
HAL Id: hal-03955928
https://hal.science/hal-03955928

Submitted on 25 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The no-meet matroid
Walid Ben-Ameur, Natalia Kushik, Alessandro Maddaloni, José Neto, Dimitri

Watel

To cite this version:
Walid Ben-Ameur, Natalia Kushik, Alessandro Maddaloni, José Neto, Dimitri Watel. The no-meet
matroid. Discrete Applied Mathematics, 2022, �10.1016/j.dam.2022.12.008�. �hal-03955928�

https://hal.science/hal-03955928
https://hal.archives-ouvertes.fr


The No-Meet Matroid

Walid Ben-Ameur1, Natalia Kushik1, Alessandro Maddaloni1, José
Neto1, and Dimitri Watel2

1Samovar, Telecom SudParis, Institut Polytechnique de Paris,
Palaiseau, France

2Samovar, ENSIIE, Evry, France

November 17, 2022

Abstract

Given a digraph and a subset of vertices representing initial positions,
we study the existence problem of infinitely long walks, one starting from
each initial position, that never meet. We show that the subsets for which
this is possible constitute the independent sets of a matroid. We prove
that the independence oracle is polynomial-time. We also provide a more
efficient algorithm to compute the size of a basis. Then we focus on the
orientation problem of the undirected edges of a mixed graph to either
maximize or minimize the rank of a subset. Some NP-hardness results
and inapproximability results are proved in the general case. Polynomial-
time algorithms are described for subsets of size 1. We also report several
connections with other matroid classes. For example, we show that the
class of no-meet matroids strictly contains transversal matroids while it
is strictly contained inside gammoids. Some extensions and related appli-
cations are also discussed.

Keywords: Matroids, Graphs, Cycles, Orientation, Complexity, PCP

1 Introduction

Let G = (V,E) denote a digraph (directed graph) with vertex set V and edge
set E. The graph G may contain loops. Let S ⊆ V . A vertex subset S′ is called
a successor of S if S′ can be obtained from S by replacing each vertex in S by
one of its successors. And S′ is called valid successor of S if |S′| = |S|. The set
of all valid successors of S is denoted by M(S).

Formally, S′ ∈ M(S) if and only if there exists a bijection σ : S → S′ such
that σ(v) ∈ Γ+(v),∀v ∈ S where Γ+(v) = {w ∈ V : (v, w) ∈ E}. A vertex
subset S ⊆ V is called independent if there exists an infinite sequence (Si)i∈N\0
with S1 = S and Si+1 ∈ M (Si) ,∀i. Notice that an independent set is not
necessarily a stable set (we are here using the terminology related to matroid

1



theory). S is independent if it possible to find |S| infinitely long walks, one
starting at each vertex of S, such that for each integer number k, the vertices
appearing in the kth position in the |S| walks are all different. Assume |S|
vehicles moving on a (directed) network: they start from S (one vehicle at each
vertex of S) and at every step they move simultaneously to a neighbour vertex,
we want to study if they can do this infinitely many times without ever meeting
at any vertex. Independent sets are subsets for which this is possible.

We note that the meeting problem on graphs has gained its interest previ-
ously. Various results have been obtained in the area of merging or meeting
of two or more tokens (or vehicles / robots in the literature). In particular,
the interested reader can refer to a (deterministic) rendezvous problem where
two given robots should meet at some point, given a set of instructions (see for
example, [1]). The meeting time for random walks and an arbitrary number of
tokens (for connected undirected graphs) has been also evaluated [2]. The au-
thors however, are not aware of any works devoted to the contrary, i.e., no-meet
problem which we state and solve in this paper.

The set of all independent subsets in G is denoted by I. The number of
vertices of G is denoted by n.

Let N(G) (N for no-meet) be the pair (V, I). The paper is dedicated to
the study of N(G). We will prove in Section 2 that N(G) is a matroid. Then
we show in Section 3 that the independence oracle is polynomial-time. A more
efficient algorithm is proposed in Section 4 to compute the size of a basis of the
matroid. Section 5 is dedicated to mixed graphs where we study the orientation
problem of undirected edges to minimize or to maximize the rank of some set in
the related matroid. Connections with other classes of matroids are investigated
in Section 6. Extensions and applications are presented in Section 7. Further
open questions are proposed in the last section.

2 N(G) is a matroid

Unless otherwise stated, we assume that G = (V,E) is a digraph on n vertices
and S ⊆ V . We are going to prove that N(G) is a matroid. It will then be
called the no-meet matroid.

Let L denote a positive integer. Let B denote the digraph having for
vertex set V 1 ∪ V 2 with V i =

{
vi : v ∈ V

}
for i = 1, 2 and for edge set

E =
{(
v1, v2

)
: v ∈ V

}
. For i = 1, 2, . . . , L, Bi =

(
V
(
Bi
)
, E
(
Bi
))

denotes
a copy of B. The vertices of Bi are denoted v1i (resp. v2i ) for the i-th copy of
v1 (resp. v2). Then, let GS denote the digraph with

� vertex set V (GS) = {s, t} ∪
L⋃
i=1

V (Bi)

� edge set E (GS) =
L⋃
i=1

E(Bi) ∪
{(
s, v11

)
: v ∈ S

}
∪
{

(v2L, t) : v ∈ V
}
∪

L−1⋃
i=1

{(
v2i , w

1
i+1

)
: (v, w) ∈ E

}
.

2



s

v11 v21

w1
1 w2

1

...

...

v1i v2i

w1
i w2

i

...

...

v1i+1 v
2
i+1

w1
i+1w

2
i+1

...

...

v1L v2L

w1
L w2

L

...

...

t

S

B1 Bi Bi+1 BL

· · · · · ·

Figure 1: Construction of the graph GS . For readability, only two edges of G
are represented, including the edge (v, w).

GS will also be seen as a flow network where the capacity of each edge is set
to 1.

Proposition 2.1. Let S ⊆ V and set L := 1 +
(
n
|S|
)
. The set S is independent

if and only if the maximum st-flow value in GS is |S|.

Proof. [⇐]. Assume that there exists a maximum st-flow f in GS of value
|S|. For each i ∈ {1, 2, . . . , L} define Wi =

{
v ∈ V : f

(
v1i , v

2
i

)
= 1
}

. We then
have W1 = S. Due to the number L of layers and to the capacity constraints,
there must exist two indices i1, i2 such that Wi1 = Wi2 . This implies the
existence of an infinite sequence (Si)i∈N∗ with S1 = S and Si+1 ∈ M (Si) ,∀i
(e.g. considering the repetition of the sequence Wi1 ,Wi1+1, . . . ,Wi2 after S =
W1, . . . ,Wi1−1).
[⇒]. Assume that S is an independent set. Then an st-flow of value |S| in G
may be defined as follows from any infinite sequence of independent sets (Si)i∈N∗
starting with S. Consider then the first L sets of the sequence:

S = S1 → S2 → S3 → . . .→ SL.

Let σi denote a bijection from Si to Si+1 as described in the introduction, for
i = 1, . . . , L − 1. Then a maximum flow in GS is obtained by sending a unit
flow on each of the |S| paths (represented by their set of vertices):(

s, v11 , v
2
1 ,
(
σ1(v)

)1
2
,
(
σ1(v)

)2
2
, . . . ,

(
σL−1

(
σL−2 (. . . (v))

))2
L
, t
)
, v ∈ S.

Theorem 2.2. N(G) = (V, I) is a matroid.

Proof. Following the proof of Proposition 2.1, one can easily check that if S is
independent, then the same holds for any subset of S. So (V, I) is an indepen-
dence system. We now prove that the augmentation property holds for (V, I).
Let T ⊂ V such that |S| < |T | and T ∈ I.

3



To do so, we build an auxiliary graph HS which is obtained from GS by
adding a vertex s′ and the following set of edges, all having unit capacity:
(s, s′) and (s′, v11),∀v ∈ T \ S. The number of layers in HS is L = 1 +

(
n
|S|
)
.

Assume that the minimum cut value in HS is less than or equal to |S|, and
let C denote such a minimum cut in HS . If (s, s′) ∈ C, then this would imply the
existence of an st-cut in GS of size at most |S|−1, a contradiction with S being
independent (see Proposition 2.1). So (s, s′) does not belong to any minimum
cut in HS . But then, the minimum cut value in HS is also the same as the one
of GT∪S (since by contracting the nodes s and s′ in HS we get GT∪S). Since T
is assumed to be independent, then by Proposition 2.1, the minimum cut value
cannot be less than |T | > |S|, a contradiction.

So there exists in HS an integral flow of value |S|+1. And by Proposition 2.1,
it follows that S ∪ {z} is independent with z =

{
w : f

(
s′, w1

1

)
= 1, w ∈ T \ S

}
,

where f denotes a maximum flow in HS .

To illustrate the independent sets of the matroid, let us consider the graph
of Figure 2 (left part) where the outdegree of each vertex is equal to 1. We
also show the graphs G2 and G3 obtained from G as follows. The vertices
of G2 correspond with subsets of vertices of G of size 2. If S′ ∈ M(S) with
|S| = |S′] = 2 then G2 contains an edge from S to S′. If the outdegree of
some vertex S (a subset S is identified with the vertex representing it in G2)
is equal to 0, then all edges going into S are eliminated since going through
S will never help to identify independent sets. This procedure is recursively
repeated to simplify G2. Observe for example that the set M({1, 6}) = ∅ and
that is why there is no edge from {5, 3} to {1, 6} even if {1, 6} ∈ M({5, 3}).
Independent sets of size 2 are then simply the sets that are not isolated in G2.
Thus, {3, 5}, {2, 4} and {1, 6} are the only dependent sets of size 2. In fact,
{3, 5}, {2, 4} and {1, 6} are the circuits of N(G) (minimal dependent sets). G3

is constructed in similar way by considering subsets of size 3. One can see here
that there are 8 independent sets of size 3: {1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 4, 5},
{2, 3, 6}, {2, 5, 6}, {3, 4, 6} and {4, 5, 6}. In fact, each one of these 8 subsets
is a basis (a maximal independent set). This means that if we build G4, we
get a graph with 0 edges (after application of the recursive edge elimination
procedure described above). Observe that there is a loop involving {1, 2, 3}
since {1, 2, 3} ∈ M({1, 2, 3}). In fact, it is easy to show that for any digraph G
for which the outdegree of each vertex is equal to 1, each connected component
contains exactly one directed cycle whose size is equal to the size of maximal
independent sets inside the connected component. The basis size is just the sum
of cycle sizes through the connected components of the graph. It is also a simple
exercise to show that all circuits are of size 2. A subset S = {v, w} of size 2 is
a circuit if the paths starting from v and w (these paths are unique here since
the outdegree is 1) meet inside the directed cycle. In the example of Figure
2 there is only one connected component and the directed cycle goes through
vertices 1, 2 and 3. The sets {3, 5}, {2, 4} and {1, 6} are obviously circuits.
More generally, to check whether a subset S = {v, w} is a circuit where v and
w belong to the same connected component, one can select any vertex u inside

4



1

23

4

5 6

1, 2

1, 3

1, 4
1, 5

2, 3

2, 5

2, 6

3, 4

3, 6
4, 5

4, 6

5, 6

1, 2, 3

1, 2, 5
1, 3, 4

1, 4, 5

2, 3, 6

2, 5, 6
3, 4, 6

4, 5, 6

Figure 2: A digraph G where the outdegrees are equal to 1, and the corre-
sponding digraphs G2 and G3. For readability, nodes with degree 0 in those two
graphs were removed.

the cycle (for example, vertex 1 in our case) and compute l(v, u) and l(w, u)
respectively denoting the length of the unique path from v to u and from w
to u. Then S = {v, w} is a circuit if and only if v and w belong to the same
connected component and l(v, u) ≡ l(w, u)(mod lc) where lc is the length of the
directed cycle contained in the same component as v and w. In the example of
Figure 2, we have lc = 3, l(5, 1) = 4 and l(3, 1) = 1 implying that {3, 5} is a
circuit. The example of graphs where outdegrees are equal to 1 is then easy to
handle: circuits are easy to find and their number is quadratically bounded, the
size of the basis is just the sum of size of directed cycles, and a set is independent
if and only if it does not contain any circuit.

3 Independence oracle

We have seen at the end of Section 2 that one can easily determine whether
a set is independent when outdegrees are equal to 1. In the general case, we
can either use the characterization provided in Proposition 2.1 or try to build
graphs of type Gk as described in Section 2. However, it might seem that we
should assume that |S| is upper bounded by a constant not depending on the
instance to get polynomial-time algorithms (otherwise both the number of layers
in the graph of Figure 1 and the number of vertices in Gk with k = |S| are not
polynomially bounded). We will nevertheless prove that there is a polynomial-
time independence oracle by showing that the number of layers considered in
the graph GS can be polynomially bounded. We will first prove the result for
strongly-connected digraphs and then generalize it to all digraphs.

Let us introduce some notation. Consider the standard Boolean operators ⊕
(the ”or” operator) and ⊗ (the ”and” operator). Given two Boolean matrices A
and B where the number of columns of A and the number of rows of B are both

equal to some p, A⊗B denotes the matrix where (A⊗B)ij =
p⊕
k=1

aik⊗bkj . The

kth Boolean power of a square matrix A is then A⊗k = A⊗k−1⊗A = A⊗A⊗k−1.

5



If A represents the adjacency matrix of a digraph G, then (A⊗k)ij = 1 if and
only if there is in G a walk of length k from i to j. Since the number of Boolean
n-square matrices is finite, some cyclicity should be expected when we compute
the powers of the adjacency matrix. This can be precisely stated by considering
the index of imprimitivity (sometimes called the index of cyclicity) defined as
the greatest common divisor of the lengths of all the directed cycles of the given
graph [3]. The index of imprimitivity is obviously less than or equal to n where
n is the number of vertices.

Lemma 3.1. [3] Let G = (V,E) be a strongly connected digraph. Let A be
the adjacency matrix of G, c = c(A) > 0 the index of imprimitivity and n the
number of vertices of G, then there exists some number kn,c defined by

kn,c =


(n− 1)2 + 1 if c = 1 (1)

max(n− 1,
n2 − 1

2
+
n2

c
− 3n+ 2c) if c ≥ 2, (2)

such that A⊗k+c = A⊗k for all k ≥ kn,c.

Roughly speaking, since c ≤ n, we can say from Lemma 3.1 that for k above
O(n2), there exists k′ < k such that A⊗k

′
= A⊗k.

Proposition 3.2. Assume that G is a strongly-connected digraph. Indepen-
dence can be checked in polynomial time.

Proof. Let S be a subset of vertices and consider the graph GS introduced in
Section 2 and represented in Figure 1. Consider a minimum cut separating s
and t. The size of the cut is less than or equal to |S|. Suppose that (v2i , w

1
i+1)

belongs to such cut. Since all s-t paths going through (v2i , w
1
i+1) necessarily

contain (v1i , v
2
i ), we can replace (v2i , w

1
i+1) by (v1i , v

2
i ). An edge of type (s, v11)

can also be replaced by the edge (v11 , v
2
1). In other words, we can assume that

the minimum cut contains only edges inside the graphs Bi. The edges of the
minimum cut can be numbered e1, e2,. . . , el (with l ≤ |S|). For j = 1, . . . , l, let
ij be the index such that ej ∈ Bij .

Among all possible minimum cuts separating s and t, consider one minimiz-
ing the largest index of graphs Bi containing one edge of the cut. Said another
way, Bil contains an edge of the minimum cut (el) while Bi does not contain
any such edge for i > il, and we consider a minimum cut for which the index il
is as small as possible.

We may assume that i1 ≤ i2 ≤ ... ≤ ijlSuppose that for some j we have
ej ∈ Bij , ej+1 ∈ Bij+1 and ij+1 > ij . Observe that the walks between ver-
tices of Bij and vertices of Bij+1 can be seen as walks of length ij+1 − ij in
the original graph G. From Lemma 3.1 (and the remark following it), since we
are minimizing il, the gap ij+1 − ij cannot be above O(n2) due to the cyclic
behaviour of the powers of the adjacency matrix A. We give here a formal proof
of this fact.
Assume for a contradiction that ij+1 − ij = k + c, for some integer k such
that k ≥ kn,c, with c and kn,c as described in Lemma 3.1. Given any edge

6



e =
(
v1i , v

2
i

)
in Bi with i ≥ ij+1, let ←−e denote the edge

(
v1i−c, v

2
i−c
)

in Bi−c.

Similarly, given any edge e =
(
v1i , v

2
i

)
in Bi with i ≤ L − c, let −→e denote the

edge
(
v1i+c, v

2
i+c

)
in Bi+c.

Claim. The set of edges
←−
E = {e1, e2, . . . , ej ,←−e j+1,

←−e j+2, . . . ,
←−e l} defines an

st-cut in GS.

Proof of the claim.

Assume for contradiction that
←−
E does not define an st-cut in GS . Then there

exists some st-path P in GS not containing any edge in
←−
E . Let

(
p1il−c, p

2
il−c

)
de-

note the edge of P contained in Bil−c. Also, let
(
w1
ij
, w2

ij

)
(resp.

(
z1ij+k, z

2
ij+k

)
)

denote the edge of P in Bij (resp. Bij+k). Assume that←−e j+1 =
(
r1ij+k, r

2
ij+k

)
.

Then, since ←−e j+1 /∈ P, necessarily z 6= r. Let P1 (resp. P2) denote the part
of the path P from s to w2

ij
(resp. from z1ij+k to p2il−c). Since Ak+c = Ak,

there also exists a path Q in GS from w2
ij

to z1i(j+1)
= z1ij+k+c not containing

any edge in E . Assuming that P2 corresponds to the sequence of edges (fi)i∈I

for some index set I, let
−→
P 2 denote the path corresponding to the sequence of

edges
(−→
f i

)
i∈I

. Since P2 does not intersect
←−
E ,
−→
P 2 does not intersect E . Then,

the concatenation of P1, Q and
−→
P 2 is a path from s to p2il in GS not containing

any edge in E . Since E does not contain any edge in Bi for i > il and since any
node different from t has outdegree at least one in GS there must exist a path
from p2il to t in GS . The concatenation of this path together with P1, Q and
−→
P 2 leads to an st-path in GS not intersecting E , a contradiction with E being
an st-cut in GS . This terminates the proof of the claim.

It follows from the last claim that ij+1−ij < kn,c+c, for all j ∈ {1, 2, . . . , L−1}.
Also, with an argumentation similar to the one used in the proof of the claim
we can easily show that necessarily i1 < kn,c + c.

In the worst case ij+1− ij = O(n2). Since this holds for any pair of consecu-
tive edges of the cut and also for the first edge (if e1 is in Bi1 , then i1 = O(n2)),
we deduce that il = O(|S| · n2) = O(n3). The number of layers that we should
consider in GS is then only O(n3) implying the polynomiality of the indepen-
dence oracle.

To handle the general case of graphs containing several strongly-connected
components, one might try to use a generalization of Lemma 3.1 found in [3].
The index of imprimitivity of general graphs is defined as the least common mul-
tiple of the nonzero imprimitivity indexes of all strongly-connected components
of the graphs. A theorem of [3] states that A⊗k+c = A⊗k for all k ≥ 2n2−3n+2.
However, the best upper bounds for the index of imprimitivity c are only of
exponential type for general graphs [4]. Another approach is then needed to
generalize the previous proposition.

We can see from the proof of Proposition 3.2 that given a strongly-connected

7



digraph G, the number of layers does not need to be more than O(n3). This
is in fact equivalent to say that starting from a dependent set S, any set of |S|
walks will necessarily meet in O(n3) steps.

Corollary 3.3. Assume that G is strongly-connected and let S be a dependent
set of N(G). Any set of |S| walks starting at S will necessarily meet after at
most O(n3) steps.

Proof. By Proposition 2.1, since S is assumed to be dependent, the maximum
st-flow value inGS is at most |S|−1. By the proof of Proposition 3.2, there exists
a minimum cut in GS that is composed of edges contained in the subgraphs Bi

of GS with i = O(n3). It follows that for any set of |S| st-paths in GS at least
two of them must intersect after at most O(n3) layers. This is equivalent to
say that at least two of the corresponding walks in G meet after at most O(n3)
steps.

Another way to rephrase the corollary is to say that there exists a constant C
such that for any strongly-connected digraph G = (V,E), for any set of vertices
S ⊆ V that is dependent in N(G), and for any set of |S| walks starting at
S, there are at least two walks that contain the same vertex at some position
k ≤ Cn3 (i.e., they meet).

Assume that G has r strongly-connected components H1, H2,..,Hr. Let
S ⊆ V be a subset of vertices of G. Let Sj ⊆ S be the set of vertices of S
belonging to the strongly-connected component Hj .

Lemma 3.4. If S is dependent in N(G), then there exists at least one compo-
nent Hj such that Sj = S ∩ V (Hj) is dependent in N(Hj).

Proof. If Sj is independent, then one can build |Sj | walks inside Hj starting
from Sj that never meet (in the sense introduced in Section 1). If all Sj are inde-
pendent, then we can build no-meeting |S| walks starting from S, contradicting
the dependency of S.

Theorem 3.5. Let G be any digraph. Independence can be checked in polyno-
mial time.

Proof. Let S =
{
v1, v2, . . . , v|S|

}
be any dependent set. Consider a longest

sequence S = S1 → S2 → S3 → . . . → SL starting from S such that Si+1 ∈
M(Si). We obviously have M(SL) = ∅ and Si 6= Sj for any i < j. Also,

to the sequence (Si)
L
i=1 we can associate a set of |S| walks (P q)

|S|
q=1 with P q

corresponding to the sequence of vertices (wqi )
L
i=1 such that wq1 = vq and wqi is

the vertex appearing in position i for i = 1, . . . , L in the walk P q.
Assume that G has r strongly connected components H1, . . . , Hr. Since the

graph G′ obtained by shrinking these strongly-connected components does not
contain directed cycles, once a walk P q leaves a component Hj , it can never go
back to it. This implies that the number of indices i for which wqi and wqi+1 do
not belong to the same component is at most r− 1. Consequently, there are at
most (r − 1) · |S| = O(n2) indices i among {1, . . . , L} for which there exists at

8



least one walk P q moving from one component to another one.
Let us consider two indices a and b for which such moves occur and such that
there are no moves between a and b. In other words, for each q ∈ {1, . . . , |S|}
and each index i ∈ {a+1, . . . , b−1}, wqi and wqi−1 belong to the same component

while there exists at least one index q′ (resp. q′′) such that wq
′

a and wq
′

a−1 (resp.

wq
′′

b and wq
′′

b−1) are not in the same component.

Let Sja = Sa ∩Hj . From Lemma 3.4, we know that there is at least one index

j ∈ {1, 2, . . . , r} such that Sja is dependent in N(Hj). Then, from Corollary 3.3,

we necessarily have b− a = O(n3).
We consequently have L = O(n2 ·n3) = O(n5). This means that the number

of layers in the graph GS does not need to be more than O(n5).

4 Basis size

The size of a basis can obviously be computed using the independence oracle
described in Section 3. A more efficient algorithm is described in this section.

Following [5], a cycle subdigraph is defined as a collection of vertex-disjoint
directed cycles {C1, . . . , Ck} of G = (V,E), such that V (Ci) ⊆ V and V (Ci) ∩
V (Cj) = ∅ for every i, j = 1, .., k. Notice that a cycle subdigraph does not need
to span all graph vertices. The size of the cycle subdigraph is the number of
edges contained in the cycles of the collection.

Let d+(v) (resp. d−(v)) denote the number of edges leaving (resp. entering)
v. Let us first recall this well-known decomposition result of k-regular digraphs
(a digraph where d+(v) = d−(v) = k for any v ∈ V ). Notice that loops and
parallel edges are allowed. The proof is given for sake of completeness.

Lemma 4.1. The set of edges of every k-regular digraph G = (V,E) can be
partitioned into the edge sets of k cycle subdigraphs of G.

Proof. Build a bipartite graph B by replacing each vertex v ∈ V by two vertices
v′ and v” and adding edge (v′, w”) whenever (v, w) ∈ E. This bipartite graph
is k-regular. From Kőnig-Hall Theorem, B contains a perfect matching. Then
by deleting the edges of the perfect matching we get another regular bipartite
graph for which we can apply the same decomposition result. This leads to a
decomposition of the set of edges of B into k edge-disjoint perfect matchings.
Each perfect matching of B is obviously equivalent to a cycle subdigraph of
G.

Lemma 4.2. Let G = (V,E) be a digraph such that d+(v) = d−(v) ≤ δ for any

v ∈ V . Then there is a cycle subdigraph of G containing at least

⌈
|E|
δ

⌉
edges

of G.

Proof. It is possible to build a δ-regular digraph G′ from G, by simply adding
enough loops. From Lemma 4.1, the edges of G′ can be partitioned into the edge
sets of δ cycle subdigraphs (of G′). Among these cycle subdigraphs, there must

9



1

2

3

4

5

6

7

8

V \{8}

V \{7}
V \{6}

V \{5}

V \{4}

V \{3}
V \{2}

V \{1}

Figure 3: A digraph G = (V,A), and the corresponding digraph G7

be one using at least

⌈
|E|
δ

⌉
edges of G. Notice this cycle subdigraph might

contain some of the loops that have been added. However, by deleting the loops
we still get a cycle subdigraph of G and the number of edges inside G does not
change since the deleted edges were not in G.

Theorem 4.3. Let G = (V,E) be a digraph. The size of a basis of N(G) (i.e.,
rank(V )) is equal to the size of the largest cycle subdigraph of G.

Proof. It is straightforward to verify that the set of vertices of a cycle subdigraph
X is an independent set since V (X) ∈M(V (X)).

Let S be an independent set. Let S1 = S, S2,. . . , Si,. . . be an infinite se-
quence of independent sets such that Si+1 ∈M(Si). Since the number of subsets
of size |S| is limited, this sequence contains at least one cyclic subsequence, say
Si0 , Si0+1,. . . ,Si0+c−1, Si0+c = Si0 .

Let σi be the bijection from Si to Si+1. Remember that for each v ∈ Si,
σi(v) ∈ Si+1 and (v, σi(v)) ∈ E.

Consider the digraph F having as vertex set Si0 ∪ . . .∪ Si0+c−1 and as edge
set all the edges of G related to bijections σi (for i0 ≤ i ≤ i0 + c− 1). An edge
that appears in µ bijections has µ parallel copies in F . Observe that F contains
|S| · c edges. Moreover, for each vertex v ∈ V (F ), we have d+(v) = d−(v) and
both are equal to the number of subsets Si0 , . . . , Si0+c−1 containing v. This
immediately implies that d+(v) = d−(v) ≤ c. Therefore by Lemma 4.2, F

contains a cycle subdigraph X ′ such that |V (X ′)| ≥ |S|·cc . Notice that a cycle
subdigraph of F is also a cycle subdigraph of G (even if F can contain different
copies of the same edge, a cycle subdigraph cannot contain more than a copy
of any edge).

Computing a largest cycle subdigraph is a well-know problem that can be
solved, for example, by computing a maximum weight perfect matching in a
bipartite graph whose complexity is O(n3) [5]

To illustrate the results above, we consider a directed graph having 8 vertices
and 12 edges (Figure 3). The set of bases of N(G) contains {1, 2, 3, 4, 5, 7, 8},

10



{1, 2, 3, 5, 6, 7, 8} and {1, 3, 4, 5, 6, 7, 8}. We also show the graph G7 (obtained as
described at Section 2). Observe that there is a loop around the set {1, 2, 3, 5, 6, 7, 8}
which corresponds to the vertex set of a cycle subdigraph. N(G) has here only
one circuit given by the set {2, 4, 6}.

5 Mixed-graph orientation for no-meet

Given an undirected graph H, one might be interested in orienting the graph
to get a directed graph H̄ such that the size of the basis of N(H̄) is maximized.
This problem is easy to solve since it can be seen as a maximum-weight 2-factor
problem (by adding 0-weight loops to H) and transformed into a maximum
matching using the construction of Tutte [6]. Then we only have to orient the
edges of the undirected cycles to get a cycle subdigraph.

A less trivial problem is to orient the edges of some mixed graph such that
some given subset S is independent in the corresponding no-meet matroid. More

formally, let H = (V,
−→
E ,U) be a mixed graph where

−→
E is a set of directed edges

while U is a set of undirected edges. Given a subset of vertices S ⊆ V , we would
like to check whether it is possible to orient the undirected edges U such that S is

independent in N(H̄) where H̄ is the obtained directed graph H̄ = (V,
−→
E ∪
−→
U ).

Let us call this problem, the no-meet mixed graph orientation problem.

Theorem 5.1. Deciding whether there is an orientation of the undirected edges
of a mixed graph such that a given subset S is independent in the related no-meet
matroid is NP-complete.

Proof. The decision problem is clearly in NP: given any orientation, it is possible
to check independence in polynomial time using the algorithm of Section 3.

A reduction from 3-SAT is proposed here. Let us consider a 3-SAT formula
that is a conjunction of m clauses C1, . . . , Cm where each Ci is a disjunction of
at most 3 variables among r Boolean variables x1, .., xr. A mixed graph H is
built as follows. For each variable xi, 4 vertices ui, vi, wi and zi are considered.
An undirected edge uivi has to be oriented: if it is oriented from ui to vi, then xi
receives the value true, otherwise xi is false. As shown in Figure 4, H contains
the directed edges (ui, wi) and (vi, zi). We add for each clause Cj two vertices
sj and tj . Assume that clause Cj contains the variable xi in positive form
(Cj = xi∨ . . .) while Ck contains xi in negative form (Ck = x̄i∨ . . .). Then sj is
connected to ui through a path of length aj where aj is a number that will be
determined later. Two vertices fj,i and gj,i are also considered. fj,i is connected
to wi through a path of length 1+aj and a directed edge (wi, gj,i) is added. The
graph H contains also an edge directed from zi to tj . Loops around tj and gj,i
are also considered. Since clause Ck contains x̄i, the vertices and edges relating
Ck and xi are symmetric to those defined for Cj : there is a path of length ak
from sk to vi, a path of length 1+ak connecting fk,i to zi, an edge (zi, gk,i) and
an edge (wi, tk). The numbers aj are chosen such that aj 6= ak and aj 6= ak + 1
for any pair of clauses Cj and Ck. We can, for example, take aj = j2. Observe

11



sj ui

sk vi

fj,i

fk,i

wi

zi

gj,i

tj

tk

gk,i

Figure 4: Gadget of the reduction from 3-SAT to the no-meet mixed graph
orientation problem. Note that the nodes sj , tj , sk and tk are attached to two
other such gadgets corresponding to their two other respective literals. Similarly,
the nodes ui and vi are connected to other nodes sl for each clause containing
respectively xi and x̄i.

that the number of vertices of H is at most 4r+2m+3
∑m
j=1(2aj +1) = O(m3)

implying the polynomiality of the construction.
Let S =

⋃m
j=1{sj} ∪

⋃i=1,...,r
j=1,..,m{fj,i : xi ∈ Cj} ∪

⋃i=1,...,r
j=1,..,m{fj,i : x̄i ∈ Cj}. Let

us show that there is an orientation of the undirected edges uivi of the mixed
graph H such that S is independent, if and only if, the 3-SAT formula can be
satisfied.

Let us assume that the 3-SAT formula is satisfiable and consider a truth
assignment satisfying it. As mentioned above, if the value of xi is true, then
edge uivi is oriented from ui to vi, otherwise it it oriented in the opposite
direction. Let us build |S| walks starting from S. First of all, for every j and
every i such that xi ∈ Cj (resp. x̄i ∈ Cj) we can construct walks from fj,i going
through wi (resp. zi), ending at gj,i and staying there forever (there is a loop in
gj,i). Since the 3-SAT formula is satisfied, there must exist for each clause Cj a
literal such that either xi ∈ Cj and xi is true or x̄i ∈ Cj and xi is false. In the
first case, we consider the walk starting at sj , going through ui, vi, zi, tj and
staying forever in tj (there is a loop in tj). In the second case, when xi appears
in negative form in a Cj and xi is false, then one can build a walk starting at
sj , going through vi, ui, wi, tj and staying there forever. These two families
of walks do not meet (in the sense defined in this paper) the walks starting in
fj,i. Observe that when j 6= k the two walks starting from sj and sk do not
meet since aj 6= ak. Observe also that if the walk starting at sj contains (ui, vi),
then it goes through zi, but the walk starting from fk,i goes also through zi (if
Ck contains x̄i). However, since aj 6= 1 + ak, these walks do not reach zi in
the same time. Similarly, if the walk starting at sj contains (vi, ui), it will not
meet the walk starting from fk,i (in wi). The |S| walks built in this way do
not meet showing that S is independent in the matroid related to the directed
graph obtained by orienting the edge uivi according to the truth values.

12



Let us now assume that there is an orientation such that S is independent
in the related no-meet matroid. There is a walk starting from each vertex of S
and these |S| walks do not meet. Observe that, by construction, if xi appears
in positive (resp. negative) form in Cj , then the walk starting at sj cannot go
through edge (ui, wi) (resp. (vi, zi)), otherwise it will meet at wi (resp. zi) with
the walk starting at fj,i. Therefore, either the walk starting from sj uses an
edge (ui, vi) and xi ∈ Cj , or it uses an edge (vi, ui) and x̄i ∈ Cj . It follows that
the orientation defines a satisfying truth assignment.

A natural extension of the independence problem considered in Theorem 5.1
is to find an edge orientation maximizing the rank of a given subset S ⊆ V .
Remember that the rank of set is the size of the largest independent subset
contained in the set. Let us use rmaxH (S) to denote such maximum rank (there
exists an orientation such that rmaxH (S) = rank(S) in N(H̄) where H̄ is the
directed graph obtained after the orientation of H).

To study the complexity of computing rmaxH (S), we are going to use the PCP
theorem [7]. Given a 3-SAT formula φ, let val(φ) be the maximum number of
clauses that can be satisfied. The PCP theorem states that there is a constant
0 < ρ < 1 such that for any language L ∈ NP , there is a mapping f from
NP to 3-SAT instances, computable in polynomial time, such that y ∈ L =⇒
val(f(y)) = m while y 6∈ L =⇒ val(f(y)) < ρm where m is the number of
clauses of f(y). Roughly speaking, it is NP-hard to distinguish between 3-SAT
instances that can be satisfied and those for which it is not possible to satisfy a
proportion ρ of its clauses.

Theorem 5.2. There is a constant 0 < α < 1 such that it is NP-hard to
approximate rmaxH (S) within a ratio α.

Proof. Let us consider again the reduction used in the proof of Theorem 5.1.
We consider a 3-SAT formula φ, build the corresponding mixed graph, and take
S =

⋃m
j=1{sj} ∪

⋃i=1,...,r
j=1,..,m{fj,i : xi ∈ Cj} ∪

⋃i=1,...,r
j=1,..,m{fj,i : x̄i ∈ Cj}.

Since each clause contains either 1, 2 or 3 literals, |S| = m + m′ where
m ≤ m′ ≤ 3m.

Is is also easy to check from the proof of Theorem 5.1 that given any ori-
entation and the corresponding truth assignment, rank(S) is equal to m′ plus
the number of clauses that are satisfied. Indeed, if S′ ⊆ S is a maximum inde-
pendent set (so |S′| = rank(S)), then for each clause Cj that is not satisfied,
we can assume that sj /∈ S′ (since otherwise, there is some fj,i that is not in
S′, and S′ can be modified by inserting fj,i and deleting sj from it, leading to
another independent set having the same size). In other words, S′ contains all
fi,j vertices in addition to sj vertices corresponding to the satisfied clauses. As
a consequence, we can write that rmaxH (S) = val(φ) +m′.

Let us now assume that we have a polynomial-time α-approximation algo-
rithm for the rank-maximization problem, where α is some positive constant
0 < α < 1. Let r̃(S) be the value provided by the approximation algorithm.
Then we have rmaxH (S) ≥ r̃(S) ≥ αrmaxH (S).

13



If r̃(S) ≥ m′+mρ, then rmaxH (S) ≥ m′+mρ. Using rmaxH (S) = val(φ) +m′,
we get that val(φ) ≥ mρ.
On the other hand, if r̃(S) < m′+mρ, we can deduce that αrmaxH (S) < m′+mρ

leading to rmaxH (S) < m′+mρ
α . Let us take α = 3+ρ

4 . Observe that α ≥ m′+mρ
m′+m

for any value of m′ such that m ≤ m′ ≤ 3m. This immediately implies that
rmaxH (S) < m′ +m which is equivalent to val(φ) < m.

Consequently, an α-approximation algorithm (with α = 3+ρ
4 ) allows to dis-

tinguish between 3-SAT instances that can be fully satisfied and those for which
the proportion of satisfied clauses is less than ρ. We know from PCP theorem
that this is NP-hard, showing the difficulty of the approximation within α.

The NP-hardness results holds for general subsets S. In fact, we can see in
the reduction above that the sets S considered there are of arbitrary large size.
One can wonder whether computing rmaxH (S) is still NP-hard even if the size of
S is bounded by some constant. We answer this question when |S| = 1.

Proposition 5.3. rmaxH (S) can be computed in polynomial time when |S| = 1.

Proof. Let H = (V,
−→
E ,U) be the mixed graph and let S = {s} ⊂ V . Let G be

the digraph G = (V,
−→
E ∪U ′) where each undirected edge e = uv ∈ U is replaced

in U ′ by two directed edges (u, v) and (v, u). Let W be the set of vertices that
can be reached from s in G. For each vertex u ∈ W , we check in polynomial
time whether u belongs to a directed cycle of G. One can proceed as follows: for

each directed edge (u, v) ∈
−→
E ∪ U ′, we delete (u, v) and we check the existence

of a path from v to u in G. Notice that if (u, v) ∈ U ′ \
−→
E and (v, u) /∈

−→
E , we

also delete (v, u) from G when we are looking for a path from v to u (this is
to avoid cycles containing only the two edges (u, v) and (v, u); observe however

that such a cycle is accepted if either (u, v) or (v, u) belongs to
−→
E ).

Assume that there exists at least one vertex u ∈ W belonging to a directed
cycle C of G as defined above. Since u ∈W , there exists a path P in G joining
s to u. Let u′ be the first common vertex of C and P and let P ′ be the subpath
of P connecting s to u′. Since P ′ and C do not have common edges, each edge
ab ∈ U such that (a, b) ∈ P ′ ∪ C can be oriented from a to b. This means
that there exists an orientation allowing the existence of an infinitely long walk
starting at s. In other words, rmaxH (S) = 1.

It is also obvious that if all vertices of W do not belong to any directed cycle
in G, then S = {s} cannot be independent, implying that rmaxH (S) = 0.

Another natural extension is to find an edge orientation minimizing the rank
of a given subset S ⊆ V . Let rminH (S) denote such minimum rank.

Theorem 5.4. Computing rminH (S) is NP-hard.

Proof. We use again the reduction of Theorem 5.1. As observed in the proof
of Theorem 5.2, given any orientation and the corresponding truth assignment,
rank(S) is equal to m′ plus the number of clauses that are satisfied. It is
then clear that minimizing rank(S) is equivalent to minimizing the number

14



of satisfied clauses. The NP-hardness of Min 3-SAT [8] implies the wanted
result.

One can similarly study the complexity of computing rminH (S) when |S| = 1.

Proposition 5.5. rminH (S) can be computed in polynomial time when |S| = 1.

Proof. Let H = (V,
−→
E ,U) be the mixed graph and let S = {s} ⊂ V . Let W ⊆ V

be the set of vertices that can be reached from s in the digraph G = (V,
−→
E )

(i.e., there is at least one directed path from s to each vertex of W ). Let GW

be the subgraph of G induced by W : GW = (W,
−→
EW ) where

−→
EW ⊆

−→
E is the

set of directed edges whose two extremities are in W . If GW contains a directed
cycle, then there is already a walk starting at s and reaching a directed cycle.
This clearly implies that the rank of {s} is equal to 1, and this rank does not
depend on the orientation of the undirected edges. Consequently, rminH (S) = 1.

Let us now assume that GW does not contain any directed cycle. Consider
then a topological ordering of the vertices of GW : w1,. . . ,wl. Notice that w1 = s
since every vertex of W can be reached from s and GW is acyclic. Let us orient
the edges of U as follows. If e = wiwj with j > i, then e is oriented from wi to
wj . Moreover, if e = uv with u ∈W and v ∈ V \W , then orient e from v to u.
Finally, if both extremities of an undirected edge e are in V \W , then orient e in
arbitrary way. One can easily see that in the obtained oriented graph H̄, there
is no any path starting from s that can reach any directed cycle. This clearly
implies that there is an orientation such that S = {s} is dependent, implying
that rminH (S) = 0.

6 Connections with other matroids

We provide here some connections with some well-known matroids. Let us start
with transversal matroids. A transversal matroid whose ground set is V can be
defined through a bipartite graph (V ∪U,E). A subset I ⊆ V is independent if
it can be matched with a subset of U . Our first result states that the class of
transversal matroids is included in the class of no-meet matroids.

Theorem 6.1. Each transversal matroid is a no-meet matroid.

Proof. Consider a transversal matroid M defined as recalled above. Consider
a basis B of M where B = {v1, v2, . . . , vr} ⊆ V = {v1, v2, . . . , vn} and r is the
rank of M . A well-known result of [9] states that we can assume that |U | = r
(see, e.g., Theorem 22.5 of [10]). Assume then that vi is matched with ui for
1 ≤ i ≤ r.

Let us build a digraph G = (V,E) as follows. For each vertex v ∈ V , E
contains an edge (v, vi), if and only if, v and ui are adjacent in the bipartite
graph related to M . Observe that E contains a loop (vi, vi) for each vi ∈ B (i.e.,
for 1 ≤ i ≤ r). We are going to show that M = N(G). Observe that the rank
of N(G) is also r. Consider any basis {vσ1

, . . . , vσr
} of M and assume that vσi

15



b
a

c

d

e

f

e
fc

d

a b

Figure 5: A laminar matroid that is not a no-meet (left); a no-meet matroid
that is not transversal (right)

is matched with ui for 1 ≤ i ≤ r. Then G contains an edge from vσi
to vi, and

since there is a loop around each vi for 1 ≤ i ≤ r, we get that {vσ1
, . . . , vσr

} is a
basis of N(G). Conversely, assume that {vσ1

, . . . , vσr
} is a basis of N(G). Then

{v1, . . . , vr} is a successor of {vσ1 , . . . , vσr} (as defined in Section 1). We can
then assume that E contains an edge (vσi , vi) for 1 ≤ i ≤ r. This implies that
each vertex vσi

is adjacent to ui in the bipartite graph. The set {vσ1
, . . . , vσr

}
is consequently a basis of the transversal matroid M . The matroids M and
N(G) have then the same ground set and the same set of bases. They are hence
equal.

We prove now that the inclusion in Theorem 6.1 is strict.

Proposition 6.2. There is a no-meet matroid that is not transversal.

Proof. Consider the no-meet matroid whose underlying digraph is represented
on the right part of Figure 5. Assume for contradiction that this matroid is
transversal. Then its restriction to {a, b, c, d, e, f} would be transversal (since
the class of transversal matroids is restriction-closed). Observe that the matroid
obtained through this restriction is exactly the graphic matroid shown on the
left part of Figure 5. This matroid is however known to be non-transversal (see,
e.g., Example 1.6.3 of [11]).

A laminar matroid (see, e.g., [12]) is defined through a laminar family F ,
i.e., a collection of subsets of a set E such that, for any two intersecting sets,
one is contained in the other. For a capacity function c on F , a set I ⊂ E is
independent if |I ∩ F | ≤ c(F ) for all F ∈ F .

Next proposition states that the set of no-meet matroids is not included in
the set of laminar matroids.

Proposition 6.3. There is a no-meet matroid that is not laminar.

Proof. Consider the no-meet matroid related to the digraph represented on the
right part of Figure 6. It is in fact equal to the graphic matroid represented
on the left part of Figure 6. Observe that {a, d, e} and {a, b, c} are two circuits

16



c

ae b

d

a

d

c

e

d

Figure 6: A no-meet matroid that is not laminar

of this matroid having a non-empty intersection. By a theorem of [12], two
intersecting circuits C1 and C2 of a laminar matroid necessarily satisfy the
following: the closure of C1 is either contained in or containing the closure of
C2. Observe that the two circuits {a, d, e} and {a, b, c} are closed (flat). They
clearly do not satisfy the condition above, implying that the matroid is not
laminar.

We also show that the set of laminar matroids is not a subset of no-meet
matroids. We will use δ+(a) to denote the set edges going out of a vertex a.

Proposition 6.4. There is a laminar matroid that is not a no-meet matroid.

Proof. Let us consider the graph of Figure 5 (left part). The graphic ma-
troid related to this graph is laminar. Any independent set I should satisfy
|I ∩ {a, b}| ≤ 1, |I ∩ {c, d}| ≤ 1, |I ∩ {e, f}| ≤ 1 and |I ∩ {a, b, c, d, e, f}| ≤ 2.
Suppose for contradiction that this laminar matroid is a no-meet matroid N(G)
where G = (V,E) is a digraph with V = {a, b, c, d, e, f}. Since the rank of the
matroid is equal to 2, G contains a cycle subdigraph of size 2 (Section 4). More-
over, N(G) does not contain any circuit of size 1 (a loop in the matroid sense)
implying that the outdegree of each vertex in G is at least 1. Let us consider
all possible alternatives.

Case 1. Assume that G does not contain loops. Then G contains one cycle of
size 2. For symmetry reasons, we can assume that E contains (a, c) and (c, a).
Observe that if there is another edge in δ+(a) (say (a, x) for some x /∈ {a, c}),
and since the outdegree of all vertices is at least 1, then G contains also the
edge (x, a) (otherwise, we get a cycle subdigraph of size strictly larger than 2).
The same conclusion holds for c. Observe however that if G simultaneously
contains (a, x), (x, a), (c, y) and (y, c) for some y /∈ {a, c}, then G contains two
disjoint cycles of size 2 (or a cycle of size 3, when x = y) contradicting the rank
condition. We can then assume that the outdegree of c is exactly 1 (i.e., the
only edge of δ+(c) is (c, a)). This implies that any walk starting at c should
necessarily contain a in the second step. Observe that G does not contain the
edge (e, f) (resp. (f, e)), for otherwise this edge, in combination with a path
from f (resp. e) to {a, c}, would imply the independence of {e, f}. Moreover,

17



{e, c} is a basis of N(G). Then G necessarily contains edges of type (e, x) where
x ∈ {c, d}, since otherwise a walk starting at e and a walk starting at c will
either meet at a or move to two new positions {a, b} (if (e, b) ∈ E). Since {a, b}
is a circuit, we get a contradiction with the independence of {e, c}. The same
can also be deduced for f . Hence, we know that E contains at least an edge
of type (e, x) for some x ∈ {c, d} and at least an edge of type (f, z) for some
z ∈ {c, d}. Suppose now that E contains also an edge of type (e, y) where
y ∈ {a, b} (resp. (f, w) where w ∈ {a, b}). Then starting at {e, f} we can move
to {y, z} where y ∈ {a, b} and z ∈ {c, d} (resp. to {x,w} where x ∈ {c, d} and
w ∈ {a, b}). This leads to the erroneous conclusion that the circuit {e, f} has a
basis {y, z} (resp. {x,w}) among its successors. We can therefore say that all
edges of δ+(e) (resp. δ+(f)) are of type (e, x) (resp. (f, x)) where x ∈ {c, d}.
This holds if the outdegree of c is exactly 1. Similarly, if we also assume that the
outdegree of a is exactly 1, we get that the edges of δ+(e) and δ+(f) necessarily
have an extremity in {a, b}. This leads again to contradiction with the previous
conclusion. We can then assume that the outdegree of a is strictly larger than 1.
As said in the beginning of the proof, E contains (a, x) and also (x, a). Observe
now that x /∈ {a, c, e, f} (using what we know about the edges of δ+(e) and
δ+(f)). Then, x = d and the outdegree of a is exactly equal to 2. This implies
that any walk starting at a will either move to c or to d. Now using the fact that
the edges of δ+(e) have their terminal extremity in {c, d}, we get that any pair
of walks starting at {a, e} will either meet at c, or d, or move to {c, d} leading
to another contradiction (since {c, d} is a circuit and {a, e} is a basis).

Case 2. Assume that G contains a cyle of length 2 in addition to at least
one loop. Without generality loss, assume that E contains (a, c) and (c, a).
Loops should be around either a or c (otherwise, we get cycle subdigraph whose
size is at least 3). Assume then that G contains at least the loop (c, c). Let
(d, x) ∈ E be any edge. Observe that whatever x is, either {x, a} or {x, c} is a
basis. Hence, the circuit {d, c} has as least one successor that is a basis. This
is of course impossible.

Case 3. Assume now that G does not contain cycles of size 2. Then G con-
tains exactly two loops (x, x) and (y, y). Notice that {x, y} should be a basis.
Without loss of generality we can assume that x = a and y = c. Since {b} is
independent in N(G), there should be at least a path from b to either a or c.
Assume that there is a path P from b to c. If P does not go through a, then
one can build a walk starting at a and staying there and a walk starting at b,
moving to c through P and then staying at c. This contradicts the fact that
{a, b} is a circuit of the matroid. Assume now that P goes through a. Hence
P contains a subpath P1 connecting b to a and a subpath P2 connecting a to c.
One can again build a walk starting at b, going through P1 and then staying at
a, and a walk starting at a staying there until the first walk reaches a and then
going through P2 and staying at c. This contradicts again the fact that {a, b}
is a circuit. Consequently, G contains a path Q connecting b to a and there
are no paths connecting b to c. Notice that this implies that there are no paths

18



connecting a to c. Similarly, there is a path Q′ connecting d to c and there
are no paths connecting d to a. Observe that Q and Q′ are necessarily disjoint
and there is no path from any vertex of Q to any vertex of Q′ and vice-versa.
Observe that Q∪Q′ contains at least {a, b, c, d}. Notice that the outdegree of a
is equal to 1 since any infinite walk starting at a and leaving a can not reach Q′

so it should go back to a which is not possible due to lack of cycles and loops.
The same holds for c.
Assume that E contains an edge of type (e, x) where x belongs to Q and an edge
of type (f, y) where y belongs to Q′. Then one can obviously build two disjoint
walks starting at e and f contradicting the circuit status of {e, f}. We can then
assume without generality loss that all edges of type (e, x) satisfy x ∈ V (Q)
while all edges of type (f, y) satisfy y ∈ V (Q) ∪ {e}. Observe that any infi-
nite walk starting at e should reach a and stay there implying that {e, a} is
dependent which is again not possible.

Let us now recall the definition of gammoid. A gammoid is defined using
a directed graph G = (V,E), a subset of sources S ⊆ V and a subset of sinks
T ⊆ V . The ground set of the gammoid is S and a subset I ⊆ S is independent
if I can be linked to |I| vertices of T through vertex-disjoint paths. The class
of gammoids is minor-closed and dual-closed. It contains laminar matroids and
transversal matroids. When there is no restriction related to S (i.e., S = V ),
we get the subclass of strict gammoids [7, 10].

Proposition 6.5. Each no-meet matroid is a gammoid.

Proof. Consider the multi-layered graph of Figure 1. The graph can be slightly
modified by merging vertices v1i and v2i and eliminating the source s and the
sink t. Consider then the gammoid defined using this graph where the set of
sources S is the set of vertices of the first layer (B1) while the set of sinks is the
set of vertices of the last layer (BL). There is here a one-to-one correspondence
between independent sets of this gammoid and independent sets of N(G).

Notice that Proposition 6.5 gives a more direct proof of the fact that no-
meets are matroids. Let us now focus on the connection with strict gammoids.

Proposition 6.6. There is a no-meet matroid that is not a strict gammoid.

Proof. An example given in [11] (Fig 2.18) shows that there is a transversal
matroid that is not a strict gammoid. The example is in fact the dual of the
laminar (and graphic) matroid given in Figure 5. Since each transversal matroid
is a no-meet, we have a no-meet that is not a strict gammoid.

Proposition 6.7. There is a strict gammoid that is not a no-meet matroid.

Proof. Consider again the graphic matroid of Figure 5. We already proved in
Proposition 6.4 that this matroid is not a no-meet matroid. On the other hand,
it is already proved in [11] (Fig 2.18) that this matroid is a strict gammoid.

Let us finally consider the minors of no-meet matroids:

19



Partition Transversal No-meetLaminar

Strict gammoid

Gammoid =
no-meet minor

Figure 7: Connections of no-meet with other matroid classes

Proposition 6.8. The class of no-meet minors is exactly the class of gammoids.

Proof. Gammoids are known to be exactly the contractions of transversal ma-
troids (see, e.g., [10], Corollary 39.5a). Combining with Theorem 6.1, we get
that gammoids are minors of no-meet matroids. Moreover, since no-meet ma-
troids are gammoids (Proposition 6.5), their minors are also minors of gam-
moids. Using that the class of gammoids is minor-closed, we deduce that all
no-meet minors are gammoids. Combination of the two inclusions proves the
wanted result.

Figure 7 summarizes the main connections presented in this section. Ob-
serve that the class of partition matroids is a subset of all mentioned classes
of matroids. We could also add that no-meet matroids can be connected or
disconnected. It is also easy to see that the direct sum of two no-meet matroids
is a no-meet matroid (see [11] for definitions). Since no-meet matroids are gam-
moids, they are representable over all fields, except for a finite number of finite
fields [13, 14].

7 Extensions and related applications

7.1 A no-meet edge version

One can naturally consider the variant where some vehicles placed on the graph
nodes should move without having more than one robot/vehicle on the same
edge. Notice that many vehicles can potentially be on the same node. This edge
version can be easily transformed into the no-meet problem (the vertex version)

20



by considering the line digraph L(G). Recall that given a digraph G = (V,E),
the line digraph of G has E as vertex set and an edge from e1 = (i1, j1) ∈ E to
e2 = (i2, j2) ∈ E if and only if j1 = i2. Note that vertex-disjoint cycles in L(G)
correspond to edge-disjoint cycles in G. Consequently, the maximum number
of walks that never meet in edges (or the maximum number of vehicles that we
can place on the graph nodes) is equal to the size of the largest cycle subdigraph
of L(G).

We can also define a no-meet edge matroid denoted by Ne(G). Given a
digraph G = (V,E), let Ne(G) = (E,J ) where a subset F ⊆ E belongs to J
if and only if {ve, e ∈ F} is independent in N(L(G)) where ve is the vertex of
L(G) corresponding to the edge e ∈ E.

Let us focus on the specific problem where we consider a set of vertices S ⊆ V
and a number ni of vehicles placed in each vertex of i ∈ S. We would like to know
whether it is possible for these vehicles to move forever without meeting in edges.
Remember that each edge (i, j) ∈ E is represented by a vertex v(i,j) ∈ V (L(G)).
The problem above is equivalent to check whether there is a set S′ ⊂ V (L(G))
that is independent in N(L(G)) such that |{v(i,j) ∈ S′ : (i, j) ∈ E(G)}| = ni for
each i ∈ S. One way to answer this question is to create a graph G′S obtained
from the line graph L(G) by adding ni copies of each vertex i ∈ S and adding
edges from each copy of i to all vertices of type v(i,j). The vehicles starting
at S (ni vehicles at each vertex i ∈ S) can move forever without meeting in
edges, if and only if, the subset S′′ containing the ni copies of each vertex i
of S is independent in N(G′S). Notice that G′S and L(G) have the same cycle
subdigraphs since the vertices of S′′ do not belong to cycles. Checking the
independence of S′′ can be done in polynomial time using the techniques of
Section 3.

7.2 A capacitated version and related applications

A slightly more general version of the no-meet problem is obtained by consid-
ering limited meeting capacities for vertices. Say that each vertex v ∈ V has
a capacity cv. Then we require the number of vehicles traversing vertex v at
the same time to be less than or equal to cv. Capacities are naturally assumed
to be positive integer numbers. One can define an extended graph G′ where cv
copies of each vertex v ∈ V are considered and an edge from each copy of v to
each copy of w is added whenever (v, w) ∈ E(G). By considering the matroid
N(G′), we get the wanted information about the acceptable starting positions
with the number of vehicles at each position.

More generally, in addition to vertex meeting capacities, we can also consider
edge meeting capacities ce (the number of walks using edge e in the same time
cannot be above ce). We can also consider a specific length of the walks (L is
equal to some fixed constant). This situation can still be easily modeled using
a multi-layer graph that is similar to the graph GS of Figure 1. We update
the capacity of edges inside the graphs Bi (cv for edge (v1i , v

2
i )) and edges from

Bi to Bi+1 (ce for edge (v2i , w
1
i+1) where e = (v, w)). We might also consider

lower bounds for the flow on edges of type (v1i , v
2
i ) and edges of type (v2i , w

1
i+1).

21



Vertex s can be connected to all vertices v11 of B1. The capacity of the edges
originating from s might be chosen depending on specific constraints related to
the number of walks (vehicles) that can start at some vertex. The capacity of
edges terminating at t are also updated in the same way. Any integer flow from
s to t can be decomposed into walks satisfying the requirements.

A straightforward application of the model might be the following coordi-
nated multi-bus routing. Given a set of routes, crossroads and depots, and k
buses, we would like to design the itinerary of each bus such that, at each time
slot and each route, the number of buses going through the route is higher than
some lower bound (potentially depending on the time slot and the route) and
lower than some upper bound (some kind of meeting capacity). Some limits
are also considered for crossroads and depots. Buses should start at time slot
1 and stop at time slot L. Loops might also exist to model the fact that a bus
might stay for sometime at some points (important bus stations, depots, etc.).
If some routes need more time to be travelled, one can replace some edges by
a sequence of consecutive edges. Weights can also be integrated to model some
travelling cost. This coordinated multi-bus routing problem can then be solved
by considering a minimum-cost flow problem where the flow value is fixed to k
(the number of buses). The problem falls in the framework of vehicle routing
problems (see, e.g., [15]). It can also be seen as a variant of the multiple chi-
nese postman problem for which several integer programming formulations are
generally proposed to integrate more specific constraints (see, e.g., [16] and the
references therein).

7.3 Automata and FSMs related applications

Finite State Machines (FSMs) and Automata are widely used in modeling dis-
crete event systems and in fact, allow to simulate the behavior of a system that
moves from one state to another when an input is applied or an action is taken.
FSMs are sometimes referred to as automata with outputs as an applied input
at a current state requires an output to be produced. A transition diagram of
an automaton is then represented by a graph where each state is represented
by a vertex and each edge is labelled by an input i; while in FSMs, an edge is
labelled by an input/output pair i/o.

State identification of FSMs generally concerns the following problem: given
an FSM, one should derive an input sequence α = i1, . . . , ik such that af-
ter its application and the observation of the output response (FSM reaction)
β = o1, . . . , ok the initial or the final/current FSM state can be uniquely iden-
tified (see, for example, [17, 18, 19] for more details). In automata, no output
responses are considered, and thus their state identification focuses on the final
state, namely an input sequence α = i1, . . . , ik should be derived, such that
its application brings the automaton to a unique final state; this sequence is
referred to as a synchronizing sequence.

We are then interested in checking the existence and deriving synchronizing
sequences for finite automata and so called distinguishing sequences for FSMs.
Note that even if the derivation of such sequences is well studied, the problem

22



remains of the interest of the community as the existence check of a distinguish-
ing sequence is PSPACE-complete [18], even for deterministic FSMs; derivation
of a shortest synchronizing sequence is NP-hard [19].

Since the observations can be highly corrupted, one might look for a robust
distinguishing sequence that leads to sufficiently different observations. Assum-
ing that S is the set of possible initial states and h is some chosen thresh-
old, we refer to an input sequence α as an h-robust distinguishing sequence, if
∀s1, s2 ∈ S, d(out(s1, α), out(s2, α)) > h where out(s, α) is the observed output
sequence when we start at s and d is the Hamming distance (the number of
different components between two sequences).

Consider the matroid N(G) where G is the graph related to the FSM. If S
is dependent, then any set of |S| walks starting at S will meet after at most
O(n5) steps. This means that there exists at least two states s1 and s2 such
that d(out(s1, α), out(s2, α)) = O(n5). Therefore, an h-robust distinguishing
sequence does not exist when h is chosen such that n5 = o(h).

Transition graphs with the set S which is dependent, have indeed interesting
state identification properties for FSMs and automata. Similarly to the distin-
guishing sequence, we can consider the matroid N(G) where G is the transition
graph of an automaton. If each pair of vertices is dependent, rank(S) = 1, then
each state pair of the automaton has a synchronizing (merging) sequence. If the
automaton is complete and deterministic, then there always exists a synchro-
nizing sequence for it.

Another property of independent state sets can be observed when consider-
ing a power automaton for a non-deterministic single-input automaton A. The
states of such power automaton are state subsets of A, and there is a transition
from S to S′ (where |S′| ≤ |S|) if S′ is a successor of S (as defined in Section
1) in the digraph G representing the possible transitions of A. Assume that
this power automaton is a Büchi automaton where the final states are those
corresponding to the subsets of size k and the initial state is any subset S0 of
size k. Consider again the matroid N(G). In this case, the language of the
constructed Büchi automaton is not empty, if and only if S0 is independent
in N(G). Note here the remarkable fact that even if the number of states of
the power automaton is exponential, the non-emptiness of its language can be
checked in polynomial time.

8 Further questions

To conclude this paper, let us discuss some open questions that require further
study.

We used the index of imprimitivity in Section 3 to show that the number
of layers in the graph GS of Figure 1 can be O(n3) for strongly-connected
components and O(n5) for general graphs. It would be nice to give better
bounds of the number of layers and to show that they are tight.

In fact, it is easy to see that in our proofs, we do not really need to have
A⊗k+c = A⊗k for all k ≥ kn,c as announced in Lemma 3.1. It is enough to

23



have A⊗k+c ≥ A⊗k for k larger than some number. This leads to the following
algebraic problem that might be studied for any Boolean matrix A: min k + c

A⊗k+c ≥ A⊗k
k ≥ 1, c ≥ 1, k ∈ IN, c ∈ IN.

Many problems related to no-meet mixed graph orientation deserve more
study. What is, for example, the complexity of computing rmaxH (S) and rminH (S)
when |S| is bounded by a constant. Approximation algorithms with performance
guarantees can also be proposed. Integer programming approaches for the NP-
hard variants might also be developed.

Finally, the recognition problem of no-meet matroids still needs to be studied
(given a matroid M , check whether it is a no-meet and find a digraph G such
that M = N(G)). More structural properties of the no-meet matroids need to
be explored and the exact intersection with other classes of matroids deserves
further study.

Acknowledgments

We would like to thank an anonymous referee who raised interesting questions,
helping the authors to better outline some of the topics.

References

[1] A. Dessmark, P. Fraigniaud, D. R. Kowalski, A. Pelc, Deterministic ren-
dezvous in graphs, Algorithmica 46 (1) (2006) 69–96.

[2] N. H. Bshouty, L. Higham, J. Warpechowska-Gruca, Meeting times of ran-
dom walks on graphs, Inf. Process. Lett. 69 (5) (1999) 259–265.

[3] B. De Schutter, B. De Moor, On the sequence of consecutive powers of
a matrix in a Boolean algebra, SIAM Journal on Matrix Analysis and
Applications 21 (1) (1999) 328–354.

[4] B. De Schutter, Upper bounds for the index of cyclicity of a matrix, Tech.
Rep. 98-32, ESAT-SISTA, K.U.Leuven, Leuven, Belgium, revised version
(Jul. 1999).

[5] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications,
2nd Edition, Springer-Verlag, London, 2009.

[6] W. T. Tutte, A short proof of the factor theorem for finite graphs, Canadian
Journal of Mathematics 6 (1954) 347–352.

[7] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof verifica-
tion and the hardness of approximation problems, J. ACM 45 (3) (1998)
501–555.

24



[8] R. Kohli, R. Krishnamurti, P. Mirchandani, The minimum satisfiability
problem, SIAM J. Discret. Math. 7 (2) (1994) 275–283.

[9] R. A. Brualdi, E. B. Scrimger, Exchange systems, matchings, and transver-
sals, Journal of Combinatorial Theory 5 (3) (1968) 244–257.

[10] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency.,
Springer, 2003.

[11] J. G. Oxley, Matroid Theory (Oxford Graduate Texts in Mathematics),
Oxford University Press, Inc., USA, 2006.

[12] T. Fife, J. Oxley, Laminar matroids, Eur. J. Comb. 62 (C) (2017) 206–216.

[13] J. H. Mason, On a Class of Matroids Arising From Paths in Graphs, Pro-
ceedings of the London Mathematical Society s3-25 (1) (1972) 55–74.

[14] B. Lindström, On the vector representations of induced matroids, Bulletin
of the London Mathematical Society 5 (1) (1973) 85–90.

[15] K. Braekers, K. Ramaekers, I. Van Nieuwenhuyse, The vehicle routing prob-
lem: State of the art classification and review, Computers & Industrial
Engineering 99 (2016) 300 – 313.

[16] A. Shafahi, A. Haghani, Generalized maximum benefit multiple chinese
postman problem, Transportation Research Part C: Emerging Technologies
55 (2015) 261 – 272.

[17] E. F. Moore, Gedanken-experiments on sequential machines, in: Automata
Studies, Princeton University Press, Princeton, NJ, 1956, pp. 129–153.

[18] D. Lee, M. Yannakakis, Testing finite-state machines: State identification
and verification, IEEE Transactions on Computers 43 (3) (1994) 306–320.

[19] S. Sandberg, Homing and synchronizing sequences, in: Model-Based Test-
ing of Reactive Systems: Advanced Lectures, Springer Berlin Heidelberg,
2005, pp. 5–33.

25


