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Abstract— Cost and durability are crucial factors limiting the 
widespread commercialization of proton exchange membrane 
fuel cells (PEMFC). Prognostics, aiming at health indicator 
extraction and remaining useful life prediction, is a key issue for 
PEMFC durability enhancement. However, deploying 
prognostics for PEMFC under dynamic load still faces 
challenges in extracting health indicators reliably and 
predicting the degradation evolution efficiently. This work 
proposes a data-driven PEMFC prognostics approach, in which 
Hilbert-Huang transform is used to extract health indicator in 
dynamic operating conditions and symbolic-based gated 
recurrent unit model is used to predict the remaining useful life. 
The proposed method is tested using long-term dynamic load 
ageing experiments. The results show that the method can 
provide reliable prognostics horizons and improve real-time 
performance. 

I. INTRODUCTION 

Proton exchange membrane fuel cells (PEMFCs) are 
carbon-emission avoiding energy conversion devices, which 
are considered a promising alternative to fossil fuels [1]. 
Nevertheless, the cost and the performance still constrain the 
wider commercialization of PEMFCs. Especially in the 
transportation field, the durability of PEMFCs emerges as a 
major bottleneck. For instance, fuel cell electric vehicles 
(FCEVs) suffer from complex operating conditions, which 
accelerate the degradation of PEMFCs. The maximum 
average durability of FCEVs is about 4000 hours, while the 
performance will degrade by 30% after 5000 service hours [2]. 

Prognostics and health management (PHM) is a promising 
durability enhancement solution for PEMFCs. In turn, the 
remaining useful life (RUL) can be predicted to support 
condition-based maintenance (CBM) [3]. However, dynamic 
mission profiles make it difficult to access the health indicator 
(HI) directly. Several scholars extract the inherent degradation 
parameters of PEMFC by mechanistic models and utilize filter 
methods to identify these parameters as HIs [4-6]. Li et al. 
deploy the linear parameter-varying (LPV) model in a series 
of sliding data segments and consider the reconstructed virtual 
steady-state stack voltage as HI [7]. Yue et al. present a 
polarization function-based model in [8] and segment the 
measured voltage to extract HI using a nonlinear regression 
method. However, these methods have shortcomings such as 
high computational cost, requiring extra characterization tests, 
and hardly tracking transient dynamics. 
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The prognostics dedicated RUL prediction needs to extend 
the prognostics horizon (PH) to the order of hundreds to 
thousands of hours [3]. Thus, long-term prognostics provide 
ample time to develop maintenance schedules to avoid fatal 
failures. In state-of-the-art works, extended Kalman filter 
(EKF) based methods [4, 5], long short-term memory (LSTM) 
network based methods [6, 9, 10], and echo state network 
(ESN) based methods [7, 8, 11] are used to predict the RUL 
under dynamic mission profiles. Most of these methods often 
need cautious model configurations and the RUL performance 
in these proposed works is not fully justified due to limited 
data and evaluation criteria. 

In this work, a data-driven prognostics method based on 
time-frequency analysis and symbolic recurrent neural 
networks (RNNs) is proposed. Specifically, the long-term 
degradation component of the dynamic stack voltage is first 
extracted as HI using the Hilbert-Huang transform (HHT). 
The HI is compressed using adaptive Brownian bridge-based 
aggregation (ABBA) and represented as a 
reduced-dimensional symbolic sequence [12]. Gated recursive 
unit (GRU)-based RNN predicts the reduced-dimensional 
symbol sequence. Further, the predicted sequences are 
reconstructed to obtain future HI trends, which are eventually 
used to estimate the RUL. The proposed method is evaluated 
using dynamic load ageing experimental data of PEMFC. In 
comparison with other state-of-the-art methods, the proposed 
method takes the shortest computational time while extracting 
reliable HI. In the RUL prediction phase, the proposed method 
provides effective PH up to hundreds of hours scale.  

II. HEALTH INDICATOR EXTRACTION MODEL 
The HHT, proposed by Huang et al. [13], consists of two 

steps: First, the input signal is decomposed into a series of 
intrinsic mode functions (IMFs) and a residual using empirical 
mode decomposition (EMD). Second, the Hilbert spectrum of 
each IMF is obtained by deploying the Hilbert transform (HT). 
The combination of EMD and Hilbert Spectral Analysis (HSA) 
provides a time-frequency-energy analysis method [14].  

Generally, EMD sifting is iteratively implemented and 
stopped under the condition that a monotonic residual is 
obtained. The residual reflects the trend characteristics in the 
original signal [15]. The residual contributes to revealing the 
physical characteristics of the signal as it is the low frequency 
or null component [14]. In this work, the dynamic voltage of 
the PEMFC is used as the input signal of EMD sifting. The 
proper residual from the input signal is identified by iteratively 
implementing EMD and designated as HI. Considering the 
instantaneous frequency (IF) is one of the key features for 
analyzing the signal based on natural conditions [14]. In this 
paper, an HI extraction process based on IF analysis is 
proposed as shown in Fig. 1. Instead of pursuing a completely 
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monotonic residual as the stop condition of the EMD sifting 
process, the method analyzes whether the IF of the residual is 
below a set threshold. IMF should satisfy the following 
criteria [13]: (1) The number of poles and zeros should not 
differ by more than one; (2) The mean of the upper and lower 
envelope curves should be zero.  

Figure 1.   HHT-based health indicator extraction process 
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III. HYBRID RUL PREDICTION 
Thanks to the convincing time series processing capability, 

several LSTM framework-based prognostics methods are 
developed for PEMFC [6, 9, 10]. Compared to LSTM, GRU 
effectively simplifies the hidden unit structure and reduces the 
number of parameters [16, 17]. This facilitates the 
training/prediction efficiency of GRU and promises to 
improve the real-time prognostics performance. As mentioned 
in our previous works [9, 10, 18], the performance of raw 
LSTM is not satisfactory in multi-step-ahead prediction in the 
application of fuel cell prognostics. Similarly, GRU suffers 
from this issue.  

This work proposes an ABBA-based GRU (ABBA-GRU) 
model to tackle multi-step-ahead prediction involved in 
prognostics. The historical HI is used as input, while the 
output is the predicted trend. The core of the ABBA-GRU 
model includes three components: conversion, prediction, and 
reconstruction. To improve prediction efficiency and accuracy, 
HI is normalized and re-scaled to between zero and one before 
being fed to ABBA-GRU.  

The remaining useful life prediction process is shown in 
Fig. 2. The details about conversion phase and reconstruction 
phase of ABBA can be found in our previous work [9]. The 
five-layer GRU model is used in the prediction phase. The 
previous hidden state (ℎ𝑡−1) together with the current symbol 
(𝑎𝑡) constitute the input. After proper processing by the reset 
gate (𝑟𝑡) and update gate (𝑧𝑡), the current hidden state (ℎ𝑡, i.e., 
predicted symbol 𝑎�𝑡) is output. In a GRU layer, the hidden 
units are linked sequentially to form a chain. The functional 
equations of the GRU are as follows. 

⎩
⎪
⎨

⎪
⎧𝑟𝑡 = σ(𝑊𝑟𝑎𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)
𝑧𝑡 = σ(𝑊𝑧𝑎𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)
ℎ�𝑡 = tanh[𝑊ℎ𝑎𝑡 + 𝑈ℎ(𝑟𝑡  ⨀ ℎ𝑡−1) + 𝑏ℎ]
ℎ𝑡 = (1 − 𝑧𝑡) ⨀ ℎ𝑡−1 + 𝑧𝑡  ⨀ ℎ�𝑡

 (1) 

where σ and tanh represent the activation functions, which 
are sigmoid and hyperbolic tangent, respectively. 𝑊𝑥, 𝑈𝑥, and 

𝑏𝑥 are the input weight matrix, the unit internal weight matrix, 
and the bias vector, respectively. Among them, the subscript 𝑥 
corresponds to 𝑟 (reset gate), 𝑧 (update gate), and ℎ (implicit 
state). The ℎ�𝑡 is unit internal hidden state (a. k. a., candidate 
activation) vector. The operator “⨀ ” denotes Hadamard 
product.  
Figure 2.  Schematic diagram of the remaining useful life prediction process 
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IV. FUEL CELL AGEING EXPERIMENT 
The long-term durability test is from an open 

cathode/dead-end anode PEMFC under dynamic load. The 
operating conditions are shown in Table I.  

TABLE I.  TABLE TYPE STYLES 

Parameter Value 
Active surface (cm2) 33.63 
Pressure at hydrogen inlet (bar) 1.35 
Pressure at air inlet (bar) 1.013 (i.e., 1 atm) 
Nominal output power (W) 73.5 

Operating temperature (°C) 
29.6 to 51.7 

(Corresponding to current) 
Number of cells 15 
Temperature regulate mode 24-V dc air fan 

Humidity regulate mode Non-humidifier 
(self-humidified) 

Figure 3.  Voltage profiles of dynamic load cyclic from fuel cell ageing 
experiment 
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temperature is related to the load current. In addition, the FC is 
self-humidifying and performs a purge lasting 0.5 s per 30 s 
[7]. The mean cell voltage profile from the dynamic load cycle 
of FC is shown in Fig. 3. In each dynamic cycle, the 
start-up/standby operating conditions in the hybrid system are 
simulated [9]. More details about FC and durability testing can 
be found in our previous works [7, 9].  

V. PERFORMANCE EVALUATION 
The programs used in this paper are developed in Python 

3.7.11, Keras version 2.4.3, and Tensorflow version 1.15.0 
backend software environments. They are deployed on a 
desktop computer containing an Intel Xeon E3-1230-v3 
processor @ 3.3 GHz and 16 GB memory.  

Figure 4.  (a) IMFs and residual obtained by EMD, (b) 
Time-frequency-energy spectrum of the residual  
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The dynamic voltage is decomposed into eleven IMFs and 
one residual. Fig. 4 (a) show the partial (1st, 5th, 9th) IMFs 
and the final residual of FC. Besides, Fig. 4 (b) shows the 
time-frequency-energy spectrum of the residual. The 
HHT-based HI extraction method square effectively separates 
the high-frequency features (IMFs) and the low-frequency 
feature (residual) of the dynamic voltage signal. The residual 
retains a relatively high level of instantaneous energy, as in 
Fig. 4 (b). The instantaneous energy distribution of the 
residual shows a natural decreasing trend along the ageing 
time. This allows the residual to indicate the intrinsic 
degradation process of stack voltage.  

Figure 5.  (a) Comparison of HI extracted by three methods, (b) Predicted 
RULs 
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In addition, the rationality of the proposed method is 
evaluated by comparing it with two other HI extraction 
methods. The first method (Curve-fitting) uses the 
degradation model proposed in [8]. The second method 
(LPV-ARX) utilizes the linear parameter-varying (LPV) 
model structure, as in [7], called autoregressive model with 
exogenous input (ARX). The HIs extracted by all three 
methods are normalized and rescaled into the range of zero to 
one. As in Fig. 5 (a), all three methods match well, besides a 
few outlier points. The computational costs of the three 
methods are compared, as in Table II. 

TABLE II.  COMPUTATIONAL COST COMPARISON OF THE THREE 
METHODS 

Method Execution time (s) 
Curve-fitting 55.61 
LPV-ARX 1167.77 

HHT 21.73 

The ABBA-GRU model is deployed at each prognostics 
point and the RUL is predicted. The RUL prediction results 
are shown in Fig. 5 (b), all PHs reach 1032.5 hours.  

VI. CONCLUSION 
In this paper, a data-driven prognostics approach is 



  

proposed for fuel cells under dynamic operating conditions. A 
Hilbert-Huang transform-based method is utilized to extract 
the health indicator from the dynamic voltage of fuel cells. 
The historical health indicator data is used to train the 
ABBA-GRU model, which in turn predicts the degradation 
trends and the remaining useful life of the stack. The 
prognostics approach is evaluated with the ageing data. The 
proposed approach enhances real-time performance while 
providing a credible prognostics horizon and appropriate 
prediction accuracy. It facilitates the online deployment of the 
prognostics method. In future work, efforts will be made to 
explore prognostics-based operational control strategies to 
extend fuel cell lifetime.  
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