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Abstract 

Fourier transform infrared (FTIR) spectrometry is commonly used for the identification of 

reference substances (RSs) in solid, liquid, or gaseous mixtures. An expert is generally 

required to perform the analysis, which is a bottleneck in emergency situations. This study 

proposes a support vector machine (SVM)-based algorithm, the peak correlation classifier 

(PCC), designed to rapidly detect the presence of a specific threat or reference substance in a 

sample. While SVM has been used in various spectrographic contexts, it has rarely been used 

on FTIR spectra. The proposed algorithm discovers correlation similarities between the FTIR 

spectrum of the RS and the test sample and then uses SVM to determine whether or not the 

RS is present in the sample. The study also shows how the additive nature of FTIR spectra 

can be used to create ‘synthetic’ substances that significantly improve the detection capability 

and decision confidence of the SVM classifier. 

1 Introduction 

Emergency services are equipped with mobile laboratories to react as rapidly as possible in 

the event of a terrorist attack, an industrial disaster etc. These mobile labs are able to 

immediately analyse samples collected on-site. Available analytical tools include various 

types of spectroscopy equipment (Fourier transform infrared (FTIR), Raman, X-ray 

fluorescence etc.). A number of these tools have been in use for a number of years [1] for the 

identification of threats. The problem is that, in general, these analyses produce data that must 

be interpreted by an expert, often a time-consuming process creating a bottleneck for rapid, 

subsequent action. This problem is particularly acute for samples taken from a crime scene 

[2]. In addition, some substances can be dangerous for the security forces. For this reason, 

there is a pressing need to be able to identify, rapidly and accurately, prohibited, toxic or 

explosive substances contained in mixtures of other substances. Although data-analysis 

software usually comes packaged with the spectroscopy device used by the police 

laboratories, it is generally difficult to detect specific threats contained in mixtures, especially 

at low concentrations. 

In the present paper, we focus on data obtained by FTIR spectroscopy, a widely used 

analytical tool that produces spectra of chemical substances based on the interaction of 

infrared (IR) light with the chemical bonds that compose the substance being tested. In FTIR 

spectra, frequency (or wave number) is indicated on the x-axis and IR absorbance or 

transmittance on the y-axis. This paper presents a novel algorithm designed to analyse IR 

spectra of sampled materials, typically those taken from a crime scene. A typical spectrum – 

in this case of 2,4-dinitrotoluene (DNT), a derivative substance of the explosive 
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trinitrotoluene – is shown in Fig. 1, top. All spectra used here were obtained using FTIR in the 

mid-IR frequency range (4000–400 cm
−1

). 

 

Fig. 1 FTIR spectra for the RSS and the USS are aligned and the peak intervals from RSS are extended 

to USS. A peak interval is shown around a peak at 3050 cm
−1

 

The proposed algorithm, called the peak correlation classifier (PCC), is based on the 

calculation of a vector of correlations between the reference substance spectrum (RSS) and 

the unknown substance spectrum (USS). This vector, which characterises the unknown 

substance (US) with respect to the reference substance (RS), is then input to a support vector 

machine (SVM) [3], a widely used and extremely powerful classifier [4-6]. 

Over the years, a significant body of related work has used SVM classifiers to discriminate 

data from various types of spectra and images. This work has been done, to a large extent, 

although not exclusively, in chemical and biomedical domains [7]. In the field of early 

detection of cancer, SVM classifiers have been used with mass spectroscopy data [8] and 

magnetic resonance (MR) spectroscopy data [8-10]. They have also been used with tandem 

mass spectroscopy for peptide studies or their identification [11, 12]. SVMs and other 

machine-learning techniques have been used to identify and classify substances in various 

fields, such as biology, textile science, and agronomics [8, 13-16]. However, to date, most of 

this body of work has involved using SVM to process data from mass spectroscopy, MR 

spectroscopy, or near IR spectroscopy and there has been relatively little use of SVM on data 

from FTIR spectroscopy [9], despite a number of encouraging results [17]. This is, arguably, 

related to the large size of FTIR data vectors. 

The approach proposed here reduces the size of the input vectors by extracting a limited 

number of features from the spectrum, thereby allowing an SVM-based algorithm to classify 

FTIR data derived from both powder and gaseous mixtures containing dangerous or toxic 

substances. Crucially, the purely additive nature of FTIR spectra of non-interacting substances 

allowed us to create ‘synthetic’ (i.e. theoretical) spectra by combining various proportions of 

the RSS and the spectra from other substances. We then trained the SVM on synthetic spectra 

derived from a wide range of substances containing very low (sometimes even zero) to high 

concentrations of the RS. 

There are four main contributions presented in this paper: (a) a new mean of representing the 

data input to the SVM by correlation-matching of peak intervals of the test and RSs; (b) the 

presentation of an algorithm that is able to determine whether or not a dangerous target 
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substance is present in the solid, liquid or gaseous mixtures being tested and to provide a 

measure of confidence in its determination; (c) the development of a novel training procedure 

for substance classification that relies on the additive nature of the spectra from non-

interacting substances; and (d) finally, the algorithm can be trained off-line with a very large 

number of spectra, both synthetic and real, containing various concentrations of the RS, which 

means that no further training is necessary when testing new US for the presence or the 

absence of the RS. 

The remainder of this paper is organised as follows: The basic PCC algorithm is described in 

Section 2. In Section 3, we present the experimental data used to test the PCC and describe 

the procedures used to acquire this data. In Section 4, we present the results of our tests of the 

PCC algorithm on our datasets, i.e. on both powder and gaseous mixtures, using both real and 

synthetic training data. We compare the performance of the PCC with two other widely used 

classification approaches, feedforward backpropagation neural networks [18] and linear 

discriminant analysis (LDA) [19]. We also demonstrate the significantly improved 

performance of the algorithm when it is trained on 6400 synthetic mixtures and tested on 5000 

others. Finally, Section 5 concludes and introduces the perspectives for future research and 

applications. 

2 Peak correlation classifier 

The main idea of the proposed PCC approach consists of detecting the presence of a specific 

threat in a sample which is the mixture of various substances. It takes the form of an 

algorithm that must be executed for each RS that must be identified. As with most machine-

learning algorithms, the PCC relies on the extraction and transformation of features from the 

data to form a database. Training sets are used to train a classifier on labelled data, which is 

used to test the new US. This training is performed each time a new RS is added to the 

database. 

2.1 Reference substance 

The RS produces an FTIR spectrum that is normalised to create the RSS. We then apply x-

axis re-scaling (up-scaling and down-scaling are performed by B-spline interpolation) to 

obtain a ‘scale’ s of the RSS, denoted by RSSs. A peak-finding algorithm first finds the x-

value of each peak of the RSSs. This is done by a 1D variant of the Shen and Castan algorithm 

[20]. We also filter the peaks obtained using various parameters, such as minimum peak 

separation, minimum peak height etc., to get an appropriate set of peaks. We obtain a list of 

the x-values corresponding to the peaks in the spectrum for a set of parameters given by ζs, for 

example:                     , where the minimum and maximum x-values     and 

    of the spectrum are expressed in wave number and b is the number of bins. Let P be the 

complete list of the peaks for the whole set of parameters. It is formed by the union of all the 

peaks P for the N scales considered,       
 
    

2.2 Peak correlation feature as substance representation 

To perform comparisons between spectra, we chose to measure the Pearson correlation [21] 

of the segments of the RSS and USS inside each of the peak intervals (see Fig. 1), because we 

are interested in the similarity of the shapes of the two spectra within each peak interval. For 

this reason, measures of how much two distributions differ, such as Kullback–Leibler, are not 
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appropriate, simply because we are not interested in how much the spectra differ, but rather 

how closely their shapes match within the intervals around the peaks defining the RSS. 

To obtain the peak correlation vector of values given to the SVM, we perform the following 

calculations: for each scale s we calculate a transform of the RSS using the function t ( ) and 

of the USS, thereby obtaining t (RSSs)and t (USSs). In the PCC, this transform is the 

derivative. For each of the peak values given by the peak detection algorithm we calculate a 

similarity score S c (Pζs) between t (RSSs)and t (USSs). For this, we chose the Pearson 

correlation [21], which is calculated between the             
   and the             

   on 

an interval of 2.k+1 points around the peak x-coordinate, called a ‘peak interval’. The 

advantage of calculating the Pearson correlation between these transforms is that this value is 

independent of the value of the points in the USS. It is a measure of how closely the shapes of 

the two spectra resemble each other over each of the peak intervals. The result of this 

calculation is a vector of correlation scores for each peak of a given scale. Thus, the 

representation of the substance is the union of all the Sc scores for a spectrum and can be 

written as a vector CC = Sc (P). We use this set (CC) of correlation values as a representation 

of the US with respect to the RS. 

2.3 Choice of a classifier 

The higher the correlation values between the RSS and a given USS, the more likely it is that 

the latter resembles the former, and the higher the probability that the US contains the RS. 

However, in some cases, in particular, when the RSS contains many narrowly spaced peaks, 

the average correlation does not provide a good estimate of the amount of the RS in the US. 

For this, we need a classifier to classify the peak-interval correlation vectors. Among the 

variety of standard classifiers, the most widely used for the classification of chemical 

substances are the LDA [22] and artificial neural networks (ANNs). The ANN provides good 

results for chemiometrics [23]. 

The SVM [24] is an extremely powerful classification algorithm that seems to have been 

largely overlooked in chemiometrics. SVM finds the mathematically optimal hyperplane 

separating the data to be classified. The distance of each of the classified data points from this 

separating hyperplane provides a measure of SVM's confidence in its classification. The 

further from the hyperplane, the more confident the SVM is of the correctness of its 

classification. Neither an ANN nor an LDA does this. A backpropagation network, arguably 

the most widely used ANN, stops changing its weights as soon as a separating boundary is 

found (i.e. when each of the outputs of the network fall below a certain error criterion), and 

this boundary may or may not be the optimal separating hyperplane. 

We have tested the SVM in a number of other contexts [25, 26] and found it to be clearly 

superior in its classification performance to ANNs and LDA. However, one of the key factors 

in the use of the SVM is that it is more robust than the other standard classifiers tested. The 

robust nature of SVM classification has also been demonstrated elsewhere [27]. 

As we will discuss later in this article, we trained the SVM, not only on the spectra from real, 

known substances but also on artificially created (‘synthetic’) training spectra. The number of 

these synthetic training spectra used to train the SVM was inversely proportional to the 

concentration of the RSS that they contained. In other words, the SVM was trained on a 

proportionately greater number of spectra in which the concentration of the RSS was low. 
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This significantly increased the classifier's sensitivity to mixtures with very low 

concentrations of the RS. 

2.4 Choice of the training set 

We train an SVM to classify each of the spectra of the USs as either containing the RS or not. 

The distance from the SVM separating hyperplane provides a way of measuring the 

algorithm's confidence in the accuracy of its classification. 

The standard approach for creating training data involves, first, deriving the RSS from pure 

RS. Then, a set of USS is obtained from FTIR spectrometry of real substances. Some of these 

substances are interferents, i.e. substances chosen for their close resemblance to the RS. 

However, using spectra derived from real samples involves considerable time and effort, and 

is subject to human error. Initially, we relied on this approach for training the SVM. One 

problem we encountered was that, for the SVM to correctly classify substances containing 

very small concentrations of the RS, it needed to have been trained on a large number of 

samples of this type. Also, these samples were not readily available. We, therefore, developed 

a technique of training the SVM on ‘synthetic’ substances. 

It turns out that FTIR spectra have a singular property that allows these synthetic spectra to be 

created. The Beer–Lambert law allows the individual FTIR spectra of pure, non-interacting 

substances in a mixture to simply be added together to produce the FTIR spectrum of the 

mixture. Thus, for each RS, we generate mixtures with random concentrations of random pure 

substances. We then use the additivity of the individual spectra of the component substances 

to obtain the spectrum of the mixture. We relied on public or proprietary chemiometry 

databases to obtain the spectra of the pure substances making up these mixtures. Mixtures not 

containing the RS are tagged as negative while mixtures containing the RS are tagged as 

positive. The number of positive mixtures generated is a function of 1/log (cRS), where cRS 

denotes the concentration of the RS. These synthetic mixtures spectra are used to train the 

SVM classifier. The training is done once when an RS is added to the database for a given set 

of parameters ζs. Then each USS is classified against an RS to determine if the RS is present 

or not in the US. The distance from the SVM separating hyperplane provides a measure of the 

algorithm's confidence in the accuracy of its classification. 

2.5 Parameterisation of the PCC algorithm 

The parameters of the algorithm, most importantly the parameters used by the peak-finding 

routine, must be adjusted for each type of spectra under consideration. For example, the 

parameters for the spectra of gaseous mixtures and those of powder mixtures were very 

different. In the former, there are a great many peaks with small separations between them; in 

the latter, the peaks are considerably smaller, rarer, and more widely separated. For this 

reason, parameters, such as the minimum peak prominence, the minimum peak distance, the 

minimum peak height, the width of the correlation intervals, and the amount of smoothing of 

the spectra, need to be adjusted using a sample of known mixtures in which some contain the 

substance-to-be-detected and others do not. 

We performed a parameter space exploration by generating random parameter values to cover 

the space and then selecting the parameters that provide the best results, i.e. minimum rate of 

false positives and negatives. Fig. 2 clearly shows that, for mixtures containing DNT, a peak 

interval of k = 8 or 10 provides the best results and is largely independent of the value of the 

https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-spr.2019.0575#sil2bf00856-fig-0002


peak separation. These parameters could also be set by using machine-learning techniques, 

such as genetic algorithms [28] or by hill-climbing etc. 

 

Fig. 2 Fraction of correct classification of unidentified substances with respect to the width of the 

peak interval (k parameter, expressed here in wave number) and the minimal separation between any 

two peaks. X and Y units are expressed in wave number, the spectrum resolution is 0.5 cm
–1

 per 

sample 

3 Data sets used to test the PCC 

This section describes how the real and the synthetic data sets used to test how the PCC 

algorithm performs were obtained. There are solid samples, gaseous samples, and synthetic 

data. 

3.1 Solid samples 

The initial samples tested consisted of 40 pellets containing various amounts of DNT. This 

nitroaromatic was mixed with various percentages of substances with structures either similar 

to DNT (toluene, musk ketone, 4-nitrophenol, nitrobenzene, polystyrene, 2-hydroxybenzoic 

acid, and hydroquinone) or significantly different from that of DNT (flour, sucrose, acetone, 

sodium bicarbonate (NaHCO3)). 

These mixtures were used to test both the sensitivity and specificity of the PCC algorithm, i.e. 

to determine its ability to detect the presence of DNT when it was, in fact, present in a 

mixture (sensitivity) and to determine that it was absent when it was not present in a sample 

(specificity). The amount of DNT in these test mixtures ranged from very low (2%) to up to 

71% DNT by weight. The algorithm was also tested on a number of pure substances not 

containing DNT – namely, pure toluene, salicylic acid, NaHCO3, flour, hydroquinine, musk 
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ketone, and nitrophenol, in addition, we also conducted a ‘blind test’ of the PCC algorithm on 

a set of eight real powder mixtures for which no prior information was given as to whether or 

not a given substance contained DNT, see Section 4.4. 

3.2 Gaseous samples 

The Laboratoire Central de la Préfecture de Police de Paris (LCPP) prepared a number of 

gaseous samples to be tested using the PCC algorithm. These samples consisted of ten 

mixtures containing various amounts of ammonia (NH3) and air. Two of the samples 

consisted of air only, i.e. they contained no NH3. In the samples containing NH3, the amount 

of NH3 was decreased by half for each successive sample. The first sample contained ∼250 

ppm NH3, the second, 125 ppm, the third, 62.5 ppm etc. The final sample contained <1 ppm 

of NH3. The LCPP provided us with the mid-range FTIR spectra corresponding to all of these 

samples. The NH3 reference spectrum (NH3 543 ppm, 750 Torr, 1 M) was taken from a 

reference library provided by Thermo Scientific. The LCPP also provided a number of spectra 

from samples of NO + air and NO2 + air. These were also tested using the PCC algorithm. The 

FTIR spectra of gaseous samples were recorded on a Thermo Scientific model Nicolet iZ10 

FTIR spectrophotometer equipped with a 2 m optical path gas cell in the range of 550 and 

4000 cm
−1

 with a resolution of 0.5 cm
−1

. The gas mixtures were prepared with an AlyTech 

model Gasmix/Liqmix LG4CA gas diluter and sampled in 3 l SKC Tedlar gas sampling bags. 

To further demonstrate the sensitivity of the PCC algorithm, we also modified the NH3 

spectrum by eliminating parts of it that had initially made it easy for the algorithm to 

distinguish it from the spectrum for air, as illustrated by Fig. 3. 

 

Fig. 3 Spectra for NH3 (red) and a mixture of air and 250 ppm NH3 (blue) to challenge the algorithm, 

the right part of the spectra is truncated since the NH3-related peaks are mostly present under  

1300 cm
–1

 

3.3 Synthetic mixtures 

It is a delicate and time-consuming process to create spectra from real substances. In addition, 

this process is a potentially dangerous one, depending on the substance being processed (e.g. 

Sarin nerve gas etc.). The problem is that, to appropriately train an SVM, we need a relatively 

large database of mixtures containing various amounts of the RS. We, therefore, generated 

synthetic spectra using reference spectra of pure threat or non-threat substances taken from 

various chemiometry databases. The ‘theoretical’ mixtures were obtained by applying the 

Beer–Lambert law, which says the spectrum of a composite of non-interacting substances is a 

linear combination of the individual spectra of the pure substances making up the composite. 

For each RS, we generated spectra derived from a random concentration of the RS and the 

spectra of random concentrations of other substances. Mixtures not containing the RS are 

tagged as negative while mixtures containing the RS were tagged as positive. The synthetic 

spectra created in this way were then used to train the classifier. 

As shown in Figs. 4 and 5, training on synthetic data significantly improved the performance 

of the PCC algorithm. This was expected since a large number of synthetic spectra, tagged as 
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either containing DNT or not, can be generated and used to train the SVM. This allows the 

algorithm to be trained on far more spectra than had we been using spectra from real samples 

alone. 

 

Fig. 4 Comparative average distances to the SVM hyperplane using only real training data (with a 

LOOCV protocol) and with two groups of 120 synthetic mixtures with different proportions of low-

DNT concentration spectra. (Standard error of the mean error bars, F(2, 54) = 24.9, p < 0.0001) 

 

Fig. 5 Classification of 29 real substances including eight blind USs named S1–S8 using two training 

modes: the green dots show the results obtained with a leave-one-out classification on real spectra 

while the red dots show the results obtained using 600 synthetic spectra generated from various data. 

In both cases, no false identification is reported, but the distance to the hyperplane is significantly 

improved for synthetic training, especially on samples with >5% of DNT 
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4 Implementation, training, and results 

After giving details of the implementation, this section then introduces the impact of synthetic 

training and presents the results obtained with the PCC under different conditions. 

4.1 Implementation of the algorithm 

The PCC algorithm was first developed and tested using Matlab. Subsequently, a ‘multi-

scale’ C++ implementation was then developed, in which the raw spectral data were 

reproduced at a number of different resolutions (scales), all of which were concatenated, and 

these extended vectors analysed by the Dlib [29] SVM using a radial basis function (RBF) 

kernel. The classification decision function also returns an estimate of the probability that a 

given sample contains the RS, thereby, providing a good measure of the quality of the 

classification. 

Spectra interpolation was performed using a B-spline interpolation. The probabilistic decision 

function returns an estimate of the probability that a given sample is in a positive class (i.e. 

contains the RS). The distance to the hyperplane serves as the basis of this probability 

estimate and provides an excellent measure of the algorithm's classification confidence. 

4.2 Powder mixtures with various percentages of DNT 

This subsection explains how we trained the PCC algorithm on solid substances obtained 

from real samples and on synthetic data. 

4.2.1 Training on real data 

The initial tests of the PCC algorithm were done on 20 powder mixtures containing various 

percentages of DNT, including samples with no DNT, but whose chemical structure in some 

cases closely resembled that of DNT. 

We also conducted a ‘blind’ test of the algorithm for powder mixtures in which we were 

given eight samples and were not told whether or not they contained DNT. The algorithm had 

to determine whether or not DNT was present in each of the samples. 

For the two-way classification of the data (i.e. contains DNT/does not contain DNT) an SVM, 

using an RBF kernel with a gamma of 0.0025 and C = 125 was used. The input to the SVM 

for each substance was its 13-value representation, where each value was the correlation of 

the USS with the DNT spectrum, over each of its 13 peak intervals. The training set consisted 

only of real FTIR spectra obtained in the laboratory. Using a standard leave-one-out cross-

validation (LOOCV) methodology, the SVM learned to correctly classify all of the substances 

into the two DNT/no-DNT categories. 

In addition, by calculating the distances from each CC corresponding to a particular substance 

to the SVM hyperplane, the algorithm also gives a confidence rating for each classification. 

The further from the SVM hyperplane, the more confident the SVM is of its classification of a 

particular substance. As expected, its confidence in its classification of 2% DNT + 98% 

toluene (very close to the SVM hyperplane) is considerably poorer than its classification of 

31% DNT + 69% toluene. 
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4.2.2 Training on synthetic data 

As discussed in Section 3.3, the additive nature of FTIR spectra allowed us to create synthetic 

substances by combining the reference spectra for various substances. In this way, we were 

able to create as many synthetic spectra as we wanted to train the SVM. Since it is hardest for 

the SVM to correctly classify substances containing very low concentrations of DNT, we 

created proportionately more synthetic spectra for composite substances containing only small 

amounts of DNT. 

Training the SVM on proportionately more spectra corresponding to synthetic substances 

containing small amounts of DNT does, indeed, improve the performance of the algorithm. 

This can be seen in Fig. 4 by its classification confidence for the substance containing 2% 

DNT + 98% toluene. The training on synthetic spectra, where a proportionately greater 

number corresponded to low-DNT concentration substances, improved the algorithm's 

confidence in its classification. For the synthetic training, the SVM was trained using a 

gamma of 0.00125 and C = 125. We were initially able to produce a nearly three-fold 

improvement in confidence as seen in Fig. 4, by varying the number and distribution of low-

DNT concentration training spectra. In addition, Fig. 5 shows how training on synthetic data 

significantly increases the SVM's confidence in its classifications. 

4.3 Gaseous mixtures 

We also tested the PCC on gaseous mixtures containing NO, NO2, and NH3. Unlike the 

spectrum of DNT, the spectra of NO, NO2 and NH3 contain a great many, closely spaced 

peaks. For this reason, it was necessary to modify the peak-interval width parameter, as well 

as the peak-separation and peak-height parameters of the peak-finding routine for these 

reference gases. 

4.3.1 Gaseous mixtures containing NO and NO2 

We first tested the PCC algorithm on gaseous mixtures of NO and air, as well as NO2 and air. 

The PCC was able to distinguish between pure air and NO + air at concentrations of 20 and 25 

ppm and between pure air and NO2 + air at concentrations of 10, 30, and 400 ppm as shown in 

Fig. 6. 

 

Fig. 6 Plot of the distance to the hyperplane of the classification of NO2 samples. Under the 

hyperplane are the samples not containing NO2 and above are substances containing NO2 
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As with the tests involving DNT, we began with reference spectra for both NO and NO2 and 

proceeded as we did for the powder mixtures. We used peak-interval correlation vectors as 

input to an SVM with an RBF kernel with a sigma of 10. The algorithm clearly separated the 

ten samples of air from the two samples of NO, as shown in Fig. 7. 

 

Fig. 7 Distance to the hyperplane for the classification of NO samples. Under the hyperplane are the 

samples not containing NO and above are substances containing NO 

4.3.2 Gaseous mixtures with various percentages of NH3 

We then conducted an analysis of gaseous mixtures containing NH3. Since the peaks of the 

spectrum of NH3, such as those of NO and NO2, are numerous and very close together, we 

had to modify the peak-separation and peak-height parameters of our peak-finding routine, 

reducing the peak-interval width to 5. We also smoothed the spectra over a small span of 25 

values to eliminate spurious mini-peaks around the main peaks. The peak-finder identified 19 

peaks in the pure NH3 spectrum, as illustrated in red in Fig. 8. 

 

Fig. 8 Nineteen peaks identified in the pure NH3 spectrum 

The LCPP provided us with ten samples on which to test the PCC algorithm. Two of these 

samples consisted of air containing no NH3. The other samples successively contained half as 

much NH3 as the previous sample. Thus, dilution 2 (D2) contained a mixture of 125 ppm of 

NH3 and air. D3 was a 62.5 ppm NH3/air mixture, and so on. The final NH3-containing 

sample, D9, contained slightly <1 ppm NH3. 

Fig. 9 shows the spectrum for D4, i.e. a sample containing 62.5 ppm NH3. We used the full 

19-value peak-interval correlation vector as the representation of each of the gaseous mixtures 

tested. These vectors were given as input to an SVM with an RBF kernel using a gamma of 10 

(smaller than that used for the DNT samples because of the proximity of the peaks). The 

results are shown in Fig. 10. All ten samples were correctly classified and the distances from 

the SVM separating hyperplane indicate that the algorithm is very confident in its 

classifications. 
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Fig. 9 Spectrum for a 62.5 ppm NH3 + air mixture 

 

Fig. 10 Separation of the samples containing NH3 and pure air by an SVM using the full correlation 

vector representation of each sample. The figure shows the distance of the representations from the 

SVM hyperplane. Under the hyperplane are the gaseous mixtures not containing NH3; above are the 

mixtures containing various dilutions of NH3 

4.3.3 Estimating the percentage of NH3 in the sample 

One question left unanswered by the PCC algorithm is what percentage of the mixture 

consists of the reference substance, in this case, NH3. Once the PCC algorithm has determined 

that NH3 is present in a given mixture, it can predict approximately how much NH3 is present 

in the sample. Consider the two overlapping spectra of NH3 and air shown in Fig. 3. The 

spectrum for the mixture of air is shown in blue. The spectrum for pure NH3 is shown in red. 

We only consider the parts of these spectra that are contained in the union of the intervals 

about the defining peaks of NH3. We refer to this union of peak intervals as the NH3 critical 

zone. The Beer–Lambert spectra-additivity assumption for mixtures of non-interacting 

substances allows us to assume that in the NH3 critical zone for a mixture of NH3 and air, the 

amplitude of the spectrum for NH3 + air will be higher than that of NH3 alone. Therefore, for 

each mixture of NH3 + air, we calculate the difference between the values of its spectrum and 

the spectrum for pure NH3 over the NH3 critical zone, for each of the mixtures, starting with 

the 0.5/0.5 NH3/air mixture (D2) and going down to D9. If we plot these differences with 

respect to the pure NH3, it can be seen that the curve is almost perfectly logarithmic, which is 

in agreement with the Beer–Lambert law of optical absorption [30]. Since we know that the 

concentration of each successive NH3 dilution was half the previous dilution, we know the 

NH3 concentration for each dilution. As a result, we can plot (Fig. 11) the logarithm of the 

spectrum differences with respect to the pure NH3 spectrum against real NH3 concentration 

levels and we obtain what is, for all intents and purposes, a linear relationship (R
2
 = 0.99). 

Interpolating between each of these values, one can determine the concentration of NH3 in 

any sample known to contain NH3. 
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Fig. 11 Plot of the computed relative concentration of NH3 in the sample being examined 

4.3.4 Testing the limits of the sensitivity of PCC for gaseous samples 

A reasonable criticism of the samples compared, i.e. air and NH3 + air, is that there is a region 

of the two spectra between 0 and 1300 cm
–1

 where there is a considerable spectral 

contribution from NH3 and very little contribution from the air spectrum. Thus, the PCC 

might only be able to detect NH3 in an NH3 + air mixture because in this critical region the 

two spectra (i.e. air and NH3 + air), are very different. 

We, therefore, decided to make the NH3-detection and concentration-estimation task 

significantly harder. This allowed us to test the sensitivity of the PCC algorithm for pairs of 

spectra with considerable overlap and numerous peaks with little separation between them. 

We, therefore, truncated the NH3 and the NH3 + air spectra from 0 to 1300 cm
–1

, thereby 

removing the segments of their respective spectra where they differ most noticeably. 

Thus, for a 0.5/0.5 mixture of pure air and NH3 we obtain the spectra shown in Fig. 3, with 

the distinguishing values of both spectra beyond 1300 cm
–1

. We compared the truncated 

spectra of a total of ten different samples of pure air with the spectra of the eight D2–D9 

samples previously tested. When the peak-correlation vectors are given to an SVM classifier, 

even with these severely truncated spectra, Fig. 12 shows that the PCC algorithm is still able 

to distinguish pure air from air containing NH3. As before, we computed the approximate 

percentage of NH3 in the samples. To do this, we found the same logarithmic curve as for the 

untruncated samples. Also, even though the fit is, unsurprisingly, not as good as for the 

original samples with their full spectra, we observe that the logarithmic fit to data still has an 

R
2
of 0.87. When this logarithmic curve is transformed into a linear curve, as was done in 

Fig. 11, the fit to linearity produces an R
2 

of 0.96. 
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Fig. 12 PCC discriminates pure air (above the SVM hyperplane) and mixtures of air + NH3 (below the 

hyperplane) even when severely truncated spectra are used 

4.4 Blind classification 

The final test of the PCC algorithm was done with eight substances that had been prepared by 

one of the authors, but the presence or absence of DNT in each substance was not revealed to 

the other two authors. The PCC algorithm was trained on 12 mixtures known to contain DNT 

and nine mixtures known not to contain DNT, they are indicated in Fig. 5. We then tested the 

PCC on the unknown samples. Some of these samples contained DNT, sometimes in very 

small quantities, others had no DNT, and still, others contained substances whose chemical 

structure very closely resembled that of DNT. 

4.5 Comparison with other classifiers 

We also compared different classifiers with the SVM. We based our comparison on the 

classifiers used for chemiometry and described in [23]: feedforward, backpropagation 

networks [18] with three different hidden-layer sizes the feedforward and the LDA algorithm 

[19]. 

For the PCC algorithm, the SVM generally performs better, in terms of both classification 

accuracy and robustness [27], than the other classifiers. 

For the substances tested in the blind-classification test, SVM is considerably more robust 

than the other classifiers tested. The robust nature of SVM classification has also been 

demonstrated elsewhere [27] and we also observed this in the present context. 

We considered a wide range of peak-interval widths (from 2 to 100 cm
–1

) and reference-peak 

separations (from 2.5 to 75 cm
–1

). It turns out that a peak-interval width of either 8 or 10 cm
–1

 

gives the best classification performance, shown in Fig. 2 (the area in yellow), which indicates 

the perfect classification of the USs. 

While it is true that the SVM's best performance over all peak-separation distances and peak-

interval widths is between 1 and 7% better than the best performance of any of the other 

classifiers tested, this difference, in itself, is not large enough to justify the use of an SVM 

classifier. The crucial difference, as has been observed in other contexts, is the robustness of 

this algorithm. For a given reference substance, it is not always obvious what values to use for 

peak-separation and peak-interval widths. However, this choice is far less important for an 

SVM classifier, compared to the three different backpropagation networks and LDA. So, for 

example, consider the number of correct classifications for all peak-intervals averaged over all 

peak-separation distances. The variability of these values is between 2.7 and 7.7 times higher 

for the other classifiers compared to SVM. Similarly, if we look at the number of times each 

algorithm correctly classified all of the USs over all peak-separation values and all peak-

interval widths (140 values), we find that the SVM has between 1.4 and 2.7 times as many 

correct classifications as the other algorithms. 

4.6 Analysis of the results for 5000 synthetic samples 

We tested 5000 mixtures of synthetic spectra containing widely varying concentrations of the 

reference substance, including mixtures in which the reference substance was absent. The 

training set consisted of 6400 mixtures that differed from those in the test set. They were 

https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-spr.2019.0575#sil2bf00856-fig-0005
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-spr.2019.0575#sil2bf00856-bib-0023
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-spr.2019.0575#sil2bf00856-bib-0018
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-spr.2019.0575#sil2bf00856-bib-0019
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-spr.2019.0575#sil2bf00856-bib-0027
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-spr.2019.0575#sil2bf00856-bib-0027
https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-spr.2019.0575#sil2bf00856-fig-0002


generated by randomly mixing real spectra from 3-nitrophenol, acetone, NaHCO3, cane sugar, 

wheat flour, musk ketone, olive oil mixed with sucrose. Two-thirds of the mixtures contained 

various concentrations of the reference substance and at least one other substance, the other 

third consisted of mixtures that did not contain the reference substance. For both the test and 

training sets, two classes were generated; (a) one containing the reference substance at various 

concentrations ranging from 3 to 100% and (b) one containing other substances that did not 

include the reference substance. The substance to be detected was DNT. Fig. 13 shows the 

results obtained for 5000 test spectra constructed as above. There were no false positives and 

only a single false negative, which contained a low concentration of 24-DNT (4.8%) and 

musk ketone (95.2%). It is shown in Fig. 13 by the red dot (low-DNT concentration, close to 

the hyperplane, meaning low confidence in its (incorrect) classification). Musk ketone was 

used for its chemical proximity to the DNT, to test the limits of the PCC algorithm. 

Unsurprisingly, the distance to the SVM hyperplane varies from one mixture to another, 

depending on the concentration of DNT in the mixture (Fig. 13). This is clearly visible for the 

positive class (violet) of spectra containing DNT. All elements containing no DNT (green 

dots) are correctly classified. For the spectra of substances containing DNT, even in low 

concentrations, the distances to the hyperplane is generally quite high. 

 

Fig. 13 Plot of the distances to the hyperplane and the classifications for spectra from substances 

containing different concentrations of DNT or no DNT. The points below the hyperplane (negative 

distance) are classified as not containing DNT, the points above the hyperplane are classified as 

containing DNT 

The average time required to classify a spectrum is 3.20 ms (including file accesses and 

transfers) on an intel i9 i9-8950HK core, running at 2.9 GHz. The peak memory usage was 

∼42 MB. 
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5 Conclusions 

We have presented a simple algorithm, the PCC, to determine whether or not certain mixtures 

contain a particular target substance. This algorithm is computationally efficient because the 

training of the SVM can be done off-line. We have shown that this method can be used 

effectively to detect the presence or absence of target substances in powder mixtures as well 

as in gaseous mixtures. It can also be used to determine the percentage of the target substance 

in a given mixture. Finally, because spectral data from non-interacting substances are 

additive, synthetic spectra are created from reference spectra and used to train the SVM. In 

this way, the performance of the algorithm on mixtures containing low concentrations of the 

target substance can be significantly improved. Further work will focus on testing the 

algorithm on more substances and providing a user-friendly graphical interface. 
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