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Abstract

In a recurrent event setting, we introduce a new score designed to evaluate the prediction
ability, for a given model, of the expected cumulative number of recurrent events. This score
allows to take into account the individual history of a patient through its external covariates
and can be seen as an extension of the Brier Score for single time to event data but works
for recurrent events with or without a terminal event. Theoretical results are provided
that show that under standard assumptions in a recurrent event context, our score can be
asymptotically decomposed as the sum of the theoretical mean squared error between the
model and the true expected cumulative number of recurrent events and an inseparability
term that does not depend on the model. This decomposition is further illustrated on
simulations studies. It is also shown that this score should be used in comparison with a
reference model, such as a nonparametric estimator that does not include the covariates.
Finally, the score is applied for the prediction of hospitalisations on a dataset of patients
suffering from atrial fibrillation and a comparison of the prediction performances of different
models, such as the Cox model or the Aalen Model, is investigated.

Keywords: Recurrent events; Prediction assessment; Right-censoring; Terminal event; Brier
Score.

1 Introduction

Recurrent event data are often encountered in follow-up studies. They can be seen as a gener-
alisation of the standard time to event data, where individuals may experience the same event
repeatedly over time. Typical examples may include HIV studies where patients can experience
repeated opportunistic infections, remission data from Leukemia patients who can experience
multiple relapses, repeated seizures for epileptic patients, or hospitalisation data where the
events of interest are the hospitalisations. In those studies, the focus might be on assessing
the effect of covariates on the risk of recurrences or on predicting the future recurrences. The
first model to deal with recurrent event data was the Andersen-Gill model [3] which was fur-
ther extended by [23] to account for possibly dependent jumps of the recurrent event process.
Further models were developed such as in [25], [7], [14], [13] or [1] where the last four pa-
pers incorporate the presence of a terminal event in the estimation procedure, or using random
effects such as in [19], [24], or [26]. In particular, in [7], [14], [13], [1] the authors focused
on the estimation of the expected cumulative number of recurrent events. This is a marginal
quantity that computes the expectation of the number of experienced events of an individual
before any time point. This quantity is particularly interesting as it summarises the evolution
of the recurrent event process with time. In the presence of a terminal event, it also includes
the fact that when the terminal event occurs the patient can no longer experience any further
recurrent events.

In some studies the focus is more on the predictiveness ability of a model rather than on the
interpretation of the covariates effects. This is the case when clinicians aim at predicting the
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future repeated events in order to offer the best medical care. Being able to predict the future
recurrences of any patients on a short time period also allows to predict the future burden of
the disease over the patient’s life. Moreover, a predictive model can be an important tool for
making medical decisions but also for communicating with the patients about the future course
of his/her disease. For instance, in [29] the authors studied patients with atrial fibrillation, a
well known cardiac disease, in an attempt to predict the future hospitalisations of patients due
to their disease. Since the patients suffering from this disease are usually old (the median age in
the study was 63 years) and since atrial fibrillation can be a severe disease in some cases, those
patients were also at risk of death. Several covariates were collected and a prediction of the
expected cumulative number of recurrent events over time was performed using a Cox model
with dependence on prior counts.

While such models are certainly of interest for clinicians, it is important to propose relevant
diagnosis tools that can evaluate the prediction performance of the proposed model. There
already exists several indicators for prediction performances in the standard context of time
to event data with only one event per individual. The Brier score was developed in [15] and
in [12], which basically is a score for computing the mean squared error of the time to event
in the presence of censoring. This score was further developed to deal with random effect
models in [31], or to evaluate the performance of dynamic prediction models in [28] where the
information available from a longitudinal covariate is updated at each time point. Note also
that other types of predictive accuracy measures exist, called discrimination measures, such as
the C-index (see [17], [11]) or the time dependent ROC curve and area under the curve (see
for instance [18]).

In this paper, the aim is to derive a predictive accuracy measure for recurrent events models
where the focus is on predictiveness rather than discrimination. The quantity of interest is
solely the expected cumulative mean number of recurrent events. Since no mean squared error
measure, such as the Brier score, exists in the context of recurrent events, the goal of this
work is to fill in this gap by deriving a new score of this type for recurrent events, which also
accommodates for the presence of a terminal event. In this work, we show that this score reduces
to the Brier score when only one event per individuals can occur and hence can be seen as a
direct generalisation of the standard Brier score. Also, since our prediction criterion focuses
on the marginal quantity of the expected cumulative number of recurrent events, it provides a
summary score that takes into account the prediction of all recurrent events. In the context of
a terminal event, it also incorporates the quality of prediction of the terminal event.

In Section 2.1, we introduce the general prediction criterion for recurrent events, denoted
M̂SE. In Sections 2.2 and 2.3, we separate the modelling assumptions in cases where no terminal
events are observed and in the presence of a terminal event. In Section 2.4, we present some
existing estimators for the expected cumulative number of recurrent events. In Section 3, we
derive the main theoretical results of this paper. We first introduce a theoretical criterion and
show that it can be decomposed into an inseparability term and an imprecision term, similarly
to the results in [12]. The former does not depend on the model and cannot be removed while the
latter is exactly the mean squared error between the recurrent event process and the prediction
model of the expected cumulative mean number of recurrent events. We then show that our
prediction criterion asymptotically converges towards the theoretical criterion. In Section 4,
we demonstrate that when individuals can only experience one event, our prediction criterion
is equivalent to the standard Brier score. In Section 5.1, a simulation study is conducted.
First, the decomposition between inseparability and imprecision terms is illustrated. As the
inseparability is, by far, the dominant term, we then recommend to consider as a prediction
score, the difference of M̂SEs between the considered model and a reference model. Second,
we illustrate how this prediction score can be used in order to compare prediction models. In
Section 6, the atrial fibrillation dataset is studied. We show that the model with dependence
on prior counts (which is a multi-state model), stratified with respect to atrial fibrillation type,
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provides the best prediction performance among all other models considered.

2 Prediction criterion for the expected cumulative number of
recurrent events

2.1 The prediction criterion in the general framework

In this section we present a prediction criterion for two different recurrent event settings under
right-censoring. A scenario with right-censoring only (Section 2.2) and a scenario with the
inclusion of a terminal event (Section 2.3) are investigated. In each case, a counting process
of interest N∗(t) is defined which counts the number of recurrent events that have occurred
before time t. We assume that a multivariate external time dependent covariate vector X(t)
(see [21] for the definition of external covariates) is observed and we defineM a class of bounded
functions depending on t and X(t). For each t ≥ 0, we define Xt, the support of the process
{X(u) : 0 ≤ u} at the time point u = t. In both scenarios, censoring can occur such that the
observed recurrent event process is N(t) := N∗(t∧C), where C is a censoring variable and a∧ b
represents the minimum between a and b. We also define τ the endpoint of the study. On the
basis of i.i.d. replications (Ni(t), Xi(t) : 0 ≤ t ≤ τ), we will assume that an estimator µ̂ ∈M of
the expected cumulative number of recurrent events µ∗(t | X(t)) := E[N∗(t) | X(u) : 0 ≤ u ≤ t]
is available. We will say that this estimator is consistent if there exists µ ∈M such that for all
t ≤ τ ,

sup
x∈Xt

|µ̂(t | x)− µ(t | x)| → 0, in probability as n→∞.

The main goal of this paper is to develop a new mean squared error criterion designed to evaluate
the performance of this estimator in different scenarios.

In Sections 2.2 and 2.3 we propose to evaluate the prediction ability of a given estimator
µ̂ ∈M, through the following criterion:

M̂SE(t, µ̂) =
1

n

n∑
i=1

(∫ t

0

dNi(u)

1− Ĝ(u− | Xi(u))
− µ̂(t | Xi(t))

)2

, (1)

where Ĝ is an estimator of G, the conditional cumulative distribution function of the censoring
variable C given X(·). The notation Ĝ(u− | Xi(u)) indicates the left limit of the function Ĝ at
u. We will assume uniform consistency of this censoring estimator in the following way.

Assumption 1 Let G be a model for the conditional censoring distribution. We say that Ĝ is
a uniformly consistent estimator for G ∈ G if for all t ≤ τ ,

sup
x∈Xt

|Ĝ(t | x)−G(t | x)| → 0, in probability as n→∞.

Presentations of different estimators for G, depending on the considered scenario, are discussed
in Sections 2.2 and 2.3.

We now introduce a theoretical criterion that would be available if the censoring distribution
was known. For some function µ ∈M, let:

MSE(t, µ) = E

[(∫ t

0

dN(u)

1−G(u− | X(u))
− µ(t | X(t))

)2
]
. (2)

The crucial idea behind our criterion (1) comes from the fact that

E
[∫ t

0

dN(u)

(1−G(u− | X(u)))

]
= E[µ∗(t | X(t))], (3)
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a relationship that is proved for each scenario in Sections 2.2 and 2.3. In Section 3, we provide
theoretical results for both scenarios that justify the appropriateness of the proposed criterion.
In particular, Proposition 1 of Section 3 shows that the theoretical criterion can be decomposed
in the following way:

MSE(t, µ) = E
[(
µ∗(t | X(t))− µ(t | X(t))

)2]
+A(t),

with A(t) not depending on µ. The first term is an imprecision term and the second term
is an inseparability (or residual) term that does not depend on the chosen model. It should
be noted that this kind of result is similar to the imprecision/inseparability decomposition of
the Brier score (see [12]). On the other hand, Proposition 2 of Section 3 states that if µ̂ is a
consistent estimator for some µ ∈ M then as n tends to infinity, our empirical criterion (1)
is asymptotically equivalent to the theoretical criterion (2) evaluated at µ. Then, this latter
criterion will be minimal if µ = µ∗ from Proposition 1. In case µ is not equal to µ∗, a bias will
occur which will be equal to the squared expectation between µ and µ∗. The precise assumptions
under which Proposition 1 and Proposition 2 hold are specified in each situation.

In what follows, the two scenarios, with right censoring only and with this inclusion of a
terminal event, are presented. It should be noted that the estimated quantity µ∗, is based
on the rate function, as defined in [23] or [6]. In this modelling approach, the conditioning is
performed on the covariates but, contrary to the intensity function, we do not condition on the
entire history of the process. As a result, our criterion (1) works for general recurrent event
processes and, in particular, they are not restricted to Poisson processes.

2.2 Situations with right-censoring and no terminal event

As before, we introduce the counting process of interest N∗(t) which counts the number of
recurrent events that have occurred before time t. Let X(t) be some multivariate external
covariate (see [21]) that is allowed to depend on t. For each t ≥ 0, we define Xt, the support
of the process {X(u) : 0 ≤ u} at the time point u = t. The regression modelling approach
considered here is defined by:

E[dN∗(t) | X(t)] = λ∗(t | X(t))dt, (4)

where λ∗(t | X(t)) is the true rate function. Note that this definition is very general and does
not make any assumption on the recurrent event process such as independent increments or a
Poisson assumption. See [23] for more details on this model.

Let
∫ t
0 λ
∗(u | X(u))du be the true cumulative rate function. In the absence of a terminal

event, this cumulative function has a direct interpretation as the expected cumulative number of
recurrent events given the covariate process:

∫ t
0 λ
∗(u | X(u))du = µ∗(t | X(t)) where as defined

at the beginning of Section 2, µ∗(t | X(t)) = E[N∗(t) | X(u) : 0 ≤ u ≤ t]. In the presence
of censoring, a variable C is observed such that the observed recurrent event process is now
N(t) = N∗(t ∧ C). We assume independent censoring (see [23]) in the following way:

E[dN∗(t) | X(t)] = E[dN∗(t) | C,X(t)].

This assumption implies that C does not convey any additional information on the probability
of a jump of the recurrent event process. Under this assumption, we have

E[dN(t) | I(C ≥ t), X(t)] = I(C ≥ t)λ∗(t | X(t))dt, (5)

where I(·) denotes the indicator function. This last equation justifies the use of our criterion (1)
since E[dN(t) | X(t)] = (1−G(t− | X(t)))λ∗(t | X(t))dt and therefore Equation (3) holds. Next,
we assume Assumption 1 and we make the following additional assumption.
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Assumption 2 We assume that there exists a constant τ > 0 and a constant c > 0 such that

1. ∀t ∈ [0, τ ], P[C ≥ t | X(t)] ≥ c almost surely,

2. N(τ) is almost surely bounded by a constant.

Note that condition 1. was also assumed in [12]. It is stronger than simply assuming P[C ≥
τ ] ≥ c. Condition 2. is standard for recurrent event data, see for instance [23]. Finally, note
that through Equation (5), conditions 1. and 2. imply that E[µ∗(τ | X(τ))] <∞.

On the basis of i.i.d. replications (Ni(t), Xi(t) : 0 ≤ t ≤ τ), let µ̂ ∈ M be an estimator
of µ∗ where M is a class of models that are assumed to be bounded. We propose to evaluate
the prediction ability of this estimator through criterion M̂SE(t, µ̂) defined in Equation (1).
This criterion involves an estimator of G, the conditional cumulative distribution function of
the censoring variable. If C and X(·) are independent, one can estimate G using the empirical
cumulative distribution function of the censored variables since all these variables are observed.
If C depends on X the conditional distribution of C must also be modelled. This can be done
using kernel based estimators such as the Nadaraya-Watson estimator for the binary response
variable I(C ≤ t) or extensions of this model. For instance, in [16], a local logistic method
and an adjusted Nadaraya-Watson estimator are proposed. If the dimension of the covariates
that are assumed to depend on the censoring distribution is too large, then a dimension reduc-
tion technique can first be employed, for example through a Single-Index-Modelling approach
(see [10]).

Theoretical results on the validity of this criterion are derived in Section 3.

2.3 Situations with right-censoring and a terminal event

In this section, we introduce a terminal event T ∗ such that the counting process of interest N∗

verifies (see e.g. [6]):

E[dN∗(t) | I(T ∗ ≥ t), X(t)] = I(T ∗ ≥ t)λ∗(t | X(t))dt, (6)

where λ∗(t | X(t)) is the true rate function. The difference in Model (6) with respect to
Model (4) is that the recurrent event process N∗ is stopped by the terminal event. This often
occurs in real-data analysis where death is typically the terminal event. Under this model, we
observe that

µ∗(t | X(t)) = E[N∗(t) | X(u) : 0 ≤ u ≤ t] =

∫ t

0
S(u | X(u))λ∗(u | X(u))du,

where S(t | X(t)) := P[T ∗ ≥ t | X(t)] is the conditional survival function of the terminal event.
This implies that in order to define an estimator of µ∗(t | X(t)) = E[N∗(t) | X(u) : 0 ≤ u ≤ t]
one usually needs to also model the hazard rate for the terminal event and to derive an estimator
of the conditional survival function. As a result our prediction criterion will both take into
account the predictive performance of the survival function and of the rate function of N∗

since, if one of those two estimators behaves poorly, the resulting estimator for µ∗ is likely to
perform badly as well.

The independent censoring assumption is now expressed in the following way:

E[dN∗(t) | T ∗, X(t)] = E[dN∗(t) | T ∗, C,X(t)].

We denote T = T ∗ ∧ C the minimum between terminal event and censoring, Y (t) = I(T ≥ t)
the observed at-risk process and N(t) = N∗(T ∧ t) the observed counting process. Under the
independent censoring assumption, it can be shown that

E[dN(t) | Y (t), X(t)] = Y (t)λ∗(t | X(t))dt. (7)

We assume Assumption 1 and we make the following additional assumption.
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Assumption 3 We assume that there exists a constant τ > 0 and a constant c > 0 such that

1. ∀t ∈ [0, τ ], P[T ≥ t | X(t)] ≥ c almost surely,

2. N(τ) is almost surely bounded by a constant.

We also assume that T ∗ is independent of C conditionally on X(·).

Those conditions are standard in the context of regression for recurrent events with a terminal
event, see [14] for example. Using Equality (7) one can easily observe that E[dN(t) | X(t)] =
S(t | X(t))(1 − G(t− | X(t))λ∗(t | X(t))dt under the independent censoring hypothesis in
Assumption 3. We then directly see that Equation (3) holds.

On the basis of i.i.d. replications (Ni(t), Xi(t) : 0 ≤ t ≤ τ), let µ̂ ∈ M be an estimator of
µ∗ where M is a class of models that are assumed to be bounded. We propose to evaluate the
prediction ability of this estimator through criterion M̂SE(t, µ̂) defined in Equation (1). This
criterion involves an estimator of G, the conditional cumulative distribution function of the
censoring variable. If C and X(·) are independent, one can estimate G using the Kaplan-Meier
estimator by considering C to be the variable of interest that is incompletely observed due to the
terminal event T ∗. If C depends on X the conditional distribution of C must also be modelled.
Several possible models are presented in [12] such as the Cox model, the Aalen additive model,
or the kernel type model of [9]. Alternatively, a single-index approach for right-censored data,
as in [5], or the random survival forest method developed in [20] can be used.

Theoretical results on the validity of this criterion are derived in Section 3.

2.4 Examples of estimators for the expected cumulative number of recurrent
events

In this section we present some estimators for the expected cumulative mean number. In order
to achieve this goal, one possibility is to first model the rate function λ∗ and then to use a
plug-in estimator to derive the final estimator of µ∗. For example, the Cox (see [8]), Aalen
(see [27]) or Accelerated Failure Time (see [22]) models can be used for the estimation of λ∗.
We note λ̂ and Λ̂ such estimators of λ and Λ. In the context of right-censored data and no
terminal event, the estimator of µ∗ can then be expressed in the following way (see [6]):

µ̂(t | X(t)) =

∫ t

0
dΛ̂(u | X(u)). (8)

In the presence of a terminal event, a common approach is to first model the hazard rate
of the terminal event (using again a Cox model for instance) and to derive an estimator of the
survival function Ŝ(t | X(t)) = exp(−

∫ t
0 λ̂

T ∗
(u | X(u))du) where λ̂T

∗
is the estimator of the

hazard rate of the terminal event. Then, the final estimator of µ∗ is (see [6] and [1]):

µ̂(t | X(t)) =

∫ t

0
Ŝ(u | X(u))dΛ̂(u | X(u)). (9)

Alternative approaches that directly model µ∗ also exist. In [14] the authors consider the
following Cox type model: µ∗(t | X(t)) = µ0(t) exp(X(t)′β). A more general approach consists
in using a Single-Index-Model for estimating µ∗: in [4] the authors assume the existence of a
nonparametric function g and a parameter β such that µ∗(t | X(t)) = g(X(t)′β). Those two
approaches provide a direct estimator of the quantity of interest µ∗. However, in the presence
of a terminal event, it is no longer possible to disentangle the effects on the recurrent event
process or the terminal event. As a result, the regression parameters should be interpreted with
caution. See also [6] for a discussion about this issue.
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3 Theoretical results

In this section we provide theoretical results on the proposed criterion (1) in the two different
contexts that have been previously considered: the scenario with right-censoring only and the
scenario with right-censoring and a terminal event. Two results are obtained. The first one is
concerned with the theoretical criterion (2). It shows that this criterion applied to a function
µ ∈ M reduces to the mean squared error between µ and µ∗ and a term that does not depend
on µ. The second result shows the asymptotic consistency between M̂SE(t, µ̂) and MSE(t, µ)
when the estimator µ̂ is an asymptotically consistent estimator of µ.

Proposition 1 For the scenarios with right-censoring only (Section 2.2) and with right-censoring
and terminal event (Section 2.3) we respectively assume Assumption 2, Assumption 3. In both
scenarios we also assume independent censoring. We then have for µ ∈M,

MSE(t, µ) = E
[(
µ∗(t | X(t))− µ(t | X(t))

)2]
+A(t), (10)

where A(t) ≥ 0 for all t ≥ 0 and A(t) does not depend on µ.

Proposition 2 For the scenarios with right-censoring only (Section 2.2) and with right-censoring
and terminal event (Section 2.3) we respectively assume Assumption 2 or Assumption 3. In
both scenarios we also assume Assumption 1 and independent censoring. Then, if the estimator
µ̂ ∈M is consistent for µ ∈M, we have

sup
t≤τ

∣∣∣M̂SE(t, µ̂)−MSE(t, µ)
∣∣∣→ 0, in probability as n→∞.

The proofs are provided in the Appendix, in Sections 8.1 and 8.2, with an explicit expression
of A(t) in both scenarios.

4 Link with the Brier score

The Brier score (see [12]) is a popular criterion to evaluate the prediction performance of a
regression model for the conditional survival function in the context of right-censoring when
only a single event can be observed per individual. We show in this section that if we use our
criterion when individuals can only experience one event at most, then our theoretical criterion
denoted MSE′ and defined as follows

MSE′(t, π) = E

[(
1−

∫ t

0

dN(u)

1−G(u− | X(u))
− π(t | X(t))

)2
]
, (11)

where π = 1 − µ, reduces to the theoretical Brier score up to a term that does not depend on
the model M. Note that when individuals can only experience one event, the recurrent event
process reduces to N∗(t) = I(T ∗ ≤ t) and µ∗(t | X) = E[N∗(t) | X] is the conditional cumulative
distribution function of T ∗. Since the Brier score has been designed for the prediction of the
conditional survival function, we have simply rewritten our criterion in Equation (2) such that
π represents the model for the conditional survival function.

We first recall that the theoretical Brier score is defined as (see Equation (1) from [12]):

MSEBrier(t, π) = E [(I(T ∗ > s)− π(t | X))2],

where the expectation is taken with respect to the joint distribution of T ∗ and X. For simplicity,
the covariate X is not time dependent in the formula, as presented in the paper of [12], but
the results presented in this section are still valid for time dependent covariates. In their work,
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the authors show similar results as Propositions 1 and 2 of the present paper when the aim
is to provide a prediction of the survival function S(t | X) = P[T ∗ > t | X]. Note that we
have suppressed the dependency with respect to S in the definition of the Brier score to stay
consistent with the notations used throughout this paper. Also, in the definition of the Brier
score, π plays the role of 1 − µ in the present paper, that is, it is the limiting function of a
proposed conditional survival estimator Ŝ(t | X). We have the following result.

Proposition 3 We assume that only one event per individual can be experienced, that is,
N(t) = I(T ≤ t,∆ = 1), with T = T ∗ ∧ C is the observed time, T ∗ is the true event time,
C is the censoring variable and ∆ = I(T ∗ ≤ C) is the censoring indicator. Then, under
independent censoring, we have:

MSE′(t, π) = MSEBrier(t, π) +B(t),

where B(t) ≥ 0 for all t ≥ 0 and B(t) does not depend on π.

The proof is provided in the Appendix, in Section 8.3, with an explicit expression of B(t).
Since B(t) does not depend on the model π, those two criterions are completely equivalent. In
particular, if one considers the difference of a regression model to a reference model, such as a
model that does not include covariates, then the two criterions will provide exactly the same
values since the B(t) term will cancel out in the difference. As we will see in the next section,
comparing a model to a reference is typically what we recommend in practice. Since recurrent
events are a generalisation of the single-event per individual situation, our criterion can be seen
as an extension of the Brier score for recurrent events.

5 Simulations

5.1 A scenario with right-censoring and no terminal events

For i = 1, . . . , n, we first simulate a two-dimensional covariate vector Xi = (Xi,1, Xi,2)
> with

Xi,1 a Bernoulli variable with parameter 0.5 and Xi,2 a Gaussian variable with expectation
2 and standard deviation 0.5. Conditional on Xi, the recurrent events are generated from a
non-homogeneous Poisson process with rate λ∗(· | Xi) that follows a Cox model with Weibull
baseline and a two-dimension time independent covariate. More specifically,

λ∗(t | Xi) = λ0(t) exp(θ>0 Xi), λ0(t) =
α

β

(
t

β

)α−1
,

with α = 2 the shape parameter, β = 0.39 the scale parameter and θ0 = (log(2), log(0.5))>.
Recurrent events generated under this simulation setting follow Equation (4) with the true
expected number of recurrent events equal to

µ∗(t | Xi) =

∫ t

0
λ∗(t | Xi)du =

(
t

β

)α
exp(θ>0 Xi). (12)

We further simulate a censoring variable Ci that follows a uniform distribution on [0, 3]. Using
those parameters, we observe 0 or 1 recurrent event for 30% of the individuals, less or equal than
5 events for 54% of the individuals, and less or equal than 12 events for 77% of the individuals.
On average, we observe approximately 8 recurrent events per individual.

Based on a single simulated sample, we first illustrate Propositions 1 and 2 when the class of
modelsM that contains µ assumes no effect of the covariates on the occurrence of the recurrent
events. For this purpose, we independently simulate a training and a test samples. The training
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sample is used to compute µ̂train based on Equation (8) where Λ̂ does not depend on X and is
simply the Nelson-Aalen estimator:

Λ̂(t) =
1

n

n∑
i=1

∫ t

0

dNi(u)

1− Ĝ(u−)
,

with Ĝ the Kaplan-Meier estimator of C. We then compute M̂SE(t, µ̂train) from Equation (1)
based on the test sample of size ntest, that is, the computation is performed on a sample
(N1(·), X1), . . . , (Nntest(·), Xntest) independent of the training sample. This quantity should pro-
vide an accurate estimation of MSE(t, µ) from Proposition 2. We then compute the imprecision

term E
[(
µ∗(t | X)− µ(t | X)

)2]
in Equation (10) using the true value of µ∗(t | X(t)), replacing

µ by µ̂train and replacing the expectation by its empirical sum. In other words, we compute

1

ntest

ntest∑
i=1

(
µ∗(t | Xi)− µ̂train(t | Xi)

)2
,

which should give a very accurate estimation of the imprecision term. The A(t) term is exactly
computed based on its explicit expression (see Section 8.4 in the Appendix). The decomposition
of the MSE between its imprecision and inseparability terms is displayed in Figure 1 using
ntrain = 200 and ntest = 1, 000. In Equation (1) the Kaplan-Meier estimator of G was computed
from the combination of the training and test samples. The solid line represents the estimated
MSE while the dotted and dashed lines represent the inseparability and imprecision terms,
respectively. The inseparability term is seen to be very close to the MSE. In contrast, the
imprecision term, which clearly is not null here since the estimated model uses no covariates, is
relatively small as compared to the other two terms. This plot suggests that it might be difficult
to compare different models as the inseparability term is dominant in the decomposition of the
MSE, which implies that two MSEs computed from two different models will tend to look very
similar (for instance, for t = 2.5, the inseparability term represents approximately 84% of the
value of the MSE). As a result, we advocate the use of a reference or null model and to compute
the score of a given model as the difference between the MSE of the reference and the MSE of
this model. Therefore, this score will represent the prediction gain of the model as compared
to the null model. A typical choice of the null model is the one that uses no covariates. The
score is defined as

Score(t, µ̂, µ̂0) = M̂SE(t, µ̂0)− M̂SE(t, µ̂), (13)

where µ̂ is the evaluated model and µ̂0 is the reference model. Those models will usually be
implemented based on a training sample. The idea behind this score is that the inseparability
term will cancel out in the difference, and the score is therefore equal to the difference between
the imprecision terms of the two models.

An illustration of this score is presented in Figure 2. Using the same simulation setting
as before, we compare the performance of four different models based on the Cox and Aalen
models, implemented using either only the first covariate Xi,1 or the two covariates Xi,1 and
Xi,2. Figure 2 displays the prediction scores for 100 training samples of size 50 and a unique test
sample of size 1, 000. The reference model is the one that uses no covariates and is estimated
from the Nelson-Aalen estimator. Roughly, we see that all models have a better prediction
performance than the Nelson-Aalen estimator as time increases especially from time equal to
1.5 and time equal to 2, for the models with one covariate and the models with two covariates,
respectively. The models with two covariates clearly outperform the ones with one covariate
with a slightly better performance for the Cox model as compared to the Aalen model. This is
further illustrated in Table 1 where we compare the mean score of those four different models
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Figure 1: Decomposition of the MSE (solid line) in Proposition 1 as the sum between the the inseparability
term A(t) (dotted line) and the imprecision term (dashed line). The data were simulated from a Cox model with
two covariates and the expected cumulative number of recurrent events was predicted using the Nelson-Aalen
estimator. The train sample (ntrain = 200) is used for the computation of the Nelson-Aalen estimator, the test
sample (ntest = 1, 000) is used for the computation of the MSE.

based on 500 training samples of size 20 and 50 and one single test sample of size 1, 000. We
clearly observe that the correctly specified Cox model with two covariates outperforms all other
models on average, for all time points and sample sizes. However, it tends to have a slightly
bigger standard deviation, especially for ntrain = 20 and t = 2 or t = 2.9.

ntrain = 20 ntrain = 50
t = 1 t = 2 t = 2.9 t = 1 t = 2 t = 2.9

Cox one cov. 0.89 (0.33) 9.17 (6.04) 40.6 (54.93) 0.96 (0.15) 10.06 (2.19) 46.93 (16.06)
Cox two cov. 1.8 (0.56) 24.69 (8.58) 119.11 (45.56) 1.95 (0.17) 26.33 (2.54) 127.52 (17.73)
Aalen one cov. 0.14 (1.33) 9.53 (4.4) 42.72 (16.27) 0.34 (0.82) 10.09 (1.99) 44.7 (9.21)
Aalen two cov. 0.44 (1.76) 24.18 (4.8) 103.78 (25.28) 0.51 (1.22) 25.13 (1.9) 109.36 (14.21)

Table 1: Means and standard deviations (in bracket) over 500 simulations for the prediction score of the
expected number of recurrent events. Large values indicate better predictive performances.

5.2 A scenario with right-censoring and a terminal event

We now consider a simulation scenario which also includes a terminal event. The recurrent event
process and its covariates are simulated in the same manner as in the previous section, with
the same parameter values. The censoring variable is simulated following a uniform variable
on [0, 8]. The terminal event is simulated according to a Cox model with baseline following a
Weibull distribution with shape parameter equal to 5 and scale parameter equal to 1.8. This
Cox model also includes the same two covariates as for the recurrent event process with the same
effects on the hazard function (i.e. the effects are equal to log(2), log(0.5) for the Bernoulli and
Gaussian covariates respectively). This setting leads to 8.5 events per individual on average,
with 26%, 50%, 77% of individuals that experience less than or equal to 3, 7 and 12 events,
respectively. On average 28% of individuals are censored.

We estimate the expected cumulative number of recurrent events based on Equation (9)
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Figure 2: Prediction scores (see Equation (13)) using four different models. The data were generated from a
Cox model with two covariates and the expected cumulative number recurrent of events was predicted using
the Cox model with one covariate, the Cox model with two covariates, the Aalen model with one covariate, the
Aalen model with two covariates, respectively. The reference model uses no covariates and was estimated from
the Nelson-Aalen estimator. The prediction scores are computed for 100 training samples of size ntrain = 50 and
a unique test sample of size ntest = 1, 000.

where in the formula, the Breslow estimator is used to estimate the conditional survival function
of the terminal event, if the estimation model for the terminal event includes covariates. In other
words:

Ŝ(t | X) = exp

(
−
∫ t

0
exp(X>β̂T

∗
)dΛ̂T

∗
0

)
,

with β̂T
∗

is the estimated regression parameter from the Cox model for the terminal event and
Λ̂T

∗
0 its corresponding baseline estimator known as the Breslow estimator. If the terminal event

model does not contain any covariates, then the Kaplan-Meier estimator is used instead. As
previously, we use the score defined in Equation (13) to evaluate the quality of prediction of a
model where the reference model µ̂0 is defined as

µ̂0(t) =

∫ t

0
Ŝ(u)dΛ̂(u), (14)

with Ŝ the Kaplan-Meier estimator of the terminal event and Λ̂ the Nelson-Aalen estimator
of the recurrent event process. The same score is also used for the prediction of the survival
function with the Kaplan-Meier estimator as the reference model. We consider four different
regression models: a correctly specified model that includes the two covariates for both the
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recurrent event process and the terminal event in two Cox models, a model where the Gaussian
covariate is missing for the Cox model of the terminal event (but the Cox model of the recurrent
event is correctly specified) and a model where the Gaussian covariate is missing for both Cox
models.

In Figure 3, we simulated 100 training samples each of size 800 and we evaluated the pre-
diction score on a unique test sample of size 1, 000. In the bottom panel, we see that including
the two covariates in the survival model increases the prediction performance as compared to
the model with only one covariate. Also, for both models, the gain in terms of prediction is
more important for small time points and is reduced after time 2 approximately, as compared to
the Kaplan-Meier estimator. This loss in terms of prediction efficiency of the survival function
for large time points impacts the prediction of the expected cumulative number of recurrent
events. In the top panel, we see that adding the correct covariates in the Cox models of the
survival function and of the recurrent event models increases the prediction performances. After
time 2, the gain in terms of the performance prediction of the expected cumulative number of
recurrent events slightly decreases due to the loss of efficiency in the prediction of the survival
function. Table 2 provides the mean score of those three different models based on 500 training
samples of size 100, 200, 400 and 800 and one single test sample of size 1, 000. We see the same
trend as in Figure 3 for all sample sizes. Clearly, increasing the sample size does not provide
much gain in terms of average especially for small time points but it does reduce the variability
of the predictors. In Figure 4, we also looked at models where the terminal event is treated
as a censored variable. One model does not include any covariate and is estimated using the
Nelson-Aalen estimator. The other includes the two correct covariates and is based on the Cox
model. The reference model is the same as previously (see Equation (14)), that is with no
covariates but with the terminal event properly taken into account. We clearly see that both
models provide very poor predictions. This is due to the fact that when the terminal event is
treated as a censoring variable, the corresponding Nelson-Aalen estimator predicts too many
recurrences over time.

ntrain = 100 ntrain = 200
t = 1 t = 2 t = 2.9 t = 1 t = 2 t = 2.9

One cov.-one cov. 0.68 (0.05) 6.47 (0.43) 6.14 (0.83) 0.69 (0.03) 6.54 (0.24) 6.33 (0.45)
Two cov.-one cov. 1.67 (0.07) 12 (0.92) 6.43 (2.71) 1.67 (0.04) 12.11 (0.6) 6.84 (1.77)
Two cov.-two cov. 1.67 (0.07) 12.61 (0.59) 10.07 (1.18) 1.68 (0.04) 12.75 (0.3) 10.51 (0.59)

ntrain = 400 ntrain = 800
t = 1 t = 2 t = 2.9 t = 1 t = 2 t = 2.9

One cov.-one cov. 0.69 (0.01) 6.57 (0.14) 6.42 (0.28) 0.69 (0.01) 6.59 (0.08) 6.47 (0.17)
Two cov.-one cov. 1.68 (0.02) 12.11 (0.39) 6.92 (1.22) 1.68 (0.01) 12.15 (0.27) 7.07 (0.85)
Two cov.-two cov. 1.68 (0.02) 12.82 (0.17) 10.69 (0.35) 1.68 (0.01) 12.84 (0.09) 10.78 (0.23)

Table 2: Means and standard deviations (in bracket) over 500 simulations for the prediction score of the expected

number of recurrent events in the presence of a terminal event. The results are presented for the same three

models as in Figure 3. The reference model uses no covariates and was estimated from the non-parametric

estimator in Equation (14). Large values indicate better predictive performances.
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Figure 3: Prediction scores for the recurrent events (top panels) and the survival function (bottom panels) using

different models. The data were generated from a Cox model with two covariates (n = 200) for the recurrent event

process and with the same two covariates for the terminal event. The expected cumulative number recurrent

of events and the survival function of the terminal event were predicted using the Cox model with one or two

covariates. The reference model uses no covariates and was estimated from the non-parametric estimator in

Equation (14) and from the Kaplan-Meier estimator in the top and bottom panels, respectively. The prediction

scores are computed for 100 training samples of size ntrain = 800 and a unique test sample of size ntest = 1, 000.

×104 ntrain = 100 ntrain = 200
t = 1 t = 2 t = 2.9 t = 1 t = 2 t = 2.9

One cov. 0.58 (0.55) 77.22 (34.77) 22.57 (8.29) 0.69 (0.25) 84.71 (15.22) 23.96 (3.81)
Two cov. 1.71 (1.49) 214.84 (46.73) 32.3 (18.05) 2.07 (0.73) 227.83 (23.1) 38.3 (8.86)

ntrain = 400 ntrain = 800
t = 1 t = 2 t = 2.9 t = 1 t = 2 t = 2.9

One cov. 0.74 (0.17) 86.26 (8.65) 24.29 (2.81) 0.77 (0.12) 89.74 (5.44) 27.22 (3.02)
Two cov. 2.2 (0.51) 231.51 (13.94) 40.49 (3.74) 2.28 (0.36) 238.41 (9.88) 46.23 (4.27)

Table 3: Means and standard deviations (in bracket) over 500 simulations for the prediction score of the survival

function. The results were multiplied by 104 and are presented for the model with one or two covariates. The

reference model uses no covariates and is estimated from the Kaplan-Meier estimator. Large values indicate

better predictive performance.

6 Real data analysis: the Atrial Fibrillation dataset

In this section, we analyse a dataset on patients with atrial fibrillation (AF). The aim is to
compare different regression models for the prediction of the expected cumulative number of
atrial fibrillation hospitalisations, using the prediction score developed in this work. Patients
were enrolled from January 1st 2008 to December 1st 2012 in the “Atrial Fibrillation Sur-
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Figure 4: Prediction scores for the expected cumulative number of recurrent events when the terminal event is

ignored and treated as a censoring variable. The data were generated as in Figure 3. The expected cumulative

number recurrent of events was predicted using the Cox model with one or two covariates. The reference model

uses no covariates and was estimated from the Nelson-Aalen estimator from the non-parametric estimator (see

Equation (14)).

vey–Copenhagen (ATLAS-CPH)” from both the in- and outpatient clinics at the Department
of Cardiology at University Hospital Copenhagen, Hvidovre, Denmark. All patients were previ-
ously diagnosed with AF and were categorised at baseline, into either suffering from paroxysmal
atrial fibrillation (PAF) or persistent atrial fibrillation (PeAF). PAF was defined as at least one
recorded AF episode with spontaneous conversion to sinus rhythm, no valvular AF, and ex-
cluding other temporal forms of AF. PeAF was defined as at least one recorded episode of AF
lasting more than 7 days, or where either medical or electrical cardioversion was needed to
restore sinus rhythm (in accordance with the Danish Cardiology Society AF guidelines at this
time). Other inclusion criteria were age > 18 years, recent (< 1 month) AF documented via
either standard 12-lead electrocardiogram (ECG) or home monitoring and ability to give oral
and written consent. In total, 174 patients were enrolled with 50 PAF patients and 124 PeAF
patients. Time is measured in days, with a mean follow-up duration of 1 279 days. In terms
of observed events, the patients experienced a total of 325 AF hospitalisations, with 305 AF
hospitalisations in the PeAF group and 20 in the PAF group. A terminal event was defined as
either progression to permanent AF or as the occurence of death. In the dataset, 45 patients
experienced a terminal event and the remaining 129 patients were censored. Finally, in top of
the AF type, the dataset also includes 11 additional variables: gender, age, alcohol consump-
tion (with two levels 0 − 5 and > 5), tobacco consumption (with three levels “never smoked”,
“ex-smoker”, “current smoker”), presence of hypertension, heart failure, valvular heart disease,
ischemic heart disease, diabetes, COPD, antiarrythmic medication. The data are presented in
great details in [29]. Note also that the data are fully available from the Plos One website.

In [29], the authors analysed the data using a multi-state approach with four possible states:
no experience of recurrent events yet, 1 recurrent event, 2 or more recurrent events and the ab-
sorbing state for the terminal event. The transition intensities were assumed to be proportional
with each other using a Cox model, where the number of previous recurrent events was included
in the model. Those types of multi-state models with terminal event are described for instance
in [6] (see Section 6.6.4 of their book). Those analyses showed a high significant effect of the AF
type, the number of previous recurrent events (p-values < 10−4) and of age (p-value= 0.0253)
for the risk of future AF hospitalisations. The effect of diabetes had a p-value equal to 0.0955.
All other variables were assessed as non significants (p-values> 0.2). A Cox model was also
implemented for the terminal event using the multi-state approach (that is including the effect
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of previous AF hospitalisations through a proportional effect) with all variables. Only the age
variable was significant (in the multivariate Cox model, the hazard rate was equal to 1.05 and
the p-value was equal to 0.0016). In this previous work, the authors then decided to only include
the covariates AF type and age, with a proportional effect of the number of previous AF hos-
pitalisations for the modelisation of the recurrent event process. For the terminal event model,
they only included the age variable. Based on those models, it is then possible to produce pre-
dictions for the expected cumulative number of future AF hospitalisations, for a given patient
based on his/her characteristics. Using the prediction score developed in this paper, we will
compare the performance of the model used in [29] with several other possible models. Since
diabetes is a known risk factor for AF, we will also consider models with this variable, along
with AF type and age. As in the simulation section, the prediction score will be computed from
a training and a test samples, but this time using 10-fold cross validation, that is one tenth of
the observations are used for the test sample and the remaining observations are used for the
model estimations and the procedure is repeated and averaged ten times.

We first evaluate the prediction performance for the terminal event with the Cox models
with age only and with age, AF type and diabetes, the Aalen model with age and the random
survival forests with age. The reference model is taken as the Kaplan-Meier estimator and
the score is computed using formula (13), where the prediction criterion M̂SE is computed
from the Kaplan-Meier estimator of the censoring variable. The random survival forests were
implemented from the rfsrc package (see [20]). The results are presented in Table 4 and
Figure 5. We clearly see that the survival random forests perform poorly, especially before
time 1 000 where the Kaplan-Meier shows a better performance. The Cox model with age,
AF type and diabetes shows a better performance for all time points and the Aalen and Cox
models with age show very similar performances and outperform all four models. Other models
were also investigated with the different combinations of all three variables with each algorithm
and the results were similar and are therefore omitted. In the following, we now decide to use
the Cox model with age for the modelling of the terminal event. The prediction performance
for the recurrent event process is now investigated. We consider the following models: four
multivariate Cox models based on the age, diabetes and AF type variables, the stratified Cox
model with respect to AF type with the variables age and diabetes, the Aalen model with all
three variables, the Cox multi-state model with the three variables that was used in [29] and
the same Cox multi-state model but stratified with respect to AF type. The reference model
is taken as the non-parametric estimator (see Equation (14)) and the score is again computed
using formula (13). The results are displayed in Table 5 and Figure 6 (in the figure only five
different models are represented). We observe that the Cox model with the age variable has
a poor predictive performance. From this model, adding the diabetes or AF type improves
the model, with a much bigger gain with the AF type variable. Further, combining all three
variables in the same model provides a substantial gain with respect to all previous models. On
the other hand, the two multi-state models provide only a minor improvement of the predictions
with a slight advantage for the stratified model. Finally, the predictions for some of these models
on the expected cumulative number of AF hospitalisations are displayed in Figure 7. In this
figure, the predictions are made for two 60 year old patients with diabetes, one with persistent
AF and the other with paroxysmal AF. While the different models does not vary much in
their predictions for the paroxysmal AF patient, they offer different results for the persistent
AF patient. According to the results from Table 5 and Figure 6, the Cox multi-state model
stratified with respect to AF type has the greatest prediction performance and therefore should
be chosen. After 1 500 days after AF diagnosis, this model predicts an expected number of AF
hospitalisations equal to 1.03 approximately. On the other hand, if one uses the multi-state
Cox model, the prediction is equal to 0.98, if one uses the multivariate Cox model with all three
variables, the prediction is equal to 0.76.
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Figure 5: Prediction scores for the survival function of the terminal event in the atrial fibrillation dataset,

computed using 10-fold cross validation. With the Kaplan-Meier estimator as the reference, four different models

are compared. For ease of visualisation, we describe those models in increasing order of their scores at time

t = 2000: the Cox model with covariates age, AF type and diabetes (score = 0.067), the Random Survival Forest

(RSF) model with covariate age (score = 0.069), the Aalen model with covariate age (score = 0.094) and the Cox

model with covariate age (score = 0.105).

t = 1000 t = 1500 t = 2000

Aalen with age 0.011 [0.002, 0.017] 0.015 [0.001, 0.039] 0.038 [−0.001, 0.035]
Cox with age 0.010 [−0.006, 0.023] 0.016 [−0.001, 0.042] 0.037 [−0.005, 0.053]
Cox with age, AF type, diabetes 0.006 [−0.009, 0.019] 0.011 [−0.007, 0.04] 0.027 [−0.002, 0.04]
RSF with age 0.005 [−0.021, 0.032] 0.010 [−0.014, 0.039] 0.010 [−0.031, 0.045]

Table 4: Means and 80% intervals (in curly bracket) over 10-folds cross validation for the prediction score of

the survival function of the terminal event in the atrial fibrillation dataset. With the Kaplan-Meier estimator as

the reference, four different models are compared at three different time points: the Aalen and Cox models with

covariate age, the Cox model with covariates age, AF type and diabetes and the Random Survival Forest model

with covariate age.

t = 1000 t = 1500 t = 2000

Cox with age 0.036 [−0.248, 0.289] 0.089 [−0.690, 0.629] 0.283 [−0.719, 0.985]
Cox with age and diabetes 0.166 [−0.342, 0.538] 0.232 [−0.372, 1.051] 0.532 [−0.640, 1.495]
Cox with age and AF type 0.611 [0.104, 1.138] 1.170 [0.278, 2.081] 1.702 [−0.027, 3.989]
Cox with age, AF type and diabetes 0.840 [−0.123, 1.539] 1.420 [−0.033, 2.983] 2.121 [−0.485, 5.683]
Aalen with age, AF type and diabetes 0.818 [0.143, 1.312] 1.482 [0.290, 2.992] 2.140 [−0.190, 5.506]
Cox with age, diabetes and strata(AF type) 0.836 [−0.133, 1.521] 1.416 [−0.053, 3.000] 2.118 [−0.468, 5.667]
Cox (MSM) with age, AF type and diabetes 0.847 [−0.041, 1.459] 1.439 [0.084, 2.893] 2.136 [−0.310, 5.526]
Cox (MSM/strata) with age, AF type and diabetes 0.852 [−0.014, 1.475] 1.454 [0.108, 3.073] 2.147 [−0.298, 5.756]

Table 5: Means and 80% intervals (in curly bracket) over 10-folds cross validation for the prediction score of the

expected number of recurrent events in the atrial fibrillation dataset. With the non-parametric estimator (see

Equation (14)) as the reference, eight different models (for the recurrent events) are compared at three different

time points: five Cox and Aalen models with covariates age, diabetes and AF type, one Cox model stratified

with respect to AF type and two multi-state Cox models, Cox (MSM) and Cox (MSM/strata). The difference

between the last two models is that the first one assumes the baseline transition intensities from 0 event to 1

and to “one event or more” to a new event to be proportionals while the last one uses two different baselines

functions. All the models use the Cox model with age as the unique covariate for the estimation of the survival

function.
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Figure 6: Prediction scores for the expected cumulative number of recurrent events in the atrial fibrillation

dataset. With the non-parametric estimator (see Equation (14)) as the reference, six different models are com-

pared. All the models use the Cox model with age as the unique covariate for the estimation of the survival

function. For ease of visualisation, we describe the six models (for the recurrent events) in increasing order of

their scores at time t = 2000: the Cox model with covariate age (score = 0.911), the Cox model with covariates

age and diabetes (score = 1.572), the Cox model with covariate age and AF type (score = 4.340), the multi-state

(MSM) Cox model with covariates age, AF type and diabetes (score = 5.241) and the Cox model with covariates

age, AF type and diabetes (score = 5.431). The MSM Cox model assumes that the transition intensities from 0

event to 1 and to “one event or more” to a new event are proportionals.
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Figure 7: Expected cumulative number of recurrent events predicted from four different models for two 60 year

old patients with diabetes, one with persistent AF and the other with paroxysmal AF. Those models had similar

prediction performances (see Table 5 and Figure 6).
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7 Conclusion

In this work a new prediction criterion was proposed in the context of recurrent event data. The
criterion evaluates the prediction performance of the expected cumulative number of recurrent
events, while taking into account censoring and a possible terminal event. We showed that it
can be decomposed into an inseparability and imprecision terms in the same manner as in [15].
Moreover, the simulations revealed that the inseparability term was largely dominant in the
decomposition. As a result, we recommend to use the prediction score defined in Equation (13),
as the difference between the prediction criterion of a given model and of a reference model,
typically a model that does make use of the covariates, such that the score provides the absolute
gain from the covariates in the proposed model. An alternative score could be derived by
computing the relative gain as proposed in [30]. This produces a score that ranges from 0%
to 100% and shares similarities with the Pearson’s R2 statistic. However, care should be taken
with such a score, due to the fact that we normalise with respect to the prediction criterion of
the reference model, which itself can be decomposed into imprecision and inseparability. This
criterion could therefore be misleading due to the magnitude of the inseparability term which
is unknown in practice.

The proposed prediction criterion is simple to compute and has the advantage to include
all the recurrent events. As a result, it can be seen as an overall performance measure that
provides information about the global predictive ability of the proposed model in a recurrent
event context. Nevertheless, it would be possible to modify the criterion if one is interested
into evaluating the performance of a model to only predict further recurrent events after a fixed
number of events have already been experienced by a patient. This would amount to condition
on a given number of experienced recurrent events in a multi-state framework. This type of
criterion would be similar to the one developed in [28] which conditions on being alive up to
a time t∗ and evaluate the prediction of the model for a time s > t∗. Another improvement
would be to allow for frailty models in the manner of [31]. A marginal score that integrates the
frailty variable could be derived. Such a score would provide an overall evaluation of the frailty
model and would be a natural extension of the score proposed in this paper. Alternatively, a
conditional score could be proposed for the conditional (with respect to the frailty) expected
cumulative number of recurrent events. More work is needed to develop these two scores.

8 Appendix: proofs of the convergence of the prediction crite-
rion for the expected cumulative number of recurrent events
under the two scenarios

In the proof of Proposition 1 we will use a different decomposition of the observed recurrent
event process N , depending on the scenario under study. With a slight abuse of notations we
use the same name, M , for the residual process in both scenarios.

• In the case of right-censoring only (Section 2.2) we have:

N(t)−
∫ t

0
I(C ≥ u)λ∗(u | X(u))du = M(t),

with E[dM(t) | {I(C ≥ u), X(u) : 0 ≤ u}] = 0.

• In the case of right-censoring and terminal event (Section 2.3) we have:

N(t)−
∫ t

0
I(T ≥ u)λ∗(u | X(u))du = M(t),

with E[dM(t) | {I(T ≥ u), X(u) : 0 ≤ u}] = 0.
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8.1 Proof of Proposition 1

In both scenarios, we directly have:

MSE(t, µ) = E
[(
µ(t | X(t))− µ∗(t | X(t))

)2]
+ E

(∫ t

0

dN(u)

1−G(u− | X(u))
− µ∗(t | X(t))

)2


+ 2E

[(∫ t

0

dN(u)

1−G(u− | X(u))
− µ∗(t | X(t))

)(
µ∗(t | X(t))− µ(t | X(t))

)]
.

Using the fact that E[
∫ t
0 dN(u)/(1−G(u− | X(u))) | X(t)] = µ∗(t | X(t)), we conclude that

MSE(t, µ) = E
[
(µ(t | X(t))− µ∗(t | X(t)))2

]
+A(t),

where

A(t) = E

[(∫ t

0

dN(u)

1−G(u− | X(u))

)2
]
− E

[
(µ∗(t | X(t)))2

]
. (15)

We now show, in the case of right-censoring only, that A(t) ≥ 0. Using the decomposition given
at the beginning of Section 8, we have,

E

[(∫ t

0

dN(u)

1−G(u− | X(u))

)2
]

= E

[(∫ t

0

dM(u)

1−G(u− | X(u))

)2
]

+ E

[(∫ t

0

λ∗(u | X(u))I(C ≥ u)du

1−G(u− | X(u))

)2
]
,

since

E
[∫ t

0

dM(u)

1−G(u− | X(u))

∫ t

0

λ∗(v | X(v))I(C ≥ v)dv

1−G(v− | X(v))

]
= E

[∫ t

0

E[dM(u) | {I(C ≥ v), X(v) : 0 ≤ v}
1−G(u− | X(u))

∫ t

0

λ∗(v | X(v))I(C ≥ v)dv

1−G(v− | X(v))

]
= 0.

Then,

E

[(∫ t

0

λ∗(u | X(u))I(C ≥ u)du

1−G(u− | X(u))

)2
]

= 2E
[∫

0≤u<v≤t

λ∗(u | X(u))λ∗(v | X(v))

1−G(u− | X(u))
dudv

]
E
[
(µ∗(t | X(t)))2

]
= 2E

[∫
0≤u<v≤t

λ∗(u | X(u))λ∗(v | X(v))dudv

]
.

As a result,

A(t) = E

[(∫ t

0

dM(u)

1−G(u− | X(u))

)2
]

+ 2E
[(∫

0≤u<v≤t

λ∗(u | X(u))λ∗(v | X(v))G(u− | X(u))

1−G(u− | X(u))
dudv

)]
≥ 0.

The proof in the presence of a terminal event is similar. We find

A(t) = E

[(∫ t

0

dM(u)

1−G(u− | X(u))

)2
]

+ 2E
[(∫

0≤u<v≤t

1− S(u | X(u))(1−G(u− | X(u)))

1−G(u− | X(u))

× λ∗(u | X(u))λ∗(v | X(v))S(v | X(v))dudv

)]
≥ 0.
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8.2 Proof of Proposition 2

We start by proving that E[µ∗(τ | X(τ))] <∞ in the presence of a terminal event (the scenario
without terminal event follows from the same arguments). We have for all t ∈ [0, τ ] : P[C ≥ t |
X(t)] ≥ P[T ≥ t | X(t)] ≥ c, from Assumption 3. From the same assumption, N(τ) is almost
surely bounded by a constant. As a consequence,

µ∗(τ | X(τ)) =

∫ τ

0

E[dN(t) | X(t)]

1−G(t− | X(t))

is almost surely bounded, where the equality has been proved in Section 2.3. The rest of the
proof of Proposition 2 is identical in both scenarios.

We first note FX(t)(x) = P[X(t) ≤ x], we let Xu,v denote the support of the joint distribution
(X(u), X(v)) and we note FX(u),X(v)(x, y) = P[X(u) ≤ x,X(v) ≤ v]. We then introduce the
quantity

ξ(t) =

∫
0≤u,v≤t

∫
Xu,v

E[dN(u)dN(v) | X(u) = x,X(v) = y]

(1− Ĝ(u− | x))(1− Ĝ(v− | y))
dFX(u),X(v)(x, y)

− 2

∫
Xt

µ̂(t | x)µ∗(t | x)dFX(t)(x)

+

∫
Xt

(µ̂(t | x))2 dFX(t)(x) =: ξ1(t) + ξ2(t) + ξ3(t).

Write:∣∣∣M̂SE1(t, µ̂)−MSE1(t, µ)
∣∣∣ ≤ ∣∣∣∣∣ξ(t)− E

[(∫ t

0

dN(u)

1−G(u− | X(u))
− µ(t | X(t))

)2]∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

(∫ t

0

dNi(u)

1− Ĝ(u− | Xi(u))
− µ̂(t | Xi(t))

)2

− ξ(t)

∣∣∣∣∣
≤: C(t) +D(t).

By decomposing the square term into three other terms, we bound C(t) in the following way:
C(t) ≤ |C1(t)|+ |C2(t)|+ |C3(t)| with

C1(t) =

∫
0≤u,v≤t

∫
Xu,v

(1−G(u− | x))(1−G(v− | y))− (1− Ĝ(u− | x))(1− Ĝ(v− | y))

(1− Ĝ(u− | x))(1− Ĝ(v− | y))(1−G(u− | x))(1−G(v− | y))

E[dN(u)dN(v) | X(u) = x,X(v) = y]dFX(u),X(v)(x, y),

C2(t) = −2

∫
Xt

(µ̂(t | x)− µ(t | x))µ∗(t | x)dFX(t)(x),

C3(t) =

∫
Xt

(
(µ̂(t | x))2 − (µ(t | x))2

)
dFX(t)(x).

For C1(t) we have

(1−G(u− | x))(1−G(v− | y))− (1− Ĝ(u− | x))(1− Ĝ(v− | y))

=
(
Ĝ(u− | x)−G(u− | x)

)
+
(
Ĝ(v− | y)−G(v− | y)

)
+G(u− | x)

(
G(v− | y)− Ĝ(v− | y)

)
+ Ĝ(v− | y)

(
G(u− | x)− Ĝ(u− | x)

)
,
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and we can deal with all four terms in the same fashion. For instance, for the first term,∫
0≤u,v≤t

∫
Xu,v

(
Ĝ(u− | x)−G(u− | x)

)
E[dN(u)dN(v) | X(u) = x,X(v) = y]

(1− Ĝ(u− | x))(1− Ĝ(v− | y))(1−G(u− | x))(1−G(v− | y))
dFX(u),X(v)(x, y)

≤
∫ t

0

∫
Xu

∣∣∣Ĝ(u− | x)−G(u− | x)
∣∣∣E[dN(u) | X(u) = x]

(1− Ĝ(u− | x))(1−G(u− | x))
dFX(u)(x),

using the fact that
∫ t
0 dN(v)/((1 − Ĝ(v− | y))(1 − G(v− | y))) is bounded. Then, since∫ t

0 E[dN(u)/(1 − G(u− | X(u))) | X(u) = x] = µ∗(t | X(t)) and (1 − Ĝ(u− | x))−1 is asymp-
totically uniformly bounded, we conclude that |C1(t)| tends toward 0 in probability using the
uniform consistency of the censoring estimator.

For C2(t) we use the consistency of µ̂ and the fact that E[µ∗(t | X(t))] is finite to prove that
|C2(t)| tends towards 0 in probability.

For C3(t), we directly write (µ̂(t | x))2− (µ(t | x))2 = (µ̂(t | x)−µ(t | x))(µ̂(t | x) +µ(t | x))
and we use the fact that µ(t | x) is bounded and the consistency of µ̂ to prove that |C3(t)| tends
towards 0 in probability.

Similarly to C(t) we obtain the following bound: D(t) ≤ |D1(t)|+ |D2(t)|+ |D3(t)| with

D1(t) =
1

n

n∑
i=1

∫
0≤u,v≤t

dNi(u)dNi(v)

(1− Ĝ(u− | Xi(u)))(1− Ĝ(v− | Xi(v)))
− ξ1(t),

D2(t) = − 2

n

n∑
i=1

∫ t

0

dNi(u)

1− Ĝ(u− | Xi(u))
µ̂(t | Xi(t))− ξ2(t),

D3(t) =
1

n

n∑
i=1

(
µ̂(t | Xi(t))

)2
− ξ3(t).

We now use the bound |D1(t)| ≤ |D1,1(t)|+ |D1,2(t)|+ |D1,3(t)| with

D1,1(t) =
1

n

n∑
i=1

∫
0≤u,v≤t

dNi(u)dNi(v)

(1−G(u− | Xi(u)))(1−G(v− | Xi(v)))

−
∫
0≤u,v≤t

∫
Xu,v

E[dN(u)dN(v) | X(u) = x,X(v) = y]

(1−G(u− | x))(1−G(v− | y))
dFX(u),X(v)(x, y),

D1,2(t) =
1

n

n∑
i=1

∫
0≤u,v≤t

χ(u, v,Xi(u), Xi(v))dNi(u)dNi(v)

D1,3(t) = −
∫
0≤u,v≤t

∫
Xu,v

χ(u, v, x, y)E[dN(u)dN(v) | X(u) = x,X(v) = y]dFX(u),X(v)(x, y)

and

χ(u, v, x, y) =
{(
Ĝ(u− | x)−G(u− | x)

)
+
(
Ĝ(v− | y)−G(v− | y)

)
+
(
Ĝ(v− | y)−G(v− | y)

)
+G(u− | x)

(
G(v− | y)− Ĝ(v− | y)

)
+ Ĝ(v− | x)

(
G(u− | y)− Ĝ(u− | y)

)}
× 1

(1− Ĝ(u− | x))(1− Ĝ(v− | y))(1−G(u− | x))(1−G(v− | y))
·

The term |D1,1(t)| converges towards 0 in probability from the strong law of large numbers.
The term |D1,2(t)| is bounded by

sup
u,v,x,y

|χ(u, v, x, y)| 1
n

n∑
i=1

∫
0≤u<v≤t

dNi(u)dNi(v),
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supu,v,x,y |χ(u, v, x, y)| converges towards 0 from the uniform consistency of Ĝ while the other
term converges towards a bounded quantity from the law of large numbers. The same argument
applies to |D1,3(t)| which also converges towards 0 in probability.

For D2(t) we write |D2(t)| ≤ |D2,1(t)|+ |D2,2(t)|+ |D2,3(t)|+ |D2,4(t)| with

D2,1(t) = − 2

n

n∑
i=1

∫ t

0

dNi(u)

1−G(u− | Xi(u))
µ(t | Xi(t)) + 2

∫
Xt

µ(t | x)µ∗(t | x)dFX(t)(x),

D2,2(t) =
2

n

n∑
i=1

∫ t

0

dNi(u)

1−G(u− | Xi(u))
(µ(t | Xi(t))− µ̂(t | Xi(t)))

D2,3(t) = 2

∫
Xt

(µ̂(t | x)− µ(t | x))µ∗(t | x)dFX(t)(x),

D2,4(t) =
2

n

n∑
i=1

∫ t

0

(G(u− | Xi(u))− Ĝ(u− | Xi(u)))dNi(u)

(1−G(u− | Xi(u)))(1− Ĝ(u− | Xi(u)))
µ̂(t | Xi(t)).

The D2,1(t) term converges towards 0 in probability from the law of large numbers. For
D2,2(t), D2,3(t) and D2,4(t) we use the consistency of µ̂, the convergence in probability of∑

i

∫ t
0 dNi(u))(1 − G(u− | Xi(u)))/n, the boundedness of E[µ∗(t | X(t))], the uniform consis-

tency of Ĝ and the asymptotic boundedness of µ̂ and (1− Ĝ(u− | x))−1 to prove that all three
terms converge towards 0 in probability.

Finally, for D3(t), we write

D3(t) =
1

n

n∑
i=1

(
µ(t | Xi(t))

)2
−
∫
Xt

(
µ(t | x)

)2
dFX(t)(x)

+
1

n

n∑
i=1

((
µ̂(t | Xi(t))

)2
−
(
µ(t | Xi(t))

)2)
+

∫
Xt

((
µ̂(t | x)

)2
−
(
µ(t | x)

)2)
dFX(t)(x).

Each of the three terms converges towards 0 in probability using the law of large numbers for
the first term and the uniform consistency of µ̂ for the other two.

8.3 Proof of Proposition 3

First, note that the Brier score can be written in the following way:

MSEBrier(t, π) = E[S(t | X)]− 2E[S(t | X)π(t | X)] + E[(π(t | X))2].

We now study, our prediction score MSE′(t, π). Using standard martingale properties (see for
instance [2]), we directly have that E[dN(t) | X] = H(t | X)λ∗(t | X)dt, where H(t | X) =
P[T > t | X] = S(t | X)(1 − G(t | X)) under independent censoring and λ∗ is the hazard rate
of T ∗. As a consequence,

E
[∫ t

0

dN(u)

1−G(u−)
| X
]

=

∫ t

0
S(u | X)λ∗(u | X)du = 1− S(t | X), (16)

since S(u | X)λ∗(u | X) is equal to the conditional density function of T ∗. Also, it is important
to notice that

E

[(∫ t

0

dN(u)

1−G(u−)

)2
]

= E
[∫ t

0

dN(u)

(1−G(u−))2

]
= E

[∫ t

0

S(u | X)

1−G(u−)
λ∗(u | X)du

]
,

22



where the first equality is due to the fact that N can only jump once and thus (
∫ t
0 dN(u)/(1−

G(u−)))2 is simply equal to ∆I(T ≤ t)/(1−G(T−))2. Now,

MSE′(t, π) = E

[(
1−

∫ t

0

dN(u)

1−G(u−)

)2
]
− 2E

[(
1−

∫ t

0

dN(u)

1−G(u−)

)
π(t | X)

]
+ E[(π(t | X))2]

= 1− 2E[(1− S(t | X))] + E

[(∫ t

0

dN(u)

1−G(u−)

)2
]
− 2E[S(t | X)π(t | X)]

+ E[(π(t | X))2]

= MSEBrier(t, π) +B(t),

with

B(t) = −E[1− S(t | X)] + E
[∫ t

0

S(u | X)

1−G(u−)
λ∗(u | X)du

]
.

Now, using Equation (16), we can rewrite B(t) in the following way:

B(t) = −E
[∫ t

0
S(u | X)λ∗(u | X)du

]
+ E

[∫ t

0

S(u | X)

1−G(u−)
λ∗(u | X)du

]
= E

[∫ t

0

G(u−)

1−G(u−)
S(u | X)λ∗(u | X)du

]
.

This shows that B(t) ≥ 0 and that this quantity does not depend on π.

8.4 Computation of A(t) in the simulation section

While the inseparability term cannot be computed on real data, it is possible to obtain its
expression when the distribution of all variables are known. In this section, we provide the
explicit expression of the inseparability term A(t), in the simulation setting of Section 5.1.
To this end, we use Equation (15). We first notice that, for u < v, dN(u)dN(v) = I(C ≥
v)dN∗(u)dN∗(v) and

E[dN(u)dN(v)] = E[I(C ≥ v)E[dN∗(u)dN∗(v) | X,C]

= E[I(C ≥ v)λ0(u)λ0(v) exp(2θ>0 X)]dudv

= (1−G(v−))λ0(u)λ0(v)E[exp(2θ>0 X)]dudv,

where we used the fact that E[dN∗(u)dN∗(v) | X,C] = E[dN∗(u) | X]E[dN∗(v) | X] =
λ0(u)λ0(v) exp(2θ>0 X)dudv, since under our simulation scheme, N∗ is independent of C and
dN∗(u) is independent of dN∗(v) conditionally on X, for u 6= v. Let γ = 3, such that C follows
a uniform distribution on [0, γ]. For t < γ, we have:

E

[(∫ t

0

dN(u)

1−G(u− | X(u))

)2
]

= A1(t) +A2(t),

where

A1(t) = 2

∫∫
0<u<v<t

λ0(u)λ0(v)

1−G(u−)
dudvE[exp(2θ>0 X)], (17)

A2(t) =

∫ t

0

E[dN(u)]

(1−G(u−))2
· (18)
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We now compute∫ v

0

λ0(u)

1−G(u−)
du = 2× γ

β2

∫ v

0

u

γ − u
du = 2× γ

β2
×
(
γ log

(
γ

γ − v

)
− v
)
,

where we replaced λ0 by the hazard of a Weibull distribution with shape parameter α = 2, scale
parameter β and the last equality was obtained from the change of variables w = γ − u. We
then need to compute the following integral in A1(t):∫ t

0

(
γ log

(
γ

γ − v

)
− v
)
λ0(v)dv =

2

β2

∫ t

0

(
γ log

(
γ

γ − v

)
− v
)
vdv

=
2

β2

(
γt2

2
log(γ)− γ

∫ t

0
v log(γ − v)dv − t3

3

)
.

The last integral is computed using integration by parts and then by using the change of variables
w = γ − v: ∫ t

0
v log(γ − v)dv =

∫ t

0

v2

2

dv

γ − v
+
t2

2
log(γ − t)

=

∫ γ

γ−t

(γ − w)2

2w
dw +

t2

2
log(γ − t)

=
γ2

2
log

(
γ

γ − t

)
− γt+

γ2

4
− (γ − t)2

4
+
t2

2
log(γ − t)

=
t2 − γ2

2
log(γ − t)− γt

2
− t2

4
+
γ2

2
log(γ).

Gathering all the parts in A1(t), we have:

A1(t)

=
8γ

β4

(
γt2

2
log(γ)− γ

2
(t2 − γ2) log(γ − t) +

γ2t

2
+
γt2

4
− γ3

2
log(γ)− t3

3

)
E[exp(2θ>0 X)].

On the other hand, computation of A2(t) is straightforward, using the relation (see Section 2.2)
E[dN(t) | X(t)] = (1−G(t−))λ∗(t | X(t))dt. For t < γ, we have

A2(t) =

∫ t

0

λ0(t)

1−G(t−)
dtE[exp(θ>0 X)]

= 2× γ

β2
×
(
γ log

(
γ

γ − t

)
− t
)
E[exp(θ>0 X)].

Finally, according to Equation (15), we need to compute A3(t) = E
[
(µ∗(t | X(t)))2

]
. From

Equation (12), we directly have

A3(t) =

(
t

β

)2α

E[exp(2θ>0 Xi)].

To conclude, A(t) = A1(t) + A2(t) − A3(t) and the terms involved in this equation including
E[exp(θ>0 Xi)] or E[exp(2θ>0 Xi)] can easily be computed using Monte-Carlo simulations.
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