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A geometric description of the set of almost-fuchsian representations

SAMUEL BRONSTEIN, GRAHAM ANDREW SMITH

Abstract. We prove that the set of proper minimal disks in the real hyperbolic 3-space

whose principal curvatures belong in a closed set of (−1, 1) is parametrized by a convex

set of Hopf differentials. We give a quantitative estimate of this convex set in terms of

sup norms of the quadratic differentials. Applying this result to disks equivariant under

some surface group action, we get a parametrization of almost-fuchsian representations by

a fiberwise convex open set in the cotangent bundle to Teichmüller space.
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1. Context and Statement of Results

In this paper we study the geometry of the space of complete almost-fuchsian minimal
disks in H3. In the special case of disks equivariant under the action of some cocompact
surface group in H3, this naturally gives a description of the moduli space of almost-fuchsian
representations by a fiberwise convex subset of the cotangent bundle of Teichmüller space.
The same discussion yields a description of minimal almost-fuchsian disks invariant under
some fixed group Γ < PSL(2,R).

Let Σg be a closed hyperbolic surface of genus g ≥ 2 and let Γ = π1(Σg) denote its
fundamental group. In her seminal work on minimal surfaces in hyperbolic 3-space [Uhl83],
K. Uhlenbeck defines the notion of almost-fuchsian representation: it is a discrete and faithful
representation ρ of Γ into PSL(2,C) such that there is a ρ-equivariant immersion f : H2 →
H3 with minimal image and principal curvatures in (−1, 1). Uhlenbeck showed that those
representations are always convex-cocompact, and that they form an open neighborhood of
the fuchsian locus inside Hom(Γ,PSL(2,C)). In H3, convex-cocompact representations are
quasi-fuchsian representations, hence the denomination of almost-fuchsian for this stronger
notion.

Considering the minimal surface problem in H3, almost-fuchsian representations are of
special interest because they admit a unique invariant minimal disk with small principal
curvatures. This is not the case for arbitrary convex-cocompact representations, see for
instance [HW15].

Date: January 3, 2023.

1

http://arxiv.org/abs/2301.00715v1


1

Krasnov–Schlenker [KS07] have extended the notion to almost-fuchsian immersions or
almost-fuchsian disks, not necessarily invariant under a surface group. Seppi [Sep16] used it
to show that quasi-circles with quasisymmetry constant close to 1 bound minimal disks.

We will work with the following notion of almost-fuchsian immersion.

Definition 1.1. An immersion f : D → H3 is said to be almost-fuchsian if it is proper,
conformal with minimal image, and has principal curvatures in (−1 + ǫ, 1 − ǫ), for some
ǫ > 0.

A subdisk of H3 is said to be an almost-fuchsian subdisk if it is the image of an almost-
fuchsian immersion.

Let Q(D) denote the space of holomorphic quadratic differentials over D. The main result
we will prove in this paper is the following:

Theorem 1.2. Let C ⊆ Q denote the set of Hopf differentials of almost fuchsian immersions.
Then

(1) 2 disks with same Hopf differentials are identified by an isometry of H3.
(2) C is a bounded, open and convex subset of Q, and
(3) C contains all holomorphic quadratic differentials such that |φ|∞ ≤ 1

2
.

(4) For any φ ∈ C, |φ|∞ ≤ 1.

Krasnov–Schlenker [KS07] already consider this parametrization for the case of holomor-
phic quadratic differentials invariant under a closed surface subgroup of PSL(2,C). In that
case, it was already known that the set is open and star-shaped around 0, see for instance
[Tra19].

The almost-fuchsian moduli space is an example of moduli space endowed with a hyper-
kähler structure, see [Don03] and [Hod05]. The hyperkähler structure actually coincides with
the Feix-Kaleidin structure when considering C as a neighborhood of the fuchsian moduli
space, [Tra19].

This description of C has 2 main consequences. First, it extends the notion of almost-
fuchsian representation to any infinite discrete subgroup of PSL(2,R). Also, considering
holomorphic quadratic differentials invariant under a surface group representation, we prove
the following result.

Theorem 1.3. There exists a Finsler metric p on the Teichmüller space Tg such that

(1.1) ∀φ ∈ T ∗Tg, p(φ) < 1 if and only if φ ∈ C .

This Finsler metric is uniformly equivalent to the Finsler metric dual to the unit L∞ balls
under the identification of the cotangent bundle with the space of holomorphic quadratic
differentials.

The authors thank Nicolas Tholozan for his insights and discussions on this topic.

2. introduction and notation

This section is a classical survey of the Gauss-Codazzi equation for almost-fuchsian disks.
The results are well-known, we explain them here to make our notation clear. The reader
comfortable with Gauss-Codazzi theory may go directly to the next section.

In the following, Σ is a connected, oriented surface, with χ(Σ) < 0. Let (M,h) is a
complete, 3-dimensional hyperbolic manifold, and let f : Σ → M be a smooth immersion.
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Let g0 denote the induced metric over S, let II denote the second fundamental form of f ,
and let A denote its shape operator. Recall that f is said to be minimal whenever its mean
curvature H := Tr(A) vanishes.

Let κ denote the intrinsic curvature of g0. The Gauss equation is

(2.1) κ = detg0(II)− 1 .

where the determinant of the second fundamental form II is taken with respect to g0. The
determinant of II is also the determinant of the shape operator A.

Definition 2.1 (Hopf differential). The Hopf differential φ of f is the (2, 0)-component of
II. That is, φ is the symmetric bilinear form given by

(2.2) φ(ξ, ν) :=
1

4

(
II(ξ, ν)− iII(Jξ, ν)− iII(ξ, Jν)− II(Jξ, Jν)

)
.

In particular, when f is minimal we readily obtain:

(2.3) detg0(II) = −|φ|2g0 .

In the following, we will denote g a fixed hyperbolic metric on a Riemann surface, we call
the pair (u, φ) Gauss-Codazzi data for the immersion, where e2ug is the induced metric and
φ is the Hopf differential of the corresponding immersion.

Lemma 2.2. Let (Σ, g0) be a riemannian surface and let g1 = e2ug0 be a metric conformal
to g0. Let ∆i and κi denote respectively the laplacian and curvature of the metric gi for
i ∈ {0, 1}. Then

κ1e2u = κ0 −∆0u(2.4)

κ0 = (κ1 +∆1u)e2u .(2.5)

Proof. Denote Rici the Ricci tensor of gi. The following equation in Besse’s book, 1.159 d)
[Bes07], relates the Ricci curvatures of g1 and g0:

(2.6) Ric1 = Ric0 − (∆0u)g0

The remaining equations follow from the fact that, for a riemannian surface (Σ, gi), Ricgi = κigi.
Note that Besse uses the analysts’ laplacian, whose sign is the inverse of that of the geome-
ter’s laplacian. �

Combining these equations yields the Gauss-Codazzi equation.

Proposition 2.3 (Gauss-Codazzi). Let f : Σ → (M,h) be a minimal immersion of a surface
into a hyperbolic manifold. Let g0 denote the induced metric and let g = e−2ug0 denote the
unique, complete hyperbolic metric in its conformal class. Then u satisfies

(2.7) ∆u = −1 + e2u + e−2u|φ|2g .

Proof. By lemma 2.2,

(2.8) κ0 = (−1−∆u)e−2u .

By Gauss equation,

(2.9) κ0 = −1− e−4u|φ0|
2
g .

The result follows upon combining these two equations. �
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By the fundamental theorem of surface theory, for every pair (u, φ), where u : Σ → R

and φ is a holomorphic quadratic differential on Σ satisfying the Gauss-Codazzi equation

(2.7), there exists an immersion of Σ̃ into H3 having this Gauss-Codazzi data. As the surface

considered is hyperbolic Σ̃ identifies with the open disk D, and the immerssion is equivariant
with regard to some representation ρ : π1Σ → Isom(H3) Furthermore, this immersion is
unique up to post composition by an isometry of H3.

We will require the following result of Li-Mochizuki [LM20].

Proposition 2.4 (Sub-supersolution method). Let (Σ, g) be a riemannian surface, and let
F be a smooth function defined on Σ× R. Consider the equation (E):

(2.10) ∆gu = F (x, u)

Assume there are u−, u+ : Σ → R satisfying:

u− < u+(2.11)

∆gu− ≥ F (x, u−)(2.12)

∆gu+ ≤ F (x, u+)(2.13)

Then the equation (E) admits at least one solution u satisfying u− ≤ u ≤ u+.

First remark that almost-fuchsian subsurfaces of H3 are necessarily uniformized by the
Poincaré disk, and that the conformal factor between the induced metric and the hyperbolic
one is bounded:

Lemma 2.5. Let M be a complete hyperbolic 3-manifold. Let f : Σ → M be an almost-
fuchsian immersion, then its induced metric g0 is conformal to a complete hyperbolic metric
g. Denote g0 = e2ug. Then u satisfies.

(2.14) −
ln 2

2
≤ u ≤ 0 .

Proof. Consider the prescribed curvature equation on the universal cover :

(2.15) ∆g0v = e2v − κg0 .

For any solution v, the corresponding metric e2vh0 will be hyperbolic. As f is almost fuchsian,
the curvature κh0

satisfies −2 ≤ κh0
≤ −1. Upon applying the sub-supersolution method

(Prop 2.4) to (2.15) with subsolution v− = 0 and supersolution v+ = ln 2
2

, we get a solution
v satisfying

(2.16) 0 ≤ v ≤
ln 2

2
.

Since v is bounded, (Σ, e2vg0) is quasi-isometric to (Σ, g0). As f is almost-fuchsian, it is
proper. Thus g0 is complete, and e2vg0 is also complete. By the Ahlfors-Schwarz-Pick lemma
[Ahl38], the complete hyperbolic metric. is unique in its conformal class, hence g = e2vg0 is
complete hyperbolic. Denote u = −v, we check:

(2.17) −
ln 2

2
≤ u ≤ 0 ,

As asserted. �

Remark.
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• With the same proof, one can prove that this is a general property of complete pinched
Hadamard disks, due to Bland and Kalka [BK86]. It is also stated in Benoist-Hulin
[BH20], Prop. 3.1. : A complete pinched hadamard disk is uniformly quasiconformal
to the complete hyperbolic disk.

• In [AS20], Alvarez and Smith show a more general version of this: The conformal
factor is actually bounded in Ck+2,α.

Theorem 2.6. Let g be a complete hyperbolic metric on Σ, u : Σ → R a bounded continuous
map, and φ a holomorphic quadratic differential on Σ satisfying

∆gu = −1 + e2u + e−2u|φ|2 , and(2.18)

sup
z∈Σ

(
e−2u(z)|φ(z)|

)
< 1 .(2.19)

Then there is an almost-fuchsian immersion of Σ into a hyperbolic manifold such that e2ug
is the induced metric and φ is the (2, 0)-part of the second fundamental form. Conversely,
for any almost-fuchsian immersion the associated data satisfies these relations.

Proof. By the fundamental theorem of surface theory, we get an immersion into a hyperbolic
manifold. Since u is bounded, the induced metric is complete and it follows from (2.19) that
the principal curvatures lie in (−1, 1). Hence f is almost-fuchsian.

Conversely, if f is almost-fuchsian, consider (u, φ) the associated Gauss-Codazzi data.
Then Gauss-Codazzi is verified, the bound on the principal curvatures yields (2.19) and the
boundedness of u follows from the previous lemma. �

Note that almost-fuchsian subdisks of H3 are always properly embedded and bound a
quasicircle at infinity. Indeed, this readily follows from the original work [Uhl83] of Uhlenbeck
and the argument of Theorem 1.3 of [HW13]. For the reader’s convenience, we state and
prove this result here.

Theorem 2.7. Let e : D → H3 be an almost-fuchsian disk. Then the disk e(D) is properly
embedded and bounds a quasi-circle at infinity. Furthermore, if k denotes the supremum of
the principal curvatures of e, the quasisymmetry constant of the quasi-circle is bounded by
1+k
1−k

.

Proof. Let g be the Poincaré metric of D. Let g0 = e2ug denote the induced metric of e on
the disk D. Consider ν the unit normal vector field, and define ẽ by

(2.20) ẽ :

{
D× R → H3 , and
(x, t) 7→ expx(tνx) .

where exp denotes the exponential map of H3. Let A denote the shape operator of f . The
same computation as of lemma 2.1. of [HW13] gives the following expression of the metric
induced by ẽ :

(2.21) hν(x, t) := ht(x)⊕ dt2 ,

where, for all t,

(2.22) ht(·, ·) = e2ug((cosh(t)I0 + sinh(t)A)·, (cosh(t)I0 + sinh(t)A)·) .

Consider 0 < k < 1 such that the operator norm of A is less than k. Since |A| ≤ k < 1, hν

is complete and thus ẽ is a diffeomorphism. In particular, e is properly embedded.
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Let f : D → H3 be an isometric parametrization of a totally geodesic plane, let vf denote

its unit normal vector field, and define f̃ : D× R → H3 by

(2.23) f̃(x, t) = expf(x)(tνf (x)) .

The metric induced by f̃ is

(2.24) g̃(x, t) = cosh2(t)g ⊕ dt2 .

It follows from (2.24) and (2.22) that α := e ◦ f−1 is bilipschitz. It therefore extends (see
Gehring [Geh62] or Mostow [Mos68]) to a quasiconformal map α̃ from ∂∞H3 to itself. It
follows that Γ := ∂∞e(D) is a quasicircle.

Note that, for all t, the restrictions of h0 and g̃ to the slice D×{t} are K-quasiconformal,
with

(2.25) K =
1 + k

1− k
.

Letting t tend to +∞, it follows that α̃ is K-quasiconformal. As the boundary of the disk is
the image by α̃ of an equator in S2, this completes the proof. �

3. Proof of main theorem

As in this paper we are mainly interested in the description of conformal almost-fuchsian
disks, let us define the space we want to describe:

Definition 3.1. We denote AF the set of almost-fuchsian immersions D2 → H3 up to
postcomposition by an isometry of H3.

The set AF , equipped with its quotient topology, can be identified with the set of almost-
fuchsian immersions with prescribed image and differential of the origin o. As such, it can
be viewed as a subspace of the space of immersions from the disk into H3.

Remark. The space AF does not parametrize almost-fuchsian subdisks of H3. However, the
set of almost-fuchsian subdisks up to isometry can be identified to the quotient of AF by a
PSL(2,R) action by precomposition, which is not a properly discontinous action.

In order to prove our theorems in a noncompact setting, we will use the following version
of Omori-Yau’s theorem [Omo67, Yau75]. It can be found in Li-Mochizuki [LM20], we
reproduce it here for the reader’s convenience.

Theorem 3.2 (Omori-Yau). Let (M,h) be a complete manifold with Ricci curvature bounded
from below. Let u : M → R be a map bounded from above and let ε > 0. Then there is
x ∈M such that

u(x) ≥ sup u− ε ,(3.1)

|∇hu(x)| ≤ ε , and(3.2)

∆hu(x) ≤ ε .(3.3)

The first step is to show that the moduli space of almost-fuchsian disks injects into the
space of bounded holomorphic quadratic differentials.
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Proposition 3.3. Let φ be a holomorphic quadratic differential on the disk. Then there is
at most one bounded solution to

(3.4) ∆u = −1 + e2u + e−2u|φ|2

such that e−2u|φ| < 1 everywhere.

Proof. Suppose (u, φ) and (v, φ) are two bounded solutions of (3.4) such that e−2u|φ| < 1
and e−2v|φ| < 1. Then u− v is bounded and satisfies

(3.5) ∆(u− v) = (e2v − e−2v|φ|2)(e2(u−v) − 1) + |φ|2e−2v(e2(u−v) + e2(v−u) − 2) .

Using the positivity of the second term of the right hand side and the almost-fuchsian
property of v, one gets

(3.6) ∆(u− v) ≥ (e2v − e−2v|φ|2)(u− v) .

Applying Omori-Yau’s maximum principle gives u − v ≤ 0. Exchanging u and v, one has
u = v, thus the corresponding almost-fuchsian disks are conjugated. �

Remark. The same reasoning actually shows that if (e2ug, φ) is almost-fuchsian, then any
upper bounded v solution to the Gauss-Codazzi equation with quadratic differential φ must
satisfy:

(3.7) v ≤ u .

In [HLT21], Huang, Lucia and Tarantello study the solutions of the Gauss-Codazzi equation
on closed surfaces, of which the maximality of almost-fuchsian solutions is a consequence.

Moreover, we will show that the image of the almost-fuchsian locus in the space of bounded
holomorphic quadratic differentials on the disk is actually open. Combining Proposition 3.3
with the fundamental theorem of surface theory, we get :

Corollary 3.4. For f : D2 → H3 an immersion, denote φf its Hopf differential. Then the
map:

(3.8) Φ :

{
AF → QD(D2)
f 7→ φf

is injective.

Remark. The statement of this corollary in the equivariant case is the Lemma 2.11 of
Krasnov–Schlenker [KS07].

Proof. We already know that the Gauss-Codazzi data of an immersion characterizes it up
to isometry. The prop (3.3) shows that if two almost-fuchsian immersions have same Hopf
differentials, then they have the same Gauss-Codazzi data, hence the injectivity of our map.

�

Theorem 3.5. The image of the almost-fuchsian locus is open in the space of bounded
holomorphic quadratic differentials.

Proof. Consider φ in ℑ(AF), u and 0 < δ < 1 satisfying

∆u = −1 + e2u + e−2u|φ|2 and(3.9)

sup
z∈D

e−2u|φ| ≤ 1− δ .(3.10)
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We will prove that the linearized operator of (3.9) Lu : v 7→ −∆v + 2(e2u − e−2u|φ|2)v is
an isomorphism between the Banach spaces C2,α(D) and C0,α(D), where here D is equipped
with its Poincaré metric, hence, using the local inversion principle, we will be able to find a
solution ũ uniformly close to u on a neighborhoof of φ, which then has to be almost-fuchsian.

At first, as u is bounded, Lu trivially defines a bounded linear map from C2,α(D) towards
C0,α(D). The almost-fuchsian condition implies

(3.11)
δ

2
≤ e2u − e−2u|φ|2 ≤ 1.

Hence Lu is strictly elliptic. We now show that Lu is injective. Indeed, choose v ∈ kerLu.
Since v is bounded, Omori-Yau’s maximum principle implies

(3.12) v ≤ 0 .

The same reasoning to −v shows that v = 0, hence Lu is injective, as asserted.
It remains only to prove surjectivity. First consider a compact set K in D with smooth

boundary. It is a standard consequence of elliptic theory and of the strict ellipticity of Lu

that Lu is an isomorphism from C2,α
0 (K) into C0,α(K). Now choose u ∈ C0,α(D). and a

compact exhaustion (Kn) of D such that each Ki has smooth boundary. For each i there
is a unique vi ∈ C2,α

0 (Ki) such that Luvi = w1Ki
. We claim that the sequence (|vn|∞) is

bounded. Indeed, by the maximum principle, for all i,

(3.13) |ui|∞ ≤ max{2δ, 1}|w1Ki
|∞ ≤ 2|w|∞ .

Fix a radius r > 0 and x ∈ D. For i big enough such that B(x, 2r) ⊂ Ki,

|Luvi|C0,α(B(x,2r)) ≤ |w|C0,α, and(3.14)

|vi|C0(Bx,2r) ≤ 2|w|C0 .(3.15)

Hence, by the Schauder estimates, there is a C > 0 depending only on r such that

(3.16) |vi|C2,α(B(r,x)) ≤ C|w|C0,α .

By the Arzela-Ascoli theorem, up to extracting a subsequence, we can assume there exists
v∞ ∈ C2,α

loc
such that vn → v∞ on every compact set in the C2,β topology for β < α.

Furthermore

|v∞|C2,α ≤ C ′ sup
x∈H2

|v∞|C2,α(B(r,x))

≤ C ′ sup
x∈H2

lim sup
i→∞

|vi|C2,α(B(r,x))

≤ C ′C|w|C0,α,

so that v∞ ∈ C2,α(H2). By continuity of Lu,

(3.17) Luv∞ = w .

Thus Lu is surjective.
By the Closed Graph Theorem, Lu is a linear isomorphism. It follows by the inverse

function theorem that the image of the almost-fuchsian locus is open in the space of bounded
quadratic differentials, as desired. �

Equipped with this theorem, we will consider a perturbation φt of φ in the image of the
almost-fuchsian locus and we will consider the family (ut) of bounded maps satisfying the
Gauss-Codazzi equation. In particular, we will need the derivatives u̇t and üt to be bounded.
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The following is actually a straightforward consequence of the implicit function theorem we
used.

Proposition 3.6. Consider (e2u, φ) an almost-fuchsian disk. Let ft be a C0,α perturbation
of |φ|2. Denote by (ut) the smooth branch of solutions to :

(3.18) ∆ut = −1 + e2ut + e−2utft

for t in a neighborhood of 0. Then u̇t and üt are bounded.

Proof. Consider F : C2,α(D)× [0, 1] → C0,α(D) defined by F (v, t) = ∆v + 1 − e2v − e−2vft.
Thanks to the previous lemma, we know the local existence of a smooth G : [0, 1] → C2,α(D)
such that F (G(t), t) = 0. It follows by smoothness of G that u̇t, üt ∈ C2,α(D) for all t, and
the result follows. �

We are now able to show that the almost-fuchsian locus retracts to the set of almost-
fuchsian immersions with zero quadratic differentials.

Theorem 3.7. Let φ ∈ ℑ(AF) and let ψ be a holomorphic quadratic differential on the disk
satisfying

(3.19) ∀z ∈ D, |ψ(z)| ≤ |φ(z)| .

Then ψ ∈ ℑ(AF).

Proof. Let u : D → R be such that (u, φ) is the Gauss-Codazzi data of an almost-fuchsian
disk. Let ft : D → [0,∞[ be a smooth map such that f0 = |ψ|2 and f1 = |φ|2. As |ψ| ≤ |φ|,
one can choose f so that the maps t 7→ ft(z) are nondecreasing.

We will show that ψ ∈ ℑ(AF), i.e. that there is a solution v to

∆v = −1 + e2v + e−2vf0, and(3.20)

sup
z∈D

e−4vf0 < 1 .(3.21)

To do so, consider for t ∈ [0, 1] the equation.

(3.22) ∆ut = −1 + e2ut + e−2utft .

Let I ⊆ [0, 1] denote the set of all s such that, for all t ≥ s, this equation has a bounded
solution us satisfying |e−4usfs|∞ < 1, for some ǫ > 0. By Theorem 2.6, 1 ∈ I. By Theorem 3.5
applied to a C0,α perturbation, I is open. It thus remains only to show that I is closed.

At first, consider t0 = inf I and (tn) ∈ I a monotonous sequence such that tn → t0. By
Lemma 2.5, the sequence (utn) is uniformly bounded, from which it follows that (∆utn) is
also uniformly bounded. By Schauder’s estimates, the sequence (utn) is uniformly bounded
in C1,α on any compact set. Hence we may assume that utn converges towards a map
ut0 ∈ C2,α(H) in the C2,β topology for all β < α. Trivially ut0 solves (3.22).

It remains only to check that |e−4ut0ft0 |∞ < 1.
Differentiating the above equation with respect to t yields,

(3.23) ∆u̇t = 2(e2ut − e−2utft)u̇t + e−2ut ḟt .

By Lemma 2.5, there exists B > 0 such that |ut|∞ < B for all t. It follows by the Omori-Yau
maximum principle that, over I, u̇t ≤ 0, so that, for all t ∈ I,

(3.24)
∣∣e−4utft

∣∣
∞

≤
∣∣e−4u1f1

∣∣
∞
< 1 .
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Closedness of I now follows so that, by connectedness, 0 ∈ I. At t = 0, this means that (u0, ψ)
is the Gauss-Codazzi data of an almost-fuchsian disk. We have shown that ψ ∈ ℑ(AF), as
desired. �

Corollary 3.8. Let φ ∈ ℑ(AF) and let u : D → R be the associated bounded map such that

∆u = −1 + e2u + e−2u|φ|2 , and(3.25)

sup
z∈D

e−2u|φ| ≤ 1− δ .(3.26)

Denote φt = tφ for t ∈ [0, 1]. Then for any t ∈ [0, 1], there is a ut : Σ → R bounded such that
(e2utg, φt) satisfies the Gauss-Codazzi equation. Furthermore, for all t ∈ [0, 1], (e2utg, φt) is
almost-fuchsian.

Remark. For the equivariant case, this computation can already be found in a survey of
Trautwein [Tra19], step 3 of proof of theorem 5.13.

Corollary 3.9. The moduli space of almost-fuchsian disks up to isometry is contractible.
The set of almost-fuchsian immersions retracts onto the set of geodesic immersions of disks
in H3.

We continue with the proof of our main theorem:

Theorem 3.10 (Convexity). Let (e2u0g, φ0) and (e2u1g, φ1) be two pairs corresponding to
almost-fuchsian disks. For t ∈ [0, 1], denote φt := (1 − t)φ0 + tφ1. Then for any t, there is
(e2wtg, φt) satisfying the Gauss-Codazzi equation, and it corresponds to an almost-fuchsian
disk.

Proof. First, we write down Gauss-Codazzi and we differentiate it twice in t

∆wt = −1 + e2wt + e−2wt |φt|
2 ,(3.27)

∆ẇt = 2ẇte
2wt − 2ẇte

−2wt |φt|
2 + 2e−2wtg(φt, φ1 − φ0) , and(3.28)

∆ẅt = 2ẅt(e
2wt − e−2wt |φt|

2) + 4ẇ2
t (e

2wt + e−2wt |φt|
2)

−8ẇte
−2wtg(φt, φ1 − φ0) + 2e−2wt |φ1 − φ0|

2 .
(3.29)

We first show that as long as (e2wtg, φt) is almost-fuchsian,

(3.30) ẅt + 4ẇ2
t ≤ 0 .

This is a consequence of the Omori-Yau maximum principle and the following standard
formula.

(3.31) ∆(ẇ2
t ) = 2ẇt∆ẇt + 2|∇ẇt|

2 ≥ 2ẇt∆ẇt .

Then, using equations (3.28) and (3.29), we obtain

∆(ẅt + 4ẇ2
t ) ≥ 2ẅt(e

2wt − e−2wt |φt|
2) + 20ẇ2

t e
2wt − 12ẇ2

t e
−2wt |φt|

2

+8ẇte
−2wtg(φt, φ1 − φ0) + 2e−2wt |φ1 − φ0|

2 .
(3.32)

Judiciously rearranging the terms, we obtain

∆(ẅt + 4ẇ2
t ) ≥ 2(ẅt + 4ẇ2

t )(e
2wt − e−2wt |φt|

2) + 12ẇ2
t (e

2wt − e−2wt |φt|
2)

+8ẇ2
t e

−2wt |φt|
2 + 8e−2wtg(ẇtφt, φ1 − φ0) + 2e−2wt|φ1 − φ0|

2 .
(3.33)
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As 8A2 + 8AB + 2B2 = 2(2A+B)2 is nonnegative, we obtain

(3.34) ∆(ẅt + 4ẇ2
t ) ≥ 2(ẅt + 4ẇ2

t )(e
2wt − e−2wt |φt|

2) + 12ẇ2
t (e

2wt − e−2wt |φt|
2) .

Hence, provided the pair is almost-fuchsian, we get

(3.35) ∆(ẅt + 4ẇ2
t ) ≥ 2(ẅt + 4ẇ2

t )(e
2wt − e−2wt |φt|

2) .

Thus we deduce that

(3.36) ẅt + 4ẇ2
t ≤ 0 .

We have shown that as long as (e2utg, φt) is almost-fuchsian, ẅt + 4ẇ2
t ≤ 0, as asserted.

Consider now the family of quadratic holomorphic differentials

(3.37) φs,t := s(1− t)φ0 + stφ1

For all s, let Js denote the set of all t ∈ [0, 1] for which there exists a function ws,t making
(e2ws,tg, φs,t) into an almost Fuchsian pair. Let S denote the set of all s ∈ [0, 1] for which Js

equals the interval [0, 1]. Trivially S contains 0. By Theorem 3.5, S is open. We now show
that S is closed.

First, if s0 ∈ S, the equicontinuity of all functions (us,t) for s ∈ S, t ∈ [0, 1] allows us to
get a limiting family of functions which are solutions to Gauss-Codazzi equation. We claim
that, for all s, the function t 7→ e−4ws,t |φs,t|

2 is convex over Js. Indeed,

e4ws,t∂2t (e
−4ws,t |φs,t|

2) = −4(ẅs,t + 4ẇ2
s,t)|φs,t|

2 + 32ẇ2
s,t|φs,t|

2 − 16ẇs,tg(φs,t, φs,1

− φs,0) + 2|φs,1 − φs,0|
2 .

= −4(ẅs,t + 4ẇ2
s,t)|φs,t|

2 + 2|4ẇs,tφs,t − (φs,1 − φs,0)|
2.

This is nonnegative, and convexity follows. By convexity, e−4ws,t |φs,t|
2 is smaller than the

maximal value for t = 0 and t = 1, and we deduce that it is smaller than 1 − δ, for
δ > 0 depending only on φ0 and φ1. It now readily follows that S is closed, so that, by
connectedness, 1 ∈ S. In other words, J1 = [0, 1], and the result follows. �

We also have the following quantitative estimate for this convex set.

Theorem 3.11. The convex set ℑ(AF) satisfies:

(3.38) {φ : sup
z∈D

|φ(z)| <
1

2
} ⊂ ℑ(AF) ⊂ {φ : sup

z∈D

|φ(z)| < 1}

Proof. Take φ with |φ|∞ ≤ 1
2
. Then − ln 2

2
and 0 are respectively sub and supersolutions of

(3.39) ∆u = −1 + e2u + e−2u|φ|2 .

Hence by Proposition 2.4, we have a bounded solution satisfying Gauss-Codazzi, and neces-
sarily e−2u|φ| ≤ 2|φ|∞ < 1. Hence φ ∈ ℑ(AF). Conversely, if φ ∈ ℑ(AF), u the solution to
Gauss-Codazzi satisfies u ≤ 0, and |φ|∞ ≤ |e−2uφ|∞ < 1. �

Fixing now a subgroup Γ of PSL(2,R), one can look at the subset AFΓ of elements of
AF equivariant under some representation of Γ. The uniqueness properties shown imply
that this set can be identified with a subset of Hom(Γ,PSL(2,C))/PSL(2,C). In the case of
a closed surface group, this subset are known as almost-fuchsian representations considered
by Uhlenbeck [Uhl83].
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Fix a hyperbolic surface Σg,n, and consider Γ its fundamental group. Considering now
holomorphic quadratic differentials equivariant under the action of Γ, identifying holomorphic
quadratic differentials with the cotangent bundle to Teichmüller space of genus (g, n), we get
a smooth family of open bounded sets in each leaf. As these sets are isotropic (if (e2ug, φ)
is an almost-fuchsian disk, so is (e2ug, zφ) for any z of modulus one), it induces a Finsler
metric on Teichmüller space, which is quasi-isometric to the Finsler metric dual to the L∞

unit balls in T ∗Tg.

Corollary 3.12. For g ≥ 2 and Tg the Teichmüller space of genus g, there is a Finsler
metric p on Tg such that:

(3.40) p(φ) < 1 ⇐⇒ φ ∈ ℑ(AF)

This Finsler metric is quasi-isometric to the Finsler metric dual to the L∞ unit balls in T ∗Tg.

Remark. It is interesting to compare this Finsler metric to the metrics dual to Lp-unit balls
in T ∗Tg. For p = 2, one gets Weil-Petersson’s metric, see Wolpert [Wol09]. For p = 1, one
gets the Teichmüller metric, see Papadopoulos-Su [PS15].

Remark. With this discussion, we have a description of the fibration map from AFΓ → Tg,n,
which is simply the conformal class of the induced metric on Σg,n.
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