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Symmetry-dependent ultrafast manipulation of nanoscale magnetic domains

Femtosecond optical pumping of magnetic materials has been used to achieve ultrafast switching and recently to nucleate symmetry-broken magnetic states. However, when the magnetic order parameter already presents a broken-symmetry state, such as a domain pattern, the dynamics are poorly understood and consensus remains elusive. Here, we resolve the controversies in the literature by studying the ultrafast response of magnetic domain patterns with varying degrees of translation symmetry with ultrafast X-ray resonant scattering. A novel data analysis technique is introduced to disentangle the isotropic and anisotropic components of the x-ray scattering. We nd that the scattered intensity exhibits a radial shift restricted to the isotropic component, indicating that the far-from-equilibrium magnetization dynamics are intrinsically related to the spatial features of the domain pattern. Our results suggest novel pathways for the spatiotemporal manipulation of magnetism via far-from-equilibrium dynamics and by carefully tuning the ground state magnetic textures.

I. INTRODUCTION

Ultrafast manipulation of symmetry is achievable in a wide variety of physical systems that rely on nonequilibrium pathways to access hidden states in their energy landscape. Far-from-equilibrium transitions from symmetric to symmetry-broken states have been observed in a variety of material systems, e.g. photo-

induced superconductivity [1], structural modication of alloys [2], manipulation of topological phases in Weyl semimetals [3], vibrational dynamics following melting of atomic charge order in nickelates [4], hidden states during spontaneous symmetry breaking of charge density waves [5], and charge separation of chiral organic molecules [6]. Symmetry can be also manipulated in magnetic materials because of the interplay between their local and nonlocal order parameters. Recent studies have * To whom correspondence should be addressed; E-mail: eia- cocca@uccs.edu.

indeed demonstrated that the homogeneously magnetized ferrimagnet GdFeCo undergoes phase-ordering kinetics through the ultrafast formation of localized defects [7]. Moreover, topological phases could be accessed in ferromagnetic materials biased with an external magnetic eld, demonstrating the picosecond emergence and subsequent stabilization of skyrmion lattices [8] and in ferrimagnets showing the transition from helical to skyrmion phases [9]. In these works, the manipulation of symmetry occurred within the magnetic or spin degree of freedom. However, ultrafast excitation of metallic magnetic materials [10] also induces non-equilibrium spin currents [11] producing torques [12] that aect the picosecond dynamics of the spin degree of freedom [13 20] and induce phonon modes coupled to the magnetic system by magnetostriction to form nanosized spin-wave solitons [21].

A clear manifestation of spin-current-induced ultrafast magnetization dynamics is found in materials exhibiting magnetization textures. It was recognized that materials stabilized in a stripe domain pattern could be demagnetized more quickly than the uniformly magnetized sample [17]. This nding provided a rst indication that the non-local magnetic texture aects the ultrafast behavior of the material. It is then natural to inquire how the dierent magnetic textures with distinct translation symmetries aect the picosecond magnetization dynamics and how can the textures themselves be manipulated by optical excitations? Such control of magnetism at the femtosecond timescales is particularly important for proposals of energy ecient and fast magnetic storage devices [22] where the information is encoded by magnetic domains along tracks, eectively imposing a randomized magnetic texture that should not to be corrupted by external stimuli.

To study the far-from-equilibrium dynamics of magnetic textures occurring at the nanoscale, time-resolved

x-ray scattering from free electron lasers remains the preferred method to achieve the necessary combined temporal and spatial resolution [7,11,16,17,19,20,23]. The detected scattered intensity pattern directly correlates to the symmetry of the magnetization texture. Stripe domains exhibit spatial translation symmetry along one dimension, leading to a distinctive anisotropic scattering pattern. In contrast, labyrinth domains can be regarded as stripe domains where the underlying anisotropy is lifted, thus causing a randomized long-range order that gives rise to an isotropic scattering ring. This behavior is well-known in the broader eld of pattern formation, particularly of Turing patterns [24]. In the context of x-ray Bragg diraction, labyrinth domains would be similar to polycrystalline or powder sample which consists of randomly-oriented crystallites (or grains) leading to formation of well-known Debye rings. An extreme case are amorphous materials which have short range order but no long range order resulting in broad rings. On the other hand, stripe domains would be akin to diraction from a single crystal which exhibits spatial translation symmetry across the entire sample resulting in a Bragg spot.

Studies in both stripe and labyrinth domain patterns have provided a wealth of observations that to date remain disparate and controversial. Initial studies on labyrinth domains in Co/Pt multilayers reported a ring contraction of ≈ 4 % that was interpreted as a result of spin-current induced domain-wall broadening [16]. This conjecture followed from the impossibility of a fractional expansion of the domain pattern, i.e., a change in periodicity in the probed section, that would imply domain-wall speeds over the speed of light. Later studies in CoFe/Ni multilayers that could access higher order diraction rings were able to disentangle domain-wall broadening from the spectral periodicity, demonstrating that the observed shift was related to nanoscopic variations in the domain pattern [20]. In particular, domain-wall broadening of 31 % was identied from the relative harmonic amplitudes of the scattering rings, while the observed harmonic shift of 6 % accompanied by a 15 % linewidth broadening was consistent with domain-wall motion on the order of 2 km/s. More recently, a similar shift of ≈ 2.6 % in the scattered ring was observed for chiral labyrinth domains which was explained by dierent demagnetization rates for homogeneous (domains) and inhomogeneous (domain-walls) regions of the sample [25].

Interestingly, this shift has not been observed in stripe domains [17,19] contradicting earlier works which propose modications of the domain-wall prole as the key eect. However, domain-wall broadening of 41 % after 20 ps was clearly observed in Ref. [19].

We clarify these controversies by studying the timeresolved x-ray scattering from a magnetic multilayer sample which can exhibit stripe, labyrinth and mixed domain characteristics. By isolating the dierent symmetries in the observed scattering pattern, we demonstrate symmetry-dependent ultrafast dynamics. In particular, only the isotropic component exhibits a shift of its peak position in reciprocal space, even when both symmetry components are present at the same time. This result alone conclusively proves that domain-wall broadening, which is presumably operative in both stripe and labyrinth samples, cannot explain the peak shift of the diraction ring in labyrinth samples, as was previously proposed in Ref. [16].

For the mixed states, our data suggests that recovery time for the isotropic and anisotropic components are different. Our studies indicate that the labyrinth magnetic textures are more prone to be spatially manipulated at ultrafast timescales and opens new routes for the spatial ultrafast manipulation of magnetism. x 8 / Co 90 Fe 10 (0.25 nm)/Cu(5 nm)/Ta(3 nm)) were fabricated by sputter-deposition on polycrystalline Si membranes embedded in a Si substrate enabling X-ray transmission measurements [26]. Our multilayer composition informs that the saturation magnetization is [26]. We have also measured damping to be α = 0.015 and a g-factor of g = 2.18. Before the beamtime, MFM measurements showed the presence of out-of-plane labyrinth domains with an average size of 110 nm at remanence. EuXFEL [27]. The XFEL generates linearly polarized Xray pulses with 25 fs duration. In this experiment, we use a pulse-to-pulse separation of 18 µs, with 26 pulses per train, with the 468 µs trains having a repetition rate of 10 Hz. This eectively results in 260 pulses per second impinging on the samples. While the EuXFEL is capable of a much higher pulse frequency with even more pulses per train, longer pulse trains with shorter pulseto-pulse separation resulted in readily apparent sample damage. Even with these conditions, the sample is at an elevated temperature during the time-resolved measurements (see Appendix A). The incoming X-ray intensity (I 0 ) is monitored shot-by-shot using a X-ray gas monitor (XGM) [28].

II. EXPERIMENTAL METHODS

A. X-ray scattering measurements

M s = 616 kA/m
The pump laser is synchronized with the FEL at half of the X-ray probe frequency to collect both the scattering data from ultrafast dynamics (pumped) and in quasi-equilibrium (unpumped) within the same measurement run. The X-ray scattering is collected on the DSSC 2D detector, able to match the repetition rate of the XFEL [29]. The DSSC records data at twice the Xray pulse rate in order to collect so-called dark data frames in between pulses for the best background correction [30]. The sample to detector distance is xed at 3 m.

We note that the white regions in the scattering correspond to non-active or faulty areas of the DSSC detector.

The samples are probed resonantly with linearly polarized X-rays tuned to the L 3 absorption edge of Ni (852 eV , 1.45 nm). The samples are pumped with a YAG-whitelight-seeded laser with central wavelength λ = 800 nm and 35 fs pulse duration [31]. The X-ray spot size is estimated to be 20×20 µm 2 , and the pump laser has a Gaussian prole with 40×40 µm 2 at full-width half-maximum.

Magnetic domains act as a grating for X-rays at a resonant magnetic edge so that their scattering mathematically represents the two-dimensional Fourier transform of the grating [32]. By means of dichroic absorption and scattering [33,[START_REF] Stöhr | Magnetism: From Fundamentals to Nanoscale Dynamics[END_REF], due to dierent cross-section of oppositely-aligned up/down domains, small-angle X-ray scattering (SAXS) is collected on the DSSC 2D detector.

For further information on resonant magnetic scattering we refer the readers to references [20,33,[START_REF] Kortright | [END_REF]36] Representative examples of static scattering patterns are shown in Figure 1 We note that we do not use an external in-plane eld to induce a stripe-like domain pattern [17,19,32], but instead nd this preferential orientation in sample areas that are subject to strain. As further elaborated upon in Appendix B, this strain is the result of irreversible and slow plastic deformation due to sample heating that occurred during the course of the experiment.

B. Data analysis method

Traditionally, time-dependent 2D scattering has been analyzed within a 1D representation achieved by azimuthal integration, either over the isotropic ring [16,20,25,37] or the anisotropic lobes [17,19]. However, this simple analysis hides valuable spatial information obtained by scattering experiments. In particular, our scattering data exhibits both mixed isotropic-anisotropic scattering and has a signicant amount of data lost to the non-active regions of the detector. For example, azimuthal averaging of the data results in the apparent development of a bimodal distribution due to missing pixels, discussed in Appendix C. Such artifacts can result in an erroneous quantication of the far-from-equilibrium physics at play. For these reasons, we developed a 2D tting procedure that accurately models the varying degree of domain symmetry in our samples and allows us to reconstruct the full scattering pattern, therefore providing an accurate picture of the far-from-equilibrium magnetization dynamics in our samples.

Motivated by the MFM images, we utilize a tting function for the scattered intensity given by I(q, φ) = I 0 + I iso (q) + I aniso (q, φ),

where q is the wavevector, φ is the azimuthal angle at which the anisotropic lobes are oriented, I 0 is a uniform background, I iso (q) is the isotropic component that is a function of the wavevector, and I aniso (q, φ) is the anisotropic component which is a function of both the wavevector and the azimuthal angle. The scattered intensities are proportional to the modulus square of the magnetic scattering amplitude resulting from the magnetic texture. Because intensities are photon counts, the square root of the intensity is a measure of the relative contrast due to the amplitude of the magnetization modulus within the magnetic texture.

We mathematically assume that both scattering patterns arise from an intermixed spatial pattern, resulting in no coherent interference contribution to the scattering, as elaborated in the Appendix D. This implies that the domain patterns exhibit a highly varying spatial periodicity that precludes any possibility of long-range phase coherence of the resultant scattering, in agreement with the MFM images of Figure 1(e)-(g).

Based on previous works [7,20], we dene the isotropic scattering intensity as where A 0 is the amplitude, q 0 is the radius of the isotropic peak position, and Γ 0 is the linewidth.

I iso (q) = A 0 (q -q 0 ) 2 /Γ 2 0 + 1 2 (2)
The anisotropic scattering can be phenomenologically represented by a Fourier series

A n sin 2 (n(φ -θ)). The intensity is thus dened to second order as

I aniso (q, φ) = |A 1 | sin 2 (φ -θ) + A 2 sin 2 (2(φ -θ)) (q -q 1 ) 2 /Γ 2 1 + 1 2 (3) 
This functional form considers that the anisotropic scattering is aligned at an angle θ, has an anisotropic peak position q 1 , and a linewidth Γ 1 . The two amplitude coefcients correspond to the dominant scattering amplitude A 1 and a deviation from a sinusoidal azimuthal prole, A 2 . We nd that A 2 is typically two orders of magnitude smaller than A 1 .

Fitting a 2D function with eight tting parameters requires a detailed and robust protocol. We utilize the following procedure: 1) the center of the scattering intensity q = 0 is determined at the beginning of each run. Indeed, even a one-pixel oset of the center can generate artefacts such as asymmetries in the radial peak position. For this reason, the correct determination of q = 0 is critical.

2)

The anisotropic component alignment θ is determined.

3) The tting parameters are included sequentially with the goal of determining a good initial guess in an automated way. 4) Fitting of Eq. ( 1) is performed with all eight parameters adjustable. By use of this procedure, we obtain high-delity ts with small and spatially randomized residuals, discussed in Appendix C. From the tted parameters, we focus on the magnetization quench and the radial peak position of each component. The average magnetization for each symmetry component is proportional to the amplitudes A 0 and A 1 , insofar as A 2 ≪ A 1 for the anisotropic component. The peak position is directly obtained from the tted parameters q 0 and q 1 . The parameters extracted from all available data sets are presented in the Table F.

An example of a 2D scattering t using Eq. ( 1) is shown in Fig. 

f quench = (1 + B -A) + Ae -(t-t0)/τm -Be -(t-t0)/τ R (5) 
where t 0 is the time zero of the dynamics, τ m is the quench constant, τ R is the recovery constant, A and B are dimensionless constants related to the quench and recovery of the magnetization. A more complete form of this equation was derived in Ref. [38]. Here, we use a simplied form that disregards the longer algebraic recovery constant that could not be tted accurately within the 20 ps traces. From this equation we can obtain the quench time t min and the maximum quench of the magnetization ∆M/M as derived parameters from the tted variables. Further details on how to obtain such variables and their errors are given in the Appendix F. The quantities extracted from the ts are summarized in Table I.

III. ULTRAFAST MAGNETIZATION DYNAMICS

The normalized modulus of the magnetic diraction amplitude at t < 0 is shown in Fig. 3 scattering patterns and (b) for anisotropic scattering patterns. We observe a similar amount of quenching for both types of scattering using the same uence. In particular, we determine 38.5 ± 0.8 % and 37.6 ± 0.4 % for the isotropic and anisotropic components, respectively.

The solid gray curves in Fig. 3(a) correspond to the unpumped data and serve to conrm the negligible evolution of the magnetization in a quasi-equilibrium state.

It is worth pointing out that the samples do not return to thermal equilibrium at the repetition rate of the experiment, as further discussed in the Appendix A. We also studied the uence dependence and relative position We distinguish between full overlap (FO) and partial overlap (PO) between pump and probe. We report the extracted domain size π/qi (nm) from the pre-pumped signal, maximum shift in radial peak position (%), maximum demagnetization (%), and demagnetization recovery time (ps) for all measurements.

between the pump and the probe, labelled as FO (full overlap) and PO (partial overlap, shifted by 50 µm) in Table I. We discuss this dependence in section IV. The eect of pump uence was investigated and found to be in agreement with previous works [14,16,17,3941]. These results are shown in the Appendix G and further validate the 2D tting approach.

In addition to the quench, we also detect an ultrafast contraction of the ring radius of 0.84 ± 0.06 % for the isotropic component, shown in Fig. 3(c). On the contrary, we do not observe conclusive evidence of a peak position shift for the anisotropic scattering, as shown in Fig. 3(d). While it can be argued that a small shift of 0.5 % is apparent, we cannot conclusively quantify this shift within our signal-to-noise ratio. In addition, other data sets do not exhibit any apparent shift, as shown in Table . I.

These observations are consistent with previous works where a shift in the radial wavevector q was only observed when measuring isotropic scattering from labyrinth domains [16,20,25] and no shift reported for anisotropic scattering from stripe domains [17,19]. We note that the detected shifts (1-4 %) are smaller than those observed in earlier works (5-6 %) [16,20]. This dierence in our data relative to earlier reports could be a consequence of the lower uences and/or the elevated temperature of our samples due to the large eective repetition rate of the instrument (see Appendix A). An elevated temperature before time zero reduces the local magnetic moment such that the net electron-spin scattering that drives the magnetization dynamics is weaker. Regardless, we conclude based on our analysis of the isotropic and anisotropic scattering that the dierence in the shifts in q for stripe and labyrinth domains is not related to varying sample properties or experimental details since our measurements are obtained from the same sample and experiment.

To investigate this further, we turn to the mixed scattering patterns where both isotropic and anisotropic contributions exhibit a similar photon count. A representative example is shown in Fig. 4 for the time-dependent magnetization, (a) and (b), and peak shift, (c) and (d) of the isotropic (blue) and anisotropic (orange) components, respectively. As in Fig. 3, the solid gray curves represent the unpumped data. We note that the signalto-noise ratio of the mixed states is lower than that of pure states, but the main features can be recovered from the 2D ts with good accuracy. There are two main observations from Fig. 4. First, the quench of both symmetry components is similar, estimated to be 38.2 ± 1.4 % and 34.9 ± 1.8% for the isotropic and anisotropic components, respectively. Second, there is a distinct shift in the peak position of the isotropic component while no shift can be conclusively detected from the anisotropic component. The same trend is observed in all the mixed scattering patterns measured and analyzed, as summarized in Table I. Notably, the ultrafast shift of the isotropic component is consistently larger than any shift in the anisotropic component.

Our observation of a peak shift only, or at least predominantly, for the isotropic ring suggests either a systematic eect arising from modication of x-ray scattering or a symmetry-dependent eect arising from the magnetic order itself. Modication of x-ray scattering, whereby ultrafast domain-wall broadening could lead to an apparent shift in the scattering ring was proposed in Ref. [16]. This approach is analogous to invoking a non-equilibrium Debye-Waller factor that mimics thermal uctuations in crystal lattices. This approach was largely disproved in Ref. [20] based on the simultaneous quantication of domain-wall broadening and peak shifts.

While our current experiments have limited dynamic range compared to previous works [19,20], our twodimensional experimental results based on the rst order scattering can further demonstrate that invoking a Debye-Waller-like factor in this context is not appropriate. Under the assumption that such a factor originates from a stochastic eect, it stands to reason that it must be isotropic in q, with a characteristic form e -|q| 2 /2σ 2 [START_REF] Rühle | Physical Metallurgy (Fourth Edition)[END_REF]. In Ref. [20], a relationship between σ(t) and the measured linewidth Γ and equilibrium domain size q was obtained, and can be algebraically manipulated as

∆q q = Γ 2 2σ 2 + Γ 2 (6)

Isotropic component

Anisotropic component From this formula, we nd two relevant limits.

If σ is small, the attenuation results in ∆q/q ≈ 1 for both isotropic and anisotropic components. This eectively implies a case in which the scattering is fully attenuated and instead dominated by thermal vibrations. In the limit of σ > Γ, which represents the experimental condition by which thermal vibrations are shorter than the domain-pattern correlation length, then ∆q/q ∝ Γ 2 .

Consequently, the ratio between the anisotropic and isotropic shifts should be proportional to Γ 2 1 /Γ 2 0 . From our data analysis (see Tables IV andV), we nd that the squared linewidth ratio is ≈ 0.25 in all cases. This relative shift was not observed even though our experimental data provided such accuracy. For example, the mixed state pumped at 15 mJ/cm 2 in partial overlap (run 6 in Table I) was found to exhibit a ∆q/q of 1.88 ± 0.07 

IV. DISCUSSION

The main observation of our work is the unequivocal shift in the isotropic component of the scattering, even when simultaneously observed with an anisotropic component. We substantiate this statement by statistical analysis of the tted parameters presented in Table I. We use weighted averages and weighted standard deviations to minimize the impact of data points determined with lower accuracy. An average peak shift of 1.09±0.51 % for the isotropic component was calculated. We emphasize that this statistically signicant peak shift is a general behavior and thus independent of the particular uence conditions, day of the experiment, and regions illuminated. Contrarily, an average peak shift of 0.22 ± 0.22 % was found for the anisitropic component. This means that the peak shift in the anisotropic component is statistically insignicant within the signal-to-noise ratio of the measurement.

Our data analysis procedure also allows us to extract information on the quench time, t min , and recovery time constant, τ R , for each scattering component. The average quench time was determined to be 0.78 ± 0.11 ps and 0.70 ± 0.10 ps for the isotropic and anisotropic components, respectively. This is clear indication that the quench time is independent of the symmetry component. Magnetic quench occurs in textured magnetic materials due to both the increase of the magnon population and domain-wall broadening. Therefore, the similar quench time is in agreement with the notion that ultrafast demagnetization occurs at the atomic scale, driven by the coupling between light and electrons at femtosec-ond timescales. It was found that the recovery time constant τ R scales linearly with quench amplitude ∆M/M for both the isotropic and anisotropic components of the diraction ring. We consider a recovery speed from a weighted linear t of the recovery time constant and the quench amplitude, where the recovery rate is dened as d(∆M/M )/d(τ R ). This allows us to compare the overall dependence of τ R on quenching for both components of diraction when they have dierent quench amplitudes.

The average reciprocal recovery speed were determined to be 5.2 ± 0.8 ps and 4.8 ± 0.3 ps for the isotropic and anisotropic components, respectively. As for the quench time, the recovery constant is statistically indistinguishable for both the cases.

A microscopic mechanism explaining the observed behavior is still lacking. Numerical modeling is challenging because reasonably large magnetic volumes are required to stabilize magnetic domains and are currently only accessible with micromagnetic models. As shown elsewhere, micromagnetic models are not appropriate to model the ultrafast increase in the magnon thermal population, specically for short-wavelength magnons [7], but progress is being made from the point of view of Landau-Lifshitz-Bloch models [START_REF] Raposo | [END_REF]. Theoretical models are also constrained to date to macroscopic averages [44] and superdiusive spin currents [12,45]. Therefore, we can only conjecture based on the experimental data.

The presented results strongly suggests that regions of the sample with domains preferentially parallel to one another are eectively inert to spatial modication. Conversely, regions of the sample with disordered domains can be spatially modied. Considering that the domain sizes are on the order of 80 nm, this eect must be localized within the domain walls which are the only objects in the system capable to exchange information between neighboring domains. We speculate that torque exerted from angular momentum is a possible mechanism acting on the domain-walls in the form of e.g., superdiusive spin currents [12] or magnons with wavelengths under 100 nm. It would be also interesting to consider the possibility of spin-wave dispersive shock waves [46] that have been numerically [4751] and experimentally [52] observed in magnetic materials. While these mechanisms remain to be demonstrated, it would be interesting to consider them in future studies in a far-from-equilibrium regime.

V. CONCLUSION

We reveal the dependence of the ultrafast spin dynamics on the nanoscale conguration of magnetic domains. Our results dispel the apparent inconsistency of previously reported values for the radial peak shift after ultrafast pumping, given that all the presented data were taken with (1) the same sample, (2) was measured in the same manner, and (3) at the same facility. We now clarify that the previous inconsistency in detection of the peak shift is because signicant shift only occurs in samples with labyrinth domain patterns, characterized by an isotropic SAXS scattering ring. Moreover, our results strongly suggest that this behavior is intrinsically related to the magnetization textures and their symmetries. Surprisingly, these distinct dynamics arise from the symmetry of long-range ordered magnetic domains with sizes ranging between 70 and 90 nm, and extending for several microns, both dimensions longer than the typical mean free path of electrons in metallic multilayers [START_REF] Stöhr | Magnetism: From Fundamentals to Nanoscale Dynamics[END_REF].

The mechanism of the observed shift is still debatable.

While a uniform domain expansion can be excluded by impossibly large domain-wall motion speeds [16], it remains plausible that domains spatially rearrange [20] or locally demagnetize at dierent rates. Our results invite further experimental and theoretical research to clarify the impact of symmetries on the transfer of angular momentum between the electronic and spin degrees of freedom for far-from-equilibrium phenomena. In particular, the possible excitation of short-wavelength spin waves from the domain walls could be envisioned as a mechanism to exchange angular momentum [53] between domains and exert torque [12] on domain walls.

Δ" (ps) Δ" (ps) Δ" (ps) Δ" (ps) We observe an oset between the pumped (blue) and unpumped (orange) data before ∆t ≤ 0 attributed to the data not having fully returned to equilibrium between pulses.
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Our pumped-probe measurements were performed raw image from the DSSC. For example, we consider the scattering data shown in Figure 7(a). Taking q = 0 as the center of the scattering intensity, we azimuthally integrate the left and right modules of the scattering. As a result, we observe in Figure 7(b) that the azimuthal prole of the left and right features do not fully overlap at the same wavenumber. This is not physical because the lobe pattern must be mirror symmetric about the origin.

By including the center of the scattering as a tting parameter, we are able to determine the true q = 0 as a function of pixels in the DSSC detector. The azimuthal prole of the features then overlap perfectly as shown in Fig. 7(c). We nd that the oset is typically within 2 pixels, which is less than 0.5 mm. We keep the center as a oating parameter when tting the time-resolved measurements.

Another important aspect of the data analysis is found in the inactive areas of the DSSC detector, that sometimes cover substantial parts of the diraction pattern as seen in Fig. 8(a). The 2D t extrapolates the intensity in areas with missing pixels and allows us to reconstruct the full scattering, as shown in Fig. 8

(b).

A natural question is whether this reconstruction is accurate and physically meaningful. An eective means of testing the importance of our 2D tting procedure is to compare the azimuthal averages of both the raw data, Since the raw data spans a substantial fraction of the DSSC detector without any active pixels, it is not surprising that the azimuthal averages of the raw data and the full 2D tting function, which analytically accounts the missing pixels, would exhibit very dierent azimuthal averages. If we take the full 2D tting function and mask out the detector area that does not have any active pixels, Fig. 8(c) before performing an azimuthal average (orange dotted curve), we nd that the azimuthal averages of the raw data and the masked 2D t are nearly identical. But we also see that both these azimuthal averages exhibit an articial shoulder at q ≈ 0.045 nm -1 that suggests a bimodal distribution. On the other hand, the anomalous shoulder is no longer present when we azimuthally integrate the tted 2D function for the diraction. In other words, azimuthal integration/averaging of raw SAXS scattering data that spans large portions of a detector without active pixels can easily introduce artifacts that are eliminated when performing a proper t with our continuous 2D tting function.

This shows that the intensity mismatch, asymmetry, and shoulder in the raw data are only due to the inactive areas of the DSSC and indicates that great care must be taken when extracting information from azimuthally averaged or integrated data from a modular DSSC. These artefacts can suggest nonexistent physics in the ultrafast regime.

The quality of the t is determined from the residual between the raw data and the t. In Fig. 9 we show an example scattering pattern, its t, and the residual.

There is a clear nite residue at the location of the ring that indicates that our phenomenological function fails to correctly account for the detailed scattering prole.

However, the residual is on the order of 10 %. In addition, the residual uctuates rapidly, which can be also a consequence of shot noise, proportional to the intensity, and the speckle pattern. We then conclude that our ts are suciently accurate to extract physically meaningful information.

We further validate our results by showing that the 2D t is able to track small changes in the anisotropic peak position q 1 . We generate a mock scattering pattern with added shot noise, shown in Fig. 10(a) and a shift in q 1 of approximately 1%. The shift in q 1 is recovered by the tting procedure within error. The parameters are given in Table II 10(a)). In the initial guess, the anisotropic scattering radius q1 is slightly shifted. This change is recovered by the 2D t as shown in the last column.

Appendix D: Absence of coherent interference in the scattering pattern

We demonstrate that the tting function for the diraction pattern can be approximated by the addition of two intensities without any cross-correlation. For simplicity, we consider a 1D model with regions of spatial width a, each with a phase ϕ and a periodicity q n . The 1D real space function f 1 can be expressed as an innite sum of such regions, given by

f 1 (x) = ∞ n sin(q n x + ϕ n )Π((x + n/2)/a), (D1) 
where Π(x/a) is the pulse function of width a.

By use of standard Fourier transform properties, we obtain the Fourier transform F 1 (q) = F{f 1 (x)} as The intensity colorbar is shared between all four panels and can be interpreted as photons/pixel/pulse.

F 1 (q) = a 2
∞ n cos(ϕ n )e iπ/2 + sin(ϕ 0 ) e ina(q+qn)/2 sinc a(q + q n ) 2π

+ cos(ϕ n )e -iπ/2 + sin(ϕ 0 ) e ina(q-qn)/2 sinc a(q -q n ) 2π .

(D2)

Therefore, the intensity is

|F 1 (q)| 2 = a 2 4 ∞ n sinc 2 a(q + q n ) 2π + sinc 2 a(q -q n ) 2π + 2a 2 4 ∞ n,m cos ϕ m -ϕ n - a 2 (nq n -mq m ) sinc a(q + q n ) 2π sinc a(q + q m ) 2π (D3)
The third term in Eq. (D3) represents a cross-term from the overlap of the sinc functions. If we assume that the periods between neighboring regions are similar, q n ≈ q m , then only those regions where n ≈ m will contribute to the spectrum. If this were not the case, then overlap between the sinc functions would be small, and the cross-term would be negligible. It follows that the cross-term is dominantly proportional to cos (ϕ m -ϕ n ).

If the phase between neighboring regions is randomized, then the innite sum over ϕ m -ϕ n will span every phase between 0 and 2π. Therefore the cross-term is zero.

This situation is equivalent to consider that each region has a nite correlation length.

This toy model illustrates that the cross-term can be neglected for the mixed state, where the spatial periodicity is randomized.

Appendix E: Pulse-resolved photon count in the scattering data

The DSSC is a soft X-ray detector with single-photon sensitivity and a frame rate that is able to match the pulse rate of the FEL [29]. The resulting scattering image, e.g., Fig. 11(a), is the average of all frames collected within a run. After multiplying by the gain of the detector, the intensity can be directly related to the average number of photons hitting each pixel per pulse. In our experiment, the gain was set to 0.5 photon/bin. III summarizes the photon count from all the pump-probe measurements.

In section II B we explain how we categorize our data according to Eq. ( 4). Figure 12 shows the distribution of ratios for the collected data. We can clearly distinguish three groups that correspond to the three types of scattering that we observe. Due to the non-zero background, the isotropic scattering has a ratio close to 1

while anisotropic scattering has a ratio close to -0.5. We note that, because the anisotropic photons are more localized in space, fewer photons are required to observe anisotropic scattering, while more photons are needed in order to clearly observe isotropic scattering above the noise.

Appendix F: Fitting the demagnetization constants

The tting procedure for extracting demagnetization values and time constants is explained in detail by Unikandanunni et al.. We use the equation from [38]:

∆M M 0 = ( A 1 τ R -A 2 τ m τ R -τ m e -(t-t0)/τm - τ R (A 1 -A 2 ) τ R -τ m e -(t-t0)/τ R - A 2 (t -t 0 )/τ R2 + 1 ) ⊛ Γ(t) (F1)
where τ m is the quench constant, τ R is the recovery constant, A 1 and A 2 are dimensionless constants related to the quench and recovery amplitudes. We t t 0 , the time zero of the dynamics, in order to account for jitter in the pump arrival. The expression within parentheses is convoluted with a Gaussian Γ(t) to account for the nite duration of the X-ray and IR pulses.

We disregard the second, algebraic recovery time Unikandanunni et al. used in their work since we did not collected data at long enough times to properly t this value. Therefore, we use a simpler expression given by

f quench = 1 + Ae -(t-t0)/τm -Be -(t-t0)/τ R + B -A, (F2) 
where the new coecients, A and B, are related to the coecients in Eq. (F1) by

A 1 = A -B τ m τ R , (F3a) 
A 2 = A -B. (F3b) 
From this equation, we can analytically obtain the quench time by nding the minimum of f quench , given by

t min = t 0 - τ m τ R τ R -τ m ln Bτ m Aτ R . (F4)
It follows that the error δt min can be computed by standard propagation of uncertainty for each tted variable. TABLE III. The average photon count is quantied per pulse and per second. For all the runs the XFEL delivered 26 pulses per train with a train repetition rate of 10 Hz. The average photon count in the full scattering is decomposed into the anisotropic and isotropic components as well as the uniform non-magnetic background.

The partial derivatives are:

∂t min ∂t 0 = δt 0 , (F5a) 
∂t min ∂A = τ m τ R τ R -τ m δA A ≈ τ m A δA, (F5b) 
∂t min ∂B = τ m τ R τ R -τ m δB B ≈ τ m B δB, (F5c) 
∂t min ∂τ m = τ R τ R -τ m 1 + τ R τ R -τ m ln Bτ m Aτ R δτ m ≈ 1 + ln Bτ m Aτ R δτ m , (F5d) 
∂t min ∂τ R = τ m τ R -τ m 1 + τ m τ R -τ m ln Bτ m Aτ R δτ R ≈ τ m τ R δτ R . (F5e) 
The approximations consider that τ m ≪ τ R , but this leads to an innite error in τ m , so the approximation must be taken with care.

The quench is then f quench evaluated at t min ,

A q = A 1 - Bτ m Aτ R τ R /(τ R -τm) -B 1 - Bτ m Aτ R τm/(τ R -τm) , (F6) 
and the error δA q can be obtained from propagation of uncertainty of the following quantities

∂A q ∂A = 1 - Bτ m Aτ R τ R /(τ R -τm) δA ≈ δA, (F7a) 
∂A The ratio is computed according to Eq. ( 4). Isotropic scattering has a ratio close to 1 while anisotropic scattering has a ratio close to -0.5. For a ratio between -0.3 and 0.9 we categorize the scattering pattern as mixed. component, even when pumped with a large uence.

q ∂B = 1 - Bτ m Aτ R τm/(τ R -τm) δB, (F7b) 
∂A q ∂τ R = 1 τ R (τ R -τ m ) 2 Aτ R Bτ m Aτ R τ R /(τ R -τm) τ R -τ m + τ m ln Bτ m Aτ R -Bτ m Bτ m Aτ R τm/(τ R -τm) τ R -τ m + τ R ln Bτ m Aτ R δτ R , ≈ Bτ m τ 2 R δτ R (F7c) ∂A q ∂τ m = 1 τ m (τ R -τ m ) 2 Bτ m Bτ m Aτ R τm/(τ R -τm) τ R -τ m + τ R ln Bτ m Aτ R -Aτ R Bτ m Aτ R τ R /(τ R -τm) τ R -τ m + τ m ln Bτ m Aτ R δτ m ≈ B τ R δτ m . (F7d) 

Pre-pumped Pumped

Run ID Fluence SAXS pattern size (nm) Γ (µm -1 ) ∆q/q (%) ∆M/M (%) tmin (ps) quench speed (ps -1 ) τR (ps) We distinguish between full overlap (FO) and partial overlap (PO) between probe and probe. Extracted domain size π/q (nm) and linewidth Γ (nm -1 ) from the pre-pumped signal, maximum shift in radial peak position (%), maximum demagnetization (%), quench time (ps) and quench speed (ps -1 ) and demagnetization recovery time (ps) for all measurements. We distinguish between full overlap (FO) and partial overlap (PO) between probe and probe. Extracted domain size π/q (nm) and linewidth Γ (nm -1 ) from the pre-pumped signal, maximum shift in radial peak position (%), maximum demagnetization (%), quench time (ps) and quench speed (ps -1 ) and demagnetization recovery time (ps) for all measurements.

Figure 1 (

 1 Figure 1(a) shows the pump-probe schematic of the experimental setup. The experiments are performed at the Soft x-ray Coherent Scattering (SCS) beamline at the

  (b)-(d). This data is collected within the same membrane but with the X-ray beam illuminating dierent areas of it. Each of these patterns illustrate distinct long-range symmetries present in the membrane which were characterized in real space after the pump-probe experiments using magnetic force microscopy (MFM) as shown in panels (e)-(g). The isotropic ring (b) results from labyrinth domains (e) while the anisotropic, lobed pattern (d) results from domains with a similar translation symmetry to stripe domains (g). We also observe a mixed state where both symmetry features are visible in the scattering (c). The corresponding MFM image (f ) indicates that this pattern arises from a varying degree of randomness in the spatial periodicity of the domain structure. In other words, the preferentially labyrinth and striped areas are spatially intermixed rather than clustered.

FIG. 1 .

 1 FIG. 1. (a) Schematic of the experimental pump-probe setup. The sample is excited by IR pulses and probed by linearly polarized X-rays tuned to the L3-edge of Ni. The scattered photons are collected on the DSSC detector. Representative diraction patterns are shown for (b) labyrinth, (c) mixed, and (d) stripe domain patterns. All three patterns are found on the same sample membrane. Translation of the pump/probe beams across the sample allows access to dierent regions of the sample that exhibit the dierent scattering patterns. Corresponding 10 × 10 µm 2 MFM real-space images are shown in (d)-(f), illustrating the varying degree of randomness for each domain pattern.

2 . 4 )FIG. 2 .

 242 FIG. 2. Two dimensional t of the scattering data. (a) The raw experimental data suers from missing intensity in the non-active regions of the DSSC. (b) Two dimensional t with Eq. (1). The t allows to fully separate the (c) isotropic and the (d) anisotropic components of the scattering.

FIG. 3 .

 3 FIG.3. Two-dimensional tting of the full diraction pattern is used to extract the time traces of both the magnetization and the peak position for the isotropic and anisotropic scattering patterns with 10 mJ cm -2 FO pump uence (runs 8 and 9 in TableI, respectively). The normalized magnetization of isotropic and anisotropic scattering patterns is shown in (a) and (b), respectively. The magnetization is shown by the solid colored solid curves and corresponding unpumped data by solid gray curves. In both cases, the amount of quenching is similar. The corresponding time traces for the scattering peak position is shown in (c) and (d) for the isotropic and anisotropic scattering patterns, respectively. by colored solid curves. The gray solid curves corresponds to the unpumped scattering peak position in quasi-equilibrium. Only the isotropic component exhibits a signicant peak shift estimated to 0.84 ± 0.06 %. The peak shift of the anisotropic component, while noticeable by eye in Fig.3d, is not statistically signicant to within error bars. The shaded area in all cases corresponds to the standard deviation of the tted quantities. Because of the high accuracy in the tting for each time instance, the standard deviation of the tted variables is not visible to the eye. Noise is instead dominated by measurement uctuations.

FIG. 4 .

 4 FIG.4. Two-dimensional tting results for the mixed state diraction pattern with 25 mJ cm -2 pump uence (run 3 in TableI). The time traces of both the magnetization and the radial peak position for the isotropic and anisotropic components are extracted from tting the full diraction pattern. In all panels, the gray curves represent the unpumped data. The normalized magnetization of isotropic and anisotropic components is shown in (a) and (b), respectively. We observe a similar amount of quenching in both cases. The scattering peak position is shown in (c) and (d) for the isotropic and anisotropic components, respectively. Only the isotropic component of the mixed SAXS pattern exhibits a signicant shift in the radial peak position. This is similar to what was found for the purely isotropic or purely anisotropic SAXS scattering patterns, where only data with purely isotropic scattering exhibited signicant radial peak shifts. Here we detect a shift of 3.5 ± 2.3 %. The black curve is the ve-point moving average of the data. The shaded area corresponds to the standard deviation of the tted quantities.

  and 0.23 ± 0.05 for the isotropic and anisotropic components, respectively. The prediction based solely on the Debye-Waller factor suggests instead an isotropic shift of 0.72 ± 0.03, well within accuracy. Therefore, the argument of an attenuation factor producing an apparent shift in the scattering fails to explain our observations. Summarizing this section, we studied the timedependent ultrafast response of a magnetic sample with dierent domain patterns with distinct translation symmetry. In cases where the quenching was similar, we observe a shift in the scattering peak position only for the isotropic component for both the preferential labyrinth domain and the mixed state. Our attempt to t the observed peak shift with a Gaussian Debye-Waller factor (DWF), ostensibly capturing spectral attenuation eects due to domain-wall broadening, was not successful. The failure of this model stems from a signicant quantitative mismatch between the observed peak shift and broadening of the diraction ring: If we attribute the ring broadening to a DWF, then the amount of peak shift that we observe is actually ≈ 3 times smaller than expected. Instead, this experimental observation is consistent with a symmetry-dependent eect arising from the magnetic order itself.

FIG. 5 .

 5 FIG. 5. Fitted lobe amplitude for a series of pump-uences (a) 20 mJ cm -2 , (b) 15 mJ cm -2 , (c) 10 mJ cm -2 , (d) 5 mJ cm -2 .We observe an oset between the pumped (blue) and unpumped (orange) data before ∆t ≤ 0 attributed to the data not having fully returned to equilibrium between pulses.

  with 26 x-ray pulses per train at a pulse rate of 56 kHz and 13 IR pulses at half this rate. Within one measurement, we record both a pumped and an unpumped signal separated by 18 µs. While we observe no apparent damage in the unpumped signal we do observe an oset before time-zero in the tted amplitudes of pumped and unpumped signals.

Figure 5 FIG. 6 .FIG. 7 .

 567 Fig. 6(b), while others showed partially oriented domains at dierent angles, see Fig.6(c) and (d). The dimpling of the membrane results from thermallyinduced buckling during the pulse train utilized at the Eu-XFEL. The pulse trains are 0.5 ms in duration, with 26 pulses in each train. As such, the time interval between each pulse in the pulse train is insucient to achieve thermal relaxation. Estimating an optical absorption coecient of 10 %, we obtain a temperature

Fig. 8 (

 8 Fig.8(a), and the full 2D tting function, Fig.8(b). The comparison is shown in Fig.8(d), where the averaged raw data is represented by the solid green curve and the averaged full t is represented by the dotted blue curve.

  . The residual Fig. 10(b) shows the dierence between the mock data and the t. There is a clear residue with uctuating values due to the shot noise of the mock data.

FIG. 8 .FIG. 9 .

 89 FIG. 8. (a) The raw scattering collected on the DSSC. (b) The result of the 2D t. (c) 2D t masked with the inactive areas of the detector. (d) Azimuthally integrated scattering of the raw data (solid green curve), 2D t (dashed blue curve) and masked 2D t (dotted orange curve). The 2D t only matches the raw data once it has been masked with the DSSC inactive areas.

FIG. 10 .FIG. 11 .

 1011 FIG. 10. (a) A mock scattering pattern. (b) The resulting residual of the 2D t. Note that the intensity scale of the residual is one order of magnitude smaller than that of the raw scattering pattern.

The 2D t allows

  photons to the anisotropic contribution. The background contributes with an average of 0.5 photon/pulse. With 26 pulses per train at a train repetition rate of 10 Hz, we get 4550 photons per second in the full scattering with 2470 photons in the isotropic component, 1950 photons in the anisotropic component, and 130 photons in the background. Table III summarizes the photon count from all

  FIG.13. Two-dimensional tting of the full diraction pattern is used to extract the time traces of both the magnetization and the peak position for the isotropic and anisotropic scattering patterns. In all panels, the gray curves represent the unpumped data. The normalized magnetization of isotropic and anisotropic scattering patterns is shown in (a) and (b), respectively. At a uence of 10 mJ cm -2 , the magnetization is shown by the solid curves, also shown in the main text. We observe a similar amount of quenching in both cases. For the isotropic scattering, the eect of a spatial shift between the pump and probe spots exhibits a weaker amount of quenching due to a weaker optical pumping, shown by the light-colored curve named partial overlap (PO). For the anisotropic component, a higher uence of 15 mJ cm -2 results in a higher quench, shown by the light-colored curve. The corresponding temporal evolution of the scattering peak position is shown in (c) and (d) for the isotropic and anisotropic scattering patterns, respectively. Similar to the results shown in the main text, only the isotropic component exhibits a shift. The shaded areas in all cases correspond to the standard deviation of the tted parameters.

  ± 2.3 38.2 ± 1.4 0.970 ± 0.049 2.05 ± 0.17 74.06 ± 0.14 0.5 ± 0.5 34.9 ± 1.8 0.836 ± 0.049 1.68 ± 0.15 4 15 mJ cm -2 FO (day 4) mixed 71.86 ± 0.28 2.7 ± 2.7 21.2 ± 1.0 0.738 ± 0.012 1.73 ± 0.18 74.98 ± 0.

											Anisotropic component
				Pre-pumped		Pumped		Pre-pumped		Pumped
	Run ID	Fluence	SAXS pattern size (nm) ∆q0/q0 (%) ∆M/M (%)	tmin (ps)	τR (ps)	size (nm) ∆q1/q1 (%) ∆M/M (%)	tmin (ps)	τR (ps)
	1	20 mJ cm -2 FO (day 3)	mixed	78.30 ± 0.11 1.0 ± 0.4 43.5 ± 0.9 0.714 ± 0.033 3.16 ± 0.27 74.55 ± 0.04	0	35.4 ± 1.0 0.592 ± 0.003 2.25 ± 0.14
	2	15 mJ cm -2 FO (day 3)	mixed	77.27 ± 0.14 1.5 ± 0.6 29.3 ± 1.0 0.660 ± 0.039 2.80 ± 0.23 73.58 ± 0.04	0	20.9 ± 1.4 0.549 ± 0.043 1.52 ± 0.14
	3	25 mJ cm -2 FO (day 4)	mixed	71.96 ± 0.34 3.5 14	0	18.0 ± 1.8 0.679 ± 0.021 0.99 ± 0.15
	5	15 mJ cm -2 FO (day 5) anisotropic	-	-	-	-	-	73.08 ± 0.01	0	56.7 ± 0.7 0.58 ± 0.02 2.86 ± 0.08
	6	15 mJ cm -2 PO (day 5)	mixed	77.56 ± 0.04 1.88 ± 0.07 21.9 ± 0.7 0.610 ± 0.02 1.29 ± 0.07 74.16 ± 0.03 0.23 ± 0.05 24.1 ± 0.2 0.61 ± 0.02 1.04 ± 0.05
	7	10 mJ cm -2 PO (day 5)	isotropic	89.38 ± 0.02 0.70 ± 0.05 12.6 ± 0.5 0.840 ± 0.02 0.87 ± 0.05	-	-	-	-	-
	8	10 mJ cm -2 FO (day 5)	isotropic	76.66 ± 0.01 0.84 ± 0.06 38.5 ± 0.8 0.964 ± 0.02 1.57 ± 0.03	-	-	-	-	-
	9	10 mJ cm -2 FO (day 5) anisotropic	-	-	-	-	-	72.3 ± 0.01	0	37.6 ± 0.4 0.813 ± 0.013 1.65 ± 0.02

TABLE I .

 I Extracted parameters from the 2D and temporal double-exponential ts. Measurements are listed by pump uence and scattering pattern.

TABLE II .

 II Parameters of the phenomenological 2D t function used to generate the mock data before adding shot noise (Fig.

Table IV and

 IV Table V show the extracted tting pa-rameters discussed in our work for all measurements per-

	Isotropic photons -anisotropic photons	total photons	Isotropic Mixed Anisotropic

FIG. 12. Distribution of data according to categorization.

  1 20 mJ cm -2 FO (day 3) mixed 78.30 ± 0.11 1.482 ± 0.012 1.0 ± 0.4 43.5 ± 0.9 0.714 ± 0.033 60.9 ± 3.1 3.16 ± 0.27 2 15 mJ cm -2 FO (day 3) mixed 77.27 ± 0.14 1.679 ± 0.017 1.5 ± 0.6 29.3 ± 1.0 0.660 ± 0.039 44.4 ± 3.0 2.80 ± 0.23 3 25 mJ cm -2 FO (day 4) mixed 71.96 ± 0.34 2.572 ± 0.055 3.5 ± 2.3 38.2 ± 1.4 0.970 ± 0.049 39.4 ± 2.5 2.05 ± 0.17 4 15 mJ cm -2 FO (day 4) mixed 71.86 ± 0.28 2.534 ± 0.045 2.7 ± 2.7 21.2 ± 1.0 0.738 ± 0.012 28.7 ± 1.4 1.73 ± 0.18 6 15 mJ cm -2 PO (day 5) mixed 77.56 ± 0.04 1.086 ± 0.004 1.88 ± 0.07 21.9 ± 0.7 0.610 ± 0.02 35.8 ±1.8 1.29 ± 0.07 7 10 mJ cm -2 PO (day 5) isotropic 89.38 ± 0.02 1.249 ± 0.002 0.70 ± 0.05 12.6 ± 0.5 0.840 ± 0.02 14.9 ± 0.7 0.87 ± 0.05 8 10 mJ cm -2 FO (day 5) isotropic 76.66 ± 0.01 0.953 ± 0.002 0.84 ± 0.06 38.5 ± 0.8 0.964 ± 0.02 39.9 ± 1.2 1.57 ± 0.03

TABLE IV .

 IV Measurements are listed by pump uence and scattering pattern.

  FO (day 5) anisotropic 73.08 ± 0.01 0.729 ± 0.001 0 56.7 ± 0.7 0.58 ± 0.02 96.7 ± 3.7 2.86 ± 0.08 6 15 mJ cm -2 PO (day 5) mixed 74.16 ± 0.03 0.671 ± 0.002 0.23 ± 0.05 24.1 ± 0.2 0.61 ± 0.02 39.6 ± 1.5 1.04 ± 0.05 9 10 mJ cm -2 FO (day 5) anisotropic 72.3 ± 0.01 0.646 ± 0.001 0 37.6 ± 0.4 0.813 ± 0.013 46.2 ± 0.9 1.65 ± 0.02

							Anisotropic component	
				Pre-pumped		Pumped	
	Run ID	Fluence	SAXS pattern size (nm)	Γ (µm -1 )	∆q/q (%) ∆M/M (%) tmin (ps) quench speed (ps -1 ) τR (ps)
	1	20 mJ cm -2 FO (day 3)	mixed	74.55 ± 0.04 0.711 ± 0.004	0	35.4 ± 1.0 0.549 ± 0.043	59.8 ± 3.5	2.25 ± 0.14
	2	15 mJ cm -2 FO (day 3)	mixed	73.58 ± 0.04 0.715 ± 0.005	0	20.9 ± 1.4 0.549 ± 0.043	38.1 ± 3.9	1.52 ± 0.14
	3	25 mJ cm -2 FO (day 4)	mixed	74.06 ± 0.14 0.808 ± 0.016 0.5 ± 0.5 34.9 ± 1.8 0.836 ± 0.049	41.7 ± 3.3	1.68 ± 0.15
	4	15 mJ cm -2 FO (day 4)	mixed	74.98 ± 0.14 0.794 ± 0.015	0	18.0 ± 1.8 0.679 ± 0.021	26.5 ± 2.8	0.99 ± 0.15
	5	15 mJ cm -2						

TABLE V .

 V Measurements are listed by pump uence and scattering pattern.
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The EuXFEL can achieve MHz repetition rates with the SCS beamline being able to deliver up to 150 x-ray pulses per train. However we observed that higher repetition rate and shorter pulse-to-pulse separation lead to visible damage in our samples.

Appendix C: 2D tting procedures and quality estimation

We highlight the importance of tting the center of the scattering data instead of relying on the center of the