Étienne Bernard 
email: etienne.bernard@enpc.fr
  
Francesco Salvarani 
email: francesco.salvarani@unipv.it
  
  
  
  
HOMOGENIZATION OF THE LINEAR BOLTZMANN EQUATION WITH A HIGHLY OSCILLATING SCATTERING TERM IN EXTENDED PHASE SPACE
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In this article, we rigorously prove the homogenization limit of the linear Boltzmann equation when the scattering term is highly oscillating with respect to the velocity variable. We prove that the limit equation keeps, in a suitably extended phase space, the same structure as the non-homogenized one. This situation does not coincide with what happens in standard phase space, where the appearance of memory terms is expected.

Introduction

One of the main difficulties in the mathematical study of models describing composite materials is the strongly oscillating character of some physical quantities, such as the neutron capture cross-section of Uranium-235 as a function of the energy of the incoming neutron in the range between 10 2 and 10 3 eV [START_REF] Block | Neutron Cross Section Measurements[END_REF].

Such behavior makes numerical calculations very challenging and motivated the development of homogenization techniques, which consists in approximating the partial differential equation with strongly oscillating coefficients by another one with more regular coefficients [START_REF] Vladimir | Homogenization of partial differential equations[END_REF].

The mathematical literature on the homogeneization of the linear Boltzmann equation is quite developed. However, most of the articles consider the case where strong oscillations are on a single variable, in general the spatial one. We quote, for example, the simultaneous diffusion and homogenization asymptotics for the linear Boltzmann equation [START_REF] Bardos | Simultaneous diffusion and homogenization asymptotic for the linear Boltzmann equation[END_REF]. Nevertheless, there exist some studies which consider the homogenization problem with respect to other variables, such as the energy variable (an application of the two-scale convergence to this problem has been studied in [START_REF] Hutridurga | Homogenization in the energy variable for a neutron transport model[END_REF]) .

Another difficulty of the homogenization theory is that the homogenized equation can be an integrodifferential equation, with an integration in time, thus involving memory term. That implies that the semigroup property of the original evolution equation can be destroyed by the homogenization limit [START_REF] Tartar | Nonlocal effects induced by homogenization[END_REF][START_REF] Tartar | An introduction to Navier-Stokes equation and Oceanography[END_REF]. In [START_REF] Bernard | Homogenization of transport problems and semigroups[END_REF], François Golse and the authors have opened a path toward both challenges by using the extended phase space trick, first applied to kinetic problems in [START_REF] Bernard | Homogenization of the Linear Boltzmann Equation in a Domain with a Periodic Distribution of Holes[END_REF][START_REF] Caglioti | On the Boltzmann-Grad Limit for the Two Dimensional Periodic Lorentz Gas[END_REF]. The usefulness of this approach is not limited to purely theoretical aspects, but also allows for the derivation of performant numerical methods [START_REF] Mathiaud | A numerical strategy for radiative transfer problems with higly oscillating opacities[END_REF].

The idea consists in considering an extended phase space involving additional variables, which allows to keep the semigroup property after passing to the homogenized limit. For instance, in [START_REF] Bernard | Homogenization of the Linear Boltzmann Equation in a Domain with a Periodic Distribution of Holes[END_REF][START_REF] Caglioti | On the Boltzmann-Grad Limit for the Two Dimensional Periodic Lorentz Gas[END_REF] the authors added the additional variable s to the phase space, in which the linear Boltzmann equation is defined, and then constructed a function Fε(t, s, x, v) satisfying ∞ 0 Fε(t, s, x, v)ds = fε(t, x, v).

Once proved that Fε satisfies an evolution equation in the extended phase space, satisfying the semigroup property, it is possible to deduce that Fε converges to a limit F , which solves the homogenized problem, and that the homogenized problem itself satisfies the semigroup property. Moreover, it is shown that

fε → f := ∞ 0 F ds.
The method can be summarized by the diagram below:

Fε Homogenization -----------→ F fε f
Lifting of initial data Integration in s

In [START_REF] Bernard | Homogenization of transport problems and semigroups[END_REF], the method has been successfully applied to the equation of radiative transfer where the scattering processes are neglected. However, in neutron transport theory, the scattering processes cannot be neglected and thus we can not apply the method of extended phase space as directly as in [START_REF] Bernard | Homogenization of transport problems and semigroups[END_REF]. Indeed, the scattering term is oscillating in the variables involved in the transport process. In the present paper, we show how to address this difficulty by using a suitable averaging velocity lemma.

The model

We assume that the particles are set in the d-dimensional torus T d with velocity in a bounded set V ⊂ R d . We denote f ≡ f (t, x, v) the density at time t ∈ R+ of particles with velocity v ∈ V and located at x ∈ T d .

A classical model, describing the collective behavior of particles interacting with the background and not interacting between themselves, is the linear Boltzmann equation:

∂tf + v • ∇xf + σ(f -Kf ) = 0, f |t=0 = f in (x, v).
The scattering operator K ∈ L(L 1 (V); L 1 (V)) denotes

Kφ(v) := V κ(v, w)φ(w)dw, ∀φ ∈ L 1 (V).
We henceforth assume that

κ ∈ C(V × V), κ(v, w) = κ(w, v),
and κ1V = 1V.

The scattering coefficient σ ≡ σ(v) expresses the probability of interaction with the background, while the operator K codes the way the particles interact with the medium (see [START_REF] Robert | Méthodes probabilistes pour les équations de la physique[END_REF] pp. 225-226 for the probabilistic interpretation of the linear Boltzmann equation). We assume henceforth that the highly oscillatory behavior is encoded by the parameter ε > 0 and supported by the scattering coefficient σε. Consider then:

(2.1)

∂tfε + v • ∇xfε + σε(v)(fε -Kfε) = 0 fε|t=0 = f in (x, v).
We assume that f in ∈ L ∞ (T d × V) and that there exist two constants 0

< c ≤ C < +∞ such that (2.2) ∀ε > 0, ∀v ∈ V, C ≥ σε(v) ≥ c.
For any ε, the existence and uniqueness of a nonnegative mild solution fε of the Cauchy problem (2.1) in

L 1 (R+ × T d × V) ∩ L ∞ (R+ × T d × V) is classical [1]
. Moreover, it is easy to see that fε satisfies the Maximum principle:

fε L ∞ (T d ×V) (t) ≤ f in L ∞ (T d ×V) ∀t > 0.
As σε is uniformly bounded in L ∞ (T d × V), the previous property implies that, up to a subsequence, there exists a measure µv ∈ M(V) such that (H1) σε ⇒ µv in the sense of Young measures meaning that

∀g ∈ C0(R+), g(σε) * +∞ 0 g(s)µv(ds) in L ∞ (T d × V) weak- * .
Denoting with μv the Laplace transform of µv, the property above implies

∀n ∈ N, σ n ε e -σεs * (-1) n d n μv ds n (s) in L ∞ ([0, T ] × T d × V) weak- * as ε → 0 + (
for a more complete presentation on Young measures, we refer to [START_REF] Müller | Variational models for microstructure and phase transitions[END_REF]). Let F ≡ F (t, s, x, v) be the mild solution of (2.3)

     (∂t + v • ∇x -∂s)F = d 2 μv ds 2 (s)K +∞ 0 F ds F (0, s, x, v) = - dμv ds (s)f in (x, v).
In Proposition 3.2, we will prove that F exists and is unique because the Cauchy problem (2.3) is a bounded perturbation of the free transport equation in the extended phase space.

The main result of this note is the following:

Theorem 2.1. Under the assumptions above and up to a subsequence,

fε * +∞ 0 F ds in L ∞ ([0, T ] × T d × V) weak- * as ε → 0 + .
We give a sketch of the proof. Introducing

Fε(t, s, x, v) := σε(v)e -sσε(v) fε(t, s, x, v), (t, s, x, v) ∈ R+ × R+ × T d × V,
an easy computation shows that the function Fε is solution of a kinetic equation in an extended phase space:

(2.4)

   (∂t + v • ∇x -∂s)Fε = σ 2 ε e -σεs K +∞ 0 Fεds Fε(0, s, x, v) = σε(v)e -sσε(v) f in (x, v).
In what follows, we denote with (fε)ε>0 the family of ε-dependent solutions of (2.1) and with (Fε)ε>0 the family of ε-dependent solutions of (2.3). On the first hand, we know by the Maximum principle and by the Banach-Alaoglu Theorem that, up to a subsequence, the family (fε)ε>0 converges to a function

f in L ∞ ([0, T ] × T d × V)
weak- * as ε → 0 + . On the other hand, assume that we can show that up to a subsequence, the family (Fε)ε>0 converges to F (i.e., the unique mild solution of (2.3), in L ∞ ([0, T ] × R+ × T d × V)) weak- * as ε → 0 + , the uniqueness of limit permits to identify f with +∞ 0 F (s)ds.

The homogenization limit

The argument of the proof of Theorem 2.1 is split into several steps. σ n ε e -σεs * (-1) n d n μv ds n (s) in L ∞ (V) weak- * as ε → 0 + . Moreover, μv(s) and its derivatives belong to L 1 s (R+; L ∞ (V)).

Proof. As η ∈ R+, we have that η → η n e -sη ∈ C0(R+) for all s ∈ R * + . Hence, (3.1) is a direct consequence of assumption (H1). Notice that µv is a family of probability measures on R+ and consequently, by Bernstein theorem, for every v ∈ V, μv is a completely monotone function, meaning that it is continuous on [0, ∞), infinitely differentiable on (0, ∞) and for every n ∈ N,

(-1) n d n μv ds n ≥ 0. Besides, notice that for each g ∈ L 1 (V), V g(v)σ n ε (v)e -σε(v)s dv → V g(v)(-1) n d n μv ds n (s)dv
which implies that, by (2.2), for every v ∈ V

(-1) n d n μv ds n (s) ≤ C n e -cs .
Consequently, (s, v) → (-1) n d n μv ds n (s) ∈ L 1 (R+; L ∞ (V)), which concludes the proof.

We introduce now some new notations. First, we define the positive semigroup:

St : g ∈ L 1 s,x,v → Stg(s, x, v) = g(s + t, x -vt, v) ∈ L 1 s,x,v
and the operator

F : g → d 2 μv ds 2 (s)K ∞ 0 g ds Notice that F is bounded in L 1 s,
x,v by Lemma 3.1. Then we can now state the following result: Proposition 3.2. Under the assumptions above, for any T > 0, the Cauchy problem (2.3) has a unique mild solution F ∈ L ∞ t ([0, T ]; L 1 s,x,v ) satisfying:

F (t, s, x, v) = - dμv ds (s + t)f in (x -vt, v) + t 0 St-τ FF (τ, s, x, v)dτ.
Moreover, we have

F ∈ L ∞ t,s,x,v ([0, T ] × R+ × T d × V) ∩ L 1 s (R+; L ∞ s,x,v ([0, T ] × T d × V)).
Proof. First, we note that v • ∇x -∂s is an advection operator, which can be written as (v, -1) • ∇ (x,s) . Hence, by the method of characteristics, the free transport problem in extended phase space

(∂t + v • ∇x -∂s)F = 0 F (0, s, x, v) = F in (s, x, v) generates a positive semigroup (St) t∈R + on L 1 (R+ × T d × V) defined by (StF in )(t, s, x, v) := F in (s + t, x -vt, v), for any F in ∈ L 1 (R+ × T d × V).
Besides, the operator

F : F → d 2 μv ds 2 (s)K ∞ 0 F ds is bounded in L 1 (R+ ×T d ×V) since d 2 μv ds 2 ∈ L 1 (R+; L ∞ (V)
) by Lemma 3.1. Therefore, by the bounded perturbation theorem (see Theorem III.1.3 p. 158 in [START_REF]One-Parameter Semigroups for Linear Evolution Equations[END_REF]), the Cauchy problem

(∂t + v • ∇x -∂s)F = FF F (0, s, x, v) = F in (s, x, v)
generates a positive semigroupe (Tt) t≥0 that, by the variation of parameters formula, satisfies (see Corollary III.1.7 p. 161 in [START_REF]One-Parameter Semigroups for Linear Evolution Equations[END_REF])

Tt = St + t 0 St-τ FTτ dτ.
So that specializing in F in (s, x, v) = -dμv ds (s)f in (x, v), there exists a unique mild solution F of the Cauchy

problem (2.3) in L ∞ loc (R+; L 1 (R+ × T d × V))
, that satisfies the formula:

F (t, s, x, v) = - dμv ds (s + t)f in (x -vt, v) + t 0 St-τ FF (τ, s, x, v)dτ. It remains to show that F belongs to L ∞ t,s,x,v ([0, T ] × R+ × T d × V) ∩ L 1 s (R+; L ∞ t,x,v ([0, T ] × T d × V)).
It is known that, as F is bounded, we have (see Corollary III.1.11 p. 163 in [START_REF]One-Parameter Semigroups for Linear Evolution Equations[END_REF])

Tt = n≥0 Sn(t)
with S0(t) = St and, for any n ≥ 1,

Sn(t) := t 0 St-τ FSn-1(τ )dτ. Now, let g ∈ L 1 t,s (R+ × R+; L ∞ x,v (T d × V)) be nonnegative. We have Fg(τ, s, x, v) = d 2 μv ds 2 (s) ∞ 0 V κ(v, w)g(τ, s, x, w)dwds = d 2 μv ds 2 (s) Kg L 1 s and St-τ Fg(τ, s, x, v) = d 2 μv ds 2 (s + t -τ ) ∞ 0 V κ(v, w)g(τ, s, x -v(t -τ ), w)dw ≤ C 2 e -c(s+t-τ ) ∞ 0 g L ∞ x,v (τ, s)ds ≤ C 2 e -cs ∞ 0 g L ∞ x,v (τ, s)ds.
Notice that

∞ 0 St-τ Fg(τ, s, x, v)ds ≤ C 2 c ∞ 0 g L ∞ x,v
(τ, s)ds.

Thus t 0 St-τ Fg(τ, s, x, v)dτ L 1 s (L ∞ x,v ) ≤ t 0 C 2 c g L 1 s (L ∞ x,v ) dτ.
That being said, we observe that, for any G(s, x, v),

Sn(t)G = t 0 St-t n FSn-1(tn)Gdtn ≤ C 2 t 0 St-t n e -cs Sn-1G L 1 s (tn)dtn ≤ C 2 e -cs t 0 t 0 St-t n-1 FSn-2(tn -1)dtn-1 L 1 s L ∞ x,v dtn ≤ C 2 e -cs t 0 t 0 C 2 c Sn-2G L 1 s L ∞ x,v dtn-1dtn ≤ C 2 e -cs t 0 • • • t 0 C 2 c n-1 S1G L 1 s L ∞ x,v dt1 • • • dtn. Taking G(s, x, v) := - dμv ds (s)f in (x, v), we have, by Lemma 3.1, 0 ≤ G(s, x, v) ≤ Ce -cs f in L ∞ (T d ×V) and StG(s, x, v) ≤ Ce -cs e -ct f in L ∞ (T d ×V) thus StG(s, x, v) L 1 s L ∞ x,v ≤ C c f in L ∞ (T d ×V) thus SnG ≤ C 3 c e -cs f in L ∞ (T d ×V) C 2 c n t n n!
which implies that

F (t, s, x, v) ≤ C 3 c e -cs f in L ∞ (T d ×V) e C 2 c t . Consequently, F ∈ L ∞ t,s,x,v ([0, T ] × R+ × T d × V) ∩ L 1 s (R+; L ∞ t,x,v ([0, T ] × T d × V))
, which is the desired conclusion.

In the same way, introducing the following operator:

Fε : F → σ 2 ε e -σεs K ∞ 0 F ds,
we prove, as in the proof of Proposition 3.2, the following proposition:

Proposition 3.3. Under the assumptions above, for any T > 0 and for any ε > 0 the Cauchy problem (2.4)

has a unique mild solution Fε ∈ L ∞ ([0, T ]; L 1 s,x,v ) satisfying Fε(t, s, x, v) = σε(v)e -σε(v)(t+s) f in (x -vt, v) + t 0 St-τ FεFε(τ, x, v)dτ. Moreover, we have F ∈ L ∞ t,s,x,v ([0, T ] × R+ × T d × V) ∩ L 1 s (R+; L ∞ t,x,v ([0, T ] × T d × V)) and we have ∀ε > 0, ∀(t, s, x, v) ∈ [0, T ] × R+ × T d × V, Fε(t, s, x, v) = σε(v)e -σε(v)s fε(t, s, v).
The existence and uniqueness of the mild solutions of Problems (2.3) and (2.4) being established, we now show the relative compactness of (Kfε)ε>0 thanks to a velocity averaging lemma.

3.2.

A velocity averaging lemma. We recall first a velocity averaging lemma that is, in fact, a special case of Theorem 1.8 p.29 in [START_REF] Bouchut | Kinetic Equations and Asymptotic Theory[END_REF]. 

ρ ψ [fε](t, x, v) = V fε(t, x, w)ψ(v, w)dw, for all ε > 0 is relatively compact in L 1 ([0, T ] × T d × V)-strong.
The previous lemma implies:

Lemma 3.5. Let (fε)ε>0 be the family of solutions of the Cauchy problem (2.4). Then the family (Kfε)ε>0 is

relatively compact in L 1 ([0, T ] × T d × V)-strong.
Proof. By the Maximum principle, we have that, for all ε > 0 and for any t > 0,

|fε(t, x, v)| ≤ f in L ∞ (R d ×V) . So that sup ε>0 fε L ∞ (R + ×R d ×V) ≤ f in L ∞ (R d ×V)
.

Hence, we have, on

R d × V, that |∂tfε + v • ∇xfε| ≤ C f in L ∞ (R d ×V) (1 + κ L ∞ (V×V) ).
Thus, the family (|∂tfε + v • ∇xfε|)ε>0 is uniformly bounded in L 1 loc ([0, T ] × T d × V). Consequently, the strong compactness in L 1 ([0, T ] × T d × V) of (Kfε)ε>0 is a direct consequence of Lemma 3.4.

Proof of Theorem 2.1.

Proof. By Proposition 3.3 and the Maximum principle, we have

Fε L ∞ t,s,x,v ≤ C f in L ∞ x,v .
Thus, by the Banach-Alaoglu theorem, (Fε)ε>0 is relatively weak- * compact in L ∞ (R+ × R+ × T d × V). Up to a subsequence, we denote F the weak- * limit point of Fε. In the same way, up to subsequence, we denote f the weak- * limit point of (fε)ε>0. Observe that f is also the weak- * limit point of

∞ 0 Fεds. Denote Fε,1(t, s, x, v) := σε(v)e -σε(v)(t+s) f in (x -vt, v) and Fε,2(t, s, x, v) := t 0 St-τ FεFε(τ, x, v)dτ.
Hence, by Proposition 3.3, we have

Fε,1 * (t, s, x, v) → -f in (x -tv, v) dμv ds (s + t) .
As for Fε,2, by the Fubini-Tonelli Theorem,

Fε,2(t, s, x, v) = t 0 St-τ FεFε(τ, x, v)dτ = t 0 St-τ (σε(v) 2 e -sσε(v) Kfε(τ, x, v))dτ = t 0 σε(v) 2 e -(t+s-τ )σε(v) Kfε(τ, x -(t -τ )v, v)dτ.
By Lemma 3.5, up to a subsequence, we know that Kfε

→ Kf in L 1 ([0, T ] × T d × V)-strong as ε → 0 + . Thus Fε,2 * t 0 d 2 μv ds 2 (t + s -τ )Kf (τ, x -(t -τ )v, v)dτ.
We recognize immediately that

Fε(t, s, x, v) = Fε,1(t, s, x, v) + Fε,2(t, s, x, v).
Consequently,

Fε * -f in (x -tv, v) dμv ds + t 0 d 2 μv ds 2 (t + s -τ )Kf (τ, x -(t -τ )v, v)dτ := F .
We know that ∞ 0 Fε(t, s, x, v) * f . Besides ∞ 0 Fε(t, s, x, v)ds * ∞ 0 F (t, s, x, v)ds.

Thus, by the uniqueness of the limit, we have ∞ 0 F (t, s, x, v)ds = f (t, x, v).

Consequently,

Fε * -f in (x -tv, v) dμv ds (s + t) + t 0
St-τ FF (τ, x, v)dτ.

By Proposition 3.2, we can conclude that Fε * F , where F is the unique mild solution to (2.3).

Final remarks

As the main aim of the present paper is to explain the interest of the application of the extended phase space technique to the homogenization of kinetic equations, for the sake of simplicity, we have assumed the simplest case of x ∈ T d . However, we emphasize that the result holds for the more general (and more interesting for industrial applications) case of an open bounded domain Ω with absorbing boundary conditions. Indeed, we can extend the solutions of the Cauchy problems by 0 outside Ω such as {f (t, x, v)} := f (t, x, v) whenever x ∈ Ω 0 otherwise, and we can show that the extensions satisfy, in the distributional sense, the same equations, with an additional term related to the presence of the absorbing boundary. This additional term is a family of Radon measures uniformly bounded in M([-R, R] d × V) for any R > 0 and thus the averaging velocity lemma used above holds here. We refer to [START_REF] Bernard | Homogenization of the Linear Boltzmann Equation in a Domain with a Periodic Distribution of Holes[END_REF] for an exemple of this method.

3. 1 .

 1 Two Cauchy problems. First, we begin with a lemma, crucial for the homogenized equation, about the behavior of v → σ n ε (v)e -σε(v)s . Lemma 3.1. Let (σε)ε>0 be a family of scattering coefficients converging to µv in the sense of Young measures as ε → 0 + . Denoting μ the Laplace Transform of a measure µ μ(s) := R + e -st µ(dt), then for any n ∈ N (3.1)

Lemma 3 . 4 (

 34 Velocity Averaging). Let p > 1 and assume that (fε)ε>0 is a bounded family in L p (R+ × T d × V) |∂tfε + v • ∇xfε|dxdvdt < +∞ for each T > 0. Then for each ψ ∈ C(V × V), the family (ρ ψ [fε])ε>0 defined by