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A geometric description of the set of almost-fuchsian representations

We prove that the set of proper minimal disks in the real hyperbolic 3-space whose principal curvatures belong in a closed set of (-1, 1) is parametrized by a convex set of Hopf differentials. We give a quantitative estimate of this convex set in terms of sup norms of the quadratic differentials. Applying this result to disks equivariant under some surface group action, we get a parametrization of almost-fuchsian representations by a fiberwise convex open set in the cotangent bundle to Teichmüller space.

Proposition 3.3. Let φ be a holomorphic quadratic differential on the disk. Then there is at most one bounded solution to (3.4) 

In this paper we study the geometry of the space of complete almost-fuchsian minimal disks in H 3 . In the special case of disks equivariant under the action of some cocompact surface group in H 3 , this naturally gives a description of the moduli space of almost-fuchsian representations by a fiberwise convex subset of the cotangent bundle of Teichmüller space. The same discussion yields a description of minimal almost-fuchsian disks invariant under some fixed group Γ < PSL(2, R).

Let Σ g be a closed hyperbolic surface of genus g ≥ 2 and let Γ = π 1 (Σ g ) denote its fundamental group. In her seminal work on minimal surfaces in hyperbolic 3-space [Uhl83], K. Uhlenbeck defines the notion of almost-fuchsian representation: it is a discrete and faithful representation ρ of Γ into PSL(2, C) such that there is a ρ-equivariant immersion f : H 2 → H 3 with minimal image and principal curvatures in (-1, 1). Uhlenbeck showed that those representations are always convex-cocompact, and that they form an open neighborhood of the fuchsian locus inside Hom(Γ, PSL(2, C)). In H 3 , convex-cocompact representations are quasi-fuchsian representations, hence the denomination of almost-fuchsian for this stronger notion.

Considering the minimal surface problem in H 3 , almost-fuchsian representations are of special interest because they admit a unique invariant minimal disk with small principal curvatures. This is not the case for arbitrary convex-cocompact representations, see for instance [START_REF] Huang | Counting minimal surfaces in quasi-fuchsian threemanifolds[END_REF].

Date: January 3, 2023. 1 Krasnov-Schlenker [START_REF] Krasnov | Minimal surfaces and particles in 3manifolds[END_REF] have extended the notion to almost-fuchsian immersions or almost-fuchsian disks, not necessarily invariant under a surface group. Seppi [START_REF] Seppi | Minimal discs in hyperbolic space bounded by a quasicircle at infinity[END_REF] used it to show that quasi-circles with quasisymmetry constant close to 1 bound minimal disks.

We will work with the following notion of almost-fuchsian immersion.

Definition 1.1. An immersion f : D → H 3 is said to be almost-fuchsian if it is proper, conformal with minimal image, and has principal curvatures in (-1 + ǫ, 1 -ǫ), for some ǫ > 0.

A subdisk of H 3 is said to be an almost-fuchsian subdisk if it is the image of an almostfuchsian immersion.

Let Q(D) denote the space of holomorphic quadratic differentials over D. The main result we will prove in this paper is the following: Theorem 1.2. Let C ⊆ Q denote the set of Hopf differentials of almost fuchsian immersions. Then

(1) 2 disks with same Hopf differentials are identified by an isometry of H 3 .

(2) C is a bounded, open and convex subset of Q, and

(3) C contains all holomorphic quadratic differentials such that |φ| ∞ ≤ 1 2 . (4) For any φ ∈ C, |φ| ∞ ≤ 1.
Krasnov-Schlenker [START_REF] Krasnov | Minimal surfaces and particles in 3manifolds[END_REF] already consider this parametrization for the case of holomorphic quadratic differentials invariant under a closed surface subgroup of PSL(2, C). In that case, it was already known that the set is open and star-shaped around 0, see for instance [START_REF] Samuel Trautwein | The hyperkähler metric on the almost-fuchsian moduli space[END_REF].

The almost-fuchsian moduli space is an example of moduli space endowed with a hyperkähler structure, see [START_REF] Simon K Donaldson | Moment maps in differential geometry[END_REF] and [START_REF] Wolf | Hyperkähler geometry and Teichmüller space[END_REF]. The hyperkähler structure actually coincides with the Feix-Kaleidin structure when considering C as a neighborhood of the fuchsian moduli space, [START_REF] Samuel Trautwein | The hyperkähler metric on the almost-fuchsian moduli space[END_REF].

This description of C has 2 main consequences. First, it extends the notion of almostfuchsian representation to any infinite discrete subgroup of PSL(2, R). Also, considering holomorphic quadratic differentials invariant under a surface group representation, we prove the following result.

Theorem 1.3. There exists a Finsler metric p on the Teichmüller space T g such that

(1.1) ∀φ ∈ T * T g , p(φ) < 1 if and only if φ ∈ C .
This Finsler metric is uniformly equivalent to the Finsler metric dual to the unit L ∞ balls under the identification of the cotangent bundle with the space of holomorphic quadratic differentials.

The authors thank Nicolas Tholozan for his insights and discussions on this topic.

introduction and notation

This section is a classical survey of the Gauss-Codazzi equation for almost-fuchsian disks. The results are well-known, we explain them here to make our notation clear. The reader comfortable with Gauss-Codazzi theory may go directly to the next section.

In the following, Σ is a connected, oriented surface, with χ(Σ) < 0. Let (M, h) is a complete, 3-dimensional hyperbolic manifold, and let f : Σ → M be a smooth immersion.

Page 2/13 Let g 0 denote the induced metric over S, let II denote the second fundamental form of f , and let A denote its shape operator. Recall that f is said to be minimal whenever its mean curvature H := Tr(A) vanishes. Let κ denote the intrinsic curvature of g 0 . The Gauss equation is

(2.1) κ = det g 0 (II) -1 .
where the determinant of the second fundamental form II is taken with respect to g 0 . The determinant of II is also the determinant of the shape operator A.

Definition 2.1 (Hopf differential). The Hopf differential φ of f is the (2, 0)-component of II. That is, φ is the symmetric bilinear form given by

(2.2) φ(ξ, ν) := 1 4 II(ξ, ν) -iII(Jξ, ν) -iII(ξ, Jν) -II(Jξ, Jν) .
In particular, when f is minimal we readily obtain:

(2.3) det g 0 (II) = -|φ| 2 g 0 . In the following, we will denote g a fixed hyperbolic metric on a Riemann surface, we call the pair (u, φ) Gauss-Codazzi data for the immersion, where e 2u g is the induced metric and φ is the Hopf differential of the corresponding immersion.

Lemma 2.2. Let (Σ, g 0 ) be a riemannian surface and let g 1 = e 2u g 0 be a metric conformal to g 0 . Let ∆ i and κ i denote respectively the laplacian and curvature of the metric g i for i ∈ {0, 1}. Then

κ 1 e 2u = κ 0 -∆ 0 u (2.4) κ 0 = (κ 1 + ∆ 1 u)e 2u .
(2.5) Proof. Denote Ric i the Ricci tensor of g i . The following equation in Besse's book, 1.159 d) [START_REF] Arthur | Einstein manifolds[END_REF], relates the Ricci curvatures of g 1 and g 0 :

(2.6) Ric 1 = Ric 0 -(∆ 0 u)g 0
The remaining equations follow from the fact that, for a riemannian surface (Σ, g i ), Ric g i = κ i g i . Note that Besse uses the analysts' laplacian, whose sign is the inverse of that of the geometer's laplacian.

Combining these equations yields the Gauss-Codazzi equation.

Proposition 2.3 (Gauss-Codazzi). Let f : Σ → (M, h) be a minimal immersion of a surface into a hyperbolic manifold. Let g 0 denote the induced metric and let g = e -2u g 0 denote the unique, complete hyperbolic metric in its conformal class. Then u satisfies

(2.7) ∆u = -1 + e 2u + e -2u |φ| 2 g . Proof. By lemma 2.2, (2.8)

κ 0 = (-1 -∆u)e -2u .
By Gauss equation, (2.9) κ 0 = -1 -e -4u |φ 0 | 2 g . The result follows upon combining these two equations.
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By the fundamental theorem of surface theory, for every pair (u, φ), where u : Σ → R and φ is a holomorphic quadratic differential on Σ satisfying the Gauss-Codazzi equation (2.7), there exists an immersion of Σ into H 3 having this Gauss-Codazzi data. As the surface considered is hyperbolic Σ identifies with the open disk D, and the immerssion is equivariant with regard to some representation ρ : π 1 Σ → Isom(H 3 ) Furthermore, this immersion is unique up to post composition by an isometry of H 3 .

We will require the following result of Li-Mochizuki [START_REF] Li | Complete solutions of toda equations and cyclic higgs bundles over non-compact surfaces[END_REF].

Proposition 2.4 (Sub-supersolution method). Let (Σ, g) be a riemannian surface, and let F be a smooth function defined on Σ × R. Consider the equation (E):

(2.10)

∆ g u = F (x, u)
Assume there are u -, u + : Σ → R satisfying:

u -< u + (2.11) ∆ g u -≥ F (x, u -) (2.12) ∆ g u + ≤ F (x, u + ) (2.13)
Then the equation (E) admits at least one solution u satisfying u -≤ u ≤ u + .

First remark that almost-fuchsian subsurfaces of H 3 are necessarily uniformized by the Poincaré disk, and that the conformal factor between the induced metric and the hyperbolic one is bounded: Lemma 2.5. Let M be a complete hyperbolic 3-manifold. Let f : Σ → M be an almostfuchsian immersion, then its induced metric g 0 is conformal to a complete hyperbolic metric g. Denote g 0 = e 2u g. Then u satisfies.

(2.14) - ln 2 2 ≤ u ≤ 0 .
Proof. Consider the prescribed curvature equation on the universal cover :

(2.15)

∆ g 0 v = e 2v -κ g 0 .
For any solution v, the corresponding metric e 2v h 0 will be hyperbolic. As f is almost fuchsian, the curvature κ h 0 satisfies -2 ≤ κ h 0 ≤ -1. Upon applying the sub-supersolution method (Prop 2.4) to (2.15) with subsolution v -= 0 and supersolution v + = ln 2 2 , we get a solution v satisfying

(2.16) 0 ≤ v ≤ ln 2 2 .
Since v is bounded, (Σ, e 2v g 0 ) is quasi-isometric to (Σ, g 0 ). As f is almost-fuchsian, it is proper. Thus g 0 is complete, and e 2v g 0 is also complete. By the Ahlfors-Schwarz-Pick lemma [Ahl38], the complete hyperbolic metric. is unique in its conformal class, hence g = e 2v g 0 is complete hyperbolic. Denote u = -v, we check:

(2.17)

- ln 2 2 ≤ u ≤ 0 ,
As asserted.
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• With the same proof, one can prove that this is a general property of complete pinched Hadamard disks, due to Bland and Kalka [START_REF] Bland | Complete metrics conformal to the hyperbolic disc[END_REF]. It is also stated in Benoist-Hulin [BH20], Prop. 3.1. : A complete pinched hadamard disk is uniformly quasiconformal to the complete hyperbolic disk. • In [AS20], Alvarez and Smith show a more general version of this: The conformal factor is actually bounded in C k+2,α .

Theorem 2.6. Let g be a complete hyperbolic metric on Σ, u : Σ → R a bounded continuous map, and φ a holomorphic quadratic differential on Σ satisfying

∆ g u = -1 + e 2u + e -2u
|φ| 2 , and (2.18)

sup z∈Σ e -2u(z) |φ(z)| < 1 . (2.19)
Then there is an almost-fuchsian immersion of Σ into a hyperbolic manifold such that e 2u g is the induced metric and φ is the (2, 0)-part of the second fundamental form. Conversely, for any almost-fuchsian immersion the associated data satisfies these relations.

Proof. By the fundamental theorem of surface theory, we get an immersion into a hyperbolic manifold. Since u is bounded, the induced metric is complete and it follows from (2.19) that the principal curvatures lie in (-1, 1). Hence f is almost-fuchsian.

Conversely, if f is almost-fuchsian, consider (u, φ) the associated Gauss-Codazzi data. Then Gauss-Codazzi is verified, the bound on the principal curvatures yields (2.19) and the boundedness of u follows from the previous lemma.

Note that almost-fuchsian subdisks of H 3 are always properly embedded and bound a quasicircle at infinity. Indeed, this readily follows from the original work [START_REF] Uhlenbeck | Closed minimal surfaces in hyperbolic 3-manifolds[END_REF] of Uhlenbeck and the argument of Theorem 1.3 of [START_REF] Huang | On almost-fuchsian manifolds[END_REF]. For the reader's convenience, we state and prove this result here.

Theorem 2.7. Let e : D → H 3 be an almost-fuchsian disk. Then the disk e(D) is properly embedded and bounds a quasi-circle at infinity. Furthermore, if k denotes the supremum of the principal curvatures of e, the quasisymmetry constant of the quasi-circle is bounded by where exp denotes the exponential map of H 3 . Let A denote the shape operator of f . The same computation as of lemma 2.1. of [START_REF] Huang | On almost-fuchsian manifolds[END_REF] gives the following expression of the metric induced by e :

(2.21)

h ν (x, t) := h t (x) ⊕ dt 2 ,
where, for all t,

(2.22) h t (•, •) = e 2u g((cosh(t)I 0 + sinh(t)A)•, (cosh(t)I 0 + sinh(t)A)•) .

Consider 0 < k < 1 such that the operator norm of A is less than k. Since |A| ≤ k < 1, h ν is complete and thus e is a diffeomorphism. In particular, e is properly embedded.

Let f : D → H 3 be an isometric parametrization of a totally geodesic plane, let v f denote its unit normal vector field, and define f :

D × R → H 3 by (2.23) f (x, t) = exp f (x) (tν f (x)) .
The metric induced by f is

(2.24) g(x, t) = cosh 2 (t)g ⊕ dt 2 .
It follows from (2.24) and (2.22) that α := e • f -1 is bilipschitz. It therefore extends (see Gehring [START_REF] Gehring | Rings and quasiconformal mappings in space[END_REF] or Mostow [START_REF] George D Mostow | Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms[END_REF]) to a quasiconformal map α from ∂ ∞ H 3 to itself. It follows that Γ := ∂ ∞ e(D) is a quasicircle. Note that, for all t, the restrictions of h 0 and g to the slice D × {t} are K-quasiconformal, with (2.25)

K = 1 + k 1 -k .
Letting t tend to +∞, it follows that α is K-quasiconformal. As the boundary of the disk is the image by α of an equator in S 2 , this completes the proof.

Proof of main theorem

As in this paper we are mainly interested in the description of conformal almost-fuchsian disks, let us define the space we want to describe: Definition 3.1. We denote AF the set of almost-fuchsian immersions D 2 → H 3 up to postcomposition by an isometry of H 3 .

The set AF, equipped with its quotient topology, can be identified with the set of almostfuchsian immersions with prescribed image and differential of the origin o. As such, it can be viewed as a subspace of the space of immersions from the disk into H 3 .

Remark. The space AF does not parametrize almost-fuchsian subdisks of H 3 . However, the set of almost-fuchsian subdisks up to isometry can be identified to the quotient of AF by a PSL(2, R) action by precomposition, which is not a properly discontinous action.

In order to prove our theorems in a noncompact setting, we will use the following version of Omori-Yau's theorem [START_REF] Omori | Isometric immersions of riemannian manifolds[END_REF][START_REF] Yau | Harmonic functions on complete riemannian manifolds[END_REF]. It can be found in Li-Mochizuki [START_REF] Li | Complete solutions of toda equations and cyclic higgs bundles over non-compact surfaces[END_REF], we reproduce it here for the reader's convenience.

Theorem 3.2 (Omori-Yau). Let (M, h) be a complete manifold with Ricci curvature bounded from below. Let u : M → R be a map bounded from above and let ε > 0. Then there is

x ∈ M such that u(x) ≥ sup u -ε , (3.1) |∇ h u(x)| ≤ ε , and (3.2) ∆ h u(x) ≤ ε . (3.3)
The first step is to show that the moduli space of almost-fuchsian disks injects into the space of bounded holomorphic quadratic differentials. ∆u = -1 + e 2u + e -2u |φ| 2 such that e -2u |φ| < 1 everywhere.

Proof. Suppose (u, φ) and (v, φ) are two bounded solutions of (3.4) such that e -2u |φ| < 1 and e -2v |φ| < 1. Then u -v is bounded and satisfies (3.5) ∆(u -v) = (e 2v -e -2v |φ| 2 )(e 2(u-v) -1) + |φ| 2 e -2v (e 2(u-v) + e 2(v-u) -2) .

Using the positivity of the second term of the right hand side and the almost-fuchsian property of v, one gets

(3.6) ∆(u -v) ≥ (e 2v -e -2v |φ| 2 )(u -v) .
Applying Omori-Yau's maximum principle gives u -v ≤ 0. Exchanging u and v, one has u = v, thus the corresponding almost-fuchsian disks are conjugated.

Remark. The same reasoning actually shows that if (e 2u g, φ) is almost-fuchsian, then any upper bounded v solution to the Gauss-Codazzi equation with quadratic differential φ must satisfy:

(3.7) v ≤ u .
In [START_REF] Huang | Bifurcation for minimal surface equation in hyperbolic 3-manifolds[END_REF], Huang, Lucia and Tarantello study the solutions of the Gauss-Codazzi equation on closed surfaces, of which the maximality of almost-fuchsian solutions is a consequence.

Moreover, we will show that the image of the almost-fuchsian locus in the space of bounded holomorphic quadratic differentials on the disk is actually open. Combining Proposition 3.3 with the fundamental theorem of surface theory, we get : Corollary 3.4. For f : D 2 → H 3 an immersion, denote φ f its Hopf differential. Then the map:

(3.8) Φ : AF → QD(D 2 ) f → φ f is injective.
Remark. The statement of this corollary in the equivariant case is the Lemma 2.11 of Krasnov-Schlenker [START_REF] Krasnov | Minimal surfaces and particles in 3manifolds[END_REF].

Proof. We already know that the Gauss-Codazzi data of an immersion characterizes it up to isometry. The prop (3.3) shows that if two almost-fuchsian immersions have same Hopf differentials, then they have the same Gauss-Codazzi data, hence the injectivity of our map. We will prove that the linearized operator of (3.9) L u : v → -∆v + 2(e 2u -e -2u |φ| 2 )v is an isomorphism between the Banach spaces C 2,α (D) and C 0,α (D), where here D is equipped with its Poincaré metric, hence, using the local inversion principle, we will be able to find a solution u uniformly close to u on a neighborhoof of φ, which then has to be almost-fuchsian.

At first, as u is bounded, L u trivially defines a bounded linear map from C 2,α (D) towards C 0,α (D). The almost-fuchsian condition implies

(3.11) δ 2 ≤ e 2u -e -2u |φ| 2 ≤ 1.
Hence L u is strictly elliptic. We now show that L u is injective. Indeed, choose v ∈ ker L u . Since v is bounded, Omori-Yau's maximum principle implies

(3.12) v ≤ 0 .
The same reasoning to -v shows that v = 0, hence L u is injective, as asserted.

It remains only to prove surjectivity. First consider a compact set K in D with smooth boundary. It is a standard consequence of elliptic theory and of the strict ellipticity of L u that L u is an isomorphism from C 2,α 0 (K) into C 0,α (K). Now choose u ∈ C 0,α (D). and a compact exhaustion (K n ) of D such that each K i has smooth boundary. For each i there is a unique

v i ∈ C 2,α 0 (K i ) such that L u v i = w1 K i .
We claim that the sequence (|v n | ∞ ) is bounded. Indeed, by the maximum principle, for all i,

(3.13) |u i | ∞ ≤ max{2δ, 1}|w1 K i | ∞ ≤ 2|w| ∞ .
Fix a radius r > 0 and x ∈ D. For i big enough such that B(x, 2r)

⊂ K i , |L u v i | C 0,α (B(x, 2r 
)) ≤ |w| C 0,α , and (3.14)

|v i | C 0 (B x,2r ) ≤ 2|w| C 0 . (3.15)
Hence, by the Schauder estimates, there is a C > 0 depending only on r such that (3.16)

|v i | C 2,α (B(r,x)) ≤ C|w| C 0,α .
By the Arzela-Ascoli theorem, up to extracting a subsequence, we can assume there exists v ∞ ∈ C 2,α loc such that v n → v ∞ on every compact set in the C 2,β topology for β < α. Furthermore

|v ∞ | C 2,α ≤ C ′ sup x∈H 2 |v ∞ | C 2,α (B(r,x)) ≤ C ′ sup x∈H 2 lim sup i→∞ |v i | C 2,α (B(r,x)) ≤ C ′ C|w| C 0,α , so that v ∞ ∈ C 2,α (H 2 ). By continuity of L u , (3.17) L u v ∞ = w .
Thus L u is surjective. By the Closed Graph Theorem, L u is a linear isomorphism. It follows by the inverse function theorem that the image of the almost-fuchsian locus is open in the space of bounded quadratic differentials, as desired.

Equipped with this theorem, we will consider a perturbation φ t of φ in the image of the almost-fuchsian locus and we will consider the family (u t ) of bounded maps satisfying the Gauss-Codazzi equation. In particular, we will need the derivatives ut and üt to be bounded.

The following is actually a straightforward consequence of the implicit function theorem we used.

Proposition 3.6. Consider (e 2u , φ) an almost-fuchsian disk. Let f t be a C 0,α perturbation of |φ| 2 . Denote by (u t ) the smooth branch of solutions to :

(3.18) ∆u t = -1 + e 2ut + e -2ut f t
for t in a neighborhood of 0. Then ut and üt are bounded.

Proof.

Consider F : C 2,α (D) × [0, 1] → C 0,α (D) defined by F (v, t) = ∆v + 1 -e 2v -e -2v f t .
Thanks to the previous lemma, we know the local existence of a smooth G : [0, 1] → C 2,α (D) such that F (G(t), t) = 0. It follows by smoothness of G that ut , üt ∈ C 2,α (D) for all t, and the result follows.

We are now able to show that the almost-fuchsian locus retracts to the set of almostfuchsian immersions with zero quadratic differentials.

Theorem 3.7. Let φ ∈ ℑ(AF) and let ψ be a holomorphic quadratic differential on the disk satisfying

(3.19) ∀z ∈ D, |ψ(z)| ≤ |φ(z)| .
Then ψ ∈ ℑ(AF).

Proof. Let u : D → R be such that (u, φ) is the Gauss-Codazzi data of an almost-fuchsian disk. Let f t : D → [0, ∞[ be a smooth map such that f 0 = |ψ| 2 and f 1 = |φ| 2 . As |ψ| ≤ |φ|,
one can choose f so that the maps t → f t (z) are nondecreasing. We will show that ψ ∈ ℑ(AF), i.e. that there is a solution v to ∆v = -1 + e 2v + e -2v f 0 , and (3.20)

sup z∈D e -4v f 0 < 1 . (3.21)
To do so, consider for t ∈ [0, 1] the equation.

(3.22) ∆u t = -1 + e 2ut + e -2ut f t .

Let I ⊆ [0, 1] denote the set of all s such that, for all t ≥ s, this equation has a bounded solution u s satisfying |e -4us f s | ∞ < 1, for some ǫ > 0. By Theorem 2.6, 1 ∈ I. By Theorem 3.5 applied to a C 0,α perturbation, I is open. It thus remains only to show that I is closed. At first, consider t 0 = inf I and (t n ) ∈ I a monotonous sequence such that t n → t 0 . By Lemma 2.5, the sequence (u tn ) is uniformly bounded, from which it follows that (∆u tn ) is also uniformly bounded. By Schauder's estimates, the sequence (u tn ) is uniformly bounded in C 1,α on any compact set. Hence we may assume that u tn converges towards a map u t 0 ∈ C 2,α (H) in the C 2,β topology for all β < α. Trivially u t 0 solves (3.22).

It remains only to check that |e -4ut 0 f t 0 | ∞ < 1. Differentiating the above equation with respect to t yields, (3.23) ∆ ut = 2(e 2ut -e -2ut f t ) ut + e -2ut ḟt .

By Lemma 2.5, there exists B > 0 such that |u t | ∞ < B for all t. It follows by the Omori-Yau maximum principle that, over I, ut ≤ 0, so that, for all t ∈ I,

(3.24) e -4ut f t ∞ ≤ e -4u 1 f 1 ∞ < 1 .
Closedness of I now follows so that, by connectedness, 0 ∈ I. At t = 0, this means that (u 0 , ψ) is the Gauss-Codazzi data of an almost-fuchsian disk. We have shown that ψ ∈ ℑ(AF), as desired. Denote φ t = tφ for t ∈ [0, 1]. Then for any t ∈ [0, 1], there is a u t : Σ → R bounded such that (e 2ut g, φ t ) satisfies the Gauss-Codazzi equation. Furthermore, for all t ∈ [0, 1], (e 2ut g, φ t ) is almost-fuchsian.

Remark. For the equivariant case, this computation can already be found in a survey of Trautwein [START_REF] Samuel Trautwein | The hyperkähler metric on the almost-fuchsian moduli space[END_REF], step 3 of proof of theorem 5.13.

Corollary 3.9. The moduli space of almost-fuchsian disks up to isometry is contractible. The set of almost-fuchsian immersions retracts onto the set of geodesic immersions of disks in H 3 .

We continue with the proof of our main theorem: Theorem 3.10 (Convexity). Let (e 2u 0 g, φ 0 ) and (e 2u 1 g, φ 1 ) be two pairs corresponding to almost-fuchsian disks. For t ∈ [0, 1], denote φ t := (1 -t)φ 0 + tφ 1 . Then for any t, there is (e 2wt g, φ t ) satisfying the Gauss-Codazzi equation, and it corresponds to an almost-fuchsian disk.

Proof. First, we write down Gauss-Codazzi and we differentiate it twice in t ∆w t = -1 + e 2wt + e -2wt |φ t | 2 , (3.27) ∆ ẇt = 2 ẇt e 2wt -2 ẇt e -2wt |φ t | 2 + 2e -2wt g(φ t , φ 1 -φ 0 ) , and (3.28)

∆ ẅt = 2 ẅt (e 2wt -e -2wt |φ t | 2 ) + 4 ẇ2 t (e 2wt + e -2wt |φ t | 2 ) -8 ẇt e -2wt g(φ t , φ 1 -φ 0 ) + 2e -2wt |φ 1 -φ 0 | 2 . (3.29)
We first show that as long as (e 2wt g, φ t ) is almost-fuchsian, (3.30) ẅt + 4 ẇ2 t ≤ 0 . This is a consequence of the Omori-Yau maximum principle and the following standard formula.

(3.31) ∆( ẇ2 t ) = 2 ẇt ∆ ẇt + 2|∇ ẇt | 2 ≥ 2 ẇt ∆ ẇt . Then, using equations (3.28) and (3.29), we obtain 

∆( ẅt + 4 ẇ2 t ) ≥ 2 ẅt (e 2wt -e -2wt |φ t | 2 ) + 20 ẇ2 t e 2wt -12 ẇ2 t e -2wt |φ t | 2 +8 ẇt e -2wt g(φ t , φ 1 -φ 0 ) + 2e -2wt |φ 1 -φ 0 | 2 . ( 3 
-φ s,0 ) + 2|φ s,1 -φ s,0 | 2 .
= -4( ẅs,t + 4 ẇ2 s,t )|φ s,t | 2 + 2|4 ẇs,t φ s,t -(φ s,1 -φ s,0 )| 2 . This is nonnegative, and convexity follows. By convexity, e -4ws,t |φ s,t | 2 is smaller than the maximal value for t = 0 and t = 1, and we deduce that it is smaller than 1 -δ, for δ > 0 depending only on φ 0 and φ 1 . It now readily follows that S is closed, so that, by connectedness, 1 ∈ S. In other words, J 1 = [0, 1], and the result follows.

We also have the following quantitative estimate for this convex set. Fixing now a subgroup Γ of PSL(2, R), one can look at the subset AF Γ of elements of AF equivariant under some representation of Γ. The uniqueness properties shown imply that this set can be identified with a subset of Hom(Γ, PSL(2, C))/PSL(2, C). In the case of a closed surface group, this subset are known as almost-fuchsian representations considered by Uhlenbeck [START_REF] Uhlenbeck | Closed minimal surfaces in hyperbolic 3-manifolds[END_REF].

Page 11/13 Fix a hyperbolic surface Σ g,n , and consider Γ its fundamental group. Considering now holomorphic quadratic differentials equivariant under the action of Γ, identifying holomorphic quadratic differentials with the cotangent bundle to Teichmüller space of genus (g, n), we get a smooth family of open bounded sets in each leaf. As these sets are isotropic (if (e 2u g, φ) is an almost-fuchsian disk, so is (e 2u g, zφ) for any z of modulus one), it induces a Finsler metric on Teichmüller space, which is quasi-isometric to the Finsler metric dual to the L ∞ unit balls in T * T g . Corollary 3.12. For g ≥ 2 and T g the Teichmüller space of genus g, there is a Finsler metric p on T g such that:

(3.40) p(φ) < 1 ⇐⇒ φ ∈ ℑ(AF) This Finsler metric is quasi-isometric to the Finsler metric dual to the L ∞ unit balls in T * T g .

Remark. It is interesting to compare this Finsler metric to the metrics dual to L p -unit balls in T * T g . For p = 2, one gets Weil-Petersson's metric, see Wolpert [START_REF] Scott | The weil-petersson metric geometry[END_REF]. For p = 1, one gets the Teichmüller metric, see Papadopoulos-Su [START_REF] Papadopoulos | On the finsler structure of teichmüller's metric and thurston's metric[END_REF].

Remark. With this discussion, we have a description of the fibration map from AF Γ → T g,n , which is simply the conformal class of the induced metric on Σ g,n .

  1+k 1-k . Proof. Let g be the Poincaré metric of D. Let g 0 = e 2u g denote the induced metric of e on the disk D. Consider ν the unit normal vector field, and define e by (2.20) e : D × R → H 3 , and (x, t) → exp x (tν x ) .

Theorem 3. 5 .

 5 The image of the almost-fuchsian locus is open in the space of bounded holomorphic quadratic differentials. Proof. Consider φ in ℑ(AF), u and 0 < δ < 1 satisfying ∆u = -1 + e 2u + e -2u |φ| 2 and (3.9) sup z∈D e -2u |φ| ≤ 1 -δ . (3.10)

Corollary 3. 8 .

 8 Let φ ∈ ℑ(AF) and let u : D → R be the associated bounded map such that ∆u = -1 + e 2u + e -2u |φ| 2 , and (3.25) sup z∈D e -2u |φ| ≤ 1 -δ . (3.26)

  Theorem 3.11. The convex set ℑ(AF) satisfies: (AF) ⊂ {φ : sup z∈D |φ(z)| < 1} Proof. Take φ with |φ| ∞ ≤ 1 2 . Thenln 2 2 and 0 are respectively sub and supersolutions of (3.39) ∆u = -1 + e 2u + e -2u |φ| 2 . Hence by Proposition 2.4, we have a bounded solution satisfying Gauss-Codazzi, and necessarily e -2u |φ| ≤ 2|φ| ∞ < 1. Hence φ ∈ ℑ(AF). Conversely, if φ ∈ ℑ(AF), u the solution to Gauss-Codazzi satisfies u ≤ 0, and |φ| ∞ ≤ |e -2u φ| ∞ < 1.

  )(e 2wt -e -2wt |φ t | 2 ) + 12 ẇ2 t (e 2wt -e -2wt |φ t | 2 ) .For all s, let J s denote the set of all t ∈ [0, 1] for which there exists a function w s,t making (e 2ws,t g, φ s,t ) into an almost Fuchsian pair. Let S denote the set of all s ∈ [0, 1] for which J s equals the interval [0, 1]. Trivially S contains 0. By Theorem 3.5, S is open. We now show that S is closed. First, if s 0 ∈ S, the equicontinuity of all functions (u s,t ) for s ∈ S, t ∈ [0, 1] allows us to get a limiting family of functions which are solutions to Gauss-Codazzi equation. We claim that, for all s, the function t → e -4ws,t |φ s,t | 2 is convex over J s . Indeed,

	As 8A 2 + 8AB + 2B 2 = 2(2A + B) 2 is nonnegative, we obtain
	(3.34)	∆( ẅt + 4 ẇ2 t ) ≥ 2( ẅt + 4 ẇ2
	Hence, provided the pair is almost-fuchsian, we get
	(3.35)	∆( ẅt + 4 ẇ2 t ) ≥ 2( ẅt + 4 ẇ2 t )(e 2wt -e -2wt |φ t | 2 ) .
	Thus we deduce that
	(3.36)	ẅt + 4 ẇ2 t ≤ 0 .
	We have shown that as long as (e 2ut g, φ t ) is almost-fuchsian, ẅt + 4 ẇ2 t ≤ 0, as asserted.
	Consider now the family of quadratic holomorphic differentials
	(3.37)	φ s,t := s(1 -t)φ 0 + stφ 1
		e 4ws,t ∂ 2
	.32)	
	Judiciously rearranging the terms, we obtain
	(3.33)	∆( ẅt + 4 ẇ2

t ) ≥ 2( ẅt + 4 ẇ2 t )(e 2wt -e -2wt |φ t | 2 ) + 12 ẇ2 t (e 2wt -e -2wt |φ t | 2 ) +8 ẇ2 t e -2wt |φ t | 2 + 8e -2wt g( ẇt φ t , φ 1 -φ 0 ) + 2e -2wt |φ 1 -φ 0 | 2 . t

t (e -4ws,t |φ s,t | 2 ) = -4( ẅs,t + 4 ẇ2 s,t )|φ s,t | 2 + 32 ẇ2 s,t |φ s,t | 2 -16 ẇs,t g(φ s,t , φ s,1