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A major challenge in characterizing plankton communities is the collection, identification
and quantification of samples in a time-efficient way. The classical manual microscopy
counts are gradually being replaced by high throughput imaging and nucleic acid
sequencing. DNA sequencing allows deep taxonomic resolution (including cryptic
species) as well as high detection power (detecting rare species), while RNA provides
insights on function and potential activity. However, these methods are affected by
database limitations, PCR bias, and copy number variability across taxa. Recent
developments in high-throughput imaging applied in situ or on collected samples (high-
throughput microscopy, Underwater Vision Profiler, FlowCam, ZooScan, etc) has enabled
a rapid enumeration of morphologically-distinguished plankton populations, estimates of
biovolume/biomass, and provides additional valuable phenotypic information. Although
machine learning classifiers generate encouraging results to classify marine plankton
images in a time efficient way, there is still a need for large training datasets of manually
annotated images. Here we provide workflow examples that couple nucleic acid
sequencing with high-throughput imaging for a more complete and robust analysis of
microbial communities. We also describe the publicly available and collaborative web
application EcoTaxa, which offers tools for the rapid validation of plankton by specialists
with the help of automatic recognition algorithms. Finally, we describe how the field is
moving with citizen science programs, unmanned autonomous platforms with in situ
sensors, and sequencing and digitalization of historical plankton samples.

Keywords: plankton, metabarcoding, metagenomics, high-throughput imaging, machine learning, EcoTaxa
IMPORTANCE OF PLANKTON MONITORING

Plankton are an extremely diverse group of organisms comprised of highly dynamic and interacting
populations of viruses, bacteria, archaea, single-celled eukaryotes (e.g., protists) and animals that drift
with the currents and span several orders of magnitude in size (from <0.1 µm to a few mm) (de Vargas
et al., 2015). Photosynthetic plankton (phytoplankton) carry out almost half of the net primary
in.org June 2022 | Volume 9 | Article 8788031
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production on our planet (Field et al., 1998) and fuel the biological
carbon pump (i.e., the export of photosynthetically fixed carbon to
the deep ocean) (Falkowski, 2012; Guidi et al., 2015). Plankton also
form the base of food webs that sustain the complexity of life in the
ocean and other aquatic environments (Azam et al., 1983). In
marine and freshwater ecosystems, plankton are influenced by
multiple anthropogenic impacts (i.e., plastics, pollutants, nutrient
loading, invasive species) and global change (e.g., deoxygenation,
warming, acidification, freshening, ocean circulation changes)
(Williamson et al., 2009). Plankton can also function as sensitive
indicators of change due to their relatively short life cycles (Hays
et al., 2005) and can help determine the health status of an
ecosystem (DeLong and Karl, 2005). Therefore, the biomass and
diversity of plankton were recently identified as Essential Ocean,
Biodiversity, and Climate Variables by three independent vital
observational networks: the Global Ocean Observing System
(GOOS), the Group on Earth Observations (GEO-BON), and the
Global Climate Observing System (GCOS) (Miloslavich et al., 2018;
Muller-Karger et al., 2018).
EVOLUTION OF PLANKTON
OBSERVATION WORKFLOWS

Community assessment of environmental planktonic samples
has evolved over the years (Pierella Karlusich et al., 2020a). For
example, classically the field relied on plankton that could be
collected by nets, easily preserved (e.g., using lugol's or
paraformaldehyde), settled in specialized chambers, identified
and enumerated by experienced taxonomists (Utermöhl, 1958).
Later, chemical analyses by high-performance liquid
chromatography (HPLC) allowed phytoplankton to be
distinguished by their primary and accessory pigments (Jeffrey,
1974; Mackey et al., 1996; Jeffrey et al., 1999). An important
adopted method from the biomedical sciences was flow
cytometry that can sort populations by size and auto-
fluorescence and led to important discoveries (Chisholm et al.,
1988). Many of these methods continue to be important in
regional biomonitoring programs, however most are time-
consuming, require expert taxonomic knowledge and training,
and are gradually being replaced by higher throughput methods,
including automated plankton imaging instruments (e.g.,
Underwater Vision Profiler, Imaging FlowCytobot, FlowCam,
ZooScan, etc; Figure 1) as well as genetic surveys (i.e., ‘omic’
approaches) (Pierella Karlusich et al., 2020a).

High throughput imaging and omic methods have been used
in large spatial marine surveys (Figure 1A) and at ocean time-
series sites (Olson and Sosik, 2007; Sosik and Olson, 2007).
However, the longest running large-scale marine plankton
survey currently corresponds to a classical approach deployed
since the 1930s: the Continuous Plankton Recorder (CPR)
(Warner and Hays, 1994; Batten et al, 2019). This is possible
because the CPR is sufficiently robust for deployments from
commercial ships, unaccompanied by researchers, and makes
sample collection cost-efficient over large ocean tracts (Warner
and Hays, 1994; Batten et al, 2019).
Frontiers in Marine Science | www.frontiersin.org 2
IDENTIFYING AND ENUMERATING
PLANKTON BY NUCLEIC ACID SURVEYS

Plankton are typically collected by filtering seawater. In
molecular based applications it is also common to use a
combination of filter membranes with different pore sizes
(serial size-fractionation) to separate the organisms by cell
diameter and aggregation forms (e.g., 0.2-3 µm, 0.8-5 µm, 5-20
µm, 20-180 µm, 180-2000 µm) (Pesant et al., 2015). Given the
inverse logarithmic relationship between plankton size and
abundance (Belgrano et al., 2002; Pesant et al., 2015), protocols
usually consist offiltering higher water volumes for the larger size
fractions (Pesant et al., 2015). Genetic surveys that characterize
the structure and composition of microbial communities are
performed by the extraction of nucleic acids from the plankton
samples, then a PCR amplification step and sequencing of a
marker gene (gene metabarcoding) (Burki et al., 2021). The
resulting DNA (or RNA) sequences are taxonomically
classified by comparisons with reference sequence databases
(Pawlowski et al., 2012; Guillou et al., 2013; Quast et al., 2013).
Therefore, the incompleteness of the reference database can
impact the results.

Many studies have focused on taxonomically informative
fragments of the hypervariable regions of the 16S (prokaryote
and chloroplast) and/or 18S (eukaryotic nuclear) rRNA genes.
These molecular markers are by far the most represented in
reference databases (Pawlowski et al., 2012; Guillou et al., 2013;
Quast et al., 2013). To a minor extent, others have used the
internal transcribed spacer (ITS) region of the ribosomal operon,
for example for fungi (Schoch et al., 2012) and oomycetes
(Robideau et al., 2011). Still others have relied on functional
gene markers such as the nitrogenase subunit gene (nifH) for
nitrogen-fixers (Heller et al., 2014), the ribulose-1,5 bisphosphate
carboxylase–oxygenase large subunit (rbcL) gene for
photosynthetic organisms (Bailet et al., 2019; Armbrecht et al.,
2021), and the mitochondrial cytochrome oxidase c subunit I
(COI) gene for a range of microbial groups (Kucera and
Saunders, 2008; Gall and Saunders, 2010; Stern et al., 2010).

In gene metabarcoding, the fraction of the obtained sequencing
reads corresponding to a given taxon is then used as a proxy for its
relative abundance. However, this approach generates biases due to
several error sources: variable DNA extraction and sequencing
efficiency (which also can affect other molecular methods), innate
PCR biases, and copy number variability of the marker gene among
species. PCR amplification bias due to template abundances and
mismatches of the primers on the target sites of certain taxa can
both generate differences between the observed and the genuine
relative read abundances as large as 10-fold (Polz & Cavanaugh,
1998; Lefever et al., 2013; Parada et al., 2016; Bradley et al., 2016;
Wear et al., 2018). In addition, the 18S rRNA gene copy number can
differ by >5 orders of magnitude in protists, and thus overestimates
certain taxa (Zhu et al., 2005; Godhe et al., 2008; de Vargas et al.,
2015; Mäki et al., 2017).

Some of the mentioned biases can be avoided or lessened. For
example, shotgun sequencing is a PCR-free alternative and
unlike metabarcoding here and elsewhere, generates sequences
June 2022 | Volume 9 | Article 878803
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for all the DNA present, thus it can be used to detect numerous
marker genes in an environmental sample (also called here
metagenomes) (Liu et al., 2007; Logares et al., 2014; Obiol
et al., 2020; Pierella Karlusich et al., 2022). Moreover, the use
of alternative marker genes with low-copy variability among taxa
can also improve on the innate biases in quantification
(Sunagawa et al., 2013; Pierella Karlusich et al., 2022).

In addition to taxonomic analyses, metagenomics can be used
to reconstruct partial to full genomes (metagenome-assembled
genomes or MAGs) for non-model and uncultivated organisms
(Delmont et al., 2018; Tully et al., 2018; Delmont et al., 2021).
Complement ing in format ion can be ob ta ined by
metatranscriptomics, which provide gene expression values as
Frontiers in Marine Science | www.frontiersin.org 3
an indicator of functional activity, e.g. nifH for N2 fixation; rbcL
for photosynthesis (Carradec et al., 2018).

Current popular high-throughput sequencing technologies
(e.g., 454-pyrosequencing, Ion Torrent, Illumina) were limited
in the lengths of the sequence fragments (maximum length of
~500 bp), and thus limited the phylogenetic resolution. A new
generation of environmental sequencing has recently emerged
that utilizes long-read technologies, e.g., Pacific Bioscience
(PacBio) and Oxford Nanopore Technologies (ONT). Both can
produce high-quality long-read metabarcoding and
metagenomic datasets of between 1,500 and 5,000 bp (Heeger
et al., 2018; Tedersoo et al., 2018; Orr et al., 2018; Jamy et al.,
2020). These long reads can be used in phylogeny-aware
A

B

FIGURE 1 | Datasets generated by Tara Oceans expeditions and imaging devices. (A) Tara Oceans expeditions (2009-2013) collected >35000 plankton samples
from 210 sampling sites of the upper ocean, which were used for generating physicochemical contextual data as well as >60 terabases of DNA and RNA sequences
and ~7 million images (Pierella Karlusich et al., 2020b; Sunagawa et al., 2020). The set of physicochemical and oceanographic parameters can be retrieved from
Pangaea repository (https://www.pangaea.de/), the molecular data from the European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena/), and the imaging data
from Ecotaxa (https://ecotaxa.obs-vlfr.fr/). (B) High throughput plankton imaging instruments used in the Tara Oceans expeditions. The flow cytometer is used to
determine counts of picocyanobacteria, heterotrophic bacteria and eukaryotic picophytoplankton (Gasol and Morán, 2015). The environmental High-Content
Fluorescence Microscopy (e-HCFM) method is based on an automated Leica SP8 TCS confocal laser scanning microscope that enables 3D multicolor imaging of
cells (Colin et al., 2017). The instrument was developed at the European Molecular Biology Laboratory for the analysis of objects in the size range 2–500 µm, and is
best suited to study preserved samples. The Imaging FlowCytobot (IFCB; McLane Research Laboratories, Inc., USA; Olson and Sosik, 2007) is designed for the
analysis of objects in the size range 10–150 µm, and is appropriate to study live small-size protists such as flagellates, ciliates and diatoms. The FlowCam (Fluid
Imaging Inc.; Sieracki et al., 1998) uses a similar imaging principle as the Imaging FlowCytobot. FlowCam works well with organisms between 20 and 300 mm, with
FlowCam-nano and FlowCam-macro for smaller and larger organisms, respectively. The ZooScan (Hydroptics, France; Gorsky et al., 2010) is a benchtop scanner
instrument useful for the analysis of objects in the size-range 300-5000 µm, and is best suited to study preserved samples of organisms such as large hard-shelled
protists (e.g., Rhizaria) and metazoa. The Underwater Vision Profiler (UVP5, Hydroptics, France; Picheral et al., 2010) is designed to detect and count objects of
>100 µm in size and to identify those of >600 µm in size. It is appropriate to study fragile aggregates such as marine snow particles and organisms that tend to
break when sampled with nets, such as gelatinous metazoans.
June 2022 | Volume 9 | Article 878803
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annotations to account for uncertainty and missing data in the
reference databases (Jamy et al., 2020).

Despite the different mentioned caveats, omic surveys have
become relatively affordable and automated (Ji et al., 2013),
allowing analyses of datasets of unprecedented size and
taxonomic resolution. Such datasets have enabled the
identification of cryptic species (not easily detected by
morphology) (Š lapeta et al., 2006), and allowed for a
simultaneous survey of all domains of life.
HIGH-THROUGHPUT IMAGING OF
ENVIRONMENTAL
PLANKTON POPULATIONS

Investigating plankton at large spatial and/or temporal scales is
difficult. Sampling is often labor intensive and common
collection methods, such as nets, sediment traps, bottles, and
electric powered pumps, are not adapted for all sizes of plankton,
nor can fragile organisms be sampled carefully (Remsen et al.,
2004). In addition, collections largely represent ‘snapshots’ and
require manual and time-consuming sorting of material, which
makes the results difficult to scale up to pan-oceanic observations
in situ (a classical approach which is an exception to this
limitation is CPR). These issues also limit the number of
samples that can be used to isolate DNA/RNA for omics and/
or to manually count cells by microscopy. However, while omic
analyses are relatively automated, manual microscopy is low
throughput because each sample requires long processing time
by specialized personnel (Ji et al., 2013). This reliance on human
experts also implies some classification subjectivity (Culverhouse
et al., 2003) but more importantly can also lead to
low reproducibility.

These limitations have stimulated the development of
numerous alternative and automated plankton monitoring
tools and instruments for marine and freshwater ecosystems
(Wiebe and Benfield, 2003; Lombard et al., 2019; Spanbauer
et al., 2020; Orenstein et al., 2021; Irisson et al., 2022). These
techniques generate data comparable to those obtained by
manual light microscopy, but in a high-throughput way. Still,
some differences can be detected due to the differences in manual
vs automatic classification, sample preservation vs in situ
observations, and between sampled seawater volumes (Olson
and Sosik, 2007; Jakobsen & Carstensen, 2011; Álvarez et al.,
2014; Schmid et al., 2016; Haraguchi et al., 2017; Detmer et al.,
2019; Hrycik et al., 2019; Kraft et al., 2021).

Current plankton imaging instruments that are commercially
available are shown in Figure 1B and a more complete list is
available in Table 1 of Lombard et al., 2019. Additionally, a high-
throughput microscopy denoted as environmental high content
fluorescence microscopy (e-HCFM), has recently been described
for generating 3D multi-channel images of nanoplankton (5-20
µm) and microplankton (20-180 µm) from preserved samples
(Colin et al., 2017) (Figure 1B). These instruments deliver highly
diverse and continuous image datasets from planktonic
populations, and some can be deployed for in situ monitoring
Frontiers in Marine Science | www.frontiersin.org 4
(e.g., for harmful algal blooms; Moore et al., 2017; Moore et al.,
2019; Henrichs et al., 2021) and/or for in situ quantification of
fragile organisms that are difficult to collect by nets (Hull et al.,
2011; Biard et al., 2016; Gaskell et al., 2019). It is expected that
the volume and complexity of marine data will increase by orders
of magnitude in the coming years and the annotation rate of
human experts is currently lagging behind the data generated.
Therefore, advanced automated image recognition techniques,
including the extraction of image features followed by machine
learning classifiers (e.g. support vector machine, SVM; random
forest, RF; artificial neural networks, ANNs) and the
combination of the two steps by deep learning approaches
(convolutional neural networks, CNN; Krizhevsky et al., 2012;
Russakovsky et al., 2015) have been developed (Irisson et al.,
2022 and references therein).

Machine learning models are only as good as the data they are
trained on. Therefore, database limitations affect the annotation
of high-throughput images, in the same way as it occurs in
sequence analyses. A sure way to improve classifiers is through
large, diverse, and high-quality training data sets. Most plankton
data sets are severely unbalanced (e.g., one of a few dominant
taxa). Hence to move forward, there is a need for large, publicly
available data sets of identified images that contain realistic
proportions of diverse planktonic taxa. Fortunately, there are a
number of ongoing programs aiming to expand the current
labeled set of plankton classes and create a larger publicly
available plankton database. These include the Tara Oceans
project (Figure 1), and numerous localized monitoring
programs in freshwater (Kyathanahally et al., 2021) and
marine environments (Luo et al., 2018; Plonus et al., 2021;
PlanktonSet, Cowen et al., 2015; ZooScanNet, Elineau et al.,
2018 ; WHOI-Plankton, Sos ik e t a l . , 2021 ; SYKE-
plankton_IFCB_2022, https://b2share.eudat.eu/records/
abf913e5a6ad47e6baa273ae0ed6617a).

Some of the mentioned machine learning approaches are
integrated into specialized plankton software tools such as
ZooProcess (Gorsky et al., 2010) combined with Plankton
Identifier (Gasparini and Antajan, 2007) or ZooImage (Bell
and Hopcroft, 2008; Grosjean et al., 2018), and Visual
SpreadSheet (FlowCAM Manual, 2012). As an alternative to
these locally installed applications that are specific to one or few
instruments, is the recent development of the web application
called EcoTaxa (Picheral et al., 2017). EcoTaxa brings the
possibility to use machine learning approaches (including deep
learning) with no technical knowledge or set up, enables users to
work collaboratively to validate or correct the proposed
annotations, and to share the resulting datasets to comply with
the standards of Findability, Accessibility, Interoperability, and
Reusability (FAIR principles; Wilkinson et al., 2016).
VISUALIZING AND CLASSIFYING
PLANKTON USING ECOTAXA

EcoTaxa was initially developed in France for exploiting the
quantitative imaging data collected during the Tara Oceans
June 2022 | Volume 9 | Article 878803
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expeditions (Figure 1A) (Pierella Karlusich et al., 2020b;
Sunagawa et al., 2020). It has since expanded and now covers
many other sampling campaigns. EcoTaxa functions as a
centralized repository where individual images from
environmental populations of (mainly) marine plankton
generated by different technologies can be uploaded (>190
million images from >10 different instruments as of January
2022). Operators can train machine classifiers on the fly, using
morphological features produced by the pre-processing software
(such as the aforementioned ZooProcess) and/or features
generated by deep learning networks included in EcoTaxa. The
user selects and classifies a few images and the supervised
machine learning algorithm predicts annotations for the
remaining ones (a process akin to the common use of BLAST
(Altschul et al., 1997) or HMMER (http://hmmer.org/)
algorithms for searching nucleotide or protein sequences in
omics databases). Then the graphical interface strives to
efficiently validate or correct those predictions, resulting in a
throughput of ~2000 to ~10,000 annotations per active hour
depending on the dataset (Irisson et al., 2021). Visitors have free
Frontiers in Marine Science | www.frontiersin.org 5
access to some datasets that have been identified by expert
taxonomists and published with an open license. Similar to
nucleic acid databases, users can navigate the image database
along a taxonomic tree, or filter the images according to
sampling criteria (location, season, time of day) (Figure 2A).
Once access is granted by the dataset manager, resulting datasets
can be easily downloaded and provides users with ecological data
such as concentration and biovolume estimates at a given time
and point (latitude, longitude, depth) for each taxon. These types
of analyses are useful in research, training, and teaching (e.g.
plankton lab exercises).

Each image is associated with the geotemporal and processing
metadata. Additionally, images generated by Tara Oceans are
linked to a complete set of physicochemical and oceanographic
parameters (dissolved nutrient concentrations, temperature,
salinity, etc) archived in the Pangaea repository (https://www.
pangaea.de/), and molecular data archived in the European
Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena/)
(Figure 1A). In addition to contextual variables for each
sample, EcoTaxa stores a collection of numeric features
A

B

FIGURE 2 | Integration of molecular and imaging datasets with the help of EcoTaxa. (A) User interface of EcoTaxa (https://ecotaxa.obs-vlfr.fr/). The user can
navigate the database along a taxonomic tree (left panel of the website) or filter the images according to sampling criteria (location, time, depth) or morphological
features (size, chlorophyll a content, etc). The concentration and biovolume for a taxon at a given geographical location and time point can be retrieved. For
operators, easy-to-use tools are provided for the rapid identification of large numbers of images by a combination of machine learning and human validation. (B)
Workflow for the integration of molecular and imaging data. This example is based on our recent analyses of free-living and symbiotic planktonic nitrogen-fixers
in the Tara Oceans project (Pierella Karlusich et al., 2021). The molecular data was first used for helping to target the manual annotation workload of the imaging
data. The strategy started with the mining of molecular data (metagenomes) to select a few samples where sequences from nitrogen-fixers were abundant, and
therefore it was feasible to manually search the images from those samples through EcoTaxa. After obtaining a few manually annotated images, predictions
were run for the whole dataset (all samples) and curated by visual inspection. These results were then used as a new training set for running new predictions.
The imaging and molecular results were then compared to validate each other and to quantify biases (e.g., the variations in gene or genome copies per cell).
Imaging-based information that cannot be determined by molecular data were also generated: absolute quantifications, biovolume, symbiont number per host
cell, asymbiotic partners, chloroplast content, cell number per colony/filament.
June 2022 | Volume 9 | Article 878803
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extracted from each image (roundness, perimeter, area, aspect
ratio, texture, intensity, etc). Beyond their use for automated
classification explained above, these features are increasingly
valuable as data in their own right, i.e., for trait-based
approaches (Vilgrain et al., 2021).

So far, examples of studies based on Ecotaxa have focused on
specific taxonomic groups: the supergroup Rhizaria (Biard et al.,
2016), the polychaete Poeobius sp. (Christiansen et al., 2018), the
filamentous cyanobacterium Trichodesmium (Pierella Karlusich
et al., 2021), and planktonic symbioses (Vincent et al., 2018;
Pierella Karlusich et al., 2021). As an example, we briefly describe
the process of image classification for such specific taxon cases. In
each of these targeted studies, images of a taxon of interest were
classified into accepted taxonomic units along a single tree, provided
by EcoTaxa. In cases where the dorsal and lateral views or the
different development stages of the same taxon look very different,
the automated classifier is guided by splitting the images into
different classes, defined as children of the target taxon. In the
focused studies on specific taxa, the detailed sorting of some other
parts of the dataset is not necessary, and therefore several image
classes can be grouped under a single “catch all” term (e.g., ‘detritus’
that contains fecal pellets, aggregates and fibers). Yet, it is important
that these “catch all” classes be thoroughly checked for objects
belonging to the taxa of interest since their polymorphic nature
tends to trip automated classifiers.

It is worth mentioning that Ecotaxa (as well as most studies
and tools) have used supervised classifiers, which learn to classify
new images based on a set of images already classified by human
experts. While these supervised machine learning approaches are
generally very fast and the most accurate for a predefined class of
interest, they are limited to the set of classes present in the
training data set of taxa/morphologies (González et al., 2017).
Instead, unsupervised learning has been implemented which
functions without predefined class labels for the images under
study because the goal is to group similar images into clusters.
Importantly, this enables novelty detection and facilitates the
data-driven creation of possibly meaningful subcategories within
what could have been considered as a single class in a supervised
classification approach. An example tool for unsupervised
classification is MorphoCluster (Schröder et al., 2020; https://
github.com/morphocluster), which uses image features
computed by a CNN for clustering. The primary use cases for
unsupervised learning is the rapid annotation of huge volumes of
images for further data analysis but also the initialization of a
training set.
IN SITU SENSORS FOR IMAGING AND
OMICS IN UNMANNED, AUTONOMOUS,
AND REMOTE SENSING PLATFORMS

Recently the field is advancing in the direction of deploying in
situ sensors on longer-term platforms monitored by satellites (or
ship cruises) (Whitt et al., 2020). Examples of imaging
instruments include moored (Seegers et al., 2015; Yamahara
et al., 2015; Ryan et al., 2017; Bowers et al., 2018), ship-based
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(Schofield et al., 2006), remotely operated underwater vehicles
(ROVs) and autonomous underwater vehicles (AUVs) (Hails
et al., 2009; Pargett et al., 2015; Beckler et al., 2019). These
applications significantly advance the spatiotemporal coverage
compared to earlier efforts with ship-based sampling.

A notable example is the nearly 16 year continuous time series
of Imaging FlowCytobot (IFCB) at 4m depth at the Martha’s
Vineyard Coastal Observatory (MVCO) (Olson and Sosik, 2007;
Sosik and Olson, 2007). The instrument is able to operate
unattended for months, using power and communications
from a shore lab for real-time operation, monitoring and data
download. Another example is the next generation of
Underwater Vision Profiler (UVP6) currently deployed on
Argo buoys, gliders and moorings (Picheral et al., 2021).

Molecular data can also be generated through in situ sensors
on longer-term platforms. The Environmental Sample Processor
(ESP) is a robotic device that can be programmed to automate
water sample filtration and preservation of plankton material, or
homogenize it for immediate in situ analyses (Scholin et al.,
2017). It has has been deployed locally moored (Preston et al.,
2011; Yamahara et al., 2015), free-drifting (Ottesen et al., 2013;
Robidart et al., 2014), as well as in deep-water configurations
(Ussler et al., 2013), and with AUVs (Pargett et al., 2015; Scholin
et al., 2017). Published capabilities include in situ detection of
specific planktonic species via nucleic acid probe hybridization
arrays or quantitative PCR (Preston et al., 2011; Varaljay et al.,
2015), and collection and fixation of samples for on-shore
genomic and transcriptomic analyses (Ottesen et al., 2011;
Aylward et al., 2015).

To date, high throughput omics technology has been
miniaturized into Oxford Nanopore MinION devices (Jain
et al., 2016; Lu et al., 2016). These sequencers are small and
portable and capable of real-time analyses, and have been
successfully applied in marine (Shin et al., 2018; Warwick-
Dugdale et al., 2019) and freshwater environments (Urban
et al., 2020). Thus, in the future, it should be feasible to have
these miniaturized sequencers for monitoring plankton by their
in situ DNA/RNA, simultaneously with in situ imaging.
However, improved strategies for data retrieval from
autonomous platforms are still required; for example Argo
floats cannot send millions of images or sequences via satellite
communication. Currently only data processed in the sensor and
summarized (e.g. number of particles detected, size spectrum)
can be obtained, unless the sensors are physically retrieved from
the ocean, which is rare.
CITIZEN SCIENCE: ENGAGING THE
PUBLIC FOR PLANKTON ENUMERATION

In addition to the use of autonomous samplers for improving the
spatiotemporal coverage of plankton populations, the field is
developing a new generation of affordable tools and protocols
that can be deployed in the thousands of citizen sailing boats,
professional sailing yachts, cargo ships and fishing vessels which
are navigating the world ocean every day.
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An example is Plankton Planet, which is a recently established
and ongoing citizen science project initiated by researchers from
the CNRS (The National Centre for Scientific Research, France),
together with the Tara Oceans consortium (de Vargas et al.,
2020; Pollina et al., 2020; https://www.planktoscope.org/). The
project aims to mobilize citizen sailors to collect samples and
images of plankton from all over the world. Participants are
provided with free training and encouraged to build their own
Planktoscope (Pollina et al., 2020), a frugal high-throughput
microscope platform for acquiring images of microplankton
(20–200 µm). The participants take images which can then be
uploaded to EcoTaxa for classification. Participants are also
equipped with a basic sampling toolkit for collecting
planktonic DNA for sequencing; sea surface plankton are
collected by a net and rapidly transferred onto a filter
membrane using a manual pumping system, and the filter is
then heated and desiccated as part of a simple protocol for DNA
preservation (De Vargas et al., 2020).

In addition to collecting samples, citizen science programs
can help perform, or at least initiate, the taxonomic classification
of images for example (Robinson et al., 2017; Kiko et al., 2018).
Platforms like Ecotaxa and other specialized tools could be
complemented with more user friendly interfaces geared
towards a global community of citizen scientists, like the
existing Plankton Portal app as part of the Zooniverse
initiative (Robinson et al., 2017) or the PlanktonID website
(Kiko et al., 2018). Still, collaboration with trained taxonomists
is always necessary as the field moves forward and the lack of
trained taxonomists is an important challenge (Pearson
et al., 2011).
HISTORICAL PLANKTON SAMPLING

Planning for future ocean conditions requires historical data to
establish more informed ecological baselines. Historical samples,
preserved in formaldehyde, represent a treasure trove that can be
used to compare plankton communities from the modern ocean
with that of former decades (or even centuries, Fox et al., 2020).

A recent study compared the samples collected in the eastern
Pacific Ocean by the HMS Challenger in September 1875 with
those from Tara Oceans expedition in September 2011 (Fox
et al., 2020). Notably, up to 76% reduction in shell thickness of
calcifying foraminifera was measured, pointing to the potential
effect of decreasing pH during the 140-year period that separated
both expeditions. Although these results may be compounded by
multiannual processes such as El Niño—La Niña cycles, this
study illustrates the value of historical samples and simple
morphological measures.

More complete datasets can be obtained with historical
samples generated from time-series collections. An example
was the building of historical plankton datasets by
digitalization of preserved samples and classification of the
resulting images using machine learning classifiers and human
curation by Garcıá-Comas et al., 2011 and Vandromme et al.,
2011. In addition, there are recent efforts in generating molecular
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data from preserved samples of the CPR survey (Stern et al.,
2018; Stern et al., 2022), one of the longest running marine
biological surveys.
IMAGING VS MOLECULAR DATA TO
ESTIMATE PLANKTON DIVERSITY,
ABUNDANCE AND BIOMASS

Combining image and omics-based analyses provides a unique
opportunity to relate plankton diversity, abundance, and
biomass. In fact, the global ocean trends in the Shannon index,
a diversity index that accounts for both richness and evenness
(Calderón-Sanou et al., 2020), were highly congruent between
molecular and imaging approaches (Ibarbalz et al., 2019). The
trends included zooplankton imaging based on ZooScan,
photosynthetic protist data obtained by confocal or light
microscopy, and prokaryote data based on flow-cytometry
(Ibarbalz et al., 2019). These global patterns of marine
plankton diversity were used to infer the abiotic drivers and to
predict the effects of severe warming of the surface ocean
(Ibarbalz et al., 2019; Busseni et al., 2020). Thus, combining
methods resulted in a robust estimate and prediction.

A second example of how combining imaging and omics has
an advantage comes from the correlation between rRNA gene
copy number and cell size. Here, it was proposed that the rRNA
gene metabarcoding reads should reflect the relative proportion
of biovolume for a given taxon (Lamb et al., 2019). Biovolume is
often used as a proxy of biomass, which is a relevant parameter
for energy and matter fluxes (e.g., food webs, biogeochemical
cycles). However, there is still little consensus for using rRNA
genes as a biovolume estimator due to poor correlations reported
in many studies (e.g., Lamb et al., 2019; Santoferrara, 2019;
Lavrinienko et al., 2021; van der Loos & Nijland, 2021; Pierella
Karlusich et al., 2022). Thus, image based methods are still
considered a stronger and consistent estimator for
plankton biovolume.

Some have attempted to infer plankton relative cell
abundances from rRNA gene metabarcoding by the
establishment of correction factors. Cell abundance usually
corresponds to species abundance for unicellular organisms,
which is an important measure for inferring community
assembly processes. However, the application of copy number
corrections for the 16S rRNA gene in bacteria has limited
accuracy (Kembel et al., 2012; Louca et al., 2018; Starke et al.,
2020), and this correction is even more challenging for protists
due to intraspecies variation in 18S rRNA gene copy number
(Gong & Marchetti, 2019). Instead, marker genes with low-copy
variabil ity among taxa can drastical ly improve the
quantifications (Pierella Karlusich et al., 2022).

Plankton identification and abundance estimates by image
based approaches are most easily applied to microplankton (20-
200 µm) or larger organisms that possess distinguishable
morphological characters (Lombard et al., 2019). For example,
many different taxonomic groups include flagellated, ciliated, or
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amoeboid cells that are usually <20 mm in size (Adl et al., 2019).
On the contrary, the DNA-based methods remain preferable for
pico- (0.2-3 µm) and nano-plankton (0.8-5 µm) because of their
higher abundances and less separable phenotypes. This means
that an integrated approach to quantifying all kinds of plankton
still needs to be developed.
USING MOLECULAR DATA FOR
TARGETING THE MANUAL ANNOTATION
WORKLOAD OF IMAGES

A workflow that analyzes in parallel images and sequences has
been proposed to alleviate the “taxonomic bottleneck” (Riedel
et al., 2013). As CNNs and feature-based methods utilize only the
information contained in the image to predict the taxonomy,
these annotations could be improved by the parallel DNA (and/
or RNA) sequencing analyses for helping to target the manual
annotation workload. A recent example includes our workflow to
link a functional gene marker (nifH for N2 fixation) to plankton
from the Tara Oceans e-HCFM images (Pierella Karlusich et al.,
2021) (Figure 2B). The TaraOceans project publicly archived >2
million images by e-HCFM, and presented a challenge to identify
low-abundant organisms such as planktonic nitrogen-fixers. An
important prerequisite here is that we already knew both the
nifH gene and what the target diazotrophs looked like in
microscopy images. However, in order to use the machine
learning imaging prediction tools in EcoTaxa, a training set
was still required for the RF model. Hence, using the molecular
data (metagenomes), we selected a few stations where nifH
sequences diagnostic of the target nitrogen-fixers were
abundant, and then manually searched in the images from the
parallel e-HCFM data (Figure 2B). Once we acquired a few
manually annotated images from these selected samples, we
started an iterative cycle: we ran predictions over the whole
dataset (all samples) and curated the results by visual inspection,
which were then used as a new example set for running
new predictions.

The imaging results verified the molecular results (and vice
versa), and additionally we obtained other valuable ecological
information that cannot be determined by molecular data alone.
For example, morphological and ecological features (biovolume,
symbiont number per host cell, asymbiotic partners, chloroplast
content, cell number per colony/filament) were measured. Since
we also acquired absolute quantifications by the images, we were
able to estimate biases in molecular approaches that are often
overlooked or not clearly understood (e.g., the variations in gene
or genome copies per cell; Milivojević et al., 2021). Finally, both
molecular and imaging data validated global biogeographical
patterns of nitrogen-fixers, and identified new high density
(“hotspots”) areas in understudied and undersampled
oceanic regions.

This workflow can also be used to target microorganisms that
we do not know the phenotype (image) but have the phylotype
(sequence). For example, we identified in numerous samples a
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high number of nifH sequences which were identical to
symbiotic diazotrophs previously thought to be only present in
freshwater environments. In the parallel e-HCFM datasets, we
observed numerous images for potential symbiosis, and so we
speculated that many of these nifH sequences could correspond
to those images. These initial observations were recently
confirmed by the isolation of the symbioses (Schvarcz et al.,
2022). Therefore, this workflow advances our ability to link
morphological features with genetic data, and holds promise
for identifying new microbial interactions (e.g. symbiosis), and it
is worth mentioning that it is directly applicable to other
microbial populations.
CONCLUSIONS

High-throughput imaging and molecular technologies with
adequate computational and statistical tools are complementary,
where imaging is currently best suited for abundance and biomass
estimates of limited groups and metabarcoding provides deeper
estimates of taxonomic richness. Since the two methods are
complementary, their combined use in the study of marine
plankton communities provide much more reliable and accurate
results. The challenge is to standardize an analytical pipeline where
samples can be processed smoothly by both methodologies and
their results combined to more accurately present microbial
diversity, both qualitatively and quantitatively.

Indeed, recent reports illustrate how imaging combined with
omics can generate valuable ecological information, such as the
detection and quantification of symbioses, global biodiversity
patterns, distribution patterns for biogeochemically relevant
microbes and the estimation of standing stock plankton
biomass. These are invaluable datasets necessary to constrain
and improve ecosystem and biogeochemical models, and forecast
changes in marine ecosystems in light of climate change.
Moreover they also drive curiosity and generate hypotheses.

Automation techniques will become increasingly important
given that most imaging modes are collecting quantities of data
in real-time that are unfeasible to analyze and interpret
manually. Future ocean observatories will include imaging and
omics sensors deployed onto stationary and mobile platforms,
ideally semi-autonomous and incorporated into an array of
interoperable, web-enabled sensors for synoptic observations of
the physical and chemical environment. In addition, affordable
tools that can be deployed to thousands of citizen sailing boats
will become more common. The field could not be more well
poised for imaging and sequencing our most valuable aquatic
assets: the plankton.
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