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ABSTRACT 27 

 Fish development and acclimation to environmental conditions are strongly mediated by the 28 

hormonal endocrine system. In environments contaminated by anthropogenic stressors, hormonal 29 

pathway alterations can be detrimental for growth, survival, fitness, and at a larger scale for population 30 

maintenance. In the context of increasingly contaminated marine environments worldwide, numerous 31 

laboratory studies have confirmed the effect of one or a combination of pollutants on fish hormonal 32 

systems. However, this has not been confirmed in situ. In this review, we explore the body of knowledge 33 

related to the influence of anthropogenic stressors disrupting fish endocrine systems, recent advances 34 

(focusing on thyroid hormones and stress hormones such as cortisol), and potential research perspectives. 35 

Through this review, we highlight how harbours can be used as “in situ laboratories” given the variety 36 

of anthropogenic stressors (such as plastic, chemical, sound, light pollution, and invasive species) that 37 

can be simultaneously investigated in harbours over long periods of time. 38 

 39 
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Introduction 42 

Coastlines – the interface between the land and the sea – have been increasingly subjected to 43 

anthropogenic pressures such as fishing, boating, pollution, coastal construction, and tourism since the 44 

end of the 19th century (e.g., Crain et al., 2009; Dugan et al., 2011). Marinas, harbours, and ports are 45 

among the most common man-made structures along coastlines worldwide (e.g., Hardaway and 46 

Duhring, 2010; Dafforn et al., 2015). Harbours are often hotspots of human-mediated environmental 47 

pressures which significantly affect the quality of surrounding coastal and marine waters, as well as the 48 

native vs. non-native species assemblages (Mayer-Pinto et al., 2015). For example, Harik et al. (2017) 49 

assessed anthropogenic stressors along the Mediterranean coastline using a multi-criteria index . The 50 

study showed that harbours along the Mediterranean coastline are the third largest cause of stress to 51 

marine ecosystems, behind landfills and industrial sites (Harik et al., 2017). The construction and 52 

presence of harbours not only directly destroy natural coastal habitats, but also indirectly damage 53 

neighbouring ecosystems through changes in currents and sediment loads which dramatically impact 54 

the composition of benthic communities (Meinesz et al., 1991; Martin et al., 2005; Li et al., 2010), as 55 

well as fish larval dispersal and recruitment (Roberts, 1997). Within harbours, direct stressors include 56 

pollutants from maritime activities (e.g., diesel spills during vessel refuelling, hydrocarbon pollution 57 

from boat traffic - Steen et al., 2004 in Danish harbours; Bergen et al., 2005 in the USA; Ingole et al., 58 

2009 in India; Li et al., 2010 in China; Mayer-Pinto et al., 2015 in Australia; Harik et al., 2017 in 59 

Mediterranean harbours), and pollution generated by neighbouring cities and agricultural activities. 60 

These can lead to high levels of heavy metals and organic pollutants (e.g., high polychlorinated biphenyl 61 

levels such as in New Bedford Harbour - Bergen et al., 2005; Nogales et al., 2011; Mali et al., 2017), 62 

affecting the composition and function of microbial (Nogales et al., 2011) and macro-faunal 63 

communities (Martínez-Lladó et al., 2007) in the water and sediments in harbours and marinas. Overall, 64 

although the legislative framework concerning marine pollution control and prevention has been increasingly 65 

enforced in harbours since the early 2000s (AAPA, 2003; ESPO/EcoPorts, 2009; US-EPA, 2009), 66 

harbours remain man-made structures in which intense human usage impacts coastline environments. 67 

Nonetheless, harbours and marinas contain marine communities and therefore constitute sites of interest 68 

for ecologists and endocrinologists working on fish populations. 69 

In their review of 200 environmental studies on Sydney harbour, Mayer-Pinto et al. (2015) 70 

found that 109 focused on contamination, 58 on habitat modification, 11 on invasions by non-indigenous 71 

species, and only 8 on fish and fisheries. This relative gap in studies on fisheries from Sydney harbour 72 

mirrors the lack in knowledge of the impact of harbours on fish worldwide. Elsewhere, although many 73 

studies have been conducted on intertidal sessile organisms living in harbours (e.g., Yung et al., 1999; 74 

MacFarlane and Burchett 2003), only a few have monitored mobile species such as fish (e.g., 75 

Wooldridge et al., 1999; Mercader et al., 2017a; Mercader, 2018). The low number of studies looking 76 

at fish species may be due to practical aspects such as the danger of boat traffic when swimming, as well 77 

as fishing restrictions in harbours (Ferreira et al., 2020). In addition, harbours are seldom considered of 78 
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interest for fish studies as they are rarely viewed as key habitats in terms of ecological function along 79 

coastlines and islands and are often only referred to as polluted and artificial habitats (Mayer-Pinto et 80 

al., 2015). These multiple reasons may explain the paucity of scientific papers focusing on the ecology 81 

and physiology of fish living in harbours. However, harbours could be considered as unique habitats of 82 

key scientific interest. Indeed, they concentrate uncommonly high and varied levels of pollutants. These 83 

urbanised centres, previously absent from coastlines, completely differ from the ecosystems they 84 

replaced as well as from the surrounding natural areas in terms of abiotic composition (e.g., substrate 85 

type, water quality, hydrodynamics). They represent a novel ecosystem (Hobbs et al., 2013) with their 86 

own functional groups of living organisms. These make them unique areas in which to study the 87 

synergistic effects of multiple anthropogenic stressors on the ecology, biology, and physiology of fish. 88 

In addition, from an adaptive and evolutionary point of view, they provide a setting for long-term field 89 

experiments impossible in mesocosm conditions (e.g., Viard et al., 2020; Le Moan et al., 2021). The 90 

aim of our review is to encourage future research on the biology (with a focus on endocrinology) and 91 

ecology of fish affected by multiple stressors encountered in harbours. To do so, we (i) identify the 92 

different stressors present in harbours and their potential impacts on marine fauna, (ii) present baseline 93 

knowledge on the effect of multiple anthropogenic stressors on two endocrine pathways in marine fish 94 

(stress and thyroid hormones), and (iii) propose a framework to conduct integrated research that could 95 

provide crucial insights for ecosystem management, as well as a better understanding of hormonal 96 

responses in fish under stressful conditions. 97 

 98 

1. Harbours as fish habitats and potential nurseries  99 

Harbours are semi-closed coastal marine areas with limited water mixing with the open sea, in 100 

which marine organisms are exposed to multiple stressors (e.g., chemical contamination, elevated 101 

nutrients, turbidity, marine debris, microplastics, invasive species, habitat modification, boat traffic and 102 

noise and artificial light at night – Li et al., 2010; Mayer-Pinto et al., 2015; Fig. 1). In this review, we 103 

focus on six major anthropogenic stressors that can affect the hormonal system of fish: plastic pollution, 104 

chemical contamination, invasive species, boat noise, artificial light at night, temperature variation, as 105 

well as their combined effects. 106 

 107 
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 108 

 109 
Fig. 1: Illustration of the different anthropogenic stressors present in the port of Papeete, Tahiti, French 110 

Polynesia (illustration by C. Berthe). 111 

 112 

Despite the numerous anthropogenic stressors present in harbours, studies have found that 113 

harbours can be marine biodiversity hotspots, but these have mostly focused on macro-invertebrates 114 

(Johnston et al., 2015; Mayer-Pinto et al., 2015). The existing quantitative data on fish populations does 115 

not paint a similar picture for fish biodiversity (Edgar and Shaw, 1995; Clynick, 2006; Hutchings et al., 116 

2013). However, recent studies have highlighted that some harbours with artificial habitats (mainly in 117 

temperate regions) could be nursery areas for fish (Bouchoucha et al., 2016; Dufour et al., 2009; 118 

Mercader et al., 2017b; Patranella et al., 2017; Mercader, 2018). Breakwaters host high densities of 119 

juvenile fish (Ruitton et al., 2000; Pizzolon et al., 2008; Dufour et al., 2009) and in some areas (e.g., in 120 

Sydney harbour; Clynick 2008) adult fish species richness and abundance inside marinas are close to 121 

those found on natural rocky habitats. Mercader (2018) surveyed juvenile fish populations on various 122 

artificial infrastructures and natural sites along a 100-km section of the French Mediterranean shoreline. 123 

Juvenile fish densities were highly variable between harbours depending on the type of small-scale 124 

habitats, with juvenile densities on ripraps or jetties higher or equivalent to those on natural sites. Port 125 

and marina jetties might in some cases provide suitable nursery grounds for juvenile fish, at least by 126 

comparison with highly urbanized neighbouring sections of the coastline (Dufour et al., 2009; 127 

Bouchoucha et al., 2016; Mercader et al., 2017b; Patranella et al., 2017; Mercader, 2018). Therefore, 128 

marinas, harbours, and ports may play a surprisingly vital role in the life cycle of some fish species. This 129 

is important when it comes to emblematic protected species, for instance the dusky grouper along the 130 
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French Mediterranean coastline. This species, which almost disappeared from the French coasts, is 131 

almost exclusively found in marine protected areas, and there are very few juveniles. Projects to restore 132 

the nursery function in several French and Moroccan Mediterranean ports have led to an increase in 133 

observed juveniles (Mercader et al., 2017a; Selfati et al., 2018). 134 

Many marine fish species have structured life histories with two distinct stages: first, a pelagic larval 135 

stage capable of long-distance dispersal, followed by a relatively sedentary benthic stage (usually 136 

juveniles and adults in reefs or along coastlines; Leis and McCormick, 2002). After the oceanic dispersal 137 

phase, larvae settle in a suitable recruitment site. Recruitment is a critical phase in the life cycle of fish 138 

as its success is decisive for population maintenance. Fish must undergo an abrupt transformation from 139 

larvae to juvenile during this transition phase (Laudet, 2011). This transformation, called 140 

metamorphosis, is usually quite spectacular and includes changes in behaviour, morphology, and 141 

physiology, including biochemical and histological remodelling that affect several tissues at different 142 

levels (McCormick et al., 2002; Parmentier et al., 2004; Frédérich et al., 2012; Holzer and Laudet, 2015; 143 

Besson et al., 2020). Metamorphosis is usually triggered by physiological and environmental cues 144 

(Holzer et al., 2017). Indeed, thyroid hormones (TH, notably thyroxine (T4) and triiodothyronine (T3)); 145 

Holzer et al., 2017) and cortisol (Jesus et al., 1991) act in concert to control and modulate 146 

metamorphosis. TH levels increase during post-embryonic development to reach a peak which induces 147 

metamorphosis; TH then coordinate ontogenetic transformations from the larval to the juvenile stages 148 

(Gilbert et al., 1996; Wada, 2008; Isorna et al., 2009; McMenamin and Parichy, 2013; Campinho, 2019; 149 

Klann et al., 2021). As TH signalling is critical for neurogenesis and the development of sensory organs, 150 

it may play a role in determining the "quality" of future juveniles, i.e., their capacity to select suitable 151 

habitats, feed efficiently, as well as detect predators and escape from them, which are all crucial for fish 152 

to successfully recruit into adult populations (Besson et al., 2020). 153 

2. Effects of multiple anthropogenic stressors on the hormonal system of fish living in 154 

harbours  155 

 In this review, we discuss on the effect of pollutants and stressors on fish endocrinology, with a 156 

focus on three major hormonal axes: the hypothalamo-pituitary-interrenal (HPI), hypothalamo-pituitary-157 

thyroid (HPT), and hypothalamo-pituitary-gonadal (HPG) axes, as described by Fig. 2. 158 
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Fig. 2 Modified from Dussenne et al., d2022. Illustration representing the hypothalamo-pituitary-160 

interrenal (HPI), hypothalamo-pituitary-thyroid (HPT), and hypothalamo-pituitary-gonadal (HPG) axes 161 

in non-mammalian species (pink, purple and blue, respectively). Environmental cues are perceived by 162 

sensory organs and processed in the brain, where corticotropin-releasing hormone (CRH) and 163 

gonadotropin-releasing hormone (GnRH) are secreted. In non-mammalian species, CRH is thought to 164 

control both the HPI and HPT axes. CRH acts on the pituitary cells to stimulate the synthesis and release 165 

of i) adrenocorticotropic hormone (ACTH) from corticotropic cells (C, pink circles) and ii) thyroid-166 

stimulating hormone (TSH) from thyrotropic cells (T, purple circles). HPI axis: ACTH stimulates the 167 

secretion of glucocorticoids (GCs) by the interrenal cells. Once secreted, GCs are transported in the 168 

blood by corticosteroid binding proteins (BPs). GCs enter target cells where they bind to corticosteroid 169 

receptor dimers which then translocate into the nucleus where they bind to specific DNA regions to 170 

induce gene expression. HPT axis: TSH stimulates the production of thyroid hormones (THs, T4 and 171 

T3) by thyroid follicles. THs are transported to target cells via their specific BPs. Inside target cells, 172 

THs are substrates of deiodinase enzymes which can both activate (i.e., forming T3) or inactivate (i.e., 173 

rT3 and T2) THs. THs are transported to the cell nucleus where they bind to TR receptors, which activate 174 

gene transcription, in fine resulting in metamorphosis. HPG axis: GnRH reaches gonadotropic cells to 175 

induce synthesis and release of gonadotropins (LH and FSH). LH and FSH both reach the gonads where 176 

they stimulate gonadal maturation and function (i.e., synthesis of sex steroids: E2, T and 11-KT). The 177 

balance between these sex steroids, in turn, regulates gametogenesis. RPD: rostral pars distalis, PPD: 178 

proximal pars distalis, PI: pars intermedia of the adenohypophysis. 179 

2.1 Plastic pollution 180 

Plastic pollution in the marine environment has become a global environmental concern (Coyle 181 

et al., 2020). Plastics are derived from raw natural substances such as petroleum, coal, and gas (Gabbott 182 

et al., 2020) and can absorb multiple pollutants from the aquatic environment. The mechanical or 183 

chemical impacts of plastics on marine organisms are well documented (Jacob et al., 2020; Welden, 184 

2020). Multiple mechanical impacts have been directly or indirectly linked to plastics including 185 

entanglement in macro-plastics (impeding mobility, leading to starvation or drowning), and the 186 

ingestion or inhalation of smaller plastic debris, such as micro-plastics (MPs) and nano-plastics (NPs; 187 

Welden, 2020). In fish, most ingested MPs and NPs are eventually excreted, but a small fraction can 188 

accumulate in organs and tissues (mainly in the intestine and liver) causing severe tissue damage and 189 

inflammation (e.g., Jovanović 2017; Wang et al., 2019; Araújo et al., 2019; Jacob et al., 2021; Marana 190 

et al., 2022). 191 

Beyond mechanical risks, marine plastic debris can also act as a reservoir of chemicals that pose 192 

potential threats to wildlife. A wide array of contaminants may be contained in plastics: additives such 193 

as flame retardants and plasticisers that can leach out from the plastic, or contaminants that get absorbed 194 

into plastics from seawater. More than 250 organic compounds have been identified on plastic debris 195 

(Campanale et al., 2020). Bisphenol A (BPA), used in the manufacturing of plastics, is found in aquatic 196 
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environments worldwide, notably harbours, and its concentration is positively correlated with the 197 

amount of plastic waste generated in the region (Wu and Seebacher, 2020). BPA is a xenestrogen, i.e., 198 

an endocrine disruptor capable of mimicking natural estrogens (Matozzo et al., 2008; Rubin, 2011). 199 

BPA and its congeners can alter testis maturation and decreased sperm quality in fish (Chen et al., 2017; 200 

Yang et al., 2017) and can induce gonad feminisation (Drastichová et al., 2005; Gonzalez et al., 2021). 201 

Males exposed to BPA show increased plasma vitellogenin (VTG) levels or increased vtg gene 202 

expression in the liver (Sohoni et al., 2001; Van den Belt et al., 2003; Yang et al., 2017; Frenzilli et al., 203 

2021; Gonzalez et al., 2021). VTG is a precursor of the egg-yolk protein; in females, VTG is synthetised 204 

in response to estrogens and stored in oocytes. In males, the gene coding for VTG is normally not 205 

expressed; its induction is thus used as a marker of estrogen exposure (Matozzo et al., 2008). Together 206 

with increased estrogen levels, exposure to BPA is also associated with decreased androgen levels (T 207 

and / or 11-KT; Yang et al., 2017; Gonzalez et al., 2021). Bisphenol also acts on the HPG axis, a 208 

hormonal cascade starting with the release of gonadotropin-releasing-hormone (GnRH) from GnRH 209 

neurons in the pituitary, stimulating the synthesis of gonadotropins, namely luteinising hormones (LH) 210 

and follicle-stimulating hormone (FSH). Both hormones together stimulate gonad maturation and the 211 

production of sex steroid hormones (in fish, mainly estradiol (E2), testosterone (T) and 11-212 

ketotestosterone (11-KT); Mills et al., 2010, 2018; Zohar et al., 2010). Moreover, in fish, kisspeptin 213 

(Kiss) neurons are thought to control the synthesis of gonadotropins, acting either directly on the 214 

pituitary cells or indirectly on GnRH neurons (Somoza et al., 2020). Following bisphenol exposure 215 

(BPA, bisphenol S, bisphenol F), the expression of Kiss1, Kiss receptor, GnRH2, GnRH3, GnRH 216 

receptors, fshβ, lhβ, and aromatase genes increases, whereas the expression of genes involved in 217 

steroidogenesis decreases (Ji et al., 2013; Qiu et al., 2016; Yang et al., 2017; Gonzalez et al., 2021). 218 

BPA and their congeners can have profound effects on fish reproductive systems, raising questions about 219 

population persistence in the future. 220 

Other studies have evaluated the effects of BPA on the thyroid system and found disruption of 221 

the HPT axis (Zhang et al., 2017; Wei et al., 2018; Lee et al., 2019) initiated by thyrotropin-releasing 222 

hormone (TRH) in mammals and corticotropin-releasing hormone (CRH) in non-mammalian species 223 

(see Laudet, 2011; Denver, 2017). In fish, when the HPT axis is stimulated, hypothalamic CRH neurons 224 

release CRH in the anterior pituitary, which synthetises and releases thyroid-stimulating hormone (TSH) 225 

into the global circulation. In turn, TSH reaches thyroid follicles and stimulates the synthesis of 226 

thyroxine (T4), which can be converted into its active form triiodothyronine (T3) in peripheral tissues 227 

under the action of deiodinase enzymes (Laudet, 2011; Denver, 2017). Several studies have found 228 

altered circulating levels of T4 and T3 in individuals exposed to bisphenols compared to control 229 

individuals, suggesting a disruption to the HPT axis (Zhang et al., 2017; Wei et al., 2018; Lee et al., 230 

2019). In addition, BPA causes regulatory changes in genes involved in all steps of the HPT axis, for 231 

which gene transcription occurs mainly in the brain, pituitary, thyroid, peripheral tissues, and liver (Lee 232 

et al., 2019). Interestingly, BPA on one hand and BPS – BPZ on the other hand may have different 233 
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modes of action on the HPT axis. For example, in vivo (zebrafish embryos) and in vitro experiments 234 

have shown that exposure to BPA upregulated the expression of several genes involved in TH synthesis 235 

as well as genes involved in thyroid development (Gentilcore et al., 2013). These results were further 236 

confirmed in zebrafish embryos exposed to BPA (i.e., upregulation of genes directly implicated in 237 

thyroid development and function; Lee et al., 2019). On the contrary, BPS and BPZ may deregulate 238 

gene expression in the brain and pituitary, notably causing the upregulation of crh and tsh gene 239 

transcription (at levels above 0.68 mg/L; Lee et al., 2019, higher than those observed in harbours, which 240 

are in the few ng/L range; Robinson et al., 2009; Emnet et al., 2020). 241 

A transgenerational experiment showed that the thyroid hormone disruption – lower T4 and 242 

higher T3 circulating levels– seen in F0 zebrafish females exposed to BPS from 2 hours to 120 days 243 

post-fertilisation was transferred to eggs, leading to higher T3 circulating levels in F1 embryos, causing 244 

adverse effects (delayed hatching, decreased swimming speed and escape behaviour, and reduced 245 

pigmentation; Wei et al., 2018).  246 

 Overall, studies have highlighted numerous significant negative consequences of plastics on 247 

fish, either mechanically or through chemical impacts on several hormones. BPA is one of many plastic 248 

components that cause endocrine disruptions in marine organisms. However, there has been no study 249 

on fish living in harbours, although these zones are often exposed to high concentrations of plastics and 250 

associated chemicals (Claessens et al., 2011; Naidoo et al., 2015; Romeo et al., 2015; Chen et al., 2021); 251 

characterising the effects of plastics on fish in harbours would be an informative research avenue.  252 

 253 

2.2 Chemical contamination 254 

In many coastal areas, including marinas, harbours, and ports, the legacy of past industrialisation 255 

and the past absence of regulations on emissions is still present. Coastal regions are part of the 256 

catchment-coast continuum, where catchment areas are often dominated by intense agriculture, may 257 

contain dump sites or landfills, and wastewater discharge is carried across drainage basins into the 258 

marine environment. It is therefore unsurprising that chemical contamination is increasing in many 259 

harbours and ports across the world (e.g., USA: Dauer et al., 2000; Hong Kong: Nicholson et al., 2011; 260 

Brazil: Hatje and Barros 2012; Australia: Mayer-Pinto et al., 2015). Chemical contamination is one of 261 

the greatest threats to marine species, leading to impairments in development and reproduction 262 

(Rochman et al., 2014), the emergence of diseases (Kiesecker, 2002), declines in biodiversity and 263 

ecosystem function (Johnston and Roberts, 2009; Johnston et al., 2015), and numerous chemical 264 

pollutants are thyroid hormone disruptors (Jarque and Piña, 2014). 265 

 266 

2.2.4 Persistent organic pollutants  267 

Among the multiple pollutants recorded in harbours, persistent organic pollutants, such as 268 

polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), are the most 269 

commonly detected (Casado-Martínez et al., 2009; Ghosh et al., 2003; Mali et al., 2016). Persistent 270 
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organic pollutants are organic compounds that are resistant to environmental degradation through 271 

chemical, biological, or photolytic processes (Jones and De Voogt 1999). These persistent contaminants 272 

are usually found only in trace amounts in water but tend to adsorb onto inorganic and organic material 273 

settled in sediments (Jones and De Voogt 1999). Persistent organic pollutants are remobilised by human 274 

activities such as dredging, rendering them bioavailable (Martins et al., 2012). Consequences on aquatic 275 

organisms are numerous: they are immunotoxic, genotoxic, mutagenic, and carcinogenic, and have the 276 

potential to disrupt hormonal systems (Tanabe, 2002; Vega-López et al., 2007; Luch and Baird, 2010)  277 

Polychlorinated biphenyls (PCBs), along with other organic pollutants (dioxins, and polycyclic 278 

aromatic hydrocarbons PAHs, a diverse group of organic molecules produced through the incomplete 279 

combustion of fossil fuels, petroleum, or petrochemical materials), have been strictly regulated since 280 

2001, yet remain present in harbour sediments worldwide (Connell et al., 1998; Adami et al., 2000; 281 

Barakat et al., 2002; Ghosh et al., 2003). In Sydney Harbour, 13 of 19 seafood species studied presented 282 

tissue concentrations of organic pollutants above standard thresholds for human consumption (Manning 283 

et al., 2017).  284 

Leatherland and Sonstegard (1978) reported changes in thyroid histological appearance and 285 

decreased plasma TH levels in coho salmon (Oncorhynchus kisutch) and chinook salmon 286 

(Oncorhynchus tshawytscha) after PCB exposure. Since then, the thyroidal responses of fish to PCBs 287 

have shown variable results in different studies, depending on the species and the type of PCB congeners 288 

(Brown et al., 2004). A 30-day laboratory exposure to PCB in the diet of juvenile rainbow trout O. 289 

mykiss reported several detrimental effects, such as oxidative stress, thyroid system dysfunction – higher 290 

T4 levels and more active deiodination (Buckman et al., 2007). A similar exposure in young-of-the-year 291 

Atlantic croaker Micropogonias undulatus decreased both T4 and T3 levels (LeRoy et al., 2006). Altered 292 

reproductive physiology has been documented in numerous species (review by Henry, 2015): for 293 

instance, female fish fed with PCB mixtures at environmentally realistic concentrations showed 294 

impaired ovarian maturation, delayed reproduction, and produced fewer viable eggs (Daouk et al., 2011; 295 

Horri et al., 2018).  296 

Life history transitions, such as metamorphosis, are hugely sensitive to endocrine disruption. 297 

Larval and juvenile Japanese flounder (Paralichthys olivaceus) exposed to PCBs show declines in T3 298 

and T4 levels as well as changes in deiodinase gene expression levels, which were associated with 299 

slower growth and delay metamorphosis (Dong et al., 2014, 2017). The effects of PAHs on the thyroid 300 

function in fish remain poorly studied (Brown et al., 2004; Kim et al., 2016; Price and Mager, 2020). 301 

Nevertheless, a few studies have reported adverse effects on TH. For example, in juvenile common carp 302 

(Cyprinus carpio), levels of plasma T3 and T4 were reduced in response to PAHs exposure (Shirdel et 303 

al., 2016), and similar results were found in zebrafish larvae (Kim et al., 2016). In addition, short-term 304 

exposures of water-soluble fractions from oil (PAH compounds) to larval and juvenile turbot 305 

(Scophthalmus maximus) increased whole-body concentrations of T4, but not T3 (Stephens et al., 1997). 306 

Overall, the effects of persistent organic pollutants on the thyroid system are varied and depend on the 307 
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compound and species. Changes in TH levels in both larvae and juveniles may reflect a complex 308 

disruption of biological processes, both in terms of TH synthesis and of their biotransformation in 309 

peripheral tissues, which may result in developmental deformities of adults. 310 

 311 

2.2.2 Metals  312 

Developing fish (embryos, larvae, and juveniles) are particularly sensitive to heavy metal 313 

exposure (Sfakianakis et al., 2015), and certain metals such as Cadmium (Cd) or Copper (Cu) are often 314 

present in harbours and ports (Broman et al., 1994; Jupp et al., 2017). Fish embryos exposed to Cd or 315 

Cu have lower hatching rates and survival, while young individuals (larvae and juveniles) notably suffer 316 

from severe skeletal deformities, impairments of the lateral line, and cardiac oedema (Sfakianakis et al., 317 

2015). Moreover, Cd exposure negatively impacts the function of both the HPT and the HPI axes (HPI 318 

ends with the synthesis and release of corticosteroids, mainly cortisol). Indeed, fish larvae exposed to 319 

Cd show complete disturbance of gene expression in the HPT axis and reduced circulating plasma levels 320 

of T4 (Jancic and Stosic, 2014; Li et al., 2014). Cd can also disturb cortisol synthesis by suppressing the 321 

expression of genes coding for proteins which are essential for corticosteroid production (i.e. StAR 322 

(steroidogenic acute regulatory protein) and MC2R (Melanocortin 2 receptor, which triggers steroid 323 

biosynthesis following activation by ACTH); Sandhu and Vijayan, 2011). Cadmium could potentially 324 

have detrimental effects on the metamorphosis and development of young fish and alter the reproductive 325 

system of adults. Persistent organic pollutants, such as PCBs, and metals, such as Cd, are examples of a 326 

large number of contaminants with varied and potentially cumulative effects. 327 

 328 

2.2.3 Pesticides  329 

A commonly used insecticide, chlorpyrifos (CPF), significantly decreases thyroid hormone 330 

levels of exposed fish juveniles, thus altering their metamorphosis, leading to decreased intestine 331 

lengthening and impaired grazing behaviour (Holzer et al., 2017). Besson et al. (2020) also showed that 332 

CPF and increased temperature, independently as well as synergistically, affect sensory development 333 

and predator avoidance behaviour in a coral reef fish (Besson et al 2020). Their results suggest that TH 334 

signalling might be the underlying physiological process impacted by these different stressors, however, 335 

each stressor might affect physiological process in unique ways. Increased temperature impacts T4 336 

levels, suggesting an alteration at the neuroendocrine level – before T4 is converted to other compounds 337 

such as T3. In contrast, CPF is thought to have a more downstream effect, possibly by acting on T3 338 

metabolism (Besson et al., 2020; Holzer et al., 2017). Fish exposed to these stressors had impaired anti-339 

predator behaviour, similar to that of pre-metamorphosed larvae, and experienced higher mortality from 340 

predation. The disruption of TH signalling during fish metamorphosis can cause neurological defects, 341 

with possible community-level consequences that may even threaten the maintenance of a species 342 

(Crane et al., 2006; Noyes et al., 2009; Laudet, 2011; Holzer et al., 2017; Pinsky et al., 2019). Indeed, 343 

changes in survival rates during this transition and post-settlement can have drastic effects on population 344 
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replenishment. This is of particular concern as nurseries are mainly located in shallow coastal waters 345 

and some harbours are even qualified as nurseries (Bouchoucha et al., 2016; Mercader et al., 2017b; 346 

Patranella et al., 2017; Mercader, 2018) despite containing multiple stressors that can affect fish 347 

metamorphosis and subsequent juvenile quality. As such, harbours are ideal sites to study the impact of 348 

multiple stressors on fish endocrine pathways “in situ”, in an ecologically relevant context. 349 

Understanding how harbours effect fish hormonal systems during metamorphosis is of great importance 350 

from a conservation perspective. 351 

 352 

2.2.4 Wastewater discharge  353 

In addition to pesticides, many other contaminants can reach the coast and harbours (endocrine 354 

disruptors, pharmaceuticals, etc.) through wastewater discharge (Mossa, 2006; Hamdhani et al., 2020). 355 

Among these, triclosan (TCS) is a synthetic chlorinated bactericide used in a vast number of personal 356 

care (soaps, toothpastes, deodorants, etc.) and textile products (Adolfsson-Erici et al., 2002). TCS has 357 

been monitored in US streams (Kolpin et al., 2002) and coastal waters (i.e., in the Narragansett Bay: 358 

Katz et al., 2013; the San Francisco Bay: Jackson and Sutton, 2008; Kerrigan et al., 2015). TCS has 359 

structural similarities with THs, suggesting it could disturb thyroid function (Adolfsson-Erici et al., 360 

2002). Studies have investigated the toxicity of TCS on various organisms and reported high mortality 361 

rates, deformities, perturbations of behaviour, and reproductive failure (Orvos et al., 2002; Oliveira et 362 

al., 2009; Nassef et al., 2010; review by Dann and Hontela 2011). However, few studies have 363 

investigated the effects of TCS on fish metamorphosis. In the sheepshead minnow Cyprinodon 364 

variegatus, the T3 peak observed in control fish (indicative of metamorphosis climax) is absent in fish 365 

exposed to TCS, resulting in delayed metamorphosis (Schnitzler et al., 2016). Zebrafish larvae exposed 366 

to TCS also displayed delayed metamorphosis (Stenzel et al., 2019). In the sole Solea senegalensis, TCS 367 

had the opposite effect and accelerated metamorphosis (Araújo et al., 2019). The mechanisms of action 368 

of TCS remain unclear but are thought to modulate the expression of several genes involved in the HPT 369 

axis, notably affecting the expression of TH receptors α and β in the North American bullfrog Rana 370 

catesbeiana (Veldhoen et al., 2006), and upregulating of the expression of the  tsh gene in adult zebrafish 371 

(Pinto et al., 2013). TCS is detected in the environment worldwide, and has been recorded in various 372 

organisms, including humans (Dann and Hontela, 2011). A better understanding of the risks associated 373 

with its use is urgent. 374 

 375 

2.2.5. Antifouling compounds  376 

Antifouling compounds are used on many submerged structures (e.g., ship hulls, buoys) to 377 

prevent the recruitment of marine organisms, but have many unintended impacts. Tributyltin (TBT) 378 

used to be a widespread antifouling agent. Its use became regulated in the 1980s and was banned in 379 

2008 (IMO, 2005) after it was linked to a global decline in marine molluscs, likely causing reproductive 380 

failure (Gibbs and Bryan, 1996; Antizar-Ladislao, 2008). TBT has been shown to delay tadpole 381 
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metamorphosis and growth in amphibians (Shi et al., 2014) and studies reported altered T4 and T3 levels 382 

and HPT gene expression in the zebrafish Danio rerio, goldfish Carassius auratus as well as in marine 383 

rockfish Sebastiscus marmoratus (Zhang et al., 2013, 2016; Li and Li 2021). Recently, medetomidine, 384 

a veterinary anaesthetic, has emerged as a new antifouling agent (Dahlström et al., 2000). It is widely 385 

used (Wendt et al., 2016) even though its ecotoxicological effects are poorly understood. Recent studies 386 

on amphibians showed that tadpoles exposed to medetomidine experienced delayed metamorphosis 387 

(Barr et al., 2018; Fong et al., 2018). Medetomidine induces paleness in fish (Bellas et al., 2005; 388 

Hilvarsson et al., 2007; Lennquist et al., 2010), which may be due to altered thyroid function, as TH 389 

regulates fish pigmentation (McMenamin et al., 2014; Saunders et al., 2019; Salis et al., 2021).  390 

 391 

2.2.6 Case study of chemical contaminants: the San Francisco Bay 392 

The San Francisco Bay features on the “303(d)” list of impaired water bodies in the US from 393 

the federal Clean Water Act. Chemical contaminants found in the San Francisco Bay include pesticides 394 

(diazinon, chlordane, dieldrin, dichlorodiphenyltrichloroethane), polyaromatic hydrocarbons, and 395 

chlorinated compounds. Several of the compounds monitored in the bay as well as in marine organisms 396 

are sometimes found in concentrations higher than the screening values established by the US EPA 397 

(Fairey et al., 1997; Davis et al., 2007; Greenfield and Allen, 2013). To our knowledge, only one study 398 

investigated fish TH levels in the vicinity of a harbour in the area (Brar et al., 2010). In this work, young 399 

individuals of two fish species, the shiner surfperch (Cymatogaster aggregate) and the Pacific staghorn 400 

sculpin (Leptocottus armatus), were sampled in several locations across the San Francisco Bay and over 401 

two consecutive years. Over the 2-year sampling period, both species had reduced T4 concentrations in 402 

locations with concentrated human activities (among which the Oakland inner harbour and the San 403 

Leandro Bay) compared to other locations (Brar et al., 2010). Fish liver analyses revealed the presence 404 

of over 85% of existing PCB congeners, with concentrations inversely correlated to T4 levels. Fishes 405 

also had significant differences in T3 concentrations and T3/T4 ratios across the study locations, which 406 

might reveal an alteration of deiodinase activity in peripheral tissues. The sampled sculpins may have 407 

been undergoing metamorphosis at the time of sampling (as indicated by their body size; Goto 1990). 408 

The altered TH levels due to contaminant exposure in the long term and notably during metamorphosis 409 

may lead to thyroid dysfunction, alter metamorphosis, and threaten population persistence. 410 

 411 

2.3. Invasive species 412 

Harbours, in addition to being subjected to anthropogenic stressors, are very susceptible to 413 

invasions of aquatic species. Boets et al. (2012) showed that one fourth of all crustacean species across 414 

four Belgian harbours were non-native. Invasive species in harbours mainly arrive in ballast water or 415 

from hull fouling (Carlton, 1985; Ruiz et al., 2000; Boets et al., 2012). They can also originate from 416 

aquaculture or the aquarium trade (Naylor et al., 2001). The arrival of new species in a harbour can 417 

cause interspecific competition with native species, leading to increased predation and stress. In fish, 418 
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stress is mediated by glucocorticoids, among which cortisol is often measured as an indicator of stress 419 

(e.g., Beldade et al., 2017). During a stressful situation, the HPI axis is stimulated, leading to the release 420 

of cortisol into the organism (Wendelaar Bonga, 1997). During acute stress, cortisol release is 421 

considered adaptive because it stimulates the catabolism of lipids, mobilising energy to cope with the 422 

stressful event (Van Weerd and Komen, 1998). However, prolonged stress can have detrimental effects 423 

on organisms, including impaired disease resistance, loss of appetite, reduced growth, and altered 424 

reproduction (Wendelaar Bonga, 1997; Van Weerd and Komen, 1998). The presence of invasive species 425 

which could induce stress in native species has never been explored in fish living in harbours or 426 

elsewhere. The only insight available is from a mammal, the Eurasian red squirrel (Sciurus vulgaris), 427 

faced with the invasion of grey squirrels (S. carolinensis; Santicchia et al., 2018). The presence of the 428 

invader induced high physiological stress in the native species: faecal glucocorticoid levels of native 429 

individuals were related to the abundance of invasive individuals. Whether alien species can induce 430 

physiological stress in fish has not yet been studied. Given the highly mobile nature of fish, and because 431 

cortisol levels fluctuate extremely rapidly (within a few minutes; Pankhurst 2011), it will be particularly 432 

challenging to assess stress levels in response to invasive species from blood samples in harbours. 433 

 434 

2.4. Boat noise 435 

Sound travels faster and further underwater compared with in air, and the frequency and 436 

intensity of anthropogenic underwater sounds overlap with the ranges of natural biological sounds 437 

(Hastings and Popper, 2005; Slabbekoorn et al., 2010). Anthropogenic underwater sounds have 438 

therefore been defined as pollutants. Within the EU Marine Strategy Framework Directive (MSFD) 439 

(2010/477/EU European Commission Decision), two indicators have been proposed to monitor this 440 

pollution: impulsive noise and continuous noise. The anthropogenic contribution to the soundscapes of 441 

many harbours worldwide, notably in the northern hemisphere, is dominated by continuous noise caused 442 

by commercial shipping (Hildebrand, 2009; McKenna et al., 2013). In the northeast Pacific, noise from 443 

commercial shipping in inshore waters is also the most persistent type of anthropogenic noise, notably 444 

in large ports such as Vancouver and Seattle (Erbe et al., 2014). In addition, tourism and recreational 445 

boating also add a substantial amount of noise to coastal underwater soundscapes (e.g., McDonald et 446 

al., 2006; Hermannsen et al., 2019; McCormick et al., 2019). During a lockdown put in place by 447 

governments worldwide to slow the spread of COVID-19 (April-May 2020), the vocal activity of a 448 

range of coral reef fish living in the marina of Pointe-à-Pitre (Guadeloupe, French West Indies), located 449 

next to a major maritime harbour, was reduced as a response to the lower levels of anthropogenic noise 450 

they experienced (Bertucci et al., 2021). 451 

Several studies have highlighted the effect of noise on fish physiology, although none have 452 

directly tested this on fish living in harbours. The potential stressors caused by anthropogenic 453 

underwater noise include behavioural responses, which are mediated through androgen and 454 

glucocorticoid pathways (Mills et al., 2020) and may ultimately lead to hearing impairment or habitat 455 
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abandonment. Noise can affect physiology as early as the embryonic stage in fish, with heart rates shown 456 

to increase in staghorn damselfish embryos (Amblyglyphidodon curacao) exposed to noise from boats 457 

with 2- and 4-stroke engines (Jain-Schlaepfer et al., 2018). This study also demonstrated that heart rate 458 

doubled with playbacks of 2-stroke engines compared to 4-stroke engine playbacks. Similarly, heart rate 459 

increased by approximately 10% when sounds of small boats powered by 2-stroke engines were played 460 

back to embryos of damselfishes Amphiprion melanopus and Acanthochromis polyacanthus (Fakan and 461 

McCormick, 2019). Similar exposures to anthropogenic noise in starved green Chromis (Chromis 462 

viridis) and spiny damselfish (A. polyacanthus) caused a heightened corticosteroid stress response 463 

(Armstrong-Smith, 2016). Besides the Pomacentridae family, which has received most attention, boat 464 

noise playbacks also increased whole body cortisol levels of a Labridae species, the slippery dick 465 

(Halichoeres bivittatus; Staaterman et al., 2020). Should this exposure be prolonged, elevated cortisol 466 

levels might ultimately impact immune responses and weaken responses to diseases and parasites (Fast 467 

et al., 2008). While elevated cortisol levels drove fish to hide in their shelter during anthropogenic noise, 468 

circulating androgens such as testosterone, correlated with aggression in orange-fin anemonefish 469 

(Amphiprion chrysopterus) when exposed to both 30 min and 48 hours of boat noise (Mills et al., 2020). 470 

In freshwater environments, playbacks of underwater boat noise recorded from the Danube River and 471 

in two Austrian lakes led to increased cortisol secretion in the common carp (Cyprinus carpio), the 472 

gudgeon (Gobio gobio), and the European perch (Perca fluviatilis; Wysocki et al., 2006). However, no 473 

increase was observed when fish were exposed to continuous random noise. This indicated that irregular 474 

noises such as those caused by ship engines, with fluctuations in amplitude and frequency, constitute 475 

important stressors. This study also did not find differences in response between species possessing 476 

excellent (common carp and gudgeon) or poor (perch) hearing abilities. Nevertheless, species-specific 477 

sensitivities and ranges of hearing capacities may alter the extent to which anthropogenic noise impacts 478 

them. Motorboat noise also affects interspecies interactions. Bluestreak cleaner wrasses (Labroides 479 

dimidiatus) inspected their fish clients for longer and were significantly less cooperative during exposure 480 

to boat noise (Nedelec et al., 2017). Furthermore, clients did not retaliate as expected (i.e., by chasing) 481 

in response to increased cheating by cleaners, suggestive of cognitive impairments due to distraction by 482 

both parties. The effects of noise may also depend on multiple acoustic factors, such as sound frequency, 483 

intensity, and duration (Slabbekoorn et al., 2010; Hawkins and Popper, 2016). 484 

While some fish species appear to somewhat acclimate to noise in terms of behaviour – with 485 

behaviours returning to control levels after continuous noise exposure (Nedelec et al., 2016; Holmes et 486 

al., 2017; Staaterman et al., 2020) –, hormonal effects could be long-lived. This has been documented 487 

through the increase in aggressiveness and hiding behaviour of A. chrysopterus, linked to heightened 488 

levels of testosterone and cortisol respectively, after short thirty-minute boat noise playbacks, but also 489 

over longer two-day playbacks, throughout which A. chrysopterus did not show any habituation or 490 

reduction in response (Mills et al., 2020). It illustrates that changes in the physiological state in response 491 

to noise could result in prolonged behavioural effects in reef fish species, which might ultimately lead 492 
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to alterations in individual fitness and behavioural changes at the population level (Radford et al., 2016; 493 

Popper and Hawkins, 2019). 494 

 495 

2.5. Artificial light pollution at night 496 

Harbours are one of the largest sources of permanent light on coastlines with light emitted from 497 

homes, resorts, and streetlights (Davies et al., 2014). Shallow waters in harbours experience light 498 

intensities up to 150–200 lux (Bolton et al., 2017), compared to intensities of 0.03 to 2.5 lux due to 499 

skyglow in other zones (when scattered light from streetlights is reflected by clouds; Perkin et al., 2014), 500 

0.1–0.3 lux during full moonlight on a clear night, and only 0.00003–0.0001 lux on a cloudy night (Rich 501 

and Longcore, 2013). The consequences on living organisms are multiple as artificial-light-at-night 502 

(ALAN) could affect functions related to orientation in space (phototropism, phototaxis) and in time 503 

(circadian rhythms; Falcón et al., 2020).  504 

Circadian clocks are systems that translate environmental information, mainly the alternation of 505 

light and darkness (or photoperiod), into the  hormonal signal melatonin to orchestrate a myriad of 506 

downstream biochemical, physiological, and behavioural events so that the right process occurs at the 507 

right time (Falcón et al., 2009; Falcón et al 2020). In fish, the main source of information on photoperiod 508 

and light is from the photosensitive pineal organ, situated at the surface of the brain underneath a 509 

translucent window in the skull. The pineal photoreceptors are responsible for the nocturnal production 510 

of the time-keeping hormone melatonin, the duration of this nocturnal signal reflecting the duration of 511 

the night, while the amplitude varies with temperature in a species-specific manner. Consequently, daily 512 

and annual variations in melatonin production provide internal information of daily and annual time, for 513 

the orchestration and synchronization of numerous physiological and behavioural processes (Falcón and 514 

Meissl, 1981; Underwood, 1989; Falcón et al., 1992, 2009; Grubisic et al., 2019). Other tissues that 515 

produce hormonal signals include deep brain photoreceptors, the saccus vasculosus, or photoreceptors 516 

in the retina (Kojima et al., 2000; Philp et al., 2000; Peirson et al., 2009; Falcón et al., 2010; Nakane et 517 

al., 2013). The main hormone controlling circadian activities, pineal melatonin, is produced during the 518 

night and released in the cerebrospinal fluid and blood to control locomotor activity, food intake, 519 

shoaling, and diel vertical migration (Ekstrzm and Meissl, 1997, 2004; Ryer and Olla, 1998; Mehner, 520 

2012; Vowles et al., 2014). Pineal melatonin also regulates seasonal rhythms including reproduction, 521 

growth and development, sleep rhythms, rhythmicity of locomotor activity, and immune responsiveness 522 

(Duston and Bromage, 1986; Fairey et al., 1997; Boeuf and Le Bail, 1999; Downing and Litvak, 2002; 523 

Wiechmann and Sherry, 2013). However, more and more studies warn about the potentially disruptive 524 

effects of ALAN on the synchronization of biological functions and life cycle of species, questioning 525 

their sustainability on impacted areas, such as harbours. 526 

Almost all studies in fish have shown that broad-spectrum white light, even as little as 1, 0.1 527 

and 0.01 lux, reduces the nocturnal production of plasma melatonin across fish species. ALAN reduced 528 

melatonin in temperate freshwater fish such as goldfish (C. auratus; Kezuka et al., 1988; Iigo et al., 529 
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1997), pike (Esox lucius; Falcón et al,. 1987, 1989), zebrafish (Khan et al., 2018) and other freshwater 530 

species (Porter et al., 2001; Vera et al., 2005; Brüning et al., 2015, 2018b), as well as in marine species 531 

such as the Atlantic salmon (Salmo salar), European sea bass (Dicentrarchus labrax) and Arctic charr 532 

(Salvelinus alpinus; Porter et al., 2001; Bayarri et al., 2002; Rahman et al., 2004; Vera et al., 2005; 533 

Nikaido et al., 2009; Park et al., 2014; Choi et al., 2017; Liu et al., 2019). Tropical marine species have 534 

shown some of the strongest responses to light at night of 1 lux (e.g., Rahman et al., 2004; Nikaido et 535 

al., 2009; Carazo et al., 2013; Park et al., 2014). Increasing light intensity had little to no effect 536 

suggesting that there is likely a threshold level of ALAN near 1 lux that alters the circadian rhythm in 537 

fish (Brüning et al., 2015, 2016, 2018a). Even lower light levels, such as skyglow (0.01–0.1 lux), 538 

suppress nocturnal melatonin levels (Kupprat et al., 2020): the strong light pollution observed in 539 

harbours can be expected to suppress melatonin secretion at night in fish.  540 

The pineal gland develops early and detects light even during early embryonic stages (Ekström 541 

et al., 1983; Östholm et al., 1987; Ekstrzm and Meissl, 1997). Egg hatching, which normally takes place 542 

under the cover of darkness, is impacted by the disturbance of the circadian rhythm by ALAN. Egg 543 

hatching was delayed in the European perch Perca fluviatilis, roach Rutilus rutilus, and bleak Alburnus 544 

alburnus (Brüning et al., 2011) and completely prevented in laboratory studies of tropical fish species 545 

(Fobert et al., 2019). One explanation may be that the modified ratio of prolactin (a pituitary hormone) 546 

and melatonin resulted in a change in the egg hatching enzyme (Brüning et al., 2011). 547 

Melatonin also regulates the secretion of several components of the HPG axis, such as 548 

gonadotropins, sex steroids or gonadal maturation (Khan and Thomas, 1996; Amano et al., 2000; 549 

Chattoraj et al., 2005; Bhattacharya et al., 2007; Sébert et al., 2008; Carnevali et al., 2011). Experimental 550 

white light levels as low as 1 lux (but not other wavelengths of light such as blue, green, red) as well as 551 

street-lighting in a natural setting (13.3–16.5 lux) suppress mRNA expression of LH and FSH in male 552 

and female European perch and roach (Brüning et al., 2016, 2018b). ALAN also reduces circulating sex 553 

hormones, 17β-estradiol in female European perch and roach (Brüning et al., 2018b), Senegalese sole 554 

(Solea senegalensis, García-López et al., 2006), and in male and female perch (Migaud et al., 2004), as 555 

well as 11-ketotestosterone in male European perch and roach (Brüning et al., 2018b), sea bass 556 

(Rodríguez et al., 2005; Felip et al., 2008) and Senegalese sole (García-López et al., 2006). The 557 

cascading impacts of ALAN on sex hormones cause a subsequent failure in gonad maturation for several 558 

fish species, including sea bass (Rodríguez et al., 2005), Atlantic cod (Gadus morhua, L.; Taranger et 559 

al., 2006), turbot (Scophthalmus maximus; Imsland et al., 2003) and Nile tilapia (Oreochromis niloticus; 560 

Rad et al., 2006).  561 

The impact of ALAN on fish cortisol levels, a commonly measured indicator of stress 562 

(Mommsen et al., 1999), has been mixed. ALAN increased plasma cortisol and glucose in farmed 563 

Atlantic salmon (Migaud et al., 2007) but did not affect cortisol levels in dispersing Atlantic salmon fry 564 

(Newman et al., 2015). There was also no effect of ALAN on the cortisol response of European perch 565 

(Brüning et al., 2015), red sea bream (Pagrus major) and striped knifejaw (Oplegnathus fasciatus; 566 
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Biswas et al., 2006, 2008), Bluefin tuna (Thunnus orientalis; Honryo et al., 2013) or juvenile bonefish 567 

(Albula vulpes, Szekeres et al., 2017). To date, the evidence shows that the hormonal impacts of ALAN 568 

in fish are driven by the changes of melatonin levels rather than cortisol levels. 569 

In most cases, all the above experiments on ALAN were completed in laboratory settings 570 

lacking many environmental and ecological factors, such as species interactions between predators and 571 

prey, as well as refuges linked to habitat complexity (Brüning et al., 2015; Schligler et al., 2021). It is 572 

therefore unclear whether ALAN in more natural settings, and over longer periods of time, will lead to 573 

similar alterations to hormone levels. However, one recent study in a natural setting showed that long-574 

term exposure to light pollution over 18–23 months negatively impacts the survival and growth of a 575 

wild coral reef fish (Schligler et al., 2021). The higher mortality of orange-fin anemonefish, A. 576 

chrysopterus, in the wild (Schligler et al., 2021) agrees with a laboratory study showing increased 577 

predation under ALAN of coral reef fish larvae, the convict tang, Acanthurus riostegus (O’Connor et 578 

al., 2019). Despite no studies to date on the impact of ALAN specifically in harbours, the disruption to 579 

hormonal rhythms, including those associated with gonadogenesis, as well as the impacts of growth and 580 

survival, strongly suggests that the high levels of light pollution in harbours will have downstream 581 

consequences for fitness and population dynamics (Brüning et al., 2018b).  582 

 583 

2.6. Temperature variations in water exchange-limited harbours 584 

The often-enclosed topography of harbours can prevent efficient water cycling with the open 585 

ocean. This can cause higher variation in temperature than in “open” coastal areas (i.e., the water tends 586 

to be colder in the winter and warmer in the summer). Harbours can hence potentially provide a natural 587 

setting in which to study of the effects of temperature variation on hormones and hormone-dependent 588 

physiological processes. Multiple studies have highlighted the effect of temperature on a range of 589 

processes – e.g., metabolic rates in zebrafish, ATP production in mosquitofish Gambusia affinis – 590 

controlled by thyroid hormone action in organisms (cf. review by Little 2021). In addition, temperature 591 

variation in harbours will only be heightened by climate change. Fish are most commonly ectotherms 592 

(Little, 2021), and thus do not regulate their internal temperatures, but rather adapt their metabolic 593 

processes to environmental conditions. This fine-tuning is strongly reliant upon the thyroid axis for 594 

numerous taxa: it can be based  on the regulation of T3 and T2 levels (in zebrafish; Little et al., 2013) 595 

but it also depends on other parts of the signalling cascade, such as the temperature-sensitive differential 596 

expression of nuclear thyroid receptors (in tadpoles; Nakajima et al., 2020). Variations in temperature 597 

thus have direct effects on the thyroid hormone signalling cascade and can be expected to modify the 598 

physiological responses controlled by thyroid hormones (higher T2 and T3 levels in warm conditions, 599 

higher metabolic rate, and transcription of ATPase in cold conditions; Little et al., 2013). Furthermore, 600 

the combination of other stressors impairing thyroid hormone pathways and heightened temperature 601 

variability can have negative impacts on fish. For instance, hypothyroid zebrafish have been found to 602 

have impaired swimming performances under cold conditions (Little et al., 2013). Harbours can thus be 603 
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key sites to study the cumulative consequences of numerous stressors and stronger temperature 604 

variability than in natural coastlines with more efficient water renewal. 605 

 606 

2.7. Combined effects of anthropogenic stressors 607 

Anthropogenic stressors (e.g., chemicals, plastics, boat noise, ALAN, and invasive species) thus 608 

occur in harbours and some of their effects on fish endocrine systems are already documented, mostly 609 

based on laboratory studies (non-exhaustive list in Table 1). Laboratory studies are particularly suited 610 

to isolate causal relationships between a type of contaminant and physiological issues (e.g., Grinwis et 611 

al., 2000), and these relationships are extrapolated to predict field conditions (Ankley and Villeneuve 612 

2006). However, laboratory studies have numerous limitations when compared to field studies, which 613 

is an issue raised by ecotoxicologists over the past decades (Kimball and Levin, 1985, Chapman 2002): 614 

they consist of artificial set-ups, with exposure routes differing between the laboratory and field-exposed 615 

fish, chemical contaminants often at higher concentrations than those found in harbours, restrained times 616 

of exposure to one or multiple contaminants, low number of successive generations, and limited 617 

experimental set-up and space. Crucially, they do not replicate all conditions experienced by wild 618 

organisms, in particular combinations of numerous stressors (Crain et al., 2008) at various levels of 619 

acuteness through time (e.g., varying bioavailability of chemical pollutants depending on water 620 

parameters (Ankley and Villeneuve 2006). Wider-scale laboratory studies with microcosms or 621 

mesocosms have been suggested (Kimball and Levin, 1985) but involve complex protocols and are 622 

again limited in scope. Experimental manipulations of whole ecosystems require numerous impact 623 

assessments (e.g., recent experiment with wastewater release into a confined stream, with before-624 

after/control-impact; Pereda et al., 2020) and would be difficult to put in place in open water or coastal 625 

settings where target fish species grow. However, harbours can be considered as large-scale and long-626 

term ecosystem manipulations and thus provide an ideal study ground to assess the effects of combined 627 

anthropogenic stressors on fish. 628 

Indeed, combinations of stressors may have cumulative effects on resident organisms. In the 629 

laboratory, synergistic effects of chemical pollutants on TH homeostasis have been identified in rats 630 

exposed to a range of endocrine disruptors (dioxins, PCBs, polybrominated diphenyl ethers), with 631 

combined impacts higher than in a simple dose additive manner (Crofton et al., 2005). The combination 632 

of invasive species and heavy metal pollution in harbours has unexpected outcomes: copper and tin 633 

contamination result in the recruitment and growth of various invasive species above ‘natural’ levels in 634 

high traffic areas of Sydney harbour, while the recruitment of native species decreases (Piola and 635 

Johnston, 2008; Dafforn et al., 2009). Increased larval recruitment of invasive species and increased 636 

metal contamination may therefore act in combination to diminish the abundance of native species 637 

(Dafforn et al., 2009). The additional impact of climate change and/or ocean acidification onto these 638 

local anthropogenic stressors is also predicted to be largely additive. Increased temperature and 639 

decreased pH may induce a higher toxicity of many common contaminants in harbours (Crain et al., 640 
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2008). Due to the complexity and importance of understanding how global change and multiple local 641 

anthropogenic stressors interact, determining the combined impacts of stressors on fish hormonal 642 

systems should be a priority to inform managers and stakeholders and improve conservation practices 643 

in harbours. 644 

 645 

Table 1: Examples of the impacts on endocrine systems of fish of different sources of stress that 646 

can be found in harbours (non-exhaustive list). 647 
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Category Source of stress 
 

Impact on 
endocrine 
systems 

Consequences  Species Developmental 
stage 

Reference 

Plastic pollution Plastic 
chemical 
compounds 

Bisphenol A 
and 
congeners 

HPT axis  Altered circulating T4 and T3 levels, 
expression of HPT-related genes, 
hormonal disruption transferred to 
offspring 

Zebrafish Danio rerio 
 

Embryonic, larval, 
metamorphosis, 
adult 
 

Gentilcore et al. (2012) 
Zhang et al. (2017) 
Wei et al. (2018) 
Lee et al. (2019) 

Plastic pollution Plastic-
sorbed 
chemical 
compounds 

Bisphenol A Reproductive 
system 

Altered testis maturation, gonad 
feminisation, decreased sperm quality, 
increased plasma vitellogenin levels, 
altered expression of genes related to the 
reproductive system 

Fathead minnow 
Pimephales promelas 
 
Zebrafish D. rerio 
 
 
 
Rainbow trout 
Oncorhynchus mykiss 
 
Brown trout Salmo trutta 
 
Anemonefish Amphiprion 
ocellaris 
 

Adult 
 
 
Adult 
 
 
 
Juvenile, adult 
 
 
Juvenile 
 
Adult 

Sohoni et al. (2001) 
 
 
Van den Belt et al. (2003) 
Chen et al. (2017) 
Yang et al. (2017) 
 
Van den Belt et al. (2003) 
 
 
Frenzili et al. (2021) 
 
Gonzalez et al. (2021) 

Chemical 
pollution 

Persistent 
organic 
pollutants 

Polychlorinat
ed Biphenyl  

HPT axis  Altered HPT function, decreased TH 
circulating levels, change in thyroid 
gland structure 
In young individuals: Decreased 
circulating TH levels, slower growth, 
and delayed metamorphosis 

Coho salmon O. kisutch 
  
Flounder Paralichthys 
olivaceus 
 
 

Juvenile 
 
Metamorphosis, 
juvenile 

Leatherland et al. (1978) 
 
Dong et al. (2014) 
Dong et al. (2017) 

Chemical 
pollution 

Persistent 
organic 
pollutants 

Polychlorinat
ed Biphenyl  

Reproductive 
system 

Impaired ovarian maturation, delayed 
reproduction, fewer viable eggs 

Zebrafish D. rerio Embryonic, larval, 
metamorphosis, 
juvenile, adult 
 

Daouk et al. (2011) 
Horri et al. (2018) 

Chemical 
pollution 

Persistent 
organic 
pollutants 

Bactericide – 
Triclosan  

HPT axis Disruption of thyroid function, 
deformities, modified metamorphosis 
timing 

Zebrafish D. rerio 
 
 
 
Medaka Oryzias latipes 
 
Sheepshead minnow 
Cyprinodon variegatus 
 
 Sole Solea senegalensis 

Embryonic, 
metamorphosis, 
adult 
 
Embryonic 
 
Metamorphosis 
 
 
Metamorphosis 

Oliveira et al. (2009) 
Stenzel et al. (2019) 
 
 
Nassef et al. (2010) 
 
Schnitzler et al. (2016) 
 
 
Araújo et al. (2019) 
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Chemical 
pollution 

Persistent 
organic 
pollutants 

Polycyclic 
Aromatic 
Hydrocarbon  

HPT axis Altered T3, T4, and TSH levels Turbot Scophthalmus 
maximus 
 
Caspian brown trout 
Salmo trutta caspius 
 

Metamorphosis 
 
 
Juvenile 

Stephens et al. (1997) 
 
 
Shirdel et al. (2016) 

Chemical 
pollution 

Heavy 
metals 

Cadmium HPT axis Altered gene expression, reduced 
circulating T4 levels 

Chinese rare minnow 
Gobiocypris rarus 
 

Larval, adult Li et al. (2014) 

Chemical 
pollution 

Heavy 
metals 

Cadmium HPI axis Reduced expression of genes linked to 
corticosteroid production 

Rainbow trout O. mykiss Juvenile Sandhu and Vijayan 
(2011) 

Chemical 
pollution 

Antifouling Tributyltin HPT axis Altered T3 and T4 circulating levels and 
gene expression 

Rockfish Sebastiscus 
marmoratus 
 
Goldfish Carassius 
auratus 
 
Zebrafish D. rerio 
 

Adult 
 
 
Adult 
 
Adult 

Zhang et al. (2013) 
 
 
Zhang et al. (2016) 
 
Li and Li (2021) 

Chemical 
pollution 

Antifouling Medetomidin
e 

HPT axis Paleness in fish – pigmentation linked to 
TH (McMenamin et al., 2014; Saunders 
et al., 2019; Salis et al., 2021) 

 Lumpfish Cyclopterus 
lumpus 
 
Atlantic cod Gadus 
morhua 
 
Turbot Psetta maxima L.  
 

Larval 
 
 
Larval 
 
Juvenile 

Bellas et al. (2005) 
 
 
Bellas et al. (2005) 
 
Hilvarsson et al. (2007) 
 

Chemical 
pollution 

Pesticides Chlorpyrifos HPT axis Decreased circulating TH levels, impact 
on T3 metabolism during 
metamorphosis. Impaired anti-predator 
behaviour post-metamorphosis. 

Surgeonfish Acanthurus 
triostegus 

Metamorphosis 
 
 
 

Holzer et al. (2017) 
Besson et al. (2020) 

Light pollution Artificial 
light at 
night 

Disruption of 
the circadian 
cycle 

Reproductive 
system 

Suppression of LH and FSH synthesis European perch Perca 
fluviatilis 
 
Roach Rutilus rutilus 

Juvenile 
 
 
Juvenile 

Brüning et al. (2016, 
2018) 
 
Brüning et al. (2016, 
2018) 

Light pollution Artificial 
light at 
night 

Disruption of 
the circadian 
cycle 

Reproductive 
system 

Reduction in circulating levels of male 
and female sex hormones (11-
ketotestosterone for males, 17β-estradiol 
for females) 

European perch P. 
fluviatilis 
 
Seabass Dicentrarchus 
labrax 
 

Juvenile 
 
 
Juvenile 
 
 

Migaud et al. (2004) 
 
 
Rodriguez et al. (2005) 
Felip et al. (2008) 
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Sole S. senegalensis 
 
Roach R rutilus 
 

Juvenile 
 
Juvenile 

Garcia-Lopez et al. (2006) 
 
Brüning et al. (2018) 

Light pollution Artificial 
light at 
night 

Disruption of 
the circadian 
cycle 

Reproductive 
system 

Altered gonad maturation 
 
 

Seabass D. labrax 
 
Atlantic cod Gadus 
morhua 
 
Turbot Scophthalmus 
maximus 
 
Nile tilapia Oreochromis 
nitolicus 
 

Juvenile 
 
Juvenile 
 
 
Juvenile 
 
 
Juvenile 

Begtashi et al. (2004) 
 
Taranger et al. (2006) 
 
 
Imsland et al. (2003) 
 
 
Rad et al. (2006) 

Temperature Uncommon 
temperatur
e 
conditions 

Temperature 
changes in 
semi-
enclosed 
harbours 

All hormones Modification of hormone synthesis and 
tissue sensitivity, impact on numerous 
processes 

Numerous fish species Embryonic, larval, 
metamorphosis, 
juvenile, adult 

Review by Little (2021) 

Temperature Uncommon 
temperatur
e 
conditions 

Increase in 
average 
temperature 

HPT axis Modified T4 levels. Impaired anti-
predator behaviour post-metamorphosis) 

A. triostegus Juvenile Besson et al. (2020) 

Invasive species Competitor
s with 
native 
species 

Long term 
competition 

HPI axis Increased stress – release of cortisol, 
mobilisation of energy. In the long-term, 
impaired disease resistance, loss of 
appetite, reduced growth and 
reproduction, more hiding behaviour 

No fish study yet. Squirrel 
Sciurus vulgaris 

Adult Santicchia et al. (2018) 

Sound pollution Boat noise Long term 
engine noise 
exposure 

HPI axis Increased stress – release of cortisol, 
mobilisation of energy. In the long-term, 
impaired disease resistance, loss of 
appetite, reduced growth and 
reproduction, more hiding behaviour 

Anemonefish Amphiprion 
chrysopterus 
 
Wrasse Halichoeres 
bivittatus 

Adult 
 
 
Adult 

Mills et al. (2020) 
 
 
Staaterman et al. (2020) 

Sound pollution Boat noise Long term 
engine noise 
exposure 

Testosterone Higher aggressivity Anemonefish A. 
chrysopterus 
 

Adult Mills et al. (2020) 

648 
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3. Recommendations for future studies 649 

Harbours are often considered as secondary sources of coastal pollution, notably when 650 

compared with direct wastewater inputs. This review emphasises the lack of studies on the endocrine 651 

systems of fish in harbours, despite harbours being potential in situ laboratories where multiple stressors 652 

occur simultaneously. Characterising the interactions between the hormonal systems of fish and a wide 653 

range of stressors in harbours can shed light on numerous issues: how are different endocrine pathways 654 

affected by multiple stressors? What consequences do stressors have on the biology and fitness of fish 655 

and on their distribution and abundance (i.e., consequences from the molecular and organism level to 656 

the population and ecosystem level)? Such integrative studies would provide insights for the 657 

development of effective policies to manage and preserve marine biodiversity and would guide solutions 658 

to enhance water quality in harbours. Recommendations for future studies are detailed below. 659 

 660 

3.1 Choice of target fish species 661 

To assess the need for harbour management plans, indicator species can be used. Ford et al. 662 

(2005) focused on changes in the structure and function of the microbial community in New Bedford 663 

Harbour (USA) in response to toxic contaminant exposure, with the goal of using microbes as 664 

ecotoxicological tools. Sessile invertebrates are often used to monitor harbour environments as harbours 665 

serve as sinks for pollutants that bind to sediments and contaminants, such as heavy metals and 666 

hydrocarbons, accumulate in the tissues of benthic marine species (e.g., marine mussels; Wade et al., 667 

1998; Corsi et al., 2005). Corals have also been identified as environmental indicators of heavy metal 668 

contamination and have been used to identify pollution hotspots in Safaga harbour (Egypt; Shabib et al., 669 

2021). Mobile fish species can also be used as key species to reflect the water quality of harbours, as 670 

organic contaminants and trace metals can also accumulate in fish tissue (Bolton et al., 2004). Studies 671 

conducted in Vancouver Harbour and in the neighbouring Puget Sound estuary reported toxicopathic 672 

liver lesions in the English sole Pleuronectes vetulus, a benthic species, which were associated with 673 

sediment contaminant levels (Goyette, 1988; Myers et al., 1990, 1998). Velusamy et al. (2014) 674 

confirmed that benthic species are well-suited to assess the impacts of sediment-associated pollution as 675 

trace metals highly accumulated in demersal fishes, followed by neritic and pelagic fishes in Mumbai 676 

harbour. Thus, benthic fish species (as opposed to pelagic and demersal fish species) could be used in 677 

harbours not only as a bioindicator of marine ecosystem health, but also to study the relationship 678 

between sediment contaminant concentrations and the prevalence of diseases. Benthic fish species, due 679 

to their ecological niche, cannot avoid environmental stressors, and can be sensitive indicators of natural 680 

and anthropogenic disturbances in harbours. Conversely, in the event of restoration action in ports, the 681 

species to be favoured will be demersal species, which are independent of the substrate (e.g., most 682 

coastal fish typical of rocky substrate in the case of the Mediterranean Sea). 683 

 684 

3.2. Increasing larval recruitment in harbours 685 
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Numerous management solutions for harbours have focused on promoting larval recruitment in 686 

harbour areas. However, the relevance of such solutions can be questioned as harbours are generally 687 

unfavourable habitats for fish growth and quality. Larval fish recruiting in harbours are exposed to 688 

multiple stressors that may impact their ability to grow properly (deformity), to metamorphose, to 689 

reproduce (sterility), or to protect themselves from predation. Why should fish recruitment be promoted 690 

in harbours if fish survival and metamorphosis are uncertain, and hence if the renewal capacity of fish 691 

stocks is not guaranteed? The first ecological restoration actions in ports to rehabilitate the nursery 692 

function are encouraging as they show greater species diversity, greater abundance, and better survival 693 

(Bouchoucha et al., 2016; Mercader et al., 2017). This is linked to the fact that the artificial habitats only 694 

target demersal species which have food sources independent from polluted harbour substrates. 695 

Bouchoucha et al. (2018) found little to no significant differences between the concentrations of some 696 

heavy metals in the muscle tissues of seabream juveniles in a harbour and a natural area. Studies testing 697 

the synergistic effects of the multiple stresses present in harbours on the hormonal systems of fish are 698 

yet to be performed. Research must focus on these questions to clarify whether the restoration of juvenile 699 

nursery areas in harbours is efficient in the long term to mitigate the impacts of coastal modifications. 700 

Answering this question is crucial to implement relevant and efficient conservation actions. Indeed, even 701 

if harbours attempt to limit their impacts, for instance by obtaining ecological labels (which should be 702 

the direction to follow; Satir and Doğan-Sağlamtimur, 2018), the creation of a marine protected area in 703 

their vicinity could be a better option. However, not all areas are suitable for the implementation of 704 

protection measures and restoring degraded habitats in harbours should be considered as a 705 

complementary step. Conservation and restoration actions must be adapted to local characteristics and 706 

specificities. In any case, the priority remains preventing the degradation of ecosystems and associated 707 

ecosystem services.  708 

 709 

3.3. Recommendations to harbour authorities and researchers 710 

Environmental protection perspectives in harbours should focus around four themes: 1) an 711 

analysis of the nursery function of the harbour, through a dynamic and quantitative description of the 712 

recruitment of juvenile and of adult fish populations on a long-term basis (as practiced in French 713 

Mediterranean harbours which benefit from ecological restoration action) ; 2) a definition of the 714 

physiological “quality” of juvenile fish (eco-physiological status of the recruits, established by 715 

measuring the levels of thyroid hormones and baseline cortisol levels); 3) compensation solutions to 716 

protect or restore the nursery function of harbours (e.g., Bouchoucha et al., 2016; Mercader et al., 2017b; 717 

Mercader 2018); and 4) proposals for good practices and communication with the general public about 718 

possible ecological restoration solutions in and near harbours. The interactive and cumulative effects of 719 

anthropogenic stressors on marine fishes in harbours remain largely unknown. These knowledge gaps 720 

must be addressed and used along with precautionary principles to develop coherent environmental 721 

protection plans. However, based on precautionary principles, the following guidelines can already be 722 
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formulated (Fig. 3): put in place structures to provide shelters for marine species; clean up and reduce 723 

the inputs of plastics and chemical pollution (notably with nature-based methods, such as putting in 724 

place wetlands that can filter water in addition to providing habitats; Wood 1995); avoid the discharge 725 

of ballast water; reduce the speed of boats to lessen sound pollution; reduce light pollution at night. 726 

 727 
Fig. 3: Illustration of different precautionary measures to improve survival and health in marine 728 

organisms that could be adopted in the port of Papeete, Tahiti, French Polynesia 729 
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