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ABSTRACT

Differences  in  codon  frequency  between  genomes,  genes,  or  positions  along  a  gene,  modulate

transcription and translation efficiency, leading to phenotypic and functional differences. Here, we present a

multiscale analysis of the effects of synonymous codon recoding during heterologous gene expression in human

cells, quantifying the phenotypic consequences of codon usage bias at different molecular and cellular levels,

with an emphasis on translation elongation.

Six synonymous versions of an antibiotic resistance gene were generated, fused to a fluorescent reporter,

and independently expressed in HEK293 cells. Multiscale phenotype was analysed by means of: quantitative

transcriptome and proteome assessment, as proxies for gene expression; cellular fluorescence, as a proxy for

single-cell level expression; and real-time cell proliferation in absence or presence of antibiotic, as a proxy for

the cell fitness.

We show that differences in codon usage bias strongly impact the molecular and cellular phenotype: (i)

they result in large differences in mRNA levels and in protein levels, leading to differences of over fifteen times

in  translation  efficiency;  (ii)  they  introduce  unpredicted  splicing  events;  (iii)  they  lead  to  reproducible

phenotypic heterogeneity; and (iv) they lead to a trade-off between the benefit of antibiotic resistance and the

burden of heterologous expression.

In human cells in culture, codon usage bias modulates gene expression by modifying mRNA availability

and  suitability  for  translation,  leading  to  differences  in  protein  levels  and  eventually  eliciting  functional

phenotypic changes.

IMPORTANCE

Synonymous codons encode for the same amino acid, but they are not neutral regarding gene expression

or  protein  synthesis.  Bias  between  synonymous  codons  have  evolved  naturally  and  are  also  applied  in

biotechnology protein production.  We have studied  the  multilevel  impact  of  codon usage on  a  human cell
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system. We show that  differences in codon usage lead to transcriptomic, proteomic and functional changes,

modulating gene expression and cellular phenotype.

INTRODUCTION

The  canonical  scenario  of  gene  expression  posits  that  DNA sequences  are  first  transcribed  into

messenger RNA (mRNA) molecules that are secondly translated into proteins, so that one given nucleotide

sequence encodes one predictable amino acid sequence 1. The initial version of this scenario did not provide any

explanation on how a unique set of genes could be associated with several cellular phenotypes. Over the last

decades,  a  large body of  studies  on gene expression have addressed this  question and revealed multi-level

regulation mechanisms increasing the diversity of the proteomic outputs that can be produced from a given

genome. The standard genetic code that establishes a correspondence between the DNA coding units (i.e. the

codon, a triplet of nucleotides, 64 in total) and the protein building blocks (i.e. the amino acids, 20 in total) is

degenerated:  18 of the amino acids can individually be encoded by two, three, four or six codons, known as

synonymous  codons.  In  a  first  null  hypothesis  approach,  one would  expect  synonymous codons to  display

similar frequencies. Instead, codon usage bias (CUBias, i.e. the uneven representation of synonymous codons 2)

has been reported in a multiplicity of organisms, and varies not only between species but also within a given

genome or even along positions in a gene 3–8.

The origin and the contribution of the different neutral and/or selective forces shaping CUBias constitute

a classical  research subject  in  evolutionary genetics.  The hypothesis  of  translational  selection proposes that

differences in CUBias result in gene expression variations that ultimately lead to phenotypic differences, which

could be subject to natural selection. Indeed, it has been established that variation in CUBias might constitute an

additional layer of gene expression modulation  9–11. Notably, genetic engineering has extensively resorted to

CUBias recoding for enhancing heterologous protein production, for its use in industrial applications or for

vaccine design 12–15. The interaction between CUBias and the translation machinery has been well established,

for instance in: (i) the co-variation of genomic CUBias and the tRNA content, from unicellular organisms 4,16,17 to
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metazoa (Caenorhabditis elegans 18, Drosophila 19–21, or humans 22; (ii) the correspondence between CUBias and

expression  level  in  bacteria  23 or  in  yeast  24,25; (iii)  the  increase  in  translation  efficiency  in  bacteria  when

supplementing in trans with rare tRNAs 26; or (iv) the changes in tumorigenic phenotype in mice when switching

from rare to common codons in the sequence of a cancer-related GTPase 27.

In contrast, a number of studies have communicated the lack of covariation between CUBias and gene

expression (in bacteria, yeast, or human) 28–31; or even a negative impact of a presupposed "optimization", which

may in fact decrease the expression or the activity of the protein product 32,33. To address these conflicting results,

it  is  important  to  tease apart  the  underlying mechanisms through which CUBias can impact  the molecular,

cellular  and/or  organismal  phenotype.  It  has  hitherto  been  established  that  CUBias  can  impact:  (i) mRNA

localisation, stability and decay 34–38 ; (ii) translation initiation 31,39–41 ; (iii) translation efficiency 20,42–55; and (iv)

co-translational  protein  folding  56–58.  But,  fuelling  the  controversy,  the  respective  contribution  of  each

mechanism, if  any,  depends on the  studied system,  e.g. in  which organism, whether  the  expressed gene is

autologous or heterologous gene, or whether it has been recoded or not.

Finally,  abundance  and  chemistry  of  transfer  RNAs  (tRNAs)  introduces  an  additional  layer  of

complexity (and thus an opportunity for  regulation).  In  fast  growing unicellular  organisms,  the tRNA gene

content matches well codon usage preferences of the organism 59. Heterologous expression can thus be hampered

by  the  lack  or  rarity  of  a  tRNA that  corresponds  to  a  rare  codon  in  the  expression  system  of  choice.

Biotechnology engineering has circumvented this limitation by providing in trans the required tRNAs, encoding

them into helper plasmids such as pRIG or pRARE 60. Further, many genomes actually do not contain dedicated

tRNAs to decode each codon: e.g. for all amino acids encoded by two codons ending in C or U (Phe, Asn, Asp

and His) the human genome contains only the tRNAs corresponding to the C-ending codons, which decode also

the U-ending counterparts 61. Indeed, tRNAs are heavily modified and carry non-canonical nucleotides, which is

often the  case  for  an inosine residue in  the first  anticodon position  62,  The non Watson-Crick base pairing

interactions  available  to  inosine  allow  to  broaden  codon-anticodon  recognition  63,  so  that  in  bacteria  and

eukaryotes modified tRNAs carrying inosine in the anticodon can decode several synonymous codons for the
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amino acids Thr,  Ala,  Pro,  Ser,  Leu,  Ile,  Val  and Arg  64.  Thus,  tRNA modification allows for  one-to-many

anticodon-to-codon translation potential,  which  may have  had  implications  for  the  evolution  of  the  protein

repertoire in eukaryotes 65..

In this study, we aim at providing an integrated view of the molecular and cellular impact of alternative

CUBias  of  a  heterologous  gene  expressed  in  human  cells.  By  combining  transcriptomics,  proteomics,

fluorescence analysis and cell growth evaluation, we attempt to describe qualitatively, and to quantify as far as

possible, the impact of CUBias and sequence composition of our focal heterologous gene on its own expression.

These are usually called the cis-effects of CUBias on gene expression.

RESULTS 

1. Design of six synonymous gene versions that explore a large sequence space and cover a broad range of

sequence composition variables.

With  the  aim  of  analysing  the  effects  of  CUBias  on  protein  synthesis,  we  have  generated  six

synonymous  variants  of  the  gene  encoding  for  the  bleomycin-resistance  protein  from  the  bacterium

Streptoalloteichus hindustanus (shble). We have chosen this heterologous protein as a reporter gene because it

displays a mechanism of action (scission of DNA strands, 66) which is independent of translation, precisely the

process that we aim to study. For all six shble versions we added an AU1 epitope tag in the N-terminus with the

same nucleotide sequence, so that translation initiation will be similar for all shble versions and we can focus on

the impact of CUBias on translation elongation. The shble ORFs were in-frame coupled via a P2A epitope to an

egfp gene that encodes for a fluorescent protein reporter. The nucleotide sequence encoding for the P2A peptide

was identical for all sequences and corresponds to that in the plasmid backbone. The expected heterologous

transcript was a 1,602 base pair (bp) long mRNA encompassing a 1,182bp coding sequence (CDS). The CDS

spanned the AU1-tag sequence in 5', the shble bleomycin resistance reporter, the P2A peptide sequence inducing

ribosomal skipping, and the egfp fluorescent reporter (Sup. Fig. 1).  The presence of the AU1 epitope allowed us

to use the same antibodies to detect the N-terminus of the SHBLE protein. The presence of the P2A peptide
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(NPGP  motif)  induces  ribosome  skipping  67,  meaning  that  the  ribosome  does  not  perform  the  Gly-Pro

transpeptidation bond and releases  instead  the  AU1-SHBLE moiety  and continues  translation  of  the  EGFP

moiety.The synonymous versions of  the  shble were  thus the only differences  between constructs,  and were

characterized by distinct degrees of similarity to the average human CUBias (estimated using the COdon Usage

Similarity INdex, COUSIN 68), GC composition at the third nucleotide of codons (GC3), and CpG dinucleotide

frequency (CpG) (Table 1). Modifications in the shble sequence also entailed variations on the mRNA folding

energy, calculated using the Vienna RNAfold webserver  69(Table 1). These four parameters combined allowed

for a good discrimination of all constructs (Sup. Fig. 2), partly reflecting sequence similarities (Sup. Table 1).

The COUSIN index quantifies the match between the CUBias of a focal sequence (in our case the different shble

synonymous versions) and the chosen reference (in our case the average CUBias of human genes) 68. Briefly, the

COUSIN is a normalised index so that a value of 1 corresponds to a focal sequence with similar CUBias to the

reference; values above 1 correspond to similar CUBias to those in the reference, but of larger magnitude; a

value of 0 corresponds to a lack of CUBias; and negative values correspond to CUBias opposite to those in the

reference. The values for the COUSIN index exemplify the large variation in CUBias explored by our construct

repertoire, ranging from “hyper-humanised” versions (namely shble#1 and shble#2, with COUSIN values above

2) to strongly “de-humanised” versions (namely shble#4 and shble#6, with negative COUSIN values).

Table 1. Experimental conditions: the different constructs, and their sequence composition variables. Codon

Usage Similarity index (COUSIN) values have been calculated against the average CUBias of human genes, as

in 68. Folding energy values for the total mRNA transcripts have been calculated using the RNAfold Webserver 69.

Condition Description COUSIN
of the shble
sequenceº

%GC3
of the shble
sequence

%CpG of
the shble
sequence

Folding energy of
the total transcript

(kcal/mol)

shble#1 The most common codons in the human genome 2.93 93.08 18.46 -649.34

shble#2 The GC-richest among the most common codons 2.982 99.23 22.56 -673.07

shble#3 The AT-richest among the most common codons -0.414 20.00 4.62 -581.47

shble#4 The rarest codons in the human genome -1.651 33.85 20.51 -613.49

shble#5 The GC-richest among the rarest codons 0.973 91.54 35.90 -687.76

shble#6 The AT-richest among the rarest codons -0.924 9.23 0.51 -543.50

#empty No shble but only EGFP CDS n.a. n.a. n.a. n.a.
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#superempty Neither shble nor EGFP CDS n.a. n.a. n.a. n.a.

mock No plasmid n.a. n.a. n.a. n.a.

2. Differences in CUBias of the shble gene resulted in differences in transcription.

After transfection, we monitored DNA levels for transfection efficiency using quantitative PCR (qPCR)

and we monitored mRNA levels for  transcription efficiency using retrotranscription followed by qPCR (rt-

qPCR) and RNA-sequencing (RNASeq). Analysis of the RNASeq read distribution revealed the presence of

splicing events within the  shble CDS for the two constructs with the lowest similarity to the human average

CUBias, namely shble#4 (construct using the rarest codon for each amino acid) and shble#6 (using rare and AT-

rich codons) (Sup. Fig. 3). The shble#6 transcript presented two spliced forms, using the same 5’ donor position

and differing in three nucleotides at the 3’ acceptor position. The shble#4 transcript presented one spliced form,

with donor and acceptor positions in the precise same locations observed for shble#6, despite the lack of identity

in the intron-exon boundaries.  The spliced intron (either  306 or 309 nucleotides long) was fully comprised

within the 396 bp long shble sequence (Sup. Fig. 4), and the event did not involve any frameshift. Thus, shble

splicing resulted in the ablation of the SHBLE protein coding potential without affecting the start codon and

without modifying the EGFP coding potential. It is important to state that none of these alternative splicing

events was predicted by the HSF (Human Splicing Finder) 70 nor the SPLM 71 splice detection algorithms used

for  sequence scanning during design.  Analysis  of  mRNA abundances  showed that  the  first  spliced isoform

(shared by both affected conditions) represented about 30% of the heterologous transcripts for shble#4, and 56%

for shble#6. The second spliced isoform, exclusively found in condition shble#6, corresponded to 22% of the

heterologous transcripts (Figure 1).

Full-length mRNA quantification showed differences in transcript levels across conditions, as follows:

(i) the highest values were found in shble#3 (using the AT-richest among common codons); (ii) the variance was

largest in shble#5 (using the GC-richest among rare codons); and (iii) shble#4 and shble#6 displayed the lowest

mRNA abundance even when considering the sum of all isoforms (Figure 1, Sup. Table 2). We further verified

that variations in transcript levels were not related to variations in transfection efficiency, by correcting the
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transcript levels after the plasmid DNA levels in each sample. After this normalisation, the above described

pattern  remained  unchanged  (Sup.  Fig.  5).  This  suggests  that  variations  in  mRNA levels  are  not  due  to

differences in the DNA level, and may instead be linked to the differentially recoded shble sequences.

In order to allow for further comparison between mRNA and protein levels, while accounting for the

differential splice events, we have taken into account that the SHBLE protein was exclusively encoded by the

full-length mRNA, while the EGFP protein could be translated from any of the three transcript isoforms. Hence,

we used the ratio full-length mRNA over total heterologous transcripts (i.e. full-to-total ratio) to estimate the

ratio of SHBLE-encoding over EGFP-encoding transcripts. This ratio was about 69% for shble#4, while for

shble#6  it  was  close  to  21%  (Sup.  Table  2).  For  the  rest  of  the  constructs,  there  was  virtually  no  read

corresponding to spliced transcripts and the ratio was in all cases above 99.96% (Sup. Table 2).

Figure 1. Transcript abundance after transfection with the different shble  gene  versions.  mRNA-levels are

expressed as transcripts per million values (TPM) for the full form (in dark blue) as well as for the two spliced

forms  (in  green  and  yellow).  Median  values  are  given  in  Sup.  Table  2.  Pie  charts  illustrate  the  average

proportions of the spliced forms detected in shble#4 and shble#6 conditions. The experiment was performed on

six biological replicates. Dark blue letters above the different bars refer to the results of a Wilcoxon rank sum

test. Conditions associated with a same letter do not display different median TPM values for the full mRNA

(p<0.05 after Benjamini-Hochberg correction).
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3. Differences in CUBias of the shble gene resulted in differences in SHBLE and EGFP protein levels.

After transfection, and in paired samples with the mRNA analyses, we quantified SHBLE and EGFP

protein levels by means of western-blot (Sup. Fig. 6, 7 and 8) and of label-free proteomics (Figure 2). Label-free

proteomic analysis allowed to detect EGFP proteins for all constructs, with EGFP abundance in shble#3 and

shble#6 being significantly lower than in other conditions (respectively 2.05 and 1.35 normalized iBAQ values,

compared to an overall median of 10.08 for the other constructs) (Figure 2C, Sup. Table 3). The SHBLE protein

was detected in all conditions but, for shble#6, it displayed extremely low abundance in five replicates and was

not detected in one replicate (normalized iBAQ value of 0.03) (Figure 2B, Sup. Table 3). Further, the shble#3

condition displayed lower SHBLE protein levels than the remaining four other constructs (normalized iBAQ

value of 0.93, compared to an overall median of 3.83) (Figure 2B, Sup. Table 3). Within a given condition,

values for SHBLE and EGFP protein levels displayed a strong, positive correlation, albeit  with a particular

expression pattern for version shble#6 (Pearson’s R coefficients ranging from 0.82 to 0.95 depending on the

condition; all p-values < 0.05; Figure 2A). The overall SHBLE-to-EGFP ratio was 0.46±0.1 for all constructs

(ranging between 0.36 and 0.56 for the individual constructs), the exception being shble#6, which displayed very

low ratio (0.03), as expected given the very low SHBLE levels (Figure 2D). For this specific construct, we find

good correlation between SHBLE and EGFP levels (Pearson’s R = 0.93, p = 0.0072, Figure 2A), but the slope

linking them is ten times lower than for any other construct (Figure 2D). Label-free proteomic quantification

results were validated by image-based western blot quantification (Sup. Fig. 6, 7 and 8).
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Figure 2. Expression of SHBLE and EGFP at the proteomic level,  and relation between them. Panel A:

Pearson's correlation between SHBLE (y axis) and EGFP (x axis) protein levels.  Six different conditions are

shown: shble#1 (dark green),  shble#2 (orange),  shble#3 (purple),  shble#4 (pink),  shble#5 (light  green) and

shble#6 (yellow).  Marginal  boxplots  (panels  B  and C)  respectively  show SHBLE and EGFP protein  levels

expressed as normalized iBAQ values. Median values are given in Sup. Table 3. The SHBLE-to-EGFP ratio for

each of the six conditions (median of the ratios for each replicate) are given in panel D. Six replicates are shown

(with three of them corresponding to two pooled biological replicates). Letters in the different panels refer to the

results of a pairwise Wilcoxon rank sum test. Within each panel, conditions associated with a same letter do not

display different median values of the corresponding variable (p<0.05 after Benjamini-Hochberg correction).

4. Differences in CUBias and mRNA physicochemical properties partly explain differences in translation

efficiency.

10

192
193
194
195
196
197
198
199
200

201

202



After  separately  analysing  mRNA and  protein  levels  in  cells  transfected  with  the  different  shble

versions, we aimed at establishing a connection between transcription and translation levels. Because SHBLE

and EGFP protein analyses led to similar results, we focus here only on SHBLE. We chose to normalise the

protein levels over the corresponding mRNA levels, and we interpret this protein-to-mRNA ratio as a proxy for

translation efficiency. The median values of the protein-to-mRNA ratio were similar for  constructs #1, #2, #4

and #5, whereas conditions #3 and #6 were discordant (Figure 3A and Sup. Table 4): translation efficiency  is

over five times lower for condition #3 (which displayed high transcription levels) and over thirteen times lower

for condition #6 (Sup. Table 4). Overall, variation in full-length transcript levels explained 45% of the variation

in SHBLE protein levels (Pearson’s R=0.45, p = 0.0054) (Sup. Fig. 9). This explanatory power of mRNA levels

over protein levels increased to 68% when considering only conditions #1, #2, #4 and #5 (Pearson’s R=0.68, p =

0.00025).  As  discussed  below,  these  values  fit  well  in  previous  descriptions  in  the  literature  about  the

explanatory power of variations at the mRNA level to account for variations at the protein level for eukaryotic

cells 72.

In  order  to  understand  the  differential  translation  efficiency  between  constructs,  we  explored  the

explanatory potential of four sequence composition and mRNA physicochemical parameters. We observe first

that the closer the CUBias of the  shble synonymous versions to the average human CUBias, the higher the

translation efficiency in our human cells in culture (Pearson’s R=0.67, p=6.6e-6, Figure 3B). The exception to

this trend was condition shble#4 which displayed the lowest match to the human CUBias, but a higher protein-

to-transcript ratio than shble#6 or shble#3 (Figure 3B). The lower ratio for these two later conditions could be

explained at the light of the three other tested parameters. Indeed, an increase of GC3 content corresponded

monotonically to an increase in the protein-to-transcript ratio (Pearson’s R=0.81, p=1.5e-9, Figure 3C), and

shble#6  and  shble#3  had  the  lowest  GC3 content.  Increase  in  CpG frequency  (Figure  3D)  resulted  in  an

increased translation efficiency that reached a plateau for all recoded forms beyond 20% CpG presence, even for

the very CpG-rich form shble#5.  Finally, variation in mRNA folding energy (Figure 3E), corresponded to a bell-

shaped variation in SHBLE protein-to-transcript ratio so that both low and high values resulted in decreased
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translation  efficiency  .  Thus,  the  shble#3  condition  combined  suboptimal  values  for  all  four  studied

characteristics and resulted in poorly efficient translation in spite of the high mRNA levels (see part 2).  In

contrast, shble#1 (recoded using the most used codons), displayed maximum values for each parameter, thus

resulting in the most efficient translation (highest protein-to-mRNA ratio).

Figure 3. Variation of translation efficiency as a function of CUBias and mRNA physicochemical parameters.

Panel A: Combined distribution of SHBLE protein level (y axis - normalized iBAQ) and shble transcript level (x

axis - TPM); individual construct boxes are condensed in a single one when the squares defined by the first and

third quartiles overlaps (which is the case for shble#1, shble#2, shble#4 and shble#5, shown condensed in dark

green). For each construct, median values are given in Sup. Table 4. Panel B: Pearson’s correlation between

SHBLE protein-to-mRNA ratio and COUSIN index of the shble recoded version. Panel C: Pearson’s correlation

between the SHBLE protein-to-mRNA ratio and the GC3 percentage of the shble  recoded version.  Panel D:

SHBLE protein-to-mRNA ratio variations depending on CpG frequency of the shble recoded version. Panel E:

Correspondence  between  the  SHBLE  protein-to-mRNA ratio  and  the  folding  energy  of  the  corresponding

transcript. Curves in panels D and E correspond to a LOWESS (LOcally WEighted Scatter-plot Smoother) local

polynomial regression to visually display co-variation between the two variables plotted. The results for six full

biological replicates are shown, each of them with independent RNAseq measurements but pooled by pairs for

the label-free proteomic analysis.

12

228

229

230

231

232
233
234
235
236
237
238
239
240
241
242
243
244



5. Differences in CUBias lead to differences in EGFP protein expression at population level, but also at

single-cell level.

We have demonstrated above that variation in SHBLE protein levels were highly correlated to variation

in the  EGFP fluorescent  reporter  (Figure  2A).  On this  basis,  and in  order  to  further  assess  the  phenotypic

variation at the single-cell level, we performed an extensive analysis of the cell-based fluorescence values of 16

transfection replicates by means of fluorescent cytometry analyses. We verified first that the total fluorescence

signal  (i.e.  the  total  fluorescence levels in  the cell  population) was strongly correlated to  the  EGFP level

estimated by the label-free proteomics (Pearson’s R=0.86, p=4.8e-15, Sup. Fig. 10). We observed then that the

single-cell distribution of this fluorescence signal was (i) different for all conditions from that obtained with cells

expressing EGFP alone (i.e. "empty" control; individual Anderson-Darling test results shown in Table 2); and (ii)

multimodal for all  the conditions expressing EGFP (Figure 4A, Sup. Fig. 11).  We have approximated these

multimodal cell populations by means of curve deconvolution, and showed that a composite distribution based

on two underlying  Gaussian-like  cell  populations  fitted  well  the  observed  distributions  (Sup.  Fig.  12).  We

conclude thus that synonymous variation of the upstream shble sequence modulated and modified the individual

cell  fluorescence  phenotype,  and  that  for  a  given  version  of  the  shble sequence,  cells  were  differentially

impacted by the construct expression, overall defining two subpopulations of low or high EGFP expression.

Table 2. Quantitative parameters of green fluorescence signal distribution per condition. 
Condition Distribution similarity 

to #empty 
(AD score and 
associated p-value)* 

Percentage of
fluorescent 
cells

Total fluorescence 
value for the whole 
population$

Mean fluorescence 
value for the underlying
first Gaussian 
subpopulation (log10)

Mean fluorescence value 
for the underlying second
Gaussian subpopulation 
(log10)

#shble1 1580 0 89.56% 105.269 e9 bc 4.84 6.61
#shble2 1480 0 90.17% 98.311 e9 b 4.78 6.59
#shble3 497 4.637 e-272 79.37% 39.384 e9 d 4.31 5.86
#shble4 463 7.325 e-254 88.00% 63.395 e9 ac 4.58 6.28
#shble5 108 4.244 e-59 83.85% 70.719 e9 abc 4.63 6.32
#shble6 11600 0 51.78% 13.990 e9 e 3.97 5.05
#empty 0 1 82.26% 57.692 e9 a 4.44 6.18
#superempty 64100 0 0.45% 135.449 e6 n.a. n.a. n.a.
mock 62500 0 1.00% 141.163 e6 n.a. n.a. n.a.
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*"AD", results of an Anderson-Darling test for distribution similarity, comparing each curve distribution in
Figure 4A against that obtained for the "empty" condition (the null hypothesis being that the samples compared
could have been drawn from a common population). $The statistical test is a pairwise Wilcoxon rank sum test.
Conditions associated with a same letter do not display different median values for the corresponding variable
(p<0.05 after Benjamini-Hochberg correction).

For  each condition,  we describe  the  fluorescence behaviour  of  the  whole  cell  population using the

following  summary  statistics  (Table2):  (i)  the  fraction  of  cells  displaying  fluorescence  above  the  cell

autofluorescence threshold (discontinuous line in  Figure 4A);  (ii)  the total  fluorescence value of  the whole

population; (iii)  the median fluorescence value of the population; (iv) the mean fluorescence value for each

underlying Gaussian populations. We observed that the median fluorescence value of the population correlated

very well with the overall fluorescence (R=0.85, p-value<2.2e-16, Sup. Fig. 13), but that the later allowed for a

better discrimination between conditions. Conditions shble#1 and shble#2 displayed the highest fluorescence

values, while shble#3 displayed ca. 2.5 times lower fluorescence values and shble#6 over seven times lower

fluorescence values (Table 2, Sup. Fig. 13).  Differences in total fluorescence levels reflected a reproducible

impact  of  the  synonymous  construct  expression on  the  complete  cell  population,  independently  of  whether

individual cells displayed very high or very low fluorescence: indeed, between each condition, both underlying

Gaussian curves shifted following the same pattern, as illustrated by the variations of their mean values (Figure

4B,  Table 2).  When combining all  our summary statistic  variables into a principal  component analysis  for

describing the cellular population fluorescence we observed that indeed shble#6, and to a lesser extent shble#3,

were the most divergent conditions, characterized by the highest proportion of negative or low-fluorescent cells,

while shble#1 and shble#2 displayed very similar behaviour characterized by high fluorescence values in all

scores  (Sup.  Fig.  14).  These  results  strengthened  the  observations  obtained  by  the  label-free  proteomic

experiments, and underlied the cell-to-cell reproducibility of the impact of synonymous substitutions.
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Figure 4. Distribution of the fluorescence signal for the different constructs, and mean values of the two

gaussian curves modeling the fluorescence distribution. Panel A depicts the density of the green fluorescence

signal (log10(FITC-A)) considering 480,000 individual cells for each condition: shble#1 (most common codons,

dark green), shble#2 (common and GC-rich codons, orange), shble#3 (common and AT-rich codons, purple),

shble#4 (rarest codons, pink), shble#5 (rare and GC-rich codons, orange light green), shble#6 (rare and AT-rich

codons, yellow). The positive control is  "empty" (i.e.  transfected cells,  expressing EGFP without expressing

SHBLE, in dark grey); and the negative controls are "superempty" (i.e. transfected cells, not expressing EGFP

nor SHBLE, in medium grey) and "mock" (i.e. untransfected cells, in light grey). The dashed black line shows

the threshold for positivity (14,453 green fluorescence units, corresponding to 4.16 in a log10 scale). Panel B

represents the first gaussian mean1 (population of lower intensity, in red), and the mean2 (population of higher

fluorescence intensity, in blue). Values in the y-axis (cell fluorescence) are continuous, and the red and blue

colours are for representation purposes only.  For each category (mean1 and mean 2), the statistical test is a

pairwise Wilcoxon rank sum test, with Benjamini-Hochberg adjusted p-values on sixteen biological replicates:

for  each  colour,  conditions  associated  to  a  same  letter  do  not  display  different  median  values  of  the

corresponding variable. 

5. Differences in CUBias of the shble gene resulted in differences in cell growth dynamics and antibiotic

resistance.

Finally,  since  our  shble reporter  gene  confers  resistance  to  the  bleomycin  antibiotic,  we  aimed  at

quantifying the functional impact of the different molecular phenotypes described above on cellular fitness. For

this,  we performed a real-time cell  growth analysis,  both in presence and in absence of antibiotics.  For all
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conditions, we monitored over time a dimensionless parameter named "Cell Index", that integrates cell density,

adhesion, morphology and viability; and we evaluated the total area below the curve as a proxy for cell growth

(Sup. Method 2.8). We fitted to a Hill’s equation the variation of Cell Index values (i.e. cell growth) as a function

of the antibiotic concentration, so that we could recover for each condition: (i) the maximum growth in the

absence of antibiotic (Figure 5, variable for the y axis); and (ii) the estimation for the antibiotic concentration

value that inhibited cell growth to half the maximum (IC50; Figure 5, variable for the x axis). Higher values of

the variable “maximum growth in the absence of antibiotics” reflect a lower impact of the heterologous construct

in the cell, while higher values of the IC50 variable reflect a higher resistance potential of the cell to face the

bleomycin  antibiotic.  The  results  show that  cell  populations  that  grow more  in  the  absence  of  antibiotics

correspond also to cell populations that resist higher antibiotic concentrations. We interpret that this connection

between growth variables  reflects  a  trade-off  between (i)  the  potential  benefit  of  the  antibiotic  resistance -

conferred by SHBLE expression, and realised only in the presence of antibiotics-, and (ii) the cost incurred

through  heterologous  protein  overexpression  -associated  to  both  SHBLE and  EGFP expression  and  that  is

present  independently  of  the  presence  of  the  antibiotic.  This  trade-off  results  indeed  in  a  non-monotonic

relationship between heterologous protein levels and cell  growth:  condition shble#6 produces low levels  of

heterologous protein and thus allows for the highest growth in the absence of antibiotics, but it does not confer

the highest resistance levels; while conditions shble#1 and shble#2 produce the highest amounts of heterologous

proteins and incur thus in a substantial burden, heavier than the potential benefit of the conferred antibiotic

resistance (Figure 5A, and Sup. Fig 15).

We aimed at disentangling the two forces in this trade-off by testing two additional constructs containing

solely versions shble#1 and shble#4 of the shble gene, and not linked to the egfp reporter (labelled #1* and #4*

in Figure 5B). Comparing the growth-related variables for shble versions #1 and #4 with or without EGFP, both

versions shble#1* and shble#4* displayed a similar increase in maximum growth in the absence of antibiotic

with respect to their EGFP+ relative counterparts (respectively 38% and 24%). However, while the IC50 of

shble#4* remained similar to shble#4, the antibiotic resistance for version shble#1* dramatically increased with
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respect to that of shble#1. Notwithstanding, in the absence of antibiotic shble#4* still performed better than

shble#1*.

Overall,  we  interpret  that  (i)  in  the  absence  of  antibiotic,  higher  amount  of  heterologous  protein

(independently  of  whether  they correspond to  SHBLE, or  to  SHBLE and EGFP) had pronounced negative

impact on cell fitness; and that (ii) in the presence of antibiotic, the optimum between the conferred resistance

and the cost of protein burden was determined by both,  the total  amount of heterologous proteins,  and the

abundance of the SHBLE protein, conferring antibiotic resistance. 

Figure 5. Variation of cell growth in presence or in absence of antibiotics, for gfp-coupled constructs (A) or

gfp-free constructs (B). For both panels, the y axis represents maximum cell growth in absence of antibiotics,

proxied as the area under the curve of the delta Cell Index ("AUC"); and the x axis represents the bleomycin

concentration  that  reduces  to  50%  the  corresponding  growth  ("IC50").  The  plotted  central  values  were

estimated fitting variation of Cell Index data to Hill’s equation (pooled data, 3 to 6 biological replicates), and

bars  correspond  to  the  estimated  standard  error.  Statistical  tests  are  Welch  modified  two-sample  t-tests,

performed for the AUC (small letters, y axis) or the IC50 (big letters, x axis): for each size of letters, conditions

associated with a same letter do not display different median values of the corresponding variable (p<0.05 after

Benjamini-Hochberg correction). As an example for interpretation, orange and pink values are not different in

the y-axis projection (labelled both with b) but differ on their x-axis projection (labelled respectively with B and

D). For panel A, the size of the dots is proportional to the corresponding total of fluorescence, which is used as a

proxy for the level of heterologous proteins. Six different conditions are shown: shble#1 (dark green), shble#2

(orange), shble#3 (purple), shble#4 (pink), shble#5 (light green), shble#6 (yellow). For panel B, three different

conditions are shown: superempty control (grey), versions shble#1* (dark green) and shble#4* (pink) lacking

the EGFP reporter gene. 
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DISCUSSION

In  the  present  manuscript  we  have  analysed  the  multilevel  molecular  effects  of  CUBias  on  gene

expression  and  have  further  explored  higher-level  integration  consequences  at  the  cellular  level.  We  have

focused on the effects of CUBias of our focal shble gene on its own expression and function, i.e. the so-called

cis-effects of CUBias. The global  trans-effects of CUBias of our focal gene on the expression levels of other

cellular genes have been analysed and described in an accompanying manuscript  73. Our results show that a

combination of synonymous changes results in important multilevel variation in gene expression levels and leads

to dramatic differences in the cellular phenotype. We summarize our observations of these cis-effects in Figure 6,

which displays variation in each of the variables that we have monitored, either  experimentally or sequence-

dependent. Conditions shble#1 and shble#2 display a very similar global profile, consistent with the fact that

they are  identical  in  95.6% of their  sequence (Table  S1).  Further,  conditions  with CUBias  close  to  human

average one (shble#1, shble#2 and shble#5) cover a similar phenotypic space, very different from the phenotypic

space covered by conditions with CUBias opposite to the human average (shble#3, shble#4 and shble#6).
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Figure 6.  Summarizing combination of sequence composition parameters and multi-level  phenotypes for

each customized version of the shble antibiotic resistance gene. The six versions, designed with the one amino

acid – one codon strategy,  are shown by decreasing similarity to the  average genome human CUBias (i.e.

expressed as their cousin score, (59)): CUBias for shble#1 and shble#2 are similar to the human CUBias but of

larger magnitude, #5 CUBias is similar to the human CUBias, and #3, #6, #4 CUBiases are opposite to the

human CUBias. A. shble#1 (most common codons, in dark green), B. shble#2 (common and GC-rich codons, in

orange),  C. shble#5 (rare and GC-rich codons, in light green),  D. shble#3 (common and AT-rich codons, in

purple),  E. shble#6 (rare and AT-rich codons, yellow) and  F. shble#4 (rarest codons, in pink). The sequence

characteristics are from the top to the left: "cousin"; "CpG" (the CG dinucleotide frequency in the recoded

shble), "GC3" (the GC content at the third codon position in the recoded shble), and "mRNAfold" (the mRNA

folding energy for the recoded shble transcript). The different phenotypic variables, from the bottom to the right

are: "DNA" (the transfection efficiency, estimated represented by the amount of plasmid after qPCR), "RNA"

(the amount of SHBLE-coding full mRNA, estimated after rt-qPCR), "protein" (the amount of SHBLE protein,

estimated  by  quantitative  proteomics),  "fluo"  (the  total  fluorescence  signal,  estimated  by  flow  cytometry),

"growth" (proxy of the cellular fitness in absence of antibiotics, estimated by real-time cell growth analysis) and

"IC50" (proxy of the cellular fitness in presence of antibiotics, estimated by real-time cell growth analysis). All

variables  have  been  independently  re-scaled  for  representation  purposes,  from  lowest  (central)  to  highest

(periphery) value.
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Variation in CUBias modifies alternative splice patterns. In the heterologous transcripts for the two

versions with the most dissimilar CUBias with respect to the human average (shble#4 and shble#6) we identified

splicing events, located within the shble ORF, that were not detected by leading splice site predicting algorithms

70,71. Splicing ablated the  SHBLE coding potential  without  modification of the  EGFP coding potential.  The

spliced transcripts amounted to 20% and 80% of all heterologous transcripts in shble#4 and shble#6 respectively.

Variation in CUBias across intron-exon boundaries has been described in several eukaryotes (e.g. human, fishes,

fruit  flies,  nematodes,  plants  11,74,75);  and  splicing  regulatory  motifs  that  can  be  disrupted  by  synonymous

mutations have been described in mammals  9,75–78.  A reduced single nucleotide polymorphism density and a

decreased rate of synonymous substitutions have further been reported in these regulatory regions, which can be

interpreted as a signature for selective pressure 79,80. Thus, selection against mRNA mis-processing can constitute

an important selective force that results in concomitant selection for a precise local CUBias  81. This selective

force  has  even  been  proposed  to  outperform  translational  selection  in  Drosophila  melanogaster  82.  It  is

interesting to state here that we did not detect any western blot signal in any of our nine biological replicates that

could correspond to the spliced, short SHBLE polypeptides in the shble#4 and shble#6 conditions (see Sup. Figs.

6, 7 and 8). Further, we did not detect in our proteomic analyses any trace of the expected peptides that could

differentiate the spliced SHBLE versions from the full length SHBLE protein. For western-blot detection we

used an AU1 epitope located in the N-terminus of the protein, and that should be present in all SHBLE forms,

spliced or not.  Lack of western-blot detection of these N-terminal spliced short SHBLE polypeptides could

simply reflect a technical limitation, as they are barely 54 amino acids-long (or 53 for the minor spliced version

in shble#6). However, in the case of shble#6 the lack of concordance between SHBLE levels and EGFP levels

(see the very low slope in Figure 2A and 2B) suggests rather a genuine very low presence of spliced SHBLE

molecules in our samples. We interpret that our results are rather compatible with a low stability of the spliced,

short SHBLE versions, possibly linked to a faulty folding that could lead to a rapid degradation upon synthesis.

Indeed, these spliced, short SHBLE versions span less than 20 amino acids of the original SHBLE sequence, so
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that  the protein that is  expected to fold into the known quaternary structure  83 actually does not  exist after

splicing.

Variation in CUBias correlates with differences in mRNA levels. We observe significant differences

in mRNA levels among the recoded  shble versions,  with shble#3 showing over five times more full-length

mRNA than shble#6 (Table S2). Transcript abundance at a given time point is the result of integrating mRNA

synthesis and degradation kinetics. In our experimental setup differential transfection efficiency does not explain

differences in mRNA levels because variation in mRNA levels between conditions was independent of variation

in DNA abundance. We interpret as well that differential ribosomal recruitment is unlikely to explain differences

in mRNA levels, all our synonymous constructs share the same CMV promoter, the 5' untranslated region, and

the AUG context. We interpret therefore that the observed differences in mRNA levels probably result from

differential mRNA stability and decay, rather than from primary transcription regulation. Such an effect has been

described for bacteria (E. coli 84), unicellular eukaryotes (S. cerevisae, S. pombe 35, N. crassa, T. brucei 85,86), and

metazoa (fruit fly 87 or zebrafish 88). In human cells, it has been shown that nucleotide composition and CUBias

have an impact on mRNA stability, so that transcripts with longer half-lives are enriched in GC-rich codons 89,

possibly  through  translation-associated  decay  mechanisms  90.  Nevertheless,  in  our  experimental  design

heterologous  mRNA levels  are  not  a  monotonic  function  of  mRNA composition,  as  versions  shble#3  and

shble#6 are the AT-richer ones (respectively 20% and 10% GC3) but display respectively the highest and the

lowest levels of heterologous mRNAs. The effects on version shble#6 are difficult to address as only 20% of the

total heterologous transcripts contain the customized  shble sequence. It is thus impossible to disentangle the

effects of sequence composition on the full mRNA level from the consequences of the splicing defect. The very

high transcript  levels  and very low protein levels  for  version shble#3 are  interesting in  the  light  of  recent

findings on CUBias linked mRNA degradation and/or storage: indeed, AU-rich mRNAs have been found to

locate in P-bodies, potentially leading to accumulation of this transcript in the cell  91. In addition, the P-body

retention of those transcripts reduce their availability to translation and could further explain the reduced protein

level for this condition (see discussion below).
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Variation in  CUBias  and  mRNA structure  correlate  with  differences  in  translation  efficiency.

Considering all  conditions together, our experimental setup allowed us to determine that variation in mRNA

levels explains only around 45% of the variation in protein levels, which fits well previous descriptions in the

literature for a wide diversity of experimental systems 72,92,93. Such relatively weak explanatory power would not

be expected if all mRNAs were translated at a constant rate, and has thereby motivated studies to elucidate

which factors are involved in the regulation of translation  94.  Indeed,  the literature  suggests that  in  general

variations at the mRNA level do not suffice to predict variation at the protein level  95, and that this lack of

predictive power is worse at the single-cell level than at the cell population level 96. Here, we provide evidence

that co-variation between mRNA levels and protein levels depends on CUBias of our focal gene. Particularly, the

AT-rich shble#3 version displayed the highest mRNA levels but contrasting low amounts of the corresponding

protein. A possible explanation for this phenomenon could be the selective translation impairment of AT-rich

transcripts.  As mentioned above, this can result  from P-body retention,  which physically sequesters AT-rich

mRNAs in cell  granules making them unavailable for translation  91.  Other mechanisms may additionally be

involved in selective  translation impairment.  For instance,  in  human cells,  the protein Schlafen11 has been

shown to prevent translation of AU-rich transcripts 97,98. Given that the AT-rich shble#4 version displays only a

moderate translation impairment, we interpret that the dramatic phenotype of shble#3 (high mRNA levels and

low protein levels) arises in fact from the combination of suboptimal variables for which a role in optimizing the

expression of heterologous genes had already been evidenced 11 : (i) similarity to human average CUBias; (ii) the

CpG frequency; and (iii) the mRNA folding energy.

(i) gene versions with a better match to the average CUBias result in higher protein-to-mRNA ratios.

This result is in disagreement with previous reports, as well as with descriptions showing the very limited impact

of CUBias on gene expression in mammals, compared to other features 30,99. Nevertheless, it is complicated to

disentangle the effect of CUBias from other composition characteristics, such as GC and GC3 content. It is even

more difficult to interpret them in terms of neutralist or selectionist origin, as both evolutionary hypotheses could

account for variation in either parameter (10). 
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(ii)  Regarding intragenic CpG frequency, we report a negative impact  of  very low CpG values   on

translation efficiency. Such direct effect of low CpG values on translation efficiency had never been reported

before, and CpG frequency had been shown to impact heterologous protein amount through its impact on  de

novo transcription instead 100,101. More precisely, high CpG depletion was previously associated to low mRNA

levels, that weren't evidenced as a result of changes in nuclear export, alternative splicing or mRNA stability

100,101. Indeed, a signature for selection towards decreased values of CpG has been consistently reported  102,103,

experimentally verified by the detrimental effects of increased CpG levels on protein synthesis 104,105, and further

corroborated through experimental evolution 106.

(iii)  Regarding  the total mRNA folding energy,  we also report  a negative impact  on translation  of

extreme  values.  Molecular  modelling,  along  with  experimental  studies,  suggests  a  prominent  role  of  the

initiation steps,  rather than elongation steps,  on the translation efficacy  41,107,108.  And indeed,  several  studies

addressing the impact of mRNA folding on translation, established the importance of the 5' mRNA secondary

structure in translation initiation. A shared trend has been identified in  bacteria, yeast, protists, and mammals

31,55,108–111:  a  reduced  mRNA stability  near  the  site  of  translation  initiation  is  correlated  to  a  higher  protein

production. In bacteria and yeast, strong folding around the start codon prevents ribosome recruitment 31,108; and

a "ramp" of rare codons along the 50 to 100 first  coding nucleotides has been reported, with the effect  of

reducing mRNA folding energy and with the proposed consequences of avoiding ribosome traffic jam 111,112. A

systematic exploration using 244,000 synthetic DNA sequences on E. coli has shown that variation in secondary

mRNA structure stability immediately around the start codon accounts for around 36% of the total variance in

protein  synthesis,  while  variation  in  downstream  mRNA folding  energy  accounts  only  for  ca. 4-5% 113.

Nonetheless, an important role of translation elongation cannot be ruled out. Particularly, in human transcripts,

de Sousa Abreu and coworkers describe no effect of the initiation rate on translation efficiency 92. A recent study

in human cell lines, highlights the consequences of the secondary structures along the CDS in the functional half

life of  mRNA  110,  which can be related to  overall  GC and GC3 content  as well  as to  CUBias  89,90.  In  our

experimental setup all constructs share by design the nucleotide sequence around the start codon: the 5’UTR

corresponds to the plasmid backbone and the first 24 coding nucleotides are identical (AU1 tag). Thus, there are
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actually no differences in folding energy when considering only the immediate sequence stretch around the start

codon,  but  there  are  instead  differences  when  considering  the  full  mRNA length.  We  interpret  that  our

observation of a non-monotonic effect of the full-length mRNA folding energy on the protein-to-mRNA ratio is

related to translation elongation impairment rather than to an effect on translation initiation.

Variation  in  CUBias  modifies  intensity  and  distribution  of  the  fluorescent  reporter. We  have

analysed  the  fluorescence  pattern  of  the  cell  populations  by  means  of  cytometry.  We  report  phenotypic

variability  of  transfected  human  cells,  observable  as  multimodal  distribution  of  cellular  fluorescence.  The

multimodal distribution of cellular fluorescence intensity on the transfected cells could be captured in all cases

by fitting to a combination of two Gaussian curves. This pattern was similar for all constructs expressing egfp,

including the empty control and we interpret that it reflects phenotypic plasticity and may be related to transient

cellular  states,  such as cell  division status and/or differential  kinetics of  recovery from transfection-induced

cellular stress. Similar differences in gene expression have been actually reported when using cytomegalovirus-

based expression vectors 114, and have been proposed to be related to cell-cycle dependent cellular states. This

bimodal pattern is notwithstanding puzzling, and deserves more attention using a tailored experimental design,

that  our  setup  cannot  provide.  Beyond  the  shared  bimodal  distribution  of  fluorescence  levels,  we  observe

significant and concerted shifts of both cellular subpopulations towards higher (e.g. for the constructs enriched in

the most used codons) or lower (e.g. for constructs using AT-rich codons) values of fluorescence intensity. Thus,

differences in overall EGFP-based fluorescence between recoded constructs do not arise from differences in the

number of positive cells expressing a given quantity of EGFP, but rather from differences in EGFP synthesis at

the individual cell level. Our experimental model using human cells shows that CUBias exerts an important

effect on the overall levels but also in the cell-based levels of the heterologous protein produced.

Heterologous gene expression leads to a trade-off between the benefit conferred through antibiotic

resistance and the burden imposed by extra protein synthesis. Strong heterologous expression imposes an

enormous basal burden on the cellular economy 115. This impact on cellular economy is consistent with the broad

literature about the direct (cis) and indirect (trans) costs of translation 81: first, because translation is the per-unit

most expensive step during biological information flow 116, consuming ca. 45% of the whole energy supply in
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human cells in culture 117; second, because virtually all ribosomes are bound to mRNA molecules and potentially

engaged in translation 117, so that highly-transcribed heterologous mRNA increase overall ribosome demand and

cause loss of opportunity for cellular gene translation; and third, because heterologous protein synthesis can lead

to additional downstream costs by protein folding, protein degradation and off-target effects of mistranslated

proteins 45,118–120. Additionally, the mismatch between the CUBias of the heterologous gene and of the expression

machinery can display strong trans-effects on the cellular homeostasis, by sequestering ribosomes onto mRNAs

that hardly progress over translation but also by creating a competition for the tRNA pools 31,121. Scarcity of the

less common tRNAs is actually a severe limiting factor for protein synthesis in bacteria  122, and this pressure

over rare tRNAs can become extreme in conditions of stress, or changes in nutritional status 10,123,124.

The shble gene that we have used as a base for synonymous recoding encodes for a small protein that

confers  resistance  to  bleomycin  through  antibiotic  sequestering  125.  This  protein-antibiotic  binding  is

equimolecular and reversible: an SHBLE protein dimer binds two bleomycin molecules 83. The strength of the

antibiotic resistance conferred is probably a monotonic, function of the SHBLE amount produced. However, our

results suggest that the benefit conferred by SHBLE synthesis in the presence of antibiotic is largely exceeded by

the cost and burden of heterologous protein synthesis. We show an important trade-off between the intensity of

heterologous SHBLE+EGFP protein synthesis and the actual bleomycin resistance levels, consistent with the

strong burden on cell economy imposed by heterologous gene overexpression. This cost can be partly levered

when ablating EGFP synthesis in the heterologous constructs, so that a substantial fraction of the burden is

removed.  Overall  we  conclude  that  CUBias  of  the  heterologous  gene  conferring  antibiotic  resistance

differentially impacts cellular fitness as a function of the differences in heterologous protein synthesis.
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CONCLUSION

The main conundrum for scientists approaching CUBias remains the contrast between, on the one hand,

the large and sound body of knowledge showing the strong molecular and cellular impact of gene expression

differences arising from CUBias and, on the other hand, the thin evidence for codon usage selection at the

organismal level.  Under the neutral hypothesis,  differences in average genome CUBias can be explained by

biochemical biases during DNA synthesis or repair (e.g. polymerase bias) 126; and, in vertebrates, CUBias at the

gene level may be shaped by their relative position to isochores (e.g. alternation between GC-rich and AT-rich

stretches along the chromosomes)  127. In vertebrates, GC-biased gene conversion mechanisms enhance further

such local variations  126,128,129. The selective explanation, often referred to as "translational selection", proposes

that different codons may led to differences in gene expression, by changes in alternative splicing patterns,

mRNA localisation or stability, translation efficiency, or protein folding 130. If such CUBias-induced variation in

gene  expression  were  associated  with  phenotypic  variation  that  results  in  fitness  differences,  it  would,  by

definition,  be  subject  to  natural  selection.  Nevertheless,  differences  in  fitness  associated  with  individual

synonymous  changes  seem to  be  mostly  of  low  magnitude,  so  that  selection  may  only  act  effectively  in

organisms with large population sizes 131 such as bacteria 7, yeast 132, nematodes 133, but also in fruit flies 19,20,134,135,

branchiopods  136 and  amphibians  137.  In  organisms  with  small  population  sizes,  such  as  mammals,  and

particularly humans, evidences of selection for (or against) certain codons remain nevertheless controversial

22,138.  In  the  present  manuscript,  we  have intended to  contribute  to  this  debate  by  exploring  the  multilevel

phenotypic consequences of  codon usage differences of  heterologous genes in human cells.  Our results  are

consistent with a scenario in which the potential evolutionary forces at play in shaping human CUBias, select for

a strict control of mRNA processing (e.g. splicing, and secondary structure, potentially affecting stability and

decay),  and  that  the  resulting mRNA properties  in  fine  impact  translation elongation.  Notwithstanding,  the

disparity between predictions and findings encountered in powerful, codon-usage related experimental evolution

approaches highlights the gap in our understanding at connecting phenotype and fitness over different integration

levels:  molecules,  cells,  tissues  and  organisms.  Despite,  or  thanks  to,  the  immense  body  of  knowledge
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accumulated over the last fifty years, the quest for interpreting and integrating the riddle of CUBias over broad

scales of time and biological complexity remains tempting and unsolved.

MATERIAL AND METHODS

Design of the shble synonymous versions and plasmid constructs. In the present work we have used

as focal gene the bleomycin resistance gene present in the genome of the actinobacterium  Streptoalloteichus

hindustanus (ATCC 31158, GenBank X52869.1). We have chosen to focus on this shble gene for a number of

reasons: 1) because of the mechanism of action of the antibiotic: bleomycin is cytotoxic by intercalating and

introducing breaks in the dsDNA 66. In this experimental setup we are interested in mRNA translation process,

and many antibiotics interfere with protein synthesis at different levels, so that we chose a focal gene with no

impact on the mechanisms that we will be evaluating. 2) because of the mechanism that confers resistance: the

SHBLE  protein  interacts  on  an  equimolecular  fashion  with  the  bleomycin  antibiotic,  so  that  the  SHBLE

homodimer binds and sequesters two bleomycin molecules  125, without performing any catabolic activity on

them nor on any other cellular metabolite. The antibiotic resistance level conferred is thus expected to be a

direct, monotonic function of the total amount of SHBLE protein produced. 3) because of the small size of the

protein synthesised: the SHBLE protein is barely 124 amino acids long, thus minimising the total length of the

heterologous mRNA and the impact of translation on the host cell. We did not consider the use of the wild type

shble sequence in S. hindustanus as a meaningful control in our experimental setting using mammalian cells in

culture, and we have thus focused on recoding strategies to maximise synonymous differences with respect to

our human cell expression system. Six synonymous versions of the shble gene were designed applying the "one

amino acid--one codon" approach, i.e., all instances of one amino acid in the shble sequence were recoded with

the same codon, as follows (Table 1): shble#1 used the most frequent codons in the human genome; shble#2

used the GC-richest among the two most frequent codons; shble#3 used the AT-richest among the two most

frequent  codons;  shble#4 used  the  least  frequent  codons;  shble#5 used the  GC-richest  among the two less

frequent  codons;  and shble#6 used the  AT-richest  among the two less  frequent  codons.  An invariable  AU1

sequence  was  added as  N-terminal  tag  (amino  acid  sequence  MDTYRI)  to  all  six  versions  (Sup.  Fig.  1).
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Nucleotide  content  between  versions  are  compared  in  Sup.  Table  1.  Our  recoding  strategy  succeeds  at

maximising differences in nucleotide content and to explore a large sequence space in terms of total GC, GC3

and transcript folding energy (Table 1; Sup. Fig. 2). The normalized COUSIN 18 score (COdon Usage Similarity

Index),  which  compares  the  CUBias  of  a  query  against  a  reference,  was  calculated  using  the  online  tool

(http://cousin.ird.fr) 68. A score value below 0 informs that the CUBias of the query sequence is opposite to the

reference CUBias; a value close to 1 informs that the query CUBias is similar to the reference CUBias, and a

value above 1 informs that the query CUBias is similar the reference CUBias, but of larger magnitude  68. All

shble synonymous  sequences  were  chemically  synthesised  and  cloned  on  the  XhoI restriction  site  in  the

pcDNA3.1+P2A-EGFP plasmid (InvitroGen), in-frame with the P2A-EGFP reporter cassette. In this plasmid,

the expression of the reporter gene is located under the control of the strong human cytomegalovirus (CMV)

promoter and terminated by the bovine growth hormone polyadenylation signal.  All constructs encode for a

1,602 bp transcript, encompassing a 1,182 bp au1-shble-P2A-EGFP coding sequence (Sup. Fig. 1). The folding

energies of all 1,602 bp transcripts were calculated using the RNAfold Webserver (http://rna.tbi.univie.ac.at/cgi-

bin/RNAWebSuite/RNAfold.cgi) 69,  with  default  parameters  (Table  1).  During  translation,  the  P2A peptide

(sequence  NPGP)  induces  ribosome skipping  67,  meaning  that  the  ribosome  does  not  perform the  Gly-Pro

transpeptidation bond and releases  instead  the  AU1-SHBLE moiety  and continues  translation  of  the  EGFP

moiety.  The HEK293 human cell  line used here is  proficient  at  performing ribosome skipping on the P2A

peptide 139 The transcript encodes thus for one single coding sequence but translation results in the production of

two proteins: SHBLE (theoretical molecular mass 17.2 kDa) and EGFP (27.0 kDa). As controls we used two

plasmids:  (i)  pcDNA3.1+P2A-EGFP  (named  here  "empty"),  which  encodes  for  the  EGFP  protein;  (ii)

pcDNA3.1+ (named here "superempty") which does not express any transcript from the CMV promoter (Table

1). In order to explore the burden of EGFP expression we generated two additional constructs by subcloning the

AU1-tagged shble#1 and shble#4 coding sequences in the XhoI restriction site of the pcDNA3.1+ backbone,

resulting in the constructs shble#1* and shble#4*, lacking the P2A-EGFP sequence.

28

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602



Transfection  and  differential  cell  sampling. All  experiments  were  carried  out  on  HEK293  cells

(ACCT CRL-1573).  Cell  culture  conditions,  transfection methods and related reagents  are  detailed  in  Sup.

Methods 2.2. Cells were harvested two days after transfection and submitted to analyses at four levels (Figure 7):

(i)  nucleic  acid  analyses  (qPCR  and  RNAseq);  (ii)  proteomics  (label-free  quantitative  mass  spectrometry

analysis and western blot immuno-assays); (iii) flow cytometry; and (iv) real-time cell growth analysis (RTCA).

Overall,  the  different  experiments  were  performed on  33  biological  replicates,  corresponding  to  a  variable

number  of  repetitions  depending  on  the  considered  analysis  (Sup.  Method  1).  Transfection  efficiency  was

evaluated  by  means  of  qPCR targeting  two  invariable  regions  of  the  plasmid  and  revealed  no  significant

differences between the constructs (Sup. Methods 2.3).

Figure 7. Overview of the sampling protocol and the measured phenotypes. HEK293 cells were seeded on 6-

well plates (A) one day before transfection with the customized pcDNA3.1 plasmids (B). Transfected cells were

harvested two days later (C). mRNA levels were assessed by RNAseq (D), protein levels were measured by label-

free proteomics (E), EGFP fluorescence was assessed at the single cell level by flow cytometry (F) and cell

growth  was  assessed  by  xCELLigence  RTCA  (Real  Time  Cell  growth  Analysis)  in  presence  of  different

concentrations of the bleomycin antibiotic (G).
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RNA sequencing and data analysis. Transcriptomic analysis was performed on six biological replicates

and eight conditions: shble#1 to shble#6, #empty, and mock (for which the sample is submitted to the exact same

procedures,  including the transfection agent,  but  in  absence of  plasmid). Paired 150bp Illumina reads were

trimmed  (Trimmomatic  v0.38)  140 and  mapped  on  eight  different  genomic  references (HISAT2 v2.1.0)  141,

corresponding  to  the  concatenation  of  the  human  reference  genome

(GCF_000001405.38_GRCh38.p12_genomic.fna, NCBI database, 7th of February 2019) and the corresponding

full sequence of the plasmid. For the mock condition, we considered the human genome and all possible versions

of the plasmid. Virtually no read of those negative controls mapped to the plasmid sequences. For all other

conditions, read distribution patterns along the plasmid sequence were evaluated with IGVtool 142. In all cases

the au1-shble-p2a-EGFP coding sequence displayed highly similar coverage shape for all constructs, except for

shble#4 and shble#6 for which respectively one and two alternative splicing events were observed (Sup. Fig. 3

and 4). None of these splice sites were predicted when the theoretical transcripts were evaluated using Human

Splicing Finder (HSF, accessed via https://www.genomnis.com/access-hsf) 70, or with SPLM - Search for human

potential splice sites using weight matrices (accessed via http://www.softberry.com/) 71. When relevant, the three

alternative  transcript  isoforms  identified  were  further  used  as  reference  for  read  pseudomapping  and

quantification with Kallisto (v0.43.1) 143. Details on RNA preparation and bioinformatic pipeline are provided in

Sup. Methods 2.4 and Sup. Methods 3.

Label-free proteomic analysis. Label-free proteomic was performed on nine biological replicates (three

of them measured independently, and six pooled by two), and eight different conditions: shble#1 to shble#6,

#empty, and mock. For each sample, 20 to 30 µg of proteins were digested in-gel and the resulting peptides were

analysed  online  using  a  Q Exactive  HF mass  spectrometer  coupled  with  an  Ultimate  3000  RSLC system

(Thermo Fisher Scientific).  MS/MS analyses were performed using the Maxquant software (v1.5.5.1)  144. All

MS/MS spectra were searched by the Andromeda search engine  145 against a decoy database consisting in a

combination  of  Homo  sapiens entries  from  Reference  Proteome  (UP000005640,  release  2019_02,

https://www.uniprot.org/), a database with classical contaminants, and the sequences of interest (SHBLE and

EGFP). After excluding the usual contaminants, we obtained a final set of 4,302 proteins detected at least once
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in one of the samples. Intensity based absolute quantification (iBAQ) values were used to compare protein levels

between samples 146.

Western  blot  immunoassays  and  semi-quantitative  analysis.  Western  blot  immunoassays  were

performed on nine replicates and nine conditions: shble#1 to shble#6, #empty, #superempty, and mock. Three

different  proteins  were  targetted:  β-TUBULIN,  EGFP,  and  SHBLE  (via the  invariable  AU1  epitope  tag).

Analysis from enzyme chemoluminiscence data was performed with ImageJ  147 by «plotting lanes» to obtain

relative density plots (Sup. Fig. 7). 

Flow cytometry analysis. Flow cytometry experiments were performed on a NovoCyte flow cytometer

system (ACEA biosciences). 50,000 ungated events were acquired with the NovoExpress software, and further

filtering of debris and doublets was performed in R with an in-house script (filtering strategy is detailed in Sup.

Method 2.7). For subsequent analysis, 30,000 events were randomly picked up from each sample. Seven samples

had less than 30,000 viable events and, in order to ensure the same sample size for all conditions, the four

corresponding replicates were excluded. After a first visualization of the data, two replicates were ruled out

because they displayed a typical pattern of failed transfection for the condition shble#1 (Sup. Method 2.7),

resulting in 16 final replicates being fully examined.

Real time cell growth analysis (RTCA).  RTCA was carried out on an xCELLigence system for the

mock and the superempty controls, and further eight constructs: the previously analysed shble#1 to shble#6, plus

the shble#1* and shble#4* lacking the EGFP reporter gene. Cells were grown under different concentrations of

the Bleomycin antibiotic ranging from 0 to 5000 μg/mL (Sup. Method 2.8). Three to six biological replicates

were performed, including technical duplicates for each replicate. Cells were grown on microtiter plates with

interdigitated gold electrodes that allow to estimate cell density by means of impedance measurement. Measures

were acquired every 15 minutes, over 70 hours (280 time points). Impedance measurements are reported as "Cell

Index" values, which are compared to the initial baseline values to estimate changes in cellular performance

linked to the expression of the different constructs (Sup. Figure 16)  . For each construct we estimated first

cellular fitness by calculating the area below the curve for the delta-Cell index vs time for the cells grown in the
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absence of antibiotics. We estimated then the ability to resist the antibiotic conferred by each construct through

calculation of IC50 as the bleomycin concentration that reduces the area below the curve to half of the one

estimated in the absence of antibiotics (detailed methods in Sup. Method 2.8).

Data availability. RNAseq raw reads were deposited on the NCBI-SRA database under the BioProject

number PRJNA753061. The mass spectrometry proteomics data have been deposited to the ProteomeXchange

Consortium via the PRIDE 148 partner repository with the dataset identifier PXD038324.
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