xkþl

1

1
kþ l

log
1

kþ l

	 

¼ log kþ lð Þ ð30Þ

H�
Max Schiralð Þ¼ k

kþ l
log kþ lð Þ ð31Þ

According to this last equation and as expected, the num-
ber of chiral partitions k should be as large as possible
and the number of achiral partitions l as small as possible
to tend toward a maximum H� Schiralð Þ entropy.

The expression 31 gives the maximum entropy of
H� Schiralð Þ with no constraints except the normalization
term. However, in an actual alkane graph, the maximum
vertex degree is at most 4 and this constraint affects the
full structure, that is, Schiral and Sachiral. Consequently, an
additional constraint

P
i
pi f xið Þ, i� Schiral should be

applied in the maximization of the entropy. Choosing an
appropriate function f , solution to the new lagrangian
equation gives the individual pchirali for an optimal
distribution

pchirali ¼ e�1� λ0þλ1 f xið Þð Þ ð32Þ

Clearly, there is a relationship between chiral proba-
bility distributions and the function f depending on xi.
This indicates that to find the optimal arrangement of the
probability distribution pchirali , one needs to include more
information about the organization of the chemical struc-
ture. Since, as the additional constraint reduces the maxi-
mum entropy, the actual maximum entropy is lower than
the estimated H�

Max Schiralð Þ upper bound given by the
Equation (31), that is, actualH�

Max Schiralð Þ<H�
Max Schiralð Þ.

Finally, if we apply the maximum entropy
approach within the framework of the second theo-
retical experiment in which the mutual information
I Schiral : Sachiralð Þ≠ 0, the objective is now to maximize
the joint entropy

H Schiral,Sachiralð Þ¼�
X

x � Schiral

X
y � Sachiral

p x,yð Þlogp x,yð Þ
ð33Þ



subject to the two following constraintsX
x � Schiral

X
y � Sachiral

p x,yð Þ¼ 1 ð34Þ

X
i
pi f r xi,yið Þ, i� Schiral,Sachiralð Þ,1≤ r ≤m ð35Þ

Then, individual pchirali for an optimal distribution is

pchirali ¼ e�1� λ0þλ1f r xi,yi,ð Þþ…þλmf r xi,yi,ð Þð Þ ð36Þ

4 | APPLICATION

4.1 | The data set

The chosen data set consists of all the chiral constitu-
tional isomers of C10 to C20 alkanes. All the isomers of
alkanes were exhaustively generated using Faulon's algo-
rithm18,19 providing 603,455 chiral alkanes and 14,582
achiral alkanes. Table 1 shows the progress of the num-
ber of chiral and achiral isomers when the number n of
carbon atoms increases from 7 to 20. At first glance, one
important remark is the exponential increase of chiral
alkanes correlated with a less pronounced increase of
achiral alkanes. A cross-over occurs very early when
n = 10 (decane isomers) then the chiral alkane popula-
tion rises exponentially until representing the vast major-
ity of the molecules (98% of the C20 alkanes are chiral).

Once all the chiral constitutional isomers have been
enumerated, it is further possible to compare all the
alkane families from the distribution of the number of
chiral centers. In Figure 4, the number of isomers of each
C7 to C20 alkane category is arranged according to their
number of chiral centers. One can note in this figure that
alkane isomers form a regular spacial distribution. When
the number n of carbons increases, an increase in the
number of chiral centers is accompanied by an expansion
of the number of isomers which behaves like a propagat-
ing wave. Another interesting finding is that we are able
to predict from this figure the maximum number of chi-
ral centers that can be found in a given Cn alkane. In
Figure 5 is plotted the maximum number of chiral cen-
ters against the number n of carbon atoms for each Cn

alkane. Let us start from n = 7, the smallest chiral alkane
which presents two isomers with one center. One need to
add one carbon atom to observe an increase of one chiral
center and then three more carbon atoms to have another
increase of one chiral center. Thus, as a general rule, the
maximum number of chiral centers that can be reached
by a given Cn alkane is given by the following equation:

Nmax ¼ n�4
2

� �
ð37Þ

where n is the number of carbon atoms and the mathe-
matical notation bc means rounding down the result to
the nearest integer.

4.2 | Graph information entropy
measures of 2D chiral alkanes

We have seen that the measure of entropy is based on the
partitions spawned by the structural features of a chemi-
cal graph. Partitions are then converted into probabilities
as represented by the following scheme:

Equivalent classes C1,C2, :::,Ci

Partitions N1,N2, :::,Ni

Probabilities p1,p2, :::,pi

For the purpose of simplicity and for a better clarity of
the plots, only results related to C10 alkane isomers are
shown throughout this paper but comparable findings
were observed for the other C11 to C20 alkane data sets.

Entropy information measures were computed
according to the equations explained in Sections 3.2 and
3.3 and using hydrogen depleted structures. For chiral

TABLE 1 Distribution of chiral and achiral Cn alkane

constitutional isomers (n = 7 to 20)

n Chiral Achiral Total % of chiral

7 2 7 9 22

8 5 13 18 27

9 15 20 35 42

10 40 35 75 53

11 104 55 159 65

12 259 96 355 72

13 646 156 802 80

14 1591 267 1858 85

15 3909 438 4347 89

16 9612 747 10,359 92

17 23,655 1239 24,894 95

18 58,424 2099 60,523 96

19 144,786 3498 148,284 97

20 360,407 5912 366,319 98



alkanes, atom pairs are partitioned into equivalent classes
by using graph invariants, for example, vertices, edges,
degrees, and distances.

4.2.1 | 2D topological distance-based
information entropy

As a pre-evaluation of our approach, we first examined if
entropy could capture 2D topological distance informa-
tion of chiral molecules. This is achieved by building the
distance matrix of the chemical graph (Definition 2.7)
and computing entropy using path distances between
atom pairs. This means that atom pairs are partitioned
into equivalent classes by collecting the shortest path

lengths (Definition 2.5). For an isolated molecule
(Section 3.1), we can write

H�
2D_dist Schiral,Sachiralð Þ¼H�

2D_dist Schiralð ÞþH�
2D_dist Sachiralð Þ

ð38Þ

where H�
2D_dist Schiralð Þ¼�Pk

i¼1
Xij j
Xj j log2

Xij j
Xj j and H�

2D_dist

Sachiralð Þ¼�P l
i¼1

Xij j
Xj j log2

Xij j
Xj j

Xi being the number of chiral or achiral atom pairs
sharing the same shortest path length in partition i.

Since Laplacian eigenvalues are well-known to be
related to the partitions of the graphs, we attempted to

FIGURE 4 Distribution of chiral constitutional isomers of C7 to C20 alkanes according to their number of chiral centers (plotted on a

log scale)

FIGURE 5 Plot of the number of

carbon atoms n versus the maximum

number of chiral centers that can be found

in constitutional isomers of C7 to C20

alkanes



find relationships between the Laplacian spectra of the
chiral molecules and distance entropies.

Spectrum of a graph is a set of its eigenvalues and
their multiplicities (see Definition 2.8). Let λi denote the
eigenvalues of a graph Laplacian, λi can be arranged in a
decreasing order:

λn ≥ λn�1 ≥…≥ λ2 ≥ λ1 ¼ 0

This is a well-established property of Laplacian spectra
theory for all connected graphs such as chemical graphs.

The nonzero smallest eigenvalue λ2 of a Laplacian
matrix was called by Fiedler the algebraic connectivity.20

Fiedler introduced λ2 as a quantitative measure of con-
nectivity. The larger is λ2 value, the more connected is
the graph. Hence, measures of λ2 determine “how well”
graphs are connected. If a chemical graph exhibits a low
λ2, one may simply remove a few vertices or edges within
the graph to identify regions that are different, that is,
regions that can be easily isolated from the rest of the
structure. In other words, λ2 captures the local patterns
and the larger λ2 is, the more difficult it is to cut a graph
into different elements. λ2 can thus be interpreted as a
measure of the regularity. From Figure 6, one can see
that a good correlation exists between λ2 and the
distance-based joint entropy H2D_dist Schiral,Sachiralð Þ com-
puted from the distance matrix of chiral C10 alkanes. In
this figure, high values of the distance-based joint entro-
pies are associated with low λ2 values, indicating a higher
dissymmetry (less connectivity) and thus less homogene-
ity in the corresponding molecule graphs. This is a note-
worthy result as to our knowledge, relationships between
λ2, eigenvalue and graph distance entropies have not yet
been fully explored.

In order to determine the individual contributions of
Schiral and Sachiral subsets to the distance variability, a
regression analysis was performed between λ2 and the
two separated Schiral and Sachiral distance entropies. The
following expression is obtained:

λ2 ¼�0:136H�
2Ddist

Schiralð Þ�0:054H�
2Ddist

Sachiralð Þ
þ0:462 R2 ¼ 0:79

� � ð39Þ

This equation shows that the distance variability of
the chiral alkanes is mostly explained by the contribution
of the Schiral subset. On average, about 70% of the distance
diversity can be explained by Schiral.

4.2.2 | Combined 2D topological distance
and connectivity-based information entropy

In the following sections, atom pairs are partitioned into
equivalent classes according to two criteria: the shortest
path and the connectivity of the carbon atoms.

Introduction of two new entropic indexes Rchiral and
Dmax_ent for measuring chiral information complexity
In Table 2, we give the results obtained from the applica-
tion of the various entropy formula seen above onto the
fourteen chiral C10 alkane isomers. All the chemical
structures are reported in Table S1.

In this table, the conditional entropies
H SchiraljSachiralð Þ and H SachiraljSachiralð Þ are the first mea-
sures to consider in the situation of a molecule in interac-
tion, that is, in the context of second theoretical
experiment. Indeed, looking at the Venn diagram of
Figure 3, maximizing the chiral diversity and complexity
of a molecule involves maximizing H SchiraljSachiralð Þ and
minimizing H SachiraljSachiralð Þ and the mutual informa-
tion I Schiral : Sachiralð Þ (Equation 15). This brings us to
introduce a new index Rchiral that we will call chiral infor-
mation richness

Rchiral ¼H SchiraljSachiralð Þ
H Schiral,Sachiralð Þ ð40Þ

with 0<Rchiral ≤ 1:0
Rchiral is a normalized measure. As seen in Table 1, its

value can vary between 0 and 1.0 and a value near 1.0
means the molecule practically reaches the maximum
chiral information richness. A combined plot of
Rchiral against mutual information exhibited a highly
significant negative relationship (R2 = 0.84) indicating
that high levels of chiral information richness are
associated with a less competitive achiral environment
(Figure S4).

Another way to evaluate the chiral information content
of a molecule is to calculate the ratio of the chiral conditional
entropy H SchiraljSachiralð Þ to the corresponding maximum
chiral entropy value H�

Max Schiralð Þ (Equation 31). This
new entropic index Dmaxent is defined by

FIGURE 6 Correlation between eigenvalue λ2 and the

distance-based joint entropy H�
2D_dist Schiral,Sachiralð Þ
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Dmaxent ¼H SchiraljSachiralð Þ
H�

Max Schiralð Þ ð41Þ

Dmaxent is also scaled to the range between 0 and 1 and
can be seen as a measure of the proximity of the chiral
information to its maximum entropy. Lower Dmaxent

means less information content and so a lower diversity
of the structural elements. Examination of Figure 7
reveals that Rchiral and Dmaxent are well correlated
(R2 = 0.87). This correlation indicates that the index
Rchiral is indeed a good indicator of the richness and
diversity of the chiral structural information contained in
a chiral compound as exemplified by Figure 8.

Another question of interest is to determine the
extent to which Schiral and Sachiral are contributing to the
mutual information. An easy way to model this is to con-
sider the two independent entropies H� Schiralð Þ and
H� Sachiralð Þ. Then, the individual contributions to the
mutual information i Schiral : Sachiralð Þ and i Sachiral : Schiralð Þ
are obtained by subtracting their respective conditional
entropies H SchiraljSachiralð Þ and H SachiraljSchiralð Þ

i Schiral : Sachiralð Þ¼H� Schiralð Þ�H SchiraljSachiralð Þ ð42Þ

i Sachiral : Schiralð Þ¼H� Sachiralð Þ�H SachiraljSchiralð Þ ð43Þ

A regression analysis between i Schiral : Sachiralð Þ and
i Sachiral : Schiralð Þ was carried out and resulted in the fol-
lowing equation

i Schiral : Sachiralð Þ¼ 0:9285 i Sachiral : Schiralð Þ R2 ¼ 0:84
� �

ð44Þ

This indicates that there is a linear dependence of the
contributions of Schiral and Sachiral to the mutual informa-
tion and according to the coefficient, the two contribu-
tions are comparable: for every unit increase of the
contribution of Schiral, there is a similar unit increase of
Sachiral (Figure 9).

A case-based entropy study for comparing distributions
of chiral complexity
The index Rchiral is a global measure which gives informa-
tion about the overall diversity of Schiral in regards to
Sachiral subset but it does not provide any information
about the diversity distribution across the different struc-
tural elements of the chiral molecule. Rajaram and
Castellani have designed a solution to this problem by
introducing a new complexity measure Cc called case-
based entropy measure.21 The method consists first to
calculate the true diversity measure D which by takingT
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the exponential of Shannon entropy, converts the addi-
tive property of entropy into a multiplicative one.22 When
applied to our independent Schiral subset, the true diver-
sity D Schiralð Þ is calculated using the following expression:

D Schiralð Þ¼ eH
� Schiralð Þ ð45Þ

Then, in a second step, pchirali is replaced by bpchirali in
H� Schiralð Þ entropy formula to give

H�
c Schiralð Þ¼

Xk

i¼1
bpchirali log2bpchirali ð46Þ

where pchirali ¼ pchirali =c, c being the cumulative probabilityPk
i¼1p

chiral
i so that H�

c Schiralð Þ becomes the chiral entropy
calculated as if only the first k set is observed.

Therefore, using 46 and rearranging, the true diver-
sity Dc Schiralð Þ reduces to

Dc Schiralð Þ¼ eH
�
c Schiralð Þ ¼

Yk

i¼1

1

bpchirali

bpchirali

ð47Þ

Replacing bpchirali by pchirali =c we obtain

Dc Schiralð Þ¼ cQk
i¼1p

chiral
i

pchiral
i
c

ð48Þ

Finally, the percentage diversity contribution Cc Schiralð Þ is
given by

Cc Schiralð Þ¼Dc Schiralð Þ�100
D Schiralð Þ ð49Þ

The same approach is also applied to Sachiral probability
distribution to obtain

Cc Sachiralð Þ¼Dc Sachiralð Þ�100
D Sachiralð Þ ð50Þ

Next, the method consists to plot the diversity contribu-
tion Cc versus the cumulative probability c. As shown in
Figure 10, the x-axis represents the diversity contribution
and the y-axis the frequency of cases relative to the col-
lection x. As both axes range between values from 0 to
1, different complexity distributions of C10 to C20 alkanes
can be compared on the same graph. In Figure 10, the
Schiral and Sachiral curves form a signature profile of the
complexity of isomer 30. The maximum diversity is repre-
sented by the straight line, that is, the distribution is uni-
form (pi ¼ 1=n for all i). Any deviation of Schiral or Sachiral
complexity distribution from this line is associated with a
lower diversity. Not surprisingly, Schiral diversity of com-
plexity of isomer 30 (Rchiral ¼ 0:30Þ is found more
restrained than Sachiral diversity. Although the chiral
information richness Rchiral gives us access to a global

FIGURE 7 Relationship between the chiral information

richness Rchiral and the distance to maximum chiral entropy Dmaxent

FIGURE 8 Comparison of two C10 alkane isomers in term of

chiral information richness (Rchiral). Chiral complexity of isomer

30 is less important, that is, contains less diversity around the chiral

center than isomer 24

FIGURE 9 Relationship between i Schiral : Sachiralð Þ and
i Sachiral : Schiralð Þ contributions to mutual information



complexity measure, the diversity contribution Cc tells us
how is distributed the chiral information.

Rajaram and Castellani remarked that when a com-
plexity distribution histogram is skewed-right, the system
is governed by a law of “restricted diversity.” Using Cc to
measure the distribution of the diversity, authors rev-
ealed the universal existence of a 60/40 law from galaxies
to genes23: a more or less majority of cases (≥60%) can
explain a small percentage of the total diversity of com-
plexity (≤40%). This is illustrated in Figure 10. The 60/40
rule is a delimited area which informs if there is or not a
restricted distribution of complexity. It is defined on the
graph by the region where the curve is above 60% of the
cases and under 40% of the total complexity. Points of the
curve located in this region indicate if the diversity of
complexity is more or less restricted. When examining
the Schiral complexity distribution in this region of the
curves generated from all chiral C10 alkanes, we observe
that 60% of the isomers do obey the 60/40 rule (Table S4).
In Figure 10, Schiral complexity distribution of isomer
30 comes into contact with the 60/40 region whereas
Sachiral complexity shows a better distributed diversity.

Even more noteworthy is the comparison of two iso-
mers as for example the isomers 31 and 22 of Figure 11
which both exhibit a high Rchiral value (respectively 0.84
and 0.88). One can see that the first isomer respects the
60/40 rule, whereas this rule is not followed by the sec-
ond one. The two compounds have a similar level of chi-
ral information complexity, but this complexity is more
concentrated in certain topological elements of isomer
31 and more dispersed across the structural elements of
isomer 22. More generally, as seen in Figure 12, it is espe-
cially interesting to note that there is no relationship
between the chiral information richness Rchiral and the
distribution of complexity. Indeed, Rchiral is a global
measure that is not directly related to the distribution of
the chiral complexity in chiral alkanes. From this

observation, an interesting question arises regarding to
whether a better distribution of the chiral complexity
may affect favorably the performance of a chiral molecule
(a selector or a catalyst). For this purpose, a potential
application of the case-based method would be to detect
what local changes in molecule structure are required to
achieve this objective.

4.3 | Graph information entropy
measures of 3D chiral alkanes

To explain biological activities in a meaningful way, one
often need 3D descriptors to analyze the variations in the
3D structures of chemical compounds. This is why we
also investigated our entropy approach on chiral 3D
molecules. To this end, we replaced the shortest path dis-
tances by the geometric distances in the dataset. Then,
the fundamental idea is to partition the geometric dis-
tances into equivalent classes using a consensus over

FIGURE 10 Diversity contribution Cc versus the cumulative

frequency of cases c (isomer 30, Rcℎiral = 0.30). The straight line

delineates the theoretical maximum diversity

FIGURE 11 Diversity contribution Cc versus the cumulative

frequency of cases c of Schiral for isomers 31 and 22. The two

isomers 31 and 22 have a similarly high level of chiral information

diversity (Rchiral respectively equal to 0.84 and 0.88), but

distribution of complexity Cc of isomer 31 is more restricted than

isomer 22

FIGURE 12 Chiral information richness (Rchiral) versus the

cumulative frequency of cases at Cc Schiralð Þ = 0.4



multiple runs of a random K-means clustering. For com-
paring partitions, we used the very popular Adjusted
Rand Index.24

One simple way to introduce geometric distances in
the entropy measures is to build a geometric distance
matrix of each 3D chiral alkane. The geometric distance
matrix of a molecular graph (G) is a real symmetric nX n
matrix D¼ dij

� �
where n represents the number of verti-

ces in the chemical graph and each entry dij is defined as

dij ¼ d vi,vj
� �

if i≠ j

0 if i¼ j

(

where d vi,vj
� �

is the Euclidean distance between vi � G
and vj �G

d vi,vj
� �¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi� xj
� �2þ yi� yj

� �2
þ zi� zj
� �2r

ð51Þ

The Cartesian coordinates for each vertex of the molecu-
lar graph were obtained from geometry optimizations uti-
lizing MMFF94/MMFF94s force fields as available within
the open-source cheminformatics toolkit RDKit.25

In the following sections, when a given 3D C10 chiral
alkane possesses two asymmetric carbon atoms, entropy
measures were applied to one of its stereoisomers.

4.3.1 | Comparison of 2D and 3D structure-
based entropy measures

The value of 3D descriptors is questioned in the literature
because it is often shown that models built from 2D
descriptors gives better results. On this subject, the well-
known work of Brown and Martin is often cited. By com-
paring 2D and 3D molecular keys, 2D-descriptors were
proven to be more efficient at separating biologically
active molecules from inactive.17 In a recent work, we
also found that 2D-fingerprint descriptors were more
powerful than 3D-descriptors to build models to find the
most promising chiral selector to achieve the separation
of a chiral compound.26 It looks like meaningful 2D
information is lost during the construction process of 3D-
descriptors. We thus checked if this effect could be
observed between H�

2D Schiralð Þ and H�
3D Schiralð Þ entropy

measures. Interestingly, there is a good correlation
between 2D and 3D structure-based entropy measures as
illustrated in Figure 13. Such a correlation means that
the 3D structure-based entropy shares some information
content with the 2D entropy. The correlation factor
(R2 = 0.77) indicates that the values are well correlated
but the entropy computed from the 3D coordinates of

atoms also adds new information about the chiral
molecule.

4.3.2 | 3D topological distance-based
information entropy

In this section, the structural elements of the chiral mole-
cule are partitioned into equivalent classes according to
the geometrical distances. Then, the 3D distance-based
joint entropy H�

3D_dist Schiral,Sachiralð Þ for an isolated mole-
cule is

H�
3D_dist Schiral,Sachiralð Þ¼H�

3D_dist Schiralð ÞþH�
3D_dist Sachiralð Þ

ð52Þ

where H�
3D_dist Schiralð Þ¼�Pk

i¼1
Xij j
Xj j log2

Xij j
Xj j and H�

3D_dist

Sachiralð Þ¼�P l
i¼1

Xij j
Xj j log2

Xij j
Xj j

Xi being the number of chiral or achiral atom pairs
sharing the same geometrical distance in partition i.

Since, H�
3D_dist Schiral,Sachiralð Þ is a kind of conforma-

tional entropy measure.
Typically, we find that for constrained 3D C10 alkane

structures, molecular mechanics optimization produces
when possible a more distant conformation (the less com-
pact), that is, the joint entropy increases when the energy
decreases. Thus, a higher geometrical distance diversity
of atom pairs is observed in the lowest-energy conforma-
tions as for isomer 38 of Figure 14. As seen in Figure 15,
the joint entropy of isomer 38 increases when the energy
decreases and the lowest-energy conformations exhibit
the higher entropy values. On the other hand, some iso-
mers which have a better flexibility as isomer 40 of
Figure 14 may produce more symmetric conformations
when the energy decreases. In these cases, the lowest-
energy conformations provide the lowest distance
entropy values.

FIGURE 13 Relationship between H�
2D Schiralð Þ and H�

3D Schiralð Þ



4.3.3 | Correlation between information
entropy and degree of chirality

In this part of our article, we will be focusing on, to what
extent, our new entropy measures encode the degree of
chirality of the molecules.

The existence of chirality is widespread in the world
of chemistry. This led the chemists to raise the question
of “how chiral” is a given molecule. Various measures for
quantifying chirality and symmetry have been proposed
in the literature as it has been exhaustively reviewed by
Petitjean.27 One of the most important has been

developed by Zabrodsky and Avnir who suggested a con-
tinuous chirality measure (CCM) to quantify the degree
of chirality of a chiral molecule.28,29 Their method is
based on the minimal distances that the vertices of a
shape have to be moved in order to reach the nearest
achiral symmetry point group.

Our first attempts to correlate the various entropy
measures of the C10 alkane isomers with the CCM degree
of chirality were not successful. A reason of this bad
result is probably that our entropy measures do not cap-
ture the position of the chiral center(s) and so these mea-
sures cannot incorporate information about the chirality
strength. A better result was effectively achieved by
replacing the geometrical distances between atoms by the
geometric distances of atoms to the chiral center(s) in the
partition data set of the chiral entropy H� Schiralð Þ

H�
χ Schiralð Þ¼�

Xk

i¼1

Xij j
Xj j log2

Xij j
Xj j ð53Þ

where χ is the criterion that partitions the collection
X into k equivalent classes. χ is based on a collection of
the geometric distances of atoms to the chiral centers and
their connectivities. Using this new information entropy
measure, we find a moderate relationship between
H�

χ Schiralð Þ and CCM values (R2 = 0.49, Figure S1). The
coefficient of determination R2 characterizes the propor-
tion of variation in CCM due to a linear relationship
between H�

χ Schiralð Þ and CCM. However, in our case, we
are mostly interested in investigating how strongly the
values of these variables are related to one another. This
is the purpose of the Pearson's coefficient which is a nor-
malized measurement of the covariance. Since, using

FIGURE 14 Lowest-energy conformation of alkane isomers

38 and 40. Isomer 38 presents a higher geometrical distance

diversity than isomer 40 which contains more symmetries in the

spatial arrangement

FIGURE 15 3D distance-based joint entropy versus conformation energy of alkane isomers 38 and 40



Pearson's coefficient, one can find the extent to which
changes in the value of one variable are correlated to
changes in the value of the other variable. In Figure 16,
the correlation coefficient as measured in relation to
H�

χ Schiralð Þ and CCM, shows a significant relationship
(Pearson's coefficient R = 0.70). H�

χ Schiralð Þ and CCM are
positively correlated, then as CCM increases, H�

χ Schiralð Þ
tends to increase, that is, H�

χ Schiralð Þ encodes a significant
amount of information about the degree of chirality.
Finally, it is interesting to note that there is no relation-
ship between the degree of chirality and the distribution
of complexity evaluated in Section 4.2.2 (Figure S3).

4.3.4 | Information entropy of a
racemization/deracemization process

When two enantiomers can interconvert, the equilibrium
Rð Þ! Sð Þ is accompanied with no heat transfer (ΔH¼ 0Þ.
Consequently, a racemization process is entropy driven,
that is, Rð Þ! R,Sð Þ leads to a gain in entropy (ΔS>0Þ,
and is thermodynamically favored according to formula
ΔG¼ΔH�TΔS. In a last experiment, we will consider
the following system:

Rð Þ!Racemization
R,Sð Þ!Deracemization

Sð Þ

The joint entropy of each step of this process is calculated
as follows

Hα R,Sð Þ Schiral,Sachiralð Þ¼Hα R,Sð Þ Schiralð ÞþHα R,Sð Þ Sachiralð Þ
ð54Þ

where α R,Sð Þ is the criterion that partitions the collection
X into k equivalent classes. α R,Sð Þ is based on a C Rð Þ

�
+

C Sð ÞÞ mixture of geometric distances of atoms and their
connectivities, C Rð Þ and C Sð Þ being the % amounts of each
enantiomer.

In the partition procedure, throughout the racemiza-
tion, any equivalent amount of (R) and (S) chiral topolog-
ical elements are counted as diminishing chiral entropy
and accordingly grouped with the achiral elements. This
strategy allows us to obtain a decrease of the chiral ele-
ments during the racemization. In Figure 17 is plotted
the joint entropy in function of the enantiomeric excess
(ee) as obtained for 3D-optimized isomer 18. The growth
of the joint entropy from the pure enantiomer to the race-
mate is nonlinear and is at its maximum when the mix-
ture is racemic. Therefore, according to our information
theory approach, racemization is a process of entropy
increase and deracemization a process of decrease in
entropy. It is worth mentioning that this result is consis-
tent with the concept that the driving force for racemiza-
tion is the increase in entropy.

From the definition of the joint entropy, we are
then naturally led to compare the chiral and the
achiral entropy evolution during the racemization pro-
cess. This is illustrated by Figure 18 where we can see
that Hα R,Sð Þ Schiralð Þ decreases, whereas Hα R,Sð Þ Sachiralð Þ
increases with decrease in ee. Interestingly, an

FIGURE 16 Comparison of the normalized distributions of H�
χ Schiralð Þ and the CCM degree of chirality of 3D-optimized chiral C10

alkane isomers. Isomers are ranked on the x-axis according to Table 1 numbering



isoentropic point is observed at the intersection points of
the two curves. This isoentropic point Hisoð Þ and its
corresponding isoentropic ee eeisoð Þ define two new infor-
mation measures for characterizing a given chiral mole-
cule. One remarkable property of the eeiso is its ability to
differentiate chiral molecules which have a high degree
of chirality from chiral molecules which have a lower
value. Since, 90% of chiral molecules having a eeiso >60
exhibit the lowest degree of chirality (CCM<7) and 77%
of chiral molecules having a eeiso ≤ 60 exhibit the highest
degree of chirality (CCM ≥ 7) (Figure S2). This is a result
to note because it supports the idea that an enantiopure

compound having a high degree of chirality needs a high
amount of the other enantiomer to reach equality
between Schiral and Sachiral entropies.

5 | GENERALIZATION OF THE
METHOD TO ANY CHIRAL
MOLECULE

In our information entropy approach derived from
alkane graphs, atoms are represented by their connectiv-
ity and so the entropy measures cannot be applied to

FIGURE 17 Common graph of the evolution of the joint entropy Hα R,Sð Þ Schiral,Sachiralð Þ versus the ee (example shown is 3D-optimized

isomer 18)

FIGURE 18 Common graph of the evolution of Hα R,Sð Þ Schiralð Þ and Hα R,Sð Þ Sachiralð Þ versus the ee (example shown is 3D-optimized

isomer 18)



molecule containing other atoms than carbons such as
heteroatoms. In order to allow the generalization of these
measures to any chiral molecule, atoms are no longer
represented by their connectivity but by an information
rich descriptor: the electrotopological state atom (E-state)
index. This index developed by Hall and Kier30 is a struc-
tural atomic descriptor encoding both the steric and elec-
tronic effects of the surrounding atoms. Consequently,
the resulting combined 2D or 3D-topological distance
and E-state-based information entropy is now applicable
to almost any type of chiral organic structures. Prelimi-
nary results using Estate-based information entropy are
encouraging. For example, by introducing our new chiral
entropy measures in models, we were able to obtain a
good prediction of the difference of biological activity
between enantiomers in various biological data sets.31

Those unpublished results show that in many cases, inte-
grating chiral entropy improves prediction models.
Other unpublished results concern the use of
information entropy to investigate chiral recognition
mechanisms. Any investigation of chiral ligand-binding
complexes requires a knowledge of the non-covalent
interactions that stabilize a given complex, that is,
H-bond donor, H-bond acceptor, aromatic or
lipophilicity. So, a last approach consisted to computa-
tionally decompose chiral entropy into the following
entropy terms

H Schiralð Þ¼�
Xk

i¼1
pHdonor
i logpHdonor

i þ
X l

i¼1
p
Hacceptor

i

logp
Hacceptor

i þ
Xm

i¼1
paromatic
i logparomatic

i

þ
Xn

i¼1
plipi logplipi

!

where k, l, m, and n are the number of chiral partitions
assigned to the different types of interactions.

Using this formula, we were able to reveal and quan-
tify the individual entropy contributions of the different
enantiospecific interactions occurring during chiral
HPLC separations achieved on several commercially
available chiral columns (Figures S7–10).

6 | CONCLUSION

In this work, we defined for the first time the concept of
chiral information entropy and declined it in a number of
ways. This concept has initiated an investigation of new
information measures to capture the chiral complexity of

chiral molecules. Different studies lead to a series of
interesting conclusions:

• Chirality is usually presented as a qualitative concept:
a molecule is chiral or not chiral. We have seen that in
contrast with this binary concept, a different descrip-
tion of the chemical features may be useful to appre-
hend chirality not as a whole but through the
contribution of chiral and achiral parts.

• Chiral information entropy measures can give an indi-
rect access to the chiral complexity of a molecule
according to topological criteria such as the connectiv-
ity or the electrotopological state of atoms. However, a
certain subjectivity in the criteria choice is inevitable
and thus any change in these criteria would allow to
identify other different properties of chiral molecules.
For example, one can imagine that chiral entropy mea-
sured according to the distribution of atom charges or
lipophilicities can provide different insights on the
measure of chiral complexity as well as chirality of
molecule.

• Our approach revealed that distribution of chiral com-
plexity is far from uniformity for a majority of the stud-
ied chiral molecules. Thus, a global measure of chiral
complexity or an overall measure of chirality may not
really reflect the distribution of complexity which can
vary greatly even among similarly complex chiral com-
pounds. For future research, it would be relevant to
investigate if complexity distribution can have an influ-
ence on the enantioselective property of chiral
molecules.

Although this article focused on chiral alkanes to provide 
the insights detailed above, this new conceptual frame-
work highlights the potential of information theory to 
shed new light on the properties of a great number of chi-
ral molecules. Undeniably, this leaves open a wide range 
of possibilities for the application of information theory 
to the field of chiral chemistry.
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