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Geometrical level set reinitialization using closest point method and kink
detection for thin filaments, topology changes and two-phase flows
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Abstract

We introduce a robust and high order strategy to perform the reinitialization in a level set framework.
The reinitialization by closest points (RCP) method is based on geometric considerations. It relies on a
gradient descent to find the closest points at the interface in order to solve the Eikonal equation and thus
reinitializing the level set field. Furthermore, a new algorithm, also based on a similar geometric approach, is
introduced to detect precisely all the ill-defined points of the level set. These points, also referred to as kinks,
can mislead the gradient descent and more widely impact the accuracy of level set methods. This algorithm,
coupled with the precise computation of the closest points of the interface, permits the novel method to
be robust and accurate when performing the reinitialization every time step after solving the advection
equation. Furthermore, they both require very few given parameters with the advantage of being based on
a geometrical approach and independent of the application. The proposed method was tested on various
benchmarks, and demonstrated equivalent or even better results compared to solving the Hamilton-Jacobi
equation.
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Highlights

• A geometric approach to reinitialize the level set function based on a gradient descent.

• Applicable every time step after transporting the level set field.

• Accurate detection of kink points of the level set field.

• Both algorithms rely on very few given constant geometrical criteria, independent of the application.

• Robust and accurate in 2D and 3D, from simple advection to two-phase flow subjected to surface
tension.

1. Introduction

The accurate representation of a geometrical surface and during its motion is essential in many applications.
Simulation of two-phase flows requires adequate numerical methods for localizing precisely each phase and
their interactions at the interface such as buoyancy forces and surface tension. The dynamics of such interfaces
can be relatively complex as they are subjected to high velocity gradients, shear and consequently topology
changes.

For this purpose, the Level Set Methods [1] (LSM) are largely used to capture evolving interfaces which
are implicitly represented through a scalar field φ, usually defined as a signed distance function, where
the surface is defined as its zero level set. Its simplicity of implementation and its robustness are the key
advantages of this method. Furthermore, LSM captures naturally topological changes without necessitating
explicit treatment of connection or disconnection of the surface. Transporting φ, regardless of the chosen
numerical method, will lead to significant distortion of this field. To ensure accurate computation of quantities
linked to the interface such as the curvature and the normal, or the induced volume fraction of each fluid, it
is essential to perform a reinitialization process of the level set field. Several approaches exist, among them
the fast marching method [2] and fast sweeping method [3] are based on an iterative process for finding
values of φ starting from the interface position, however they suffer of from a lack of precision. Another
common approach consists in solving iteratively the Hamilton-Jacobi partial differential equation [4–6] whose
stationary solution is a signed distance function. Combined with well suited numerical schemes, this method
can give high order results.

On the other hand, applying this process too frequently will introduce undesirable displacement on the
interface position, a problem which can be reduced with modifications such as [6–8]. However, as we will
see in Sec. 6.8, this methodology can also introduce large errors on the interface dynamic when topological
changes occur. Hence, to reduce the displacement of the interface, it is common to perform this reinitialization
procedure after a few interface advection steps. Furthermore, this approach is sensitive to the choice of
how frequently it is applied. Too often it can lead to important deformation and diffusion of the surface,
too rarely the level set function will eventually be too heavily distorted. The choice of this reinitialization
frequency has seen no consensus in the literature and usually depends on the underlying application.

The present work introduces a new robust strategy following a geometric approach to perform the
reinitialization procedure that can be applied to various applications. This method is principallyprimarily
based on the minimal distance, also named closest point, to the surface which can be computed thanks
to a gradient descent. Chopp [9] used this principle to improve the fast marching method of Sethian [2],
where the closest points are computed through a modified Newton’s method. Later, Anumolu [10] applied
a hybrid reinitialization process with the closest point approach for the cells containingcutting the surface
and solved the Hamilton-Jacobi equation farther further. However, when topology changes, large distortions
or under-resolved zones eventually arise after the transport of the level set. Those ill-defined regions will
eventually disturb the accuracy of the gradient descent. Those regions, also referred to as kinks [11], need to
be detected and treated adequately for the robustness of the method.
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We extend these closest point reinitialization approaches in an algorithm that fully takes advantage of
the gradient descent and is applied as well for cells close and far from the surface, thus granting a better
accuracy for the overall level set methods. One of the main advantages of this method is that it can be safely
applied every time after transporting the level set without compromising the underlying interface dynamics.
Conjointly, a new algorithm is also introduced to detect the kinks.

The performance of the method will be tested on a series of benchmarks. First, we study the cases of pure
advection of various surfaces and assess the capabilities of the method on simple and complex geometries
with thin layers, under-resolved regions or discontinuities. Then, we will consider test cases coupled with
Navier-Stokes equations with surface tension to demonstrate the capacity of the method to capture accurately
the behaviour of inviscid two-phase flows. Finally, to test robustness and applicability, we apply the proposed
method to the bubble rise and the dam break problem in 2D and 3D.

2. The Level Set Method coupled with Navier-Stokes equations

2.1. Level set definition

Consider a spatial domain Ω, composed by two subdomains Ω− and Ω+ separated by an interface Γ. In a
level set framework, Γ is represented implicitly by a scalar function φ : Ω→ R which is commonly defined as
a signed distance function:

φ(x) =
{
−dist(x,Γ) if x ∈ Ω−
+dist(x,Γ) if x ∈ Ω+ with Γ = {x ∈ Ω | φ(x) = 0} .

where dist(x,Γ) is the Euclidean distance of x to the interface, defined by the zero level set of φ. Furthermore,
in that particular case, φ is solution of the eikonal equation :

|∇φ| = 1. (1)

2.2. Navier-Stokes equations for incompressible two-phase flows

We considered the incompressible form of the Navier-Stokes equation where the momentum equation can
be written in a conservative form as:

∂ρu
∂t

+∇ ·(ρu⊗ u) = −∇p+∇ ·(2µD) + f (2)

where u is the fluid velocity, ρ its density, µ its dynamic viscosity, p the pressure, D =(∇u +∇Tu)/2 is the
deformation tensor and f encompasses external body forces. Under the assumption of incompressibility, the
continuity equation reduces to a divergence-free constraint on the velocity field:

∇ · u = 0. (3)

In the case of an immiscible two-phase flow simulation where, a discontinuity in density and viscosity stands
at the interface Γ. This discontinuity is numerically treated following the one fluid model, first introduced in
[12]. In the case where the density and viscosity are constant within each phase, ρ and µ are expressed as:

ρ(x) = ρ2 + (ρ1 − ρ2)c(x)
µ(x) = µ2 + (µ1 − µ2)c(x)

(4)

where ρ1 (resp. ρ2) and µ1 (resp. µ2) are the values of the first (resp. second) phase and c a characteristic
function, also referred as the volume fraction.
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Level set coupling. In a level set framework, c is expressed as a function of φ. For the designated two-phase
flows with high density ratio in a one-fluid model, the regularity of this transition between phases is important
for stability reasons. Hence, in order to obtain a smooth representation of the interfacial region, a regularized
form of the Heaviside function is used herein:

c(x) = Hε(φ(x)) (5)

with

Hε(φ) =


0 if φ < ε
1
2(1 + φ

ε + 1
π sin(π φε )) if |φ| ≤ ε.

1 if φ > ε
(6)

Therefore, the density and viscosity vary smoothly within an interfacial region of thickness 2ε, where usually
ε is proportional to the cell size h, i.e. ε = O(h). For different applications, other approximations could
indeed be used, such as sharper approaches as proposed in [13].

The interface thickness problem. In the case where φ is a signed distance function and ε = kh, with k a
real number, the interfacial region is of thickness 2kh. Ensuring this thickness remains constant is a crucial
criterion for the accuracy of the one fluid model and makes the reinitialization of the level set function an
essential matter. Hence, performing the reinitialization step systematically after transporting the level set
field is essential to maintain a constant interface thickness.

Surface tension model
Surface tension can be modeled as a pressure jump across the interface, from a volume point of view, as

fσ = σκΓnΓδΓ, where σ is the surface tension coefficient, κΓ the curvature of the surface and nΓ its normal
and δΓ is the Dirac function associated with the surface. Brackbill et al. [14] introduced the Continuum
Surface Force (CSF) which approximates this body force as:

σκnδΓ ' σκ∇c. (7)

Using the level set formulation, the normal n to the interface and the associated mean curvature κ are
defined as:

n = ∇φ
‖∇φ‖

and κ = ∇ · n = ∇ ·
(
∇φ
‖∇φ‖

)
.

The normal and curvature approximation problem. Tthe normal and the curvature are defined by extension
in the whole domain through the level set function φ. Consequently, a good regularity of φ in the vicinity
of the interface is necessary to accurately discretize surface tension the curvature and thus reduce spurious
currents [15–17]. A frequent reinitialization of the level set act towards ensuring this property.

2.3. Level set transport

In this framework, the interface and the quantities associated with it are directly linked to the level set
function φ. Following the interface position over time is obtained by solving the advection equation, with an
underlying velocity field u , applied to the level set:

∂φ

∂t
+ u · ∇φ = 0 (8)

Yet, in a general case, resolving the advection equation will induce deviation of φ to be a signed distance
function and consequently cease to be a solution of the eikonal equation 1. The reasons are twofold. First,
distortions come from numerical errors when resolving the advection Eq. (8). But most importantly, as
demonstrated by Trujillo et al. [18], these distortions are directly connected to the nature of the flow field,
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regardless of the method used to evolve the level set. In fact, any transported function will have its gradient
and derivatives of higher degree stretched under the presence of a moving fluid with a non-zero strain rate
tensor. In a two-phase fluid simulation, the numerical thickness of the interface will not remain constant and
the curvature will be miscalculated. This will lead to large errors in the continuity and momentum equation,
as well as surface tension, and consequently in the pressure and velocity fields. [17, 19]. Hence, after the
advection of φ, it is essential, for accuracy and stability, to use a reinitialization algorithm and preserve the
signed distance function property (see Eq. (1)).

3. Level set reinitialization

3.1. Existing methods and their drawbacks

Level set reinitialization has been the subject of numerous researches and a variety ofvarious strategies
have been proposed. Among them, the fast marching method [2] or fast sweeping methods [3] consist on
an iterative process for extrapolating the distance function starting from the cells closest to the interface.
They have the main advantage of being relatively fast to compute but suffer from a lack of precision that is
essential for two-phase flow applications.

Another approach has been introduced by Sussman et al. [4], where a front propagates in the normal
direction from the interface by solving the PDE over a fictitious time τ :

∂ψ

∂τ
+ sgn(ψ0)(‖∇ψ‖ − 1) = 0 (9)

with the initial condition:

ψ0 ≡ ψ(τ = 0) = φ.

After integration of ψ over the pseudo time τ , the result is transferred back to φ. The complete reinitialization
of the level set function is the stationary solution of Eq. (9) which derives from the Hamilton-Jacobi equation.
Indeed, the solution is obtained when τ →∞. Eq. (9) will be referred to as H-J equation from here on.

Even if solving the H-J equation is expensive comparativelycompared to the fast marching or fast sweeping
method, it gives accurate solutions thanks to the use of high order schemes. The principal drawback of this
method is the important number of parameters that will impact the solution. Hence, it requires adapted
methods and is subjected to a CFL condition on the pseudo time step dτ . Also, the number of iterations over
which the H-J equation needs to be solved is up to a convergence criterion that is, or should be, based on
the deviation of the level set field to the eikonal equation. This criterion is not trivial to evaluate explicitly,
locally or globally in the whole domain, leaving an important uncertainty when setting up a simulation.
Luddens et al. [20] proposed a criterion for easing the automation of the choice of H-J frequency and the
number of iterations, based on the L1 norm of ‖∇φ‖ − 1. However, as pointed out by Solomenko et al. [21],
the choice of the proposed threshold is yet not trivial and, moreover, this error measure is subject to the
presence of kinks where, by nature, ‖∇φ‖ 6= 1, as further explained in Sec. 5.4.1.

Finally, and most importantly is the reinitialization frequency parameter, i.e. how frequently the level
set is reinitialized with the H-J equation. Ideally, one would wantexpect to apply it after every advection
equation. However, in practice, as pointed by the authors in [6, 7], this method introduces displacements of
the interface position because of numerical errors, leading to mass loss/gain. It also affects the geometrical
properties of the interface which, as we will see in Sec. 6.8, may impact significantly on topological changes.
Even if methods exist to reduce the displacement of the surface [5–7], it is usual to reinitialize the level set
field after solving the advection equation a few times, to reduce the numerical errors introduced during the
reinitialization procedure. Hence, a question arises on the impact of the deviation of φ from a signed distance
function between two reinitializations.
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To summarize, finding the right parameters is still bleary and depends largely on the underlying application.
In a recent work, Solomenko et al. [21] did a comparative study on some of these parameters and showed
how it may impactaffect the level set when coupled with the Navier-Stokes equations in presence of surface
tension.

3.2. Objectives of the proposed approach

We believe that a geometry-based approach leads to a more natural construction of a level set function
solution of the eikonal equation. The main ambition of this article is to introduce a robust and accurate high
order reinitialization method with a straightforward numerical parameterization and free of the cumbersome
frequency parameter. Thus, it is applicable at every time step after solving the advection equation without
affecting negatively the dynamic of the underlying two-phase flow.

4. Leading idea of the method

The precursor works of [9, 10, 22] introduced an alternative and original strategy based on a geometrical
approach, consisting in performing a gradient descent algorithm to find the closest point to the interface,
used in a reinitialization procedure.

4.1. Our main contributions

Contrary to [9] and [10], wherein the authors enhanced the Fast Marching and HJ reinitialization with
closest points near the interface, i.e. restricting themselves to the cut-cells, we extend the closest point
computation to the whole region of interest where the level set has to be accurately computed. While [22]
have shown high order results on static cases, we propose a method that is robust and accurate with moving
interfaces and two-phase flow with topology changes, thanks to the use of a newly developed kink detection
algorithm and adequate treatment. Furthermore, the method is safely applied after every advection of the
interface. In the next sections, the proposed method will be referred to as the Reinitialization using the
Closest Point algorithm (RCP).

4.2. The closest point

In the general case of an arbitrary surface representation, finding the closest point to the interface requires
an optimization algorithm which seeks to minimize an objective function. Herein, for any point x of the
domain, finding a closest point of x to the surface Γ consists in finding a point y on Γ which minimizes the
value ‖−→xy‖:

∀x ∈ Ω,y = CP(x), ‖−→xy‖ = min
y∈Γ

(‖x− y‖)

It is important to note that all points x which have more than one closest point define the medial axis of
a surface. This particular topic is subjected to a detailed discussion in section Eq. (12).

The gradient descent. Within the level set framework, in practice, the closest point algorithm is implemented
to satisfy a twofold condition:

φ(y) = 0 and −→xy.ty = 0,

where ty is a vector part of the tangent plane of Γ at y. The first equation guarantees that y is on Γ and
the second ensures that the local tangent plane of the interface is orthogonal to the vector −→xy. Given a
sufficiently well-defined level set field, if both conditions are satisfied, y is defined as a closest point of x to
the interface.

A simple strategy consists in a variant of the Newton method that searchesseeks to minimize the absolute
value of φ by descending along the normal direction and then looking for the orthogonality in the tangent
plane. At each step of the algorithm, interpolations are needed in order to compute the value of φ and the
normal. Implementation details are given in [9, 17].
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4.3. Reinitialization with closest points
Let ψdist(x) be the Eulerian distance between x and its closest point:

∀x ∈ Ω : ψdist(x) = ‖
−−−−−→
xCP(x)‖

and the sign function sgn as:

sgn(x) =

 −1 if x ∈ Ω−
0 if x ∈ Γ

+1 if x ∈ Ω+

which is equivalentlyequivalent to the sign of the level set function. Multiplying ψdist by the sign function
leads to:

ψ(x) = sgn(x) · ψdist(x) =


−‖
−−−−−→
xCP(x)‖ if x ∈ Ω−

0 if x ∈ Γ
+‖
−−−−−→
xCP(x)‖ if x ∈ Ω+.

(10)

which is the definition of the signed distance function given in Sec. 2.1. Conversely, this solution ensures that:

∀x ∈ Ω : ‖∇(sgn(x) · ψdist(x))‖ = 1

and proves that it is possible to successfully convert any function into a signed distance function capturing
the same surface, as long as one knows how to compute the closest point.

4.4. Towards numerical discretization

In practice, φ will remain close to a signed distance function after the advection step, especially if the
reinitialization procedure is achieved systematically since maximal distortion will be limited by the CFL
restriction. Consequently, if the scalar field φ is sufficiently smooth and regular, particularly near the surface,
then the gradient descent algorithm can be safely exploitedemployed. This approach leads to an efficient
strategy that gives a solution of the closest point at the precision of the objective function derivative eval-
uation. In practice, this evaluation will be done thanks to high order interpolations as detailed farther further.

Problems arise wherewhen, from a numerical point of view, φ is under-resolved (as the narrow tail of the
interface illustrated in Fig. 1) or close to a non-smooth region (for example, during a topological change).
Such particular configurations eventually arise with the dynamic motion of the surface and represent a
challenging problem as they can perturb the gradient descent. Indeed, when the first derivative of φ is
non-differentiable, numerical interpolations will lead to large errors and hence the key ingredient of the
method, the closest point, is miscalculated. It is essential for the robustness of the method, as illustrated in
Fig. 1, to treat adequately such regions, named kinks, as will be detailed in the next sections.

5. Proposed method and implementation

For the sake of clarity, until the end of the article, it will be assumed that the level set field is discretized
on a uniform Cartesian mesh. Yet, as we will see below, the method is principally based on interpolations
and derivatives calculation of φ. Thus, it can be naturally extended on an arbitrary mesh. Furthermore, all
algorithms are presented as if they were processed on a single processor, nevertheless they can be adapted
for a parallel application. In the result section 6, all test cases were executed with more than one processor.
We will not detail further these two particular implementation details in this article.
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Figure 1: Illustration of the RCP algorithm result on the single vortex 2D case, without kinks treatment (left) and with kinks
treatment (right). The reference solution is drawn with black dashed lines. The absence of treatment of kinks leads to heavy
distortion of the interface and exhibits anti-diffusive behaviour. The interface is given at maximal deformation for a grid
resolution of 1282 cells.

5.1. Locality of the algorithm

As the surface is unambiguously defined by the level set thanks to a finite number of cells surrounding it,
the locality of the proposed algorithm is crucial to its efficient application. Conversely, the overall accuracy
of the method will not be increased by considering cells far from the interface and can then be ignored,
representingresulting in a significant gain in computational efficiency.

Similarly, to the concept of level set band, we will thus define an ensemble of sets of cells, at an increasing
distance of the surface, that will be used to locate different processes executed in the algorithm. For the
interface to be accurately captured, one key criterion is the necessity to preserve a certain number of cells
around the interface, i.e. within the employed interpolation/derivatives stencils. The higher the desired
accuracy, the larger the stencil. We define Scl to be the interpolation stencil surrounding a cell cl. For
example, in 2D, a fourth order interpolation requires 4× 4 cells. In that case, Scl encompasses a zone of 2
cells to the left/bottom of cl and 2 cells to the right/top of it.

We distinguish 4 nested sets of cells, as illustrated in Fig. 2:

– ΩΓ: all cells crossed by the surface Γ;

– ΩStencil: the union of all stencils Scl associated with all cells cl of ΩΓ;

– ΩCP : all cells where the closest point is computed;

– ΩBand: the largest band of cells where the level set function is required.

Where ΩCP and ΩBand are constructed iteratively by growing the band starting from the cells containing
the surface, i.e. ΩΓ, towards the desired distance, in a similar manner as described in [16].
Hence, ΩΓ ⊂ ΩStencil ⊂ ΩCP ⊂ ΩBand ⊂ Ω.

We then define two particular sets of cells that will be thoroughly detailed further:
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– ΩKink: all cells containing a kink (see Sec. 5.4.1);

– ΩPseudoLS : the region of cells where kinks need to be replaced by a tailor-made smooth function (see
Sec. 5.5.1).

The concept of kink, which is a key point of the proposed method, will be thoroughly defined and discussed
in the dedicated section 5.4.

Figure 2: Illustration of the four nested sets of cells. The underlying interface is drawn as a blue line, ΩΓ as blue colored cells,
ΩStencil in red, ΩCP in green and ΩBand in orange.

5.2. Proposed algorithm

The RCP procedure is applied after the advection of φ (see Eq. (8)) and preceded by the construction of the
sets described above. Algorithm 1 outlines the prime steps of the proposed method. First, a pre-processing is
necessary in order to detect all cells (i.e. build ΩKink and ΩPseudoLS) that will require a particular treatment.
Then, regularization through a pseudo level set is applied (step 2) for all ill-defined cells that are sufficiently
far from the surface (cells part of ΩPseudoLS). Thereafter, the closest points is are computed (step 3a) for all
cells in ΩCP , except for particular cells at the interface for which the associated interpolation stencil contains
at least one kink i.e. (ΩKink ∩ Scl) 6= Ø. The reinitialized level set is then computed (step 3b) thanks to
Eq. (11). Finally, a low-order HJ reinitialization procedure is applied (step 4) to all remaining cells. We
present in the nextfollowing sections these successive steps in more details, particularly the treatment of kink
cells. Moreover, the reader can find in appendix Appendix B a detailed pseudo code of the RCP algorithm
to ease the implementation.

5.3. Research of the closest points

One of the key points of the method is the accuracy of the gradient descent to find the closest points.
Therefore, we follow the algorithms proposed in [16, 17] where a fourth-order convergence accuracy is achieved
thanks to fourth-order interpolation schemes and an orthogonality criterion. For a better understanding and
reproductibility, we recall in algorithm 2 the base gradient descent method of [16] that we have complemented
with the orthogonality criterion of [17] for increasing the accuracy, particularly when curvature is large or
when the level set is more distorted. The latter algorithm is not being detailed herein for clarity reasons.
For our use, the threshold ζ is set to 10−6 × h and the descent is done for maximum 50 iterations. In most
cases, when coupled to the complementary orthogonal criterion, around 10 steps are required to converge
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Algorithm 1 Outline of the RCP algorithm
1. Detection of kinks: build ΩKink (see algorithm 3);
2. ∀cell ∈ ΩPseudoLS (see Sec. 5.5.1);

(a) Compute a pseudo distance function;
(b) Apply a low-order HJ reinitialization;

3. ∀cell ∈ ΩCP \ {cl ∈ ΩΓ | (ΩKink ∩ Scl) 6= Ø}:
(a) Compute the closest point with gradient descent (see Sec. 5.3);
(b) Update the level set value with Eq. (11) (see Sec. 5.3 and Sec. 5.5.2);

4. ∀cell ∈ Ω \ ΩCP : apply a low-order HJ reinitialization (see Sec. 5.6).

satisfactorily. These parameters lead to a good balance between accuracy and efficiency. Also, in practice,
the solution increment is cropped so as not to exceed the cell size.

As presented by [22], it is worth noting that sixth-order accuracy can be obtained for the gradient descent.
Nevertheless, we found that a fourth-order accuracy is enough in all our test cases section 6. Consequently,
using higher-order numerical schemes was not considered for efficiency reasons. Also, it is worth to note that
other closest point approximations or algorithms such as proposed in [9] could be used in RCP, as long as
they are sufficiently precise to maintain an accurate level set field.

Algorithm 2 Base closest point algorithm in pseudo code.
CP0 ← Coordinates(ci,j,k) ; n← 0
while | Intp(φ,CPn) | > ζ and n < nitmax do

grad← Intp(∇φ,CPn) )
dist← Intp(φ,CPn)/ |grad|
normal← grad / |grad|
CPn+1 ← CPn − dist× normal
n← n+ 1

end
return CPn

It should be noted that performing the algorithm for every cells in the domain would be time-consuming
and not relevant. Indeed, as explained in the previous section, all the physical quantities which are directly
linked to the level set such as the curvature or the volume fraction are only needed close to the surface.
Moreover, the precise position of the surface is captured by the cells surrounding it: for instance, a nth order
precision is expected with a stencil of nd cells, with d the dimension. However, cells far from the surface
should not interfere with it as long as they are treated adequately. Consequently, for computational efficiency
the closest points are only computed where accuracy on the level set is crucial, and thus in a narrow band
around the interface which is noted by ΩCP . This band is constructed iteratively by growing the band
starting from the cells containing the surface towards the desired distance, as described by [16]. We fix the
width of the band to be 10h, i.e. 5 cells on each side of the surface, permitting to use accurately a fifth order
advection scheme.

Associated signed distance function. Once the closest point has been computed, equation 10 can be evaluated
from a discrete point of view through the equation:

ψ(x) = sgn(φ(x))‖
−−−−−→
xCP(x)‖. (11)

The associated resulting reinitialized level set is thus set accordingly.
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5.4. Level set kinks

5.4.1. Definition
The reliability of the method is inherently linked to the accuracy of the closest point computation. It

may suffer from cells where φ is ill-defined or its derivatives undefined, namely at kinks, which can mislead
the gradient descent towards surfaces which could not be the closest one. We distinguish two types of kinks:

– inherent kinks: points that are part of the medial axis, as part of the level set representation;

– numerical kinks: points that are not part of the medial axis and that appear because of numerical
errors, after topological changes or near under-resolved regions.

Inherent kinks. The inherent kinks, as illustrated in Fig. 3, are points which are equidistant to at least two
surfaces, i.e. when they have two or more closest points. They define the medial axis of the interface and, as
also noted by [10, 11, 23], on those kinks the derivatives of φ are not defined. Hence, those kinks intrinsically
arise from the definition of the level set as a signed distance function and cannot be suppressed, even when
refining the mesh. From a discrete point of view, significant errors will be made if a kink lies inside the
stencil used to approximate derivatives or perform an interpolation. Consequently, the closest point accuracy
will be impacted, as also noted by [10, 22].

Figure 3: Illustration of the inherent kinks. On the top, a 2D visualization of two drops. The middle plot represents the level
set function over a 1D cut, the associated kinks are highlighted by the red arrows. The bottom part is the associated discrete
1D mesh, the kink cells are filled in red.

Numerical kinks. The second type of kinks, referred to as numerical kinks, can lead the descent algorithm
towards an undesired local minimum. We distinguish three different origins.

– First, such kinks arise when transporting under-resolved structures. For example, as illustrated in
Fig. 4, when a small structure such as a bubble vanishes due to numerical diffusion when solving the
advection, the underlying medial axis (in that case, reduced to a point), depicted as an extremum in
the level set field, is still present. However, the surface has indeed disappeared as φ is not crossing the
zero value anymore. In such a case, a local minimum emerges in the level set field that can perturb the
interpolations.
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– Secondly, numerical kinks also appear after topological changes, e.g. when two bubbles merge. In a
similar way as the first category, the medial axis which resides at mid-distance to the bubbles before
merging will also be transformed into a local minimum after the topology change.

– The last category comes from the stretching and compression due to the underlying velocity field which
makes φ depart severely from a distance function, inducing local steep and flat variations of level sets
that will mislead numerical schemes.

Consequently, near kinks of the first or second type, the local derivatives and interpolations will be
miscalculated. More dreadfullyseverely, local minima can act as well potentials, where the gradient descent
algorithm will plunge and stop without reaching the surface. In consequenceAs a result, to fulfill accuracy
and robustness, it is crucial to detect carefully those points.

φy(x)

φy(x)

x

0

φy(x)

φy(x)

x

0

φy(x)

φy(x)

x

0

Figure 4: Creation of a numerical kink when a small structure, such as a bubble, vanishes due to numerical diffusion when
solving the advection equation Eq. (8). On the top a 2D visualization of the drop at different times and on the bottom a 1D cut
of the associated level set.
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5.4.2. Numerical detection of kinks
From a discrete point of view, we do not require the kink detection process to be fully accurate, but to be

reliable while not being too costly. Hence, a low order method can suffice to detect non-smooth level set
regions. For detecting cells containing or close to a kink, we propose a new criterion that relates the local
ambiguity in the closest points around a point x: x is said to be close to a kink if, for two different points
xξ1 and xξ2 at a very small distance offrom x in directions

−→
ξ1 and

−→
ξ2 , the Euclidean distance between their

respective closest point is above a certain threshold ε. A geometric representation of the concept is given in
Fig. 5. In a compact form:

x is a kink if ∃(xξ1 ,xξ2), ‖CP (xξ1)− CP (xξ2)‖ > ε. (12)

The choice of the threshold ε relates to the sensitivity of the detector and is discussed in details further in this
section. We can already note that it is of the order of the cell size, i.e. of the maximum radius of curvature
of the surface at the discrete level distance to the interface. Thus, it should manage to differentiate between
a kink and a small interface structure, i.e., from a discrete point of view, a sphere of radius of the order of
mesh cells.

First order closest point approximation. Since there is no analytical method for computing the closest points
and we cannot enumerate all points xξ surrounding x, the criterion has to be approximated. For the first
matter, we propose to use a first order local approximation of the closest point:

CP (x) ' x− d (x) n (x) (13)

where n = ∇φ
|∇φ| is the normal and d the signed Euclidean distance to the surface. Still, within first-order

approximation, one could use the approximation d ' φ
|∇φ| , and thus Eq. (13) couldcan be rewritten as:

CP (x) ' x− φ (x)
|∇φ (x)|

∇φ (x)
|∇φ (x)| . (14)

which can be related to the first step of the general closest point algorithm based on the gradient descent
described in Sec. 5.3, for which we will use, here, a first order gradient approximation. Once appropriately
discretized, this equation will be used to compare closest points in the surrounding of a point x and determine
if it is close to a kink.

For efficiency reasons, we restrict the number of surrounding points xξ to an acceptable number. Further-
more, instead of using interpolation to evaluate the xξ in several directions, we simply approximate Eq. (14)
at a mesh cell center with off centered derivatives using the neighbouring cells. This is justified since, at
a kink, different off centered schemes (e.g. east or west biased for the x direction) used to approximate
the gradient ∇φnormal will vary significantly depending ofon the direction used to compute it, as if we
had set a different starting point to the gradient descent. This fact will lead the surrounding closest point
approximations to spread into disperse positions, attaining the desired property. Conversely, in smooth
regions, all biased gradient approximations will be numerically close and so will be their associated closest
points.

Biased approximation of the closest point. Classical off centered schemes can thus be used to approximate
the gradientnormal. For the sake of simplicity, we have only showedshown here the example for the south
west direction. The reader can easily build the remaining schemes based on the following formulation; the
detailed derivation has been reported in appendix Appendix A.

In 2D, if we consider a point xξSW = x + dl (−1,−1)T , with dl� h a very small fictitious length, at the
south-west of xi,j , the center of the cell Ωi,j : on a uniform grid, the gradient operator can be approximated
with a first order upwind-biased scheme in both x and y directions by:

∇φ(xξSW ) '
(
φi,j − φi−1,j

δx
,
φi,j − φi,j−1

δy

)
(15)
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Hence, the closest point biased in the south-west direction can be approximated by the formula:

CP (xξSW ) ' xi,j −
φi,j
|∇φi,j |

∇φ(xξSW )
|∇φ(xξSW )| . (16)

Similar schemes are designed for the three other neighbours (south-east, north-west and north-east). These
schemes are local and fast to compute and the 3D case is straightforward to obtain as presented in the
algorithm description.

Γ Γ

medial axis

xξNW xξNE

xξSW xξSE

xi−1,j xi+1,j

xi,j−1

xi,j+1

Ω− Ω−

Ω+

Figure 5: Illustration of the kink detection algorithm on a 2D mesh in the vicinity of a medial axis. Three of the four closest
point approximations (SW, NW and SE) surrounding xi,j point towards a narrow region on the left most surface whilst the last
one (NE) is located on the right most surface. The distance between those CP being sufficiently large, the cell is detected as a
kink.

The relative Euclidean distance between closest points. The Euclidean distance is used in Eq. (12) to determine
if two closest point approximations are far enough (i.e. > ε) from each other to consider the relative cell to
contain a kink. Algebraically, this formula can be simplified by the definition of the closest point biased
approximations (as in Eq. (16)) for two different directions ξ1 and ξ2:

CP (xξ1)− CP (xξ2) ' φi,j
|∇φ(xi,j)|

(
∇φ(xξ1)
|∇φ(xξ1)| −

∇φ(xξ2)
|∇φ(xξ2)|

)
= d(xi,j) (nξ1 − nξ2) .

Thus, the kink criterion can be equivalently written in a normalized form as:

‖CP (xξ1)− CP (xξ2)‖ > ε⇐⇒ ‖nξ1 − nξ2‖ >
ε

d
(17)

where d ≡ |d(xi,j)| for clarity and the choice for ε is still to be determined, as detailed below. As a result,
the numerical evaluation of the criterion reduces to computing the biased closest points’ normal.
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Kink detection algorithm. Based on these biased schemes, we can now compute the associated closest point
approximations’ normal in the four directions: nξSW , nξSE , nξNW , and nξNE , as illustrated on fig. 5. Finally,
we evaluate the maximum normalized Euclidean distance as in Eq. (17) to detect if a pair is sufficiently
distant to consider the region to be near a kink. We have summarized the method in algorithm 3, extended in
the general 3D case. It is worth to note noting that this algorithm can be optimized by stopping it whenever
the maximum Euclidean distance criterion has been exceededmet once and thus avoiding the computation
of unnecessary closest pointsunnecessary computations. Illustrations of the resulting detected kink cells are
shown in Fig. 6 for the single vortex 2D test case (see Sec. 6.5) and in Fig. 7 for the Zalesak disk test case
(see Sec. 6.4).

Algorithm 3 Kink detection algorithm in 3D. In practice, the threshold is chosen as ε = 1/2.
Compute all nαx,αy,αz using algorithm 4 . the 8 biased normal approximations
MNED← 0 . the maximum normalized Euclidean distance

for −→d1 ∈ {−1,+1}3 do
. directions towards cell’s vertices:

−→d1 = {(−1,−1,−1), (−1,−1,+1), . . .}
for −→d2 ∈ {−1,+1}3 do

if −→d1 6=
−→d2 then

MNED← max
(

MNED,
∥∥∥n−→d1

− n−→d2

∥∥∥) .
−→d1 = (−1,−1,−1)⇔ n−→d1

= n−1,−1,−1

end
end

end
if MNED > ε then

return true
else

return false
end

Algorithm 4 Biased closest point normal approximations at a cell Ωi,j,k in 3D, using variations of Eq. (15),
as fully detailed in appendix Appendix A
for αx ∈ {−1,+1} do

for αy ∈ {−1,+1} do
for αz ∈ {−1,+1} do

grad←
(
αx

φi+αx,j,k−φi,j,k
δx , αy

φi,j+αy,k−φi,j,k
δy , αz

φi,j,k+αz−φi,j,k
δz

)
nαx,αy,αz ← grad/|grad|

end
end

end

Detector threshold. The threshold ε used in Eq. (12) and algorithm 3 is a key point in the kink detection
process. Ideally, it has to be infinitelyinfinitesimally small. However, due to numerical approximations,
even in a smooth region, the distance between closest points computed with biased approximations of
Eq. (14) can be of the order of h, where h is the cell width. This is particularly true for points far from
the interface where d ' |φ| / |∇φ|, the approximated distance to the surface, is large, or for points near
a surface of high curvature where the normal vector varies fast. Starting from the assumption that the
smallest smooth structure captured by the mesh is a sphere of radius h/2, using criterion of Eq. (17), this
translates to the fact that the normalized distance to the interface should exceed half a unit cell. In other
terms: h ‖nξ1 − nξ2‖ > h/2⇐⇒ ε/d = 1/2, from which we deduce ε = d/2. In consequenceAs a result, the

p. 15



Figure 6: Illustrations of the kink detection algorithm 3 on the 2D single vortex test case (see Sec. 6.5) at different instants, for
a grid resolution of 2562 cells. The surface is drawn in gray and the detected kink cells are marked in red. Over time, the kink
detector successfully captures all inherent kinks that appear as the tail is stretched and locates the medial axis.

Figure 7: Illustration of the kink detection algorithm 3 on the Zalesak test case (see Sec. 6.4), for a grid resolution of 502 (left),
1002 (center) and 2002 (right) cells, after approximately 5/8 of rotation. The surface is drawn in gray, the detected kink cells
are marked in red and ΩCP in blue. As the cell size diminishes, the kink detector successfully captures all cells part of the
medial axis and hence containing an inherent kink. For clarity, figures are not at the same scale in order to better observe the
detected kinks. For the finest mesh (1002), some kinks are not part of ΩCP and, consequently, they are not reinitialized with
the RCP method and hence do not disturb the gradient descent.

normalized criterion of Eq. (17) finally reduces to:

‖nξ1 − nξ2‖ >
1
2 (18)

We have found this value to detect kinks with good reliability while not introducing too many false
positives. Indeed, we restrict the closest point algorithm to points sufficiently close to the interface. Moreover,
in regions of high curvature, i.e. κ ∼ O

(
h−1), more kinks will indeed be detected. This is not a problem

as those sensitive regions are usually under resolved and the use of high order interpolation with a large
stencil would anyway suffer from including kink cells. A sensitivity study on the threshold ε is presented in
Sec. 6.4.2.

Discussion on another approach: the quality function Q(x). To detect kinks, another approach was introduced
by Macklin and Lowengrub in [23] wherein the authors defined a normal quality function Q(∇φ(x)) as:
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Q(∇φ(x)) = |1− |∇φ||, (19)

which measures the deviation of φ to a distance function. If Q(∇φ(x)) > η for a relatively small positive
value of η, then the point x is considered to be near a kink. In their work, Macklin and Lowengrub fixed η at
0.1 and found this value reliable enough to detect kinks with few false positives. In the same way, Ervik et al.
[11] used η = 0.005.

However, we found that this criterion could include more false positives than the one we proposed, based
on a geometrical approach. Indeed, the quality function highlights areas where φ deviates from a distance
function, which means that if the gradient of φ is solely stretched or compressed in those areas, i.e. ∇φ = α
with α ∈ R, then the it will indicate the presence of a kink (depending on the relative values of η and α),
while there might be none. Actually, these areas may neither be inherent nor numerical kink.

On the other hand, our geometrical approach is quite different since a kink is detected when the variation
of the closest point is more than a given threshold ε. This means the sensitivity of our detector, i.e. the choice
of ε value, will straightlydirectly depend on the maximum acceptable threshold to detect under-resolved
structures. Herein, we have set ε = h/2: thus, we consider that a structure which haswith a radius of
curvature less than h/2 (in 2D) cannot be well detected with our closest point method and thus represents
an under-resolved structure that would lead to unwanted numerical errors, as will be discussed in Sec. 5.5.2.

5.5. Kinks treatment

5.5.1. Cells far from the interface
Kinks can deteriorate the level set regularity and lead gradient descent towards local minima. Hence,

they need to be smoothed adequately before applying the closest point algorithm. However, as the accurate
position of the interface are captured by the cells ofin ΩStencil, this treatment is only applied forto ill-defined
cells sufficiently far from Γ, i.e. for the subset ΩPseudoLS defined as:

ΩPseudoLS = (ΩBand ∩ ΩKink+) \ ΩStencil (20)

where ΩKink+ is the set of cells of ΩKink augmented by their neighbours. We made this choice to increase
numerical stability in the vicinity of kinks. The smoothing procedure consists in two consecutive steps applied
on those cells: first the creation of a pseudo level set, followed by a fast low-order smoothing procedure.

The pseudo level set. The first step aims to give a sufficientlyan acceptable initial guess for the corrected
level set function that will be further smoothed. We defined the pseudo level set ψPseudoLS as a rough first
order approximation of a signed distance function, pointing towards the interface. This oneIt is created by
iteratively growing a band starting from the interface. A cell part of the nth layer of that band is located at
an approximate distance nh to the interface, where h is the uniform cell size. Thus, to all cells cl part of
ΩPseudoLS , we set:

ψcl = nh× sgn(φcl) (21)

Fast low-order smoothing. The second step consists in smoothing the pseudo level set with a fast reinitialization
algorithm that will guarantyguarantee a smooth solution regarding the concerned cells neighbours the
neighbouring cells concerned. Though several strategies may be considered, we have found that the use of
a low-order solving of the HJ equation 9 suffices to obtain satisfactory results. As standing relatively far
from the interface permits to loosen the accuracy criterion, we have used a first order upwind scheme for the
gradient evaluation and integrate the equation over 20 iterations. This procedure leads to a very efficient
strategy to clear kink perturbations while obtaining a regularized function that points smoothly towards the
interface, as required by the descent algorithm.
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5.5.2. Particular case near the interface
We chose not to alter cells that are close to the interface and which are in the vicinity of kinks, as prescribed

in the third step of algorithm 3, and formally defined as the subset ΩCP \ {cl ∈ ΩΓ | (ΩKink ∩ Scl) 6= Ø}.
This is motivated by the fact that the presence of such local extrema has a great influence on the interface
capture, as they lie within the interpolation stencil. Hence, any alteration made to those cells will definitely
modify the surface position with no guarantyguarantee to givein giving a more accurate approximation. This
concurs with the remarks of Trujillo [18] stating that reinitializing under-resolved areas will degrade more
the level set function than diminishing the degree of error. Moreover, these cells may continue to represent
sub-mesh interfaces that would be lost without a precise and specific treatment, a work that is beyond the
scope of this article. Consequently, all cells part of ΩCP \ {cl ∈ ΩΓ | (ΩKink ∩ Scl) 6= Ø} are not modified by
the algorithm.

Nevertheless, we believe that developing and adapted closest point computation method near level
set kinks would surely benefit to the proposed algorithm. This would permit applying the closest point
reinitialization (step 3a of algorithm 1) to all cells in ΩCP . Some authors tried to resolve the issue of
calculating accurately the interpolations/derivatives near a kink [11, 23]. Yet, the integration of such methods
within the RCP algorithm could be the object of future works.

5.6. Smoothing outside the closest point band

Also, for the sake of numerical stability, we have applied the same fast low order smoothing procedure
as a post-processing of the algorithm (see step 3 of algorithm 1) in cells part of Ω \ ΩCP . ConcretelyIn
practice, a low-order HJ equation is solved over 5 iterations, which we have found to be sufficient to maintain
a smooth field far from the interface.

6. Results

In this section, we detail the numerical framework used and propose a series of test cases which demonstrate
the accuracy and robustness of the method. For the latter, we will first test the capability of the method on
state-of-the-art benchmarks using analytical velocity fields, from the simple test of a sphere deformation
to more complex ones involving thin layers or sharp corners. Then the coupling with the Navier-Stokes
equations will be considered to assess the capability of the method to accurately and robustly capture the
behavior of inviscid two-phase flows.

In order to gauge the results of the new method, all test cases will be compared to two other approaches
to reinitialize the level set. The first is the H-J equation Eq. (9) solved after each advection step (noted
HJ-1), as it is done for RCP and, for the second, the same H-J equation is solved every 10 advection steps
(noted HJ-10).

As the overall strategy of RCP an H-J are quite different, the comparisons are only made as a guideline to
position the method amongst the family of numerical methods for level set reinitialization. Numerical details
of the implementation of the reinitialization with the H-J equation will be given in the following section.

6.1. Numerical methods

6.1.1. Flow solver
The method was implemented and tested using the massively parallel incompressible open-source CFD

code Notus [24], for which the following test cases are available or easily reproducible. The Navier-Stokes
equations are solved on a staggered grid within a finite volume framework and a time splitting correction
method for the velocity-pressure coupling [25]. A first order semi-implicit backward difference (SBDF-1)
scheme is used for the momentum equation. The inertial term is computed with a second order Runge-Kutta
integration and the associated spatial disctretizationdiscretization scheme will be specified for each particular
test case. Phase’s density and viscosity are expressed as a function of the level set and the Heaviside Hε

from Eqs. (4) to (6), where the regularization parameters is set to ε = 2h.
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For the sake of understanding and maximum reproductibilityreproducibility, we detail below the principle
steps of the algorithm for solving the Navier-Stokes equations. We refer the reader to [26] for more details
about the associated numerical methods.

1. Solve the level set advection and reinitialization: φn → φn+1;
2. Compute volume fraction cn+1 thanks to Eq. (5);
3. Compute density ρn+1 and viscosity µn+1 thanks to Eq. (4);
4. Solve for the predicted velocity u∗ of the momentum equation 2:

ρn+1 u∗ − un

δt
+ ρn+1

∫ tn+1

tn
∇ · (u⊗ u)dt−∇ · (µn+1(∇u∗ +∇Tu∗)) = f

where f = ρn+1g + σκn+1∇cn+1 accounts for body forces such as buoyancy and surface tension (as in
Eq. (7)). The integral of the advective term is approximated with a classical explicit Runge-Kutta
scheme coupled to upwind WENO for spatial approximation.

5. Solve for pressure pn+1: ∇ · ( δt
ρn+1∇pn+1) = ∇ · u∗

6. Apply the velocity correction to obtain un+1 = u∗ − δt
ρn+1∇pn+1.

6.1.2. Level set
In order to solve precisely the advection equation 8 for the level set, second order Runge-Kutta NSSP 3,2

integration coupled with a fifth order finite difference WENO scheme [27, 28], are used. When considered,
the H-J equation is implemented based on the algorithm of [4], where the numerical parameters are fixed
based on the comparative study of [21] and adapted for this work to obtain an accurate reinitialization of the
level set. Hence, a second order Runge-Kutta integration coupled with a fifth order WENO scheme are also
used. The pseudo time step is fixed at δτ = 0.3δx and the maximum number of iterations for the temporal
integration is set to 16.

The overall algorithm can be summarized as follows:

1. Solve the advection equation 8 with RK-NSSP 3, 2:

k∗,1 = (un · ∇)φn; φ∗,1 = φn − δt

3 k
∗,1;

k∗,2 = (un+1/3 · ∇)φ∗,1; φ∗,2 = φn − δtk∗,2;
k∗,3 = (un+1 · ∇)φ∗,2;

φn+1 = φn − δt

2 (k∗,1 + k∗,3)

where un+1/3 and un+1 are velocity approximations obtained by extrapolation of un−1 and un, and
the gradient of φ by upwind WENO 5, 3 scheme.

2. Reinitialize the level set with RCP or H-J.

It should be stressed that other high order methods exist to reinitialize the level set when considering the
H-J equation, as well as other strategies to set the numerical parameters. Nevertheless, as stated previously,
the comparisons are made as a guideline to assess the accuracy of the introduced method.

6.2. Error measures

Several errors measurements are defined to assess the performance of the proposed method. Those
measures will either be computed on the whole domain Ω or only in the vicinity of the interface defined as
ΩEΓ of cardinal NEΓ . In practice, ΩEΓ encompasses all the cells inside a two cells band width centered on
the interface.
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Shape errors. For known analytical solutions, we define the shape error, in a L2 or L∞ norm, as the variation
of φ to its exact value in the set of cells in ΩEΓ by:

EL2
shape =

√√√√ 1
NEΓ

∑
xl∈ΩEΓ

|φex(xl)− φ̃(xl)|2 and EL∞
shape = max

xl∈ΩEΓ

(|φex(xl)− φ̃(xl)|)

where φex(xl) is the expected value of the signed distance field at xl and φ̃(xl) is the computed numerical
value.

Volume conservation. The volume error EV can be defined as:

EV = |V (t)− V (t = 0)|
V (t = 0)

where the total volume of a phase is computed through the associated volume fractions ci (see Eqs. (5)
and (6)) associated to the cells of volume VCVi as: V =

∑NΩ
i ciVCVi .

Criterion for the deviation to a signed distance function. In the literature, a common manner to evaluate
the property of φ to be a signed distance function is to compute the L1 norm of the quality function from
Eq. (19) as:

E|∇φ| = 1
NΓ

∑
xl∈ΩEΓ

Q(∇φ(xl)).

Yet, while if gives good knowledge about the variations of the level set field, we have found this approach to
be insufficient to study the accuracy of the reinitialization process. An accurate criterion for the variation of
φ to a signed distance function has to be the same if φ has a slope of 2 (i.e. |∇φ| = 2) or if its slope is 1/2
(i.e. |∇φ| = 1

2 ).
In the general case, for φ̃ a field which deviates from the signed distance function φ likes φ̃(x) = α(x)φ(x),

with α(x) : Ω→ R, the local error measure e∇φ(x) needs to be the same for a factor α(x) and α(x)−1, i.e. :

e∇φ(α∇φ) = e∇φ(α−1∇φ)) (22)

In consequence, we define e∇φ as:

e∇φ(∇φ̃) = | ln(|∇φ̃|)|

which satisfies Eq. (22). Following this definition, we propose the L2 norm of the global variation of φ̃ to the
signed distance function:

EL2
∇φ =

√√√√ 1
NΓ

NΓ∑
i

e∇φ(∇φ̃)2.

The L∞ norm of the error, noted EL∞
∇φ , is constructed similarly.

6.3. Disks rotation

First, a new benchmark is introduced to obtain a qualitative overview of the capacity of each method
to carry and conserve small to large structures from a mesh point of view i.e. depending on the number
of cells which represent this one. We consider multiple circles of different radius which are transported by
rigid body rotation. As demonstrated by [18], with this particular flow, the gradient of the level set should
remain unaltered and numerical errors are solely induced from the resolution of the advection equation and
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the reinitialization procedure. Thus, the interface should remain unchanged and an analytical solutions for
the expected level set field can be found.

Hence, six circles denoted as {C0, C1, C2, C3, C4, C5}, with respective diameter of {D0, D0 + h,D0 +
2h,D0 + 3h,D0 + 4h,D0 + 5h} are initialized in a [0, 1]2 domain at a distance of 0.2 of the center, each other
separated by an angle of π/6. In order to study small structures D0 = 3h i.e. the smallest and reference
diameter D0 is 3 cells large. The mesh is made of 642 cells. The velocity field is given by:

(u, v) = 2π
T

(0.5− y, x− 0.5) (23)

where a full rotation of the circles is done at a time t = T . Here T is chosen to be equal to 500. The time
step is fixed and set to ∆t = 1.25e-3. The simulation is stopped after one full rotation and hence, when t = 1.

As represented by Fig. 8, after a full rotation, all the methods fail to preserve the circles C0 and C1.
In fact, even without re-initialization, C0 disappears due to the advection but C1 still remains with some
volume loses. For C2 only RCP retains the most volume and shape while HJ-1 fails totally to do it and
HJ-10 just partially. For C3, C4 and C5, RCP and HJ-10 have similar results, contrarily ton to HJ-1 which
fails to preserve C3 and induce large errors in the shape on C4 and C5. Hence, only the RCP methods seems
to produce correct result when re-initializing the level set at each time step, compared to the HJ equations
which introduce more errors and thus need to be used less frequently. Qualitatively, this test case shows that
the RCP method exhibits better results for preserving structure with low resolution.

RCP HJ-1 HJ-10

Figure 8: Disks rotation test case: interface shapes after a full rotation for a grid resolution of 642 cells. The reference solution
is plotted in gray dashed lines.

6.3.1. Simple advection - One circle rotation
We now propose to study more quantitatively the impact of each method on a unique rotating circle

in the same setup as above. A mesh convergence is performed focusing on the capacity to conserve shape,
volume and on the capacity to reinitialize the level set to a signed distance function.

The lowest resolution is equivalent to describing the circle with a diameter of 8h, with a mesh size of 642

cells.Time step is fixed set to ∆t = 0.625 for coarsest mesh of 642 cells. For the other meshes, the time step
is reduced in order to keep a constant CFL number. For this resolution, the time step is fixed and set to
∆t = 1.25e-3 and it is reduced proportionally for each finer meshes in order to keep a constant CFL number.
The simulation is stopped after one full rotation and hence, when t = 1.

As illustrated on Fig. 9, all methods exhibit similar results for the EL∞
∇φ . However, it is clear that the

RCP method exhibits a convergence rate that is one order higher than both HJ-1 and HJ-10 for the shape
errors and the enclosed volume conservation.

6.4. Zalesak Disk Advection
6.4.1. Quantitative and qualitative study
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Figure 9: One circle rotation test case: error measures and convergence. From left to right and top to bottom: volume
conservation, L∞ norm of the error on the deviation to a signed distance function (EL∞

∇φ ), L2 and L∞ norm of shape errors
(EL2
shape

and EL∞
shape

).

This test case follows the one proposed in [29] to appraise the capacity of the reinitialization method to
preserve sharp corners on the interface. In a [0, 1]2 domain, a slotted disk is initially centered at (0.5, 0.75)
with a diameter of D = 0.3 and a slot of 0.05 of width and 0.25 of length. The velocity field is set to transport
the interface in a counterclockwise rotation around the point (0.5, 0.5) and is defined as:

(u, v) = (0.5− y, x− 0.5) (24)

As in the literature, the time step is fixed to ∆t = 2π/628 for the corresponding mesh of 1002 cells, and it is
adapted proportionally for other meshes. The simulation is stopped after one full rotation of the slotted disk
which corresponds at a time t = 2π.

In this test case, as in the previous ones, the numerical errors principally originate from the reinitialization.
For the coarsest mesh, as illustrated in Fig. 10, we observe that both RCP and HJ-10 successfully conserve

the global shape and it seems that HJ-10 manages to conserve a better representation of the slot than RCP,
which are both acceptable, regarding the mesh resolution. On the other side, the frequent reinitialization
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Figure 10: Zalesak disk test case: interface shape after one rotation (t = T ). The dashed line represents the initial interface for
the associated mesh.

of HJ-1 introduces more smoothing/errors that leads to a round shape that hardly captures the expected
solution. For the intermediate resolution, all methods succeed in preserving the global shape of the interface
even if the RCP and HJ-10 methods show better conservation of the slot depth and the corners. For the
finest resolution, all methods accurately preserve the shape.

For analyzing numerical convergence, only shape error has been reported in Fig. 11. Indeed, precautions
must be taken since the four sharp corners can lead to a simultaneous volume loss and gain that can cancel
and thus bias the interpretations. Furthermore, the deviation of φ to be a signed distance function (i.e.
E∇φ) is also biased due to the presence of the four sharp corners which introduces error on that measure
because of the inherent kinks of the level set at those points. All methods show a similar convergence rate
around second order on the L2. However, for the L∞ norm, the convergence is highly impacted because of
the discussed sharp corners.

6.4.2. Kink detection sensitivity using the RCP method
As described in Sec. 5.4.2, the threshold ε used in the kink detection algorithm (algorithm 3) is set to

ε = 1/2, from geometric considerations. Here, in order to gauge the sensitivity of this criterion on detected
kinks and on the RCP, a study is performed on the Zalesak disk test cases with a mesh resolution of 1002

cells for ε = {0.25, 0.5, 0.75}.

ε |V0−Vfinal
V0

| EL2
|∇φ| EL2

shape EL∞
shape

0.25 5.34e-4 1.29e-03 6.38e-04 1.57e-02
0.5 4.39e-4 1.15e-03 6.35e-04 1.57e-02
0.75 3.30e-4 1.11e-03 6.36e-04 1.58e-02

Table 1: Numerical results of sensitivity study of the threshold ε on the Zalesak disk: the enclosed volume error, the L2 norm of
the deviation to a signed distance function (EL2

|∇φ|), the L2 norm of the shape error (EL2
shape

) and L∞ norm of the shape error
(EL∞
shape

).

As excepted, as observable in Fig. 12, the higher the threshold ε, the lower the number of detected kinks.
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Figure 11: Zalesak disk test case: error measures and convergence. L2 (left) and L∞ (right) norm of shape error (EL2
shape

and
EL∞
shape

).

(a) At initialization (b) After a full rotation (at t = T )

Figure 12: Interface shape and kinks at initialization (left) and after a full rotation (right) for different values of the threshold ε
(see Sec. 5.4.2). The smaller the value of ε the more kinks are detected. For comprehension, only kinks part of ΩCP are shown.
Cells are colored for ε = 0.75: in blue; for ε = 0.5: in blue and red; for ε = 0.25: in blue, red and green. The interface for all
three values are indistinguishable and drawn in black.

This variation is relatively small as it can be seen in the figures, even after a full rotation of the disk. They
are all present in the vicinity of the medial axis. Due to numerical errors, inducing smoothing of the interface,
we can observe in the second picture less kinks near the initial corners. This is expected as the detector is
based on a geometric approach, related to the interface normal variation, i.e. the curvature. Furthermore, as
presented in table 1, these small variations on the detected kinks have almost no impact on the numerical
results of the RCP method.
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6.5. Single vortex 2D

Following the widely studied test case [30–32] to test the ability of the level set method to resolve and
maintain thin filaments. A [0, 1]2 domain is considered, with a circle of a diameter D = 0.3 is initialized at
the coordinates (0.5, 0.75). The velocity field (u, v) = (∂Ψ

∂y ,−
∂Ψ
∂x ) is derived from the stream function:

Ψ = 1
π

sin2(πx) sin2(πy) cos(πt
T

).

The term cos(πtT ) which appears in the velocity field definition ensures that the flow returns to its initial
state at the time T and that the maximal deformation appears at T/2. We have fixed T = 8 and the time
step to ∆t = 1.6e-3 for the coarsest grid 1282. For the other meshes, the time step is reduced in order to
keep a constant CFL number.

1282 2562 5122
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1
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10

R
C
P

(a) Interface at t = T/2.

1282 2562 5122
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J-
1
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(b) Interface t = T , the dashed line is the initial interface.

Figure 13: Single vortex 2D test case: interface shapes at t = T/2 (left) and t = T (right).

Fig. 13 illustrates the aptitudeability of the advection equation coupled with the three reinitialization
procedures to conserve thin filaments at maximal deformation (Fig. 13a) and to correctly reverse to the
initial circular shape (Fig. 13b). Globally, all methods suffer from large errors on the coarse grid, particularly
on the trailing and the heading of the deformed interface, errors that will diminish with mesh refinement. As
emphasized by Herrmann [16], the underlying reason is twofold. First, errors arise from the advection of the
level set and from the displacement of the interface introduced by the reinitialization procedure. This can
result in the annihilationdismantlement of thin filament structures. Secondly, errors are prominent because
the trailing filament thickness falls below grid resolution and thus cannot be captured by standard advection
methods.

All methods have comparable results for maximal deformation and when the interface returns to its initial
shape. Nevertheless, we can notice that for the coarsest mesh, the RCP method seems to produce better
results for capturing the trailing interface.

When looking closely at the convergence rate when t = T , as reported in Fig. 14, all treethree methods
produce comparable results. Also, for both the enclose volume and the L2 norm for the shape error, all the
tree methodsthey all exhibit 2nd order convergence rate and between 1st and 2nd order for the L∞ norm.
However, for the L∞ norm error on the deviation to be a signed distance function, the RCP method gives a
higher order converge rate of order between 4 and 5 while HJ-1 and HJ-10 are 2nd 3th order.

6.6. Single vortex 3D

A 3D adaptation of the test case was proposed by LeVeque [31] and applied by Enright et al. [32] to tests
the ability of the level set method to resolve and maintain thin filaments with deformation in both x-y and
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Figure 14: Single vortex 2D test case: error measures and convergence. From left to right and top to bottom: volume
conservation, L∞ norm of the error on the deviation to a signed distance function (EL∞

∇φ ), L2 and L∞ norm of shape error
(EL2
shape

and EL∞
shape

).

x-z planes.
The same configuration as in 2D is adapted here for a 3D test case. A [0, 1]3 domain is considered where a

sphere of radius 0.15 is initialized at the coordinates (0.35, 0.35, 0.35). The resulting velocity field is given by:

u = 2 sin2(πx) sin(πy) sin(πz) cos(πt
T

)

v = 2 sin(πx) sin2(πy) sin(πz) cos(πt
T

)

z = 2 sin(πx) sin(πy) sin2(πz) cos(πt
T

).

Where the same term cos(πtT ) ensures that the interface will go back to its initial state at t = T and that
maximal deformation is obtained at t = T/2. Here this term is fixed at T = 3.

Fig. 15 and table 2 shows that the new method is robust also in 3D and gives similar results than the
ones obtained in the 2D case. Both HJ-10 and RCP present comparable results, while HJ-1 suffers from
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Figure 15: Single vortex 3D test case: interface shape for 2563 grid, at t = T/2, using the reinitialization method: HJ-1 (red),
HJ-10 (green), RCP (blue).

volume loss leading to errors on the final shape.

|V0−Vfinal
V0

| EL2
|∇φ| EL2

shape EL∞
shape

Method 1283 2563 1283 2563 1283 2563 1283 2563

RCP 8.80e-02 1.85e-03 2.46e-06 1.75e-08 3.30e-03 1.97e-04 1.55e-01 1.70e-02
HJ-1 3.89e-01 6.22e-02 4.33e-07 2.35e-07 4.15e-03 1.17e-03 1.59e-01 9.97e-02
HJ-10 5.15e-02 1.03e-02 1.57e-06 3.95e-08 1.98e-03 1.45e-04 8.68e-02 1.54e-02

Table 2: Single vortex 3D test case: numerical results for the enclosed volume error, L2 norm of the deviation to a signed
distance function (EL2

|∇φ|), L2 (EL2
shape

) and L∞ (EL∞
shape

) norms of the shape error. Results are given for the RCP, HJ-1 and
HJ-10 methods, for 1283 and 2563 grids, at a time t = T .

6.7. 2D column at equilibrium - spurious currents

In order to validate that the proposed reinitialization method captures correctly surface tension forces
computation, which are dominant at small scales, we propose to study the parasitic currents arising from
discretization errors in the static column test case. The equilibrium of a drop or bubble, at rest in the
absence of gravity, implies the absence of momentum and thus a null velocity field. In practice, because of
numerical errors emanating from the interface position, normal and curvature computation appearing in
Eq. (7), so called parasitic currents [15, 17, 19] indeed arise. Particularly, as explained by Francois et .al [15]
using a balanced-force approach within the CSF model while imposing an exact curvature should reduce
parasitic currents up to machine precision.

A 2D column at rest is considered, with a diameter D = 2R = 0.4 at the center of [0, 1]2 square. In order
to solely focus on surface tension, both density and viscosity are constant for all the simulations and equal to
1 in each phase. The Laplace number La = σρL/µ2 is obtained by varying the surface tension coefficient
σ, the reference length is chosen as L = D. No-slip conditions are applied to all boundaries. A centered
second order implicit scheme is used for the inertial term of Eq. (2). Simulations have been conducted until
a numerical steady state has been attained, i.e. when spurious currents appear to have reached a minimum.
The maximum capillary number Ca∗max = µ|u|max/σ is compared for various Laplace numbers for various
meshes. In practice, we study the scaled capillary number Camax = Ca∗max/Uσ where the characteristic
velocity Uσ is defined as Uσ =

√
σ/(ρD). Also, time is adimenzionalized as tσ = t/Tσ, with Tσ =

√
ρD3/σ.

The numerical time step is ensuring the revised capillary time step constraint from the work of Denner et al.
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[19] regarding the stability of flows subjected to surface tension. For a static case, it leads to the following
condition:

∆tstaticσ ≤
√

(ρ1 + ρ2)h3

2πσ . (25)

6.7.1. Fixed Laplace number
The first study focuses on the spatial converge of parasitic currents for a given Laplace number (La = 120),

by considering a mesh refined from 162 to 2562 cells. The time step is kept constant for all resolutions, i.e.
∆t = 3e-6, thus always respecting the constraint given by Eq. (25) for the finest mesh.
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Figure 16: 2D column at equilibrium test case: convergence study for the enclosed volume variation (left) and Camax (right) at
La = 120 for HJ-1, HJ-10 and RCP when a steady state has been reached.

The convergence rates of the error on the enclosed volume and Capillary number are shown in Fig. 16.
As the surface is far from any kink, the RCP method gives a high order converge rate of 4 on the level set
volume error while the HJ-1 and HJ-10 exhibit 2nd order accuracy. The Camax diminishes at 2nd order rate
for all methods. Thus, the RCP method converges accurately for this surface tension test case.

6.7.2. Varying Laplace number
Within the same set up, we study the dynamic response of our method with an increasing Laplace number,

i.e. increasing surface tension. For high Laplace numbers, small numerical errors will induce important
spurious currents that can eventually make simulations unstable.

The mesh size is fixed at 642. The time step is scaled along with the Laplace number to match with the
time step restriction: ∆t = {6e-5, 2e-5, 0.6e-5, 0.5e-5} for corresponding La = {120, 1200, 12000, 120000}.

Camax
Method 120 1200 12000 120000
RCP 9.63e-07 3.02e-06 9.58e-06 3.00e-05
HJ-1 1.78e-06 3.63e-06 1.02e-05 3.07e-05
HJ-10 9.82e-07 2.97e-06 8.97e-06 2.53e-05

Table 3: 2D column at equilibrium test case: Camax for varying Laplace number with 322 cells. Numerical results of the static
column case of the Camax values for La = {120, 1200, 12000, 120000}, with a mesh size of 642.
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Figure 17: 2D column at equilibrium test case: convergence of Camax when varying the Laplace number for HJ-1 (left), HJ-10
(center) and RCP (right) method in the interval tσ ∈ [2.0, 3.0] for 642 cells.

Fig. 17 and table 3 show very similar results for all three approaches. It should be noted, as clearly visible
on the central graph of Fig. 17 concerning HJ-10, that performing the reinitialization process every 10 time
steps brings oscillations on Camax. Nevertheless, a question may arise on the possible impact of these small
oscillations on complex two-phase flow simulations. Conversely, performing the reinitialization at every time
step produces more continuousconsistent results as shown in the RCP and HJ-1 respective figures.

6.8. Droplet impact

We have noticed that, in some configurations, the HJ method may be unable to correctly capture
topological changes. This occurs, for example, when small droplets impact a liquid pool at low velocity.
Hence, we will testtested the capacity of the proposed method to adequately handle topological changes
without restriction by considering the simple test case of a falling small droplet positioned above an initially
steady volume of water surrounded by quiescent air. The purpose of this validation test is to capture the
merging of the drop with the underlying surface, and not to study the behaviour of the impact that occurs
later.

For relating to a realistic configuration, the drop is initialized at terminal velocity (see [33] for more details).
In our case, the drop diameter is D = 0.06mm and the associated terminal velocity is U0 = 0.27m.s−1. For
the sake of simplicity, the initial velocity field is set uniformly to U0 inside the drop and null elsewhere.
No-slip conditions are applied on the boundaries. An explicit WENO 5, 3 scheme is used for the inertial term
of Eq. (2). Herein, surface tension and gravity have been taken into consideration. The physical properties of
the two phases, are the one of water and air used in the next section, detailed in table 4.

Phase ρ (kg.m−3) µ (Pa.s) σ (N.m−1)
Water ρl = 998.2 µl = 1.00e-3 72.8e− 3Air ρg = 1.2 µg = 18.2e-6

Table 4: Droplet impact test case: physical properties of water and air phases.

The 2D domain is of size [4D, 5D] and the pool depth is 2D above the bottom boundary. The mesh size
is defined by the value of Nc = D/h which represents the number of cells per drop diameter. The time step
is set to ∆t = {9.604e-05, 3.395e-05, 1.200e-05} for meshes associated to Nc = {4, 8, 16}.

For the coarsest mesh as shown in Fig. 18, both methods resolving the H-J equation (HJ-1 and HJ-10) are
unable to capture the merging of the drop with the surface of water. It appears that the H-J reinitialization
introduces relatively important displacement of the interface position. In these cases, the drop acts as if
it was levitating above the surface of water and, moreover, loses volume over time and vanishes without
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producing the expected cavity. On the other hand, the RCP method is able to correctly handle the merging
of water, as explained below, even though the reinitialization is performed at every time step. The results
for the medial mesh in Fig. 19 show that the HJ-1 still misses to capture the coalescence while both HJ-10
and RCP therein succeeded. For the finest mesh, as presented in Fig. 20, all methods produce satisfactorily
comparable results.

We deem that one of the possible reasons for the inability of the HJ equation to handle topological changes
for coarser meshes, in this configuration, comes from the presence of a kink between the two surfaces before
merging. It introduces too much perturbations in the reinitialization using the HJ equation. The use of the
kink detection conjointly with a HJ approach is beyond the scope of the article but could be explorerexplored
in future works. The finer mesh is less impacted by the existence of the kink as the impacted region is
therein relatively smaller. Moreover, the less frequent the HJ equation is applied, the easier the two surfaces
can merge. As discussed in previous sections, this questions strongly strongly questions the reinitialization
frequency parameter that appears to be dependent on the underlying interface dynamic and hence not trivial
to determine. On the other hand, the proposed approach permits to overcomeovercomes these issues thanks
to the accurate kink detection algorithm coupled to the adapted geometrical reinitialization procedure.
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Figure 18: Droplet impact test case: interface at time t = {0, 2.4e-3, 4.8e-3, 9.6e-3} for the coarse mesh (Nc = 4).

We believe that this issue may arise in various situations - and sometimes unnoticed - particularly when
topology changes happen at small velocity for small structures such as droplets, bubbles and thin films, for
example, during atomization, breaking waves or film instabilities. Consequently, when the HJ equation is
considered, it becomes difficult for such applications, to correctly set the reinitialization frequency since many
structures coexist at different sizes and velocities, relatively to therelative to mesh refinement. The RCP
brings a robust method to correctly reinitialize the level set without compromising topological changes.

7. Applications

7.1. Bubble rise

We apply the proposed algorithm to the bubble rise problem, based on Hnat et Buckmaster experiments
[34]. Among all cases, we followed numerical simulation studies as in [35, 36] for spherical-cap case A at
Re = 19.6. The bubble diameter D = 12.2mm is initially at rest at position [0, 2.5D] in an axisymmetric
domain Ω = [0, 4D] × [0, 16D]. Slip condition is applied to the right boundary and wall condition at
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Figure 19: Droplet impact test case: interface at time t = {0, 6.8e-3, 1.0e-2, 1.4e-2} for the medial mesh (Nc = 8).
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Figure 20: Droplet impact test case: interface at time t = {0, 7.2e-3, 1.1e-2, 1.6e-2} for the fine mesh (Nc = 16).

Phase ρ (kg.m−3) µ (Pa.s) σ (N.m−1)
Liquid ρl = 875.5 µl = 118.0e-3 32.2e-3Gas ρg = 1.0 µg = 1.0e-3

Table 5: Bubble rise test case: physical properties of liquid and gas phases.

the top and bottom boundaries. Fluids’ physical parameters are given in table 5. Gravity magnitude is
g = −9.81m.s−1.

When accelerating, the bubble deforms, becoming concave at the bottom and flatter on top. It reaches a
steady-state with associated terminal velocity V∞ = 0.215m.s−1. We measured the mean upward velocity
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inside the bubble by computing:

Vb =
∫

Ωb v(x)dx
|Ωb|

=
∫

Ω χ(x)v(x)dx∫
Ω χ(x)dx

where we recall that χ is the characteristic function associated to the bubble. In order to obtain a more
accurate measure of the mean velocity, in that post-processing step, χ has been computed with the sharp
method from [13]. We have used two meshes, the coarsest (resp. the finest) consists of 128 × 512 (resp.
256× 1024) cells, equivalent to 32 (resp. 64) cells per diameter. The time step is kept constant at δt = 4e-4 s
(resp. δt = 2e-4 s) for the coarsest (resp. finest) mesh so as to attain a CFL number of around 0.3 at
steady-state.
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Figure 21: Bubble rise test case: bubble velocity over time (left) and streamlines of relative flow velocity (right) at t = 0.4 s. For
the later, color gradient goes from blue (null velocity) to red (0.2m.s−1).

Figure 22: Bubble rise test case: comparison of detected kinks (colored in red) for coarse (left) and fine (right) meshes, at
t = 0.14 s. Interface cells close to kinks (colored in light blue) are not reinitialized with the closest point distance (see Sec. 5.5.2).

As reported in Fig. 21, after 0.3 s of simulation, the numerical simulation using finest mesh converges
to a terminal velocity Vb = 0.212m.s−1, i.e. less than 2% error, which concurs well with experimental and
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numerical results [34, 35]. Also, as illustrated in Fig. 21, the simulated shape of the bubble is satisfactory as
well as the streamlines showing internal recirculation and vortices in the wake. On the other hand, simulating
using the coarsest mesh shows an under estimation of the terminal velocity with around 8% error, in the
same order of magnitude as [36] for the same spatial discretization. This noticeable error is correlated to a
mass loss of the level set, induced by diffusion at the corner of the bubble. Indeed, as illustrated in Fig. 22,
the omnipresence of inherent kinks in the vicinity of the interface prevents from using the high-order closest
point computation, as discussed in Sec. 5.5.2, thus inducing a slow but sensible retraction of the interface
towards the center of the bubble. Even if the interface becomes smoother at that particular location, the
bubble dynamic imposes a persistent kink at its base. However, with the finest mesh, kinks are farther
from the interface, i.e. not in the closest point interpolation stencil, and numerical errors are much reduced,
leading to accurate results.

This demonstrates that, for capturing such particular cases, one has to use a sufficiently fine mesh in
order to accurately solve interface regions of high curvature. Also, as discussed in Sec. 5.5.2, these numerical
errors are induced by the closest point computation that is sensitive to kinks because of interpolation, a
problem that will be solved by adapting the closest point algorithm to such regions. This point will be the
object of future works.

Finally, for such simulation where the interface consists of a single bubble or droplet, a global mass
redistribution method (as in [35] for example) should be applied on the level set at every time step in order
to ensure exact volume conservation. Without changing the proposed strategy, such methods could be used
as a post-processing to the proposed algorithm.

7.2. Dam break

We finally propose to stress the RCP algorithm and test its robustness on the complex two-phase problem
referred to as the dam break. The experimental works of Jánosi et al. [37] have been taken as a reference for
comparing numerical simulation. Even though the case is sensitive to initial conditions, the multiple bounces
of the advancing wave, the captured air tubes and the eventual ejection of small drops represent challenges
for all interface methods.

We based our simulations on Jánosi wet bed case B. The water level is initialized up to a height
d0 = 150mm for x ∈ [0, 380]mm and down to d = 18mm for the rest of the domain. Physical parameters
are the same as the one given in the droplet impact test case (see table 4). Free-slip conditions are used
everywhere but on the bottom where a wall condition has been imposed.

First, a simulation is conducted in 2D in a domain of size [0, 2]m× [0, 1.2]m. We chose to reduce the
length of the canal because the most important events occur around 1m and in order to save computational
time. Also, this permits observing earlier the splash-up on the boundary and augment the complexity of
the geometry. The mesh is made of 800 × 480 cells. The time step is controlled so as the CFL number
never exceeds 0.25, leading to a time step varying between 0.1ms to 0.3ms. In Fig. 23, we reported water
phase position over time. The result concurs satisfactorily with photographs available in [37]: very early, a
mushroom shape front erects from the corner of the virtual gate which afterwards breaks over the wet bed
resulting in the capture of an ellipsoidal air tube. Later on, splash-ups are observed similar patterns with air
entrapment while air tubes in the wake break near the surface. Finally, the front hits the right wall and a
receding wave arise.

While we observe several small structures in the simulation, the mesh cannot captures the very fine bubbles
as visible in the experiment. However, we see that RCP is able to adequately capture topology changes, thin
jets, as well as trapped bubbles. In order to help visualize the underlying RCP algorithm, we show in Fig. 24
the position of detected kinks and the closest points, when the second wave is about to merge with the wet
bed. We can see that most kinks are located on the medial axis, i.e. inherent kinks, and few other capture non-
smooth regions of the level set. Thanks to this detection, closest points can be used to reinitialize the level set.

Finally, we extend the simulation in 3D. The third dimension is 1m profound, while, for computational
savings, we have imposed a symmetry condition at z = 0.5m. The mesh is made of 400× 240× 100 cells.
Fig. 25 shows the surface of the advancing front at various time. After some time, triggered by numerical
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(a) Advancing wave and multiple rebounds. Zoom
on x ∈ [0.2, 1.2]m. From top to bottom, t =
{0.211, 0.291, 0.400, 0.461} seconds.

(b) Right wall impact, followed by a receding wave observed
on the final image. Zoom on x ∈ [1.0, 2.0]m. From top to
bottom, t = {1.274, 1.580, 1.674, 2.424} seconds.

Figure 23: Dam break test case, 2D simulation: water phase.

Figure 24: Dam break test case, 2D simulation: illustration of detected kinks (top) and closest points (bottom) near water
surface at time t = 0.461 s.

errors, capillary instabilities arise and eventually break the 2D flow, as observed in the experiment. After the
second break-up, several fingers appear, splitting the surface into smaller structures of the order of the cell
size inducing more complex interactions. A finer mesh would be necessary to capture more accurately small
bubbles and droplets. Nevertheless, the overall dynamic of the bore front is satisfactorily reproduced.

Over time, the RCP algorithm manages to preserve the consistency of the surface permitting capturing
the expect dynamics. This test cases demonstrates that the proposed method is robust and can be effectively
used on complex two-phase flows for applications.
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Figure 25: Dam break test case, 3D simulation: water phase. From left to right and top to bottom, t =
{0.143, 0.211, 0.291, 0.400, 0.517} seconds. We observe the formation of the wave, followed by the breaking, capturing the tube.
Later on, multiple rebounds appear and tubes eventually break near the surface. In the last picture, we observe the receding
wave after the front has hit the right wall.

8. Conclusion

In this paper, we have presented a robust and high order strategy to perform reinitialization in a level
set framework. The proposed RCP method differs from the widely used Hamilton-Jacobi PDE approach
by following a geometric approach. We use a gradient descent to find the closest points at the interface, in
order to solve the eikonal equation, i.e. reinitializing the level set field. Furthermore, a new algorithm is
introduced to reliably detect inherent and numerical kinks, also based on a geometric strategy. The RCP
method is robust and accurate, even when performing the reinitialization systematically after solving the
advection equation. This ensures to obtain a precise signed distance function at every time step. These
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conjoint methods both require very few given parameters, which are based on geometrical considerations.
The method is tested on various benchmarks, from simple advection to two-phase flow simulation with
surface tension and coalescence. They demonstrate better or at least equivalent results compared to the
classical H-J approach. Finally, we show that the RCP method can successfully be used to simulate complex
applications, in 2D and 3D, with various topology changes.
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Appendix A. Level set kinks detection and approximation

Equation 14 gives a first order approximation of the closest point at any point x. In order to detect for
kinks, we need to evaluate that function for points in the vicinity of x. For that purpose, we first consider
Eq. (14) evaluated a point xξ:

CP (xξ) ' xξ −
φ (xξ)
|∇φ (xξ)|2

∇φ (xξ)

and an approximation of it, being at an infinitesimally small distance to x in the direction
−→
ξ , as:

CP (xξ) ' x− φ (x)∣∣∣∇̃φ(x,
−→
ξ )
∣∣∣2 ∇̃φ(x,

−→
ξ )

where ∇̃φ(x,
−→
ξ ) is a discrete off-centered approximation of ∇φ (xξ) in the bias direction

−→
ξ , not to be

confound with ∇φ ·
−→
ξ , the variation of φ in that direction.

Generalization and implementation. When searching for a limited number of closest points in the vicinity of
x, one can derive several strategies. We have considered to use diagonal directions instead of direct mesh
cells neighbours. This has the advantage to maximize the use of desired biases by considering diagonal cells
and augment their number to eight instead of six in 3D for increased accuracy.

Let xi,j,k be the center of the cell Ωi,j,k of a 3D Cartesian mesh. We consider the eight vertices of
that cell and associated directions, noted by variations of their index:

−→
ξ αx,αy,αz = (αx, αy, αz)t, where

αx = {−1,+1} (resp. αy and αz) represents the left or right bias for the x (resp. y and z) direction. Hence,
we can write a general formula for a biased first order scheme in the

−→
ξ αx,αy,αz direction for the gradient

computation:

∇̃φ(x−→
ξ αx,αy,αz

) '
(
αx
φi+αx,j,k − φi,j,k

δx
, αy

φi,j+αy,k − φi,j,k
δy

, αz
φi,j,k+αz − φi,j,k

δz

)t
which can be used similarly as Eq. (16) in algorithm 3 for computing the associated closest point approxima-
tions and hence detecting kinks.
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Appendix B. Pseudo code for RCP algorithm

Algorithm 5 Pseudo code for RCP algorithm 1 - Main algorithm
φRCP ← φ

� Pre-processing (step 1)

Build ΩKink (see algorithm 3) . ΩKink[ci,j,k] = 1 for cells containing kinks

� Pseudo level set and fast low order smoothing (step 2)

ψPseudoLS ← ComputePseudoLS(φ,width) . same width than ΩBand
ΩKink+ ← ΩKink
ΩKink+ ← MarkNeighbours(ΩKink+, 1) . Augment the size of the kink mask

ΩPseudoLS ← {(ΩBand ∩ ΩKink+) \ ΩStencil)}

for ci,j,k ∈ ΩPseudoLS do
φRCP [ci,j,k]← ψPseudoLS [ci,j,k]

end
φRCP ← ApplyLowOrderHJ(ΩPseudoLS , φRCP , 20)

φ′RCP ← φRCP

� Reinitialization with closest points (step 3)

for ci,j,k ∈ ΩCP do
do_reinit_CP ← true
if ci,j,k ∈ ΩΓ then . Sensitive cells near the interface

if
∑

ΩKink[Sci,j,k ] 6= 0 then . At least one kink in the CP interpolation stencil
do_reinit_CP ← false

end
end

if do_reinit_CP then
x← Coordinates(ci,j,k)

CP← ComputeClosestPoint(φ′RCP , ci,j,k)

φRCP [ci,j,k]← sgn(φ[ci,j,k])× ‖CP− x‖
end

end

� Post-processing: low-order smoothing outside ΩCP (step 4)

φRCP ← ApplyLowOrderHJ({Ω \ ΩCP }, φRCP , 5)

return φRCP
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Algorithm 6 Pseudo code for RCP algorithm 1 - Utility functions for algorithm 5
. Mark with n all cells neighbouring at least one cell previously marked

function MarkNeighbours(pseudo_LS, n):
result← mask

for ci,j,k ∈ ΩBand do
if ci,j,k = 0 and

∑
pseudo_LS[ci−1:i+1,j−1:j+1,k−1:k+1] 6= 0 then

result[ci,j,k]← n

end
end
return result

end

function ComputePseudoLS(φ, bandwidth):
result← 0
for ci,j,k ∈ ΩΓ do

result← 1
end
for n ∈ [2 : bandwidth] do

result← MarkNeighbours(result, n)

end
for ci,j,k ∈ ΩBand do

result[ci,j,k]← result[ci,j,k]× sgn(φ[ci,j,k])
end
return result

end

function ApplyLowOrderHJ(mask, φ,NbIt):
ψ0 ← φ

for n ∈ [1 : NbIt] do
for ci,j,k ∈ mask do

ψn[ci,j,k]← LowOrderHJ(ψn−1, ci,j,k) . First order in time and space

end
end
return ψn

end
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