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Abstract7

In this paper, we introduce a technique we call geometric amortization for enumeration algorithms,8

which can be used to make the delay of enumeration algorithms more regular with little overhead on9

the space it uses. More precisely, we consider enumeration algorithms having incremental linear delay,10

that is, algorithms enumerating, on input x, a set A(x) such that for every t ≤ ♯A(x), it outputs11

at least t solutions in time O(t · p(|x|)), where p is a polynomial. We call p the incremental delay12

of the algorithm. While it is folklore that one can transform such an algorithm into an algorithm13

with maximal delay O(p(|x|)), the naive transformation may use exponential space. We show that,14

using geometric amortization, such an algorithm can be transformed into an algorithm with delay15

O(p(|x|) log(♯A(x))) and space O(s log(♯A(x))) where s is the space used by the original algorithm.16

In terms of complexity, we prove that classes DelayP and IncP1 with polynomial space coincide.17

We apply geometric amortization to show that one can trade the delay of flashlight search18

algorithms for their average delay up to a factor of O(log(♯A(x))). We illustrate how this tradeoff is19

advantageous for the enumeration of solutions of DNF formulas.20
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20:2 Geometric Amortization of Enumeration Algorithms

1 Introduction25

An enumeration problem is the task of listing a set of elements without redundancies. It26

is an important and old class of problems: the Baguenaudier game [28] from the 19th27

century can be seen as the problem of enumerating integers in Gray code order. Ruskey even28

reports [33] on thousand-year-old methods to list simple combinatorial structures such as29

the subsets or the partitions of a finite set. Modern enumeration algorithms date back to30

the 1970s with algorithms computing circuits or spanning trees of a graph [36, 32], while31

fundamental complexity notions for enumeration have been formalized 30 years ago by32

Johnson, Yannakakis and Papadimitriou [23]. The main specificity of enumeration problems33

is that the size of the enumerated set is typically exponential in the size of the input. Hence,34

a problem is considered tractable and said to be output polynomial when it can be solved in35

time polynomial in the size of the input and the output. This measure is relevant when one36

wants to generate and store all elements of a set, for instance to build a library of objects later37

to be analyzed by experts, as it is done in biology, chemistry, or network analytics [2, 6, 9].38

For most problems, the set to enumerate is too large, or may not be needed in its entirety.39

It is then desirable to efficiently generate a part of the set for statistical analysis or on the fly40

processing. In this case, a more relevant measure of the complexity and hence of the quality41

of the enumeration algorithm is its delay, that is, the time spent between two consecutive42

outputs. One prominent focus has been to design algorithms whose delay is bounded by a43

polynomial in the size of the input. Problems admitting such algorithms constitute the class44

DelayP and many problems are in this class, for example the enumeration of the maximal45

independent sets of a graph [23], or answer tuples of restricted database queries [19] (see [39]46

for many more examples).47

It also happens that new elements of the output set, also called solutions, become48

increasingly difficult to find. In this case, polynomial delay is usually out of reach but one49

may still design algorithms with polynomial incremental time. An algorithm is in polynomial50

incremental time if for every i, the delay between the output of the ith and the (i + 1)st
51

solution is polynomial in i and in the size of the input. Such algorithms naturally exist52

for saturation problems: given a set of elements and a polynomial time function acting on53

tuples of elements, produce the closure of the set by the function. One can generate such a54

closure by iteratively applying the function until no new element is found. As the set grows55

bigger, finding new elements becomes harder. The best algorithm to generate circuits of a56

matroid uses a closure property of the circuits [24] and is thus in polynomial incremental57

time. The fundamental problem of generating the minimal transversals of a hypergraph can58

also be solved in quasi-polynomial incremental time [21, 8] and some of its restrictions in59

polynomial incremental time [20]. In this paper, the class of problems which can be solved60

with polynomial incremental time is denoted by UsualIncP.61

While the delay is a natural way of measuring the quality of an enumeration algorithm, it62

might sometimes be too strong of a restriction. Indeed, if the enumeration algorithm is used63

to generate a subset of the solutions, it is often enough to have guarantees that the time64

needed to generate i solutions is reasonable for every i. For example, one could be satisfied65

with an algorithm that has the property that after a time i · p(n), it has output at least i66

solutions, where p is a polynomial and n the input size. In this paper, we refer to this kind67

of algorithm as IncP1-enumerators1 and call p(n) the incremental delay of the algorithm.68

While polynomial delay enumerators are IncP1-enumerator, the converse is not true.69

1 The 1 in IncP1 stands for the linear dependency of the incremental time in the number of solutions.
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Indeed, IncP1-enumerators do not have to output their solutions regularly. Take for example70

an algorithm that, on an input of size n, outputs 2n solutions in 2n steps, then nothing for71

2n steps and finally outputs the last solution. It can be readily verified that this algorithm72

outputs at least i solutions after 2i steps for every i ≤ 2n + 1, and it is thus an IncP1-73

enumerator. However, the delay of such an algorithm is not polynomial as the time spent74

between the output of the last two solutions is 2n. Instead of executing the output instruction75

of this algorithm, one could store the solutions that are found in a queue. Then, every two76

steps of the original algorithm, one solution is removed from the queue and output. The77

IncP1 property ensures that the queue is never empty when dequeued and we now have78

polynomial delay. Intuitively, the solutions being dense in the beginning, they are used to79

pave the gap until the last solution is found. While this strategy may always be applied80

to turn an IncP1-enumerator into a polynomial delay algorithm, the size of the queue may81

become exponential in the size of the input. In the above example, after the simulation of 2n
82

steps, 2n solutions have been pushed into the queue but only 2n−1 of them are output, so83

the queue still contains 2n−1 solutions. Unfortunately, an algorithm using exponential space84

may not be feasible. Therefore, much effort has been devoted to ensure that polynomial85

delay methods run with polynomial space [27, 3, 15, 17, 10].86

Contributions. The main result of this paper is a proof that the regularization of an IncP1-87

enumerator may be done without exponentially increasing the space used. More formally, we88

show that the class DelayPpoly of problems that can be solved by a polynomial delay and89

polynomial space algorithm is the same as the class IncPpoly
1 of problems that can be solved90

by a polynomial space IncP1-enumerator. In other words, we prove DelayPpoly = IncPpoly
1 ,91

answering positively a question we raised in [11] and where only special cases were proven.92

Our result relies on a constructive method that we call geometric amortization. It turns any93

IncP1-enumerator into a polynomial delay algorithm whose delay and space complexity are94

the incremental delay and space complexity of the original enumerator multiplied by a factor95

of log(S), where S is the number of solutions (Theorem 3). Interestingly, we also show that96

the total time can be asymptotically preserved.97

We also apply geometric amortization to transform the average delay of many DelayP-98

enumerators into a guaranteed delay. Indeed, we show that some widely used algorithmic99

techniques to design DelayP algorithms also have an incremental delay that matches their100

average delay. Thus, using geometric amortization, we show that the delay of such an101

enumerator can be traded for their average delay multiplied by the logarithm of the number102

of solutions. We apply this result to an algorithm solving ΠDNF [12], the problem of listing103

the models of a DNF formula. This gives an algorithm with sublinear delay and polynomial104

memory, answering an open question of [12].105

The main consequence of our result is that it makes proving that an enumeration problem106

is in DelayPpoly easier as one does not have to design an algorithm with polynomial delay107

but only with polynomial incremental delay. One side-effect of our transformation however108

is that the order the solutions are output in is changed which may have some practical109

consequences when used. However, we do not see this as a downside. Actually, we do not110

believe our method should be used in practice as we cannot see any advantages of having an111

algorithm with polynomial delay over one with polynomial incremental delay, a notion that112

we find more natural. This opinion may not be shared by everyone and the main point of113

our result is to show that from a purely theoretical point of view, it actually does not matter114

as both notions are — and it came as a surprise to us — the same.115

STACS 2023



20:4 Geometric Amortization of Enumeration Algorithms

Related work. The notion of polynomial incremental delay is natural enough to have116

appeared before in the literature. In her PhD thesis [22], Goldberg introduced the notion117

of polynomial cumulative delay, which exactly corresponds to our notion of polynomial118

incremental delay. We however decided to stick to the terminology of [11]. Goldberg119

mentions on page 10 that one can turn a linear incremental algorithm into a polynomial delay120

algorithm but at the price of exponential space. She argues that one would probably prefer in121

practice incremental delay and polynomial space to polynomial delay and exponential space.122

Interestingly, she also designs for every constant k, an IncP1-algorithm with polynomial space123

to enumerate on input n, every graph that is k-colorable (Theorem 15 on page 112). She124

leaves open the question of designing a polynomial delay and polynomial space algorithm for125

this problem, which now comes as a corollary of our theorem applied to her IncP1-algorithm.126

In [37], Tziavelis, Gatterbauer and Riedewald introduce the notion of Time-To-k to127

describe the time needed to output the k best answers of a database query for every k. They128

design algorithms having a Time-To-k complexity of the form poly(n)k where n is the size of129

the input, which hence corresponds to the notion of IncP1. They argue that delay is sufficient130

but not necessary to get good Time-to-k complexity and they argue that in practice, having131

small Time-to-k complexity is better than having small delay. Observe however that in their132

case, our method does not apply well since they are interested in the best answers, meaning133

that the order is important in this context. Our method does not preserve order.134

Organization of the paper. In Section 2, we introduce enumeration problems, the related135

computational model and complexity measures. Section 3 presents different techniques to136

turn an IncP1-enumerator into a DelayP-enumerator using a technique called geometric137

amortization. Interactive visualization of how geometric amortization works can be found at138

http://florent.capelli.me/coussinet/. In Section 3.3 we apply geometric amortization139

to incremental polynomial algorithms, showing that our result generalizes to the IncPi140

hierarchy. Section 4 gives a method to transform many DelayP-enumerators of average delay141

a(n) into a DelayP-enumerator with maximal delay a(n) log(K) where K is the number of142

solutions. We use it to obtain an algorithm for the problem of enumerating the models143

of a DNF formula. To outline the main ideas of our algorithms, they are presented using144

pseudocode with instructions to simulate a given Random Access Machin (RAM). The details145

on the complexity of using such instructions with minimal overhead are given in the appendix.146

2 Preliminaries147

Enumeration problems. Let Σ be a finite alphabet and Σ∗ be the set of finite words built148

on Σ. We denote by |x| the length of x ∈ Σ∗. Let A ⊆ Σ∗ × Σ∗ be a binary predicat. We149

write A(x) for the set of y such that A(x, y) holds. The enumeration problem ΠA is the150

function which associates A(x) to x. The element x is called the instance or the input, while151

an element of A(x) is called a solution. We denote the cardinality of a set A(x) by ♯A(x).152

A predicate A is said to be polynomially balanced if for all y ∈ A(x), |y| is polynomial153

in |x|. It implies that ♯A(x) is bounded by |Σ|poly(|x|). Let Check·A be the problem of154

deciding, given x and y, whether y ∈ A(x). The class EnumP, a natural analogous to NP for155

enumeration, is defined to be the set of all problems ΠA where A is polynomially balanced156

and Check·A ∈ P. More details can be found in [11, 35].157

Computational model. In this paper, we use the Random Access Machine (RAM) model158

introduced by Cook and Reckhow [18] with comparison, addition, subtraction and multipli-159

http://florent.capelli.me/coussinet/
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cation as its basic arithmetic operations augmented with an OUTPUT(i, j) operation which160

outputs the content of the values of registers Ri, Ri+1, . . . , Rj as in [4, 34] to capture enumer-161

ation problems. We use an hybrid between uniform cost model and logarithmic cost model162

(see [18, 1]): output, addition, multiplication and comparison are in constant time on values163

less than n, where n is the size of the input. In first-order query problems, it is justified by164

bounding the values in the registers by n times a constant [19, 4]. However, it is not practical165

for general enumeration algorithms which may store and access 2n solutions and thus need166

to deal with large integers. Hence, rather than bounding the register size, we define the cost167

of an instruction to be the sum of the size of its arguments divided by log(n). Thus, any168

operation on a value polynomial in n can be done in constant time, but unlike in the usual169

uniform cost model, we take into account the cost of dealing with superpolynomial values.170

A RAM M on input x ∈ Σ∗ produces a sequence of outputs y1, . . . , yS . The set of outputs171

of M is denoted by M(x) and its cardinality by ♯M(x). We say that M solves ΠA if, on172

every input x ∈ Σ∗, A(x) = M(x) and for all i ̸= j we have yi ≠ yj , that is no solution is173

repeated. All registers are initialized with zero. The space used by the M is the sum of the174

bitsize of the integers stored in its registers, up to the register of the largest index accessed.175

We denote by TM (x, i) the time taken by the machine M on input x before the ith
176

OUTPUT instruction is executed. When the machine is clear from the context, we drop the177

subscript M and write T (x, i). The delay of a RAM which outputs the sequence y1, . . . , yS178

is the maximum over all i ≤ s of the time spent between the generation of yi and yi+1, that179

is max1≤i≤S T (x, i + 1)− T (x, i). The preprocessing is TM (x, 1), the time spent before the180

first solution is output. The postprocessing is the time spent between the output of the last181

solution and the end of the computation. To simplify the presentation, we assume that there182

is no postprocessing, that is, a RAM solving an enumeration problem stops right after having183

output the last solution. This assumption does not affect the complexity classes studied in184

this paper, as the output of the last solution can be delayed to the end of the algorithm.185

Pseudocode. In this paper, we describe our algorithms using pseudocode that is then186

compiled to a RAM with the usual complexity guarantees. In our algorithms, we freely use187

variables and the usual control flow instructions, arithmetic operations and data structures.188

We also assume that we have access to an output(s) instruction which outputs the value of189

variable s. When compiled, this instruction calls the OUTPUT instruction of the RAM on the190

registers holding the value of s.191

As this paper mostly deals with transforming a given enumeration algorithm into another192

one having better complexity guarantees, it is convenient to call an algorithm as an oracle to193

execute it step by step. Therefore, we use two other instructions in our pseudocode: load194

and move. The instruction load(I, x) takes two parameters: the first one is the code of a195

RAM and the second one is its input. It returns a data structure M that can later be used196

with the move instruction: move(M) simulates the next step of the computation of machine197

I on input x. We assume that move(M) returns false if the computation is finished. We also198

assume that we have access to the following functions on M :199

sol(M) returns the solution that M has just output. If the last simulated step of M was200

not an output instruction, it returns undef. We abuse notation by writing if(sol(M))201

then . . . to express the fact that we explore the then branch if and only if sol(M) is not202

undef.203

steps(M) returns the number of steps of M that have been simulated.204

If we have an upper bound u(|x|) on the memory used by a machine of code I on input x, and205

if u is computable in time t(|x|), we can implement load and move on a RAM with respective206

STACS 2023



20:6 Geometric Amortization of Enumeration Algorithms

complexity O(t(|x|)) and O(1) and space O(u(|x|)). Indeed, it is sufficient to reserve u(|x|)207

contiguous registers in memory and shift all registers used by I so that it uses the reserved208

memory.209

It is also possible to implement these instructions without knowing in advance the210

memory used by I but one has to use data structures able to dynamically adjust the memory211

used. In this case, move can be executed either in O(1) with a small space overhead or in212

O(log(log(|x|))) with no space overhead. We leave this improvement for a longer version of213

the paper (see [13]) and state the main results when a polynomial time computable upper214

bound u(|x|) on the memory is known.215

Complexity measures and classes. Complexity measures and the relevant complexity classes216

for enumeration have been formally introduced by Johnson, Yanakakis and Papadimitriou217

in [23] first. The total time, that is TM (x, ♯A(x)), is similar to what is used for the complexity218

of decision problems. Since the number of solutions can be exponential in the input size,219

it is more relevant to give the total time as a function of the combined size of the input220

and output. However, this notion does not capture the dynamic nature of an enumeration221

algorithm. When generating all solutions already takes too long, we want to be able to222

generate at least some solutions. Hence, we should measure (and bound) the total time used223

to produce a given number of solutions. We give here the notion of linear incremental time,224

central to the paper, while the more general notion of polynomial incremental time is given225

and studied in Section 3.3.226

▶ Definition 1 (Linear incremental time). A problem ΠA ∈ EnumP is in IncP1 if there is a227

polynomial d and a machine M which solves ΠA, such that for all x and for all 1 < i ≤ ♯A(x),228

T (x, i) < i · d(|x|) and T (x, 1) < d(|x|). Such a machine M is called an IncP1-enumerator229

with incremental delay d(n).230

▶ Definition 2 (Polynomial delay). A problem ΠA ∈ EnumP is in DelayP if there is a231

polynomial d and a machine M which solves ΠA, such that for all x and for all 1 < i ≤ ♯A(x),232

T (x, i)− T (x, i− 1) ≤ d(|x|) and T (x, 1) ≤ d(|x|). Such a machine M is called a DelayP-233

enumerator of delay d(n).234

Observe that if M is a DelayP-enumerator then for all i we have T (x, i) − T (x, 1) ≤235 ∑
1<j≤i d(|x|) = (i−1)d(|x|). Hence DelayP ⊆ IncP1. Polynomial delay is the most common236

notion of tractability in enumeration, because it guarantees both regularity and linear total237

time and also because it is relatively easy to prove that an algorithm has a polynomial238

delay. Indeed, most methods used to design enumeration algorithms such as backtrack search239

with a polynomial time extension problem [29], or efficient traversal of a supergraph of240

solutions [27, 3, 16], yield polynomial delay algorithms on many enumeration problems.241

To better capture the notion of tractability in enumeration, it is important to use242

polynomial space algorithms. We let DelayPpoly be the class of problems solvable by a243

polynomial space DelayP-enumerator. We define IncPpoly
1 , as the class of problems which244

can be solved by a polynomial space IncP1-enumerator.245

3 From IncP1 to DelayP246

3.1 Geometric Amortization247

The folklore method (e.g., [23, 34, 14]) used to transform an IncP1-enumerator into a DelayP-248

enumerator that was sketched in the introduction uses a queue to delay the output of solutions.249
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This queue may however become of size exponential in the input size. To overcome this issue,250

we introduce a technique that we call geometric amortization, illustrated by Algorithm 1251

which regularizes the delay of an IncP1-enumerator with a space overhead of O(log(♯I(x))),252

which is polynomially bounded since I is in EnumP. To achieve this, we however have253

to compromise a bit on the delay which becomes O((log(♯I(x)) · p(|x|)). Moreover, with254

geometric amortization, the solutions are not output in the same order as the order they255

are output by I. Algorithm 1 relies on the knowledge of an upper bound K of ♯I(x), but256

this assumption is relaxed in Section 3.2. We now proceed to prove the correctness and257

complexity of Algorithm 1 that is summarized in the theorem below.258

Algorithm 1 Using geometric amortization for regularizing the delay of an IncP1-
enumerator I having incremental delay p(n) only using polynomial space. In the code,
Z0 = [0; p(n)] and Zj = [2j−1p(n) + 1; 2jp(n)] for j > 0.

Input : x ∈ Σ∗ of size n and K such that K ≥ ♯I(x)
Output : Enumerate I(x) with delay O(p(n) · log(K))

1 begin
2 N ← ⌈log(K)⌉;
3 for i = 0 to N do M [i]← load(I, x) ;
4 j ← N ;
5 while j ≥ 0 do
6 for b← 2p(n) to 0 do
7 move(M [j]);
8 if sol(M [j]) and steps(M [j]) ∈ Zj then
9 output(sol(M [j]));

10 j ← N ;
11 break;

12 if b = 0 then j ← j − 1;

▶ Theorem 3. Given an IncP1-enumerator I with incremental delay p(n) and space complex-259

ity s(n) and given K ≥ ♯I(x), one can construct a DelayP-enumerator I ′ which enumerates260

I(x) on any input x ∈ Σ∗ with delay O(log(K)p(n)) and space complexity O(s(n) log(K)).261

Proof. The pseudo-code for I ′, accessing an oracle to I as a blackbox, is presented in262

Algorithm 1. Its correctness and complexity are proven in the rest of this section. ◀263

Since IncP1 ⊆ EnumP, we know that there is a polynomial q(n) such that every element of264

I(x) is of size at most q(|x|) and by choosing K = |Σ|q(n), we have that log(K) is polynomially265

bounded and the following is a direct corollary of Theorem 3:266

▶ Corollary 4. IncPpoly
1 = DelayPpoly.267

The construction of I ′ from I in Theorem 3 is presented in Algorithm 1, which uses a268

technique that we call geometric amortization. The idea of geometric amortization is to269

simulate several copies of I on input x at different speeds. Each process is responsible for270

enumerating solutions in different intervals of time to avoid repetitions in the enumeration.271

The name comes from the fact that the size of the intervals we use follows a geometric272

progression (the size of the (i + 1)th interval is twice the size of the ith one).273

STACS 2023



20:8 Geometric Amortization of Enumeration Algorithms

Explanation of Algorithm 1. Algorithm 1 maintains N + 1 simulations M [0], . . . , M [N ] of274

I on input x where N = ⌈log(K)⌉. When simulation M [i] finds a solution, it outputs it if275

and only if the number of steps of M [i] is in Zi, where Zi := [1 + 2i−1p(n), 2ip(n)] for i > 0276

and Z0 = [1, p(n)]. These intervals are clearly disjoint and cover every possible step of the277

simulation since the total time of I is at most ♯I(x)p(n) ≤ Kp(n) ≤ 2N p(n) (by convention,278

we assumed enumerators to stop on their last solution, see Section 2). Thus, every solution279

is enumerated as long as M [i] has reached the end of Zi when the algorithm stops.280

Algorithm 1 starts by moving M [N ]. It is given a budget of 2p(n) steps. If these 2p(n)281

steps are executed without finding a solution in ZN , M [N − 1] is then moved similarly with a282

budget of 2p(n) steps. It continues until one machine M [j] finds a solution in its zone Zj . In283

this case, the solution is output and the algorithm proceeds back with M [N ]. The algorithm284

stops when M [0] has left Z0, that is when p(n) + 1 steps of M [0] have been simulated2.285

Bounding the delay. From the above description of Algorithm 1, between two outputs, the286

variable j takes at most N + 1 values (from N to 0) and at most 2p(n) move instructions287

are executed for each machine M [j]. A move instruction can be executed in O(1) (see288

Appendix A). Moreover, the size of b being O(log(n)), we can increment it in O(1) in the289

RAM model we consider. Finally, we have to compare steps(M [i]) with integers of values290

in O(log(K)p(n)). Manipulating such integers in the RAM model would normally cost291

O(log(K)/ log(n)). However, we give in Appendix A.2 a method using Gray Code encodings292

which allows us to increment steps(M [i]) and to detect when it enters and exits Zi in O(1).293

Thus, the overall delay of Algorithm 1 is O(log(K)p(n)).294

Space complexity. We have seen in Section 2 that a RAM can be simulated without using295

more space than the original machine (see Appendix A for more details). Since Algorithm 1296

uses O(log(K) simulations of I, its space complexity is O(s(n) log(K)).297

Correctness of Algorithm 1. It remains to show that Algorithm 1 correctly outputs I(x)298

on input x. Recall that a solution of I(x) is enumerated by M [i] if it is produced by I at299

step c ∈ Zi = [1 + 2i−1p(n), 2ip(n)]. Since, by definition, the total time of I on input x is300

at most ♯I(x)p(n), it is clear that Z0 ⊎ · · · ⊎ ZN ⊇ [1, Kp(n)] ⊇ [1, ♯(I)p(n)] covers every301

solution and that each solution is produced at most once. Thus, it remains to show that302

when the algorithm stops, M [i] has moved by at least 2ip(n) steps, that is, it has reached303

the end of Zi and output all solutions in this zone.304

We study an execution of Algorithm 1 on input x. For the purpose of the proof, we305

only need to look at the values of steps(M [0]), . . . , steps(M [N ]) during the execution of the306

algorithm. We thus say that the algorithm is in state c = (c0, . . . , cN ) if steps(M [i]) = ci for307

all 0 ≤ i ≤ N . We denote by Sc
i the set of solutions that have been output by M [0], . . . , M [i]308

when state c is reached; that is, a solution is in Sc
i if and only if it is produced by I at step309

k ∈ Zj for j ≤ i and k ≤ cj = steps(M [j]). We claim the following invariant:310

▶ Lemma 5. For every state c and i < N , we have ci+1 ≥ 2p(n)|Sc
i |.311

Proof. The proof is by induction on c. For the state c just after initializing the variables, we312

have that for every i ≤ N , |Sc
i | = 0 and ci = 0. Hence, for i < N , ci+1 ≥ 0 = 2p(n)|Sc

i |.313

2 An illustration of Algorithm 1 can be found at http://florent.capelli.me/coussinet/ where one
can see the run of a machine represented as a list and the different simulations moving in this list and
discovering solutions.

http://florent.capelli.me/coussinet/
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Now assume the statement holds at state c′ and let c be the next state. Let i < N . If314

|Sc
i | = |Sc′

i |, then the inequality still holds since ci+1 ≥ c′
i+1 and c′

i+1 ≥ 2p(n)|Sc′

i | = 2p(n)|Sc
i |315

by induction. Otherwise, we have |Sc
i | = |Sc′

i |+ 1, that is, some simulation M [k] with k ≤ i316

has just output a solution. In particular, the variable j has value k ≤ i < N . Let c′′ be317

the first state before c′ such that variable j has value i + 1 and b has value 2p(n), that is,318

c′′ is the state just before Algorithm 1 starts the for loop to move M [i + 1] by 2p(n) steps.319

No solution has been output between state c′′ and c′ since otherwise j would have been320

reset to N . Thus, |Sc′′

i | = |Sc′

i |. Moreover, ci+1 ≥ c′
i+1 ≥ c′′

i+1 + 2p(n) since M [i + 1] has321

moved by 2p(n) steps in the for loop without finding a solution. By induction, we have322

c′′
i+1 ≥ 2p(n)|Sc′′

i | = 2p(n)|Sc′

i |. Thus ci+1 ≥ c′′
i+1 + 2p(n) = 2p(n)(|Sc′

i | + 1) = 2p(n)|Sc
i |323

which concludes the induction. ◀324

▶ Corollary 6. Let c = (c0, . . . , cN ) be the state reached when Algorithm 1 stops. We have325

for every i ≤ N , ci ≥ 2ip(n).326

Proof. The proof is by induction on i. If i is 0, then we necessarily have c0 ≥ p(n) since327

Algorithm 1 stops only when M [0] has moved outside Z0, that is when it has been moved by328

at least p(n) steps.329

Now assume cj ≥ 2jp(n) for every j < i. This means that for every j < i, M [j] has been330

moved at least to the end of Zj . Thus, M [j] has found every solution in Zj . Since it holds331

for every j < i, it means that M [0], . . . , M [i− 1] have found every solution in the interval332

K = [1, 2i−1p(n)]. Since I is an IncP1-enumerator with delay p(n) and since 2i−1 ≤ ♯I(x) by333

definition of N , K contains at least 2i−1 solutions, that is, |Sc
i−1| ≥ 2i−1. Applying Lemma 5334

gives that ci ≥ 2i−1 · 2p(n) = 2ip(n). ◀335

The correctness of Algorithm 1 directly follows from Corollary 6. Indeed, it means that336

for every i ≤ N , every solution of Zi = [1 + 2i−1p(n), 2ip(n)] have been output, that is, every337

solution of [1, 2N p(n)] and 2N p(n) is an upper bound on the total run time of I on input x.338

3.2 Improving Algorithm 1339

One drawback of Algorithm 1 is that it needs to know in advance an upper bound K on340

♯I(x) since it uses it to determine how many simulations of I it has to maintain. In theory,341

such an upper bound exists because I is assumed to be in EnumP and it is often known, e.g.,342

|Σ|N where N is an upper bound on the size of the output. In practice, however, it might be343

cumbersome to compute it or it may hurt efficiency if the upper bound is overestimated. It344

turns out that one can remove this hypothesis by slightly modifying Algorithm 1. The key345

observation is that during the execution of the algorithm, if M [i] has not entered Zi, it is346

simulated in the same way as M [i + 1], . . . , M [N ]. Indeed, it is not hard to see that M [j] is347

always ahead of M [i] for j > i and that if M [i] is not in Zi, it will not output any solution348

in the loop at Line 6, hence this iteration of the loop will move M [i] by 2p(n) steps, just like349

M [j] for j > i. Hence, Algorithm 1 can be improved in the following way: we start with350

only two simulations M [0], M [1] of I. Whenever M [1] is about to enter Z1, we start M [2] as351

an independent copy of M [1]. During the execution of the algorithm, we hence maintain a352

list M of simulations of I and each time the last simulation M [N ] is about to enter ZN , we353

copy it into a new simulation M [N + 1]. The hardest part of implementing this idea is to354

show that one can copy simulation M [N ] without affecting the overall delay of the algorithm.355

That can be achieved by lazily copying parts of M [N ] whenever we move M [N + 1]. The356

details are given in Appendix A.4.357
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Algorithm 2 Improvement of Algorithm 1 which works without upper bounds on the
number of solutions and has a better total time. In the code, a0 = 0 and aj = 2j−1p(n) + 1.

Input : x ∈ Σ∗ of size n

Output : Enumerate I(x) with delay O(p(n) · log(♯I(x)))
1 begin
2 M ← list(∅);
3 insert(M, load(I, x));
4 j ← length(M)− 1;
5 while j ≥ 0 do
6 for b← 2p(n) to 0 do
7 move(M [j]);
8 if j = length(M)− 1 and steps(M [j]) = aj then
9 insert(M, copy(M [j]));

10 j ← length(M)− 1;
11 break;
12 if sol(M [j]) and steps(M [j]) ∈ [aj ; aj+1 − 1] then
13 output(sol(M [j]);
14 j ← length(M)− 1;
15 break;

16 if b = 0 then j ← j − 1;

By implementing this idea, one does not need to know an upper bound on ♯I(x) anymore:358

new simulations will be created as long as it is necessary to discover new solutions ahead.359

The fact that one has found every solution is still witnessed by the fact that M [0] reaches360

the end of Z0. This improvement has yet another advantage compared to Algorithm 1: it361

has roughly the same total time as the original algorithm. Hence, if one is interested in362

generating every solution with a polynomial delay from an IncP1-enumerator, our method363

may make the maximal delay worse but does not change much the time needed to generate364

all solutions.365

Correctness of Algorithm 2. Correctness of Algorithm 2 can be proven in a similar way as366

for Algorithm 1. Lemma 5 still holds for every state, where N in the statement has to be367

replaced by length(M)− 1. The proof is exactly the same but we have to verify that when368

a new simulation is inserted into M , the property still holds. Indeed, let c be a state that369

follows the insertion of a new simulation (Line 8). We have now length(M) − 1 = N + 1370

(thus the last index of M is N + 1). Moreover, we claim that Sc
N+1 = Sc

N . Indeed, at this371

point, the simulation M [N + 1] has not output any solution. Moreover, by construction,372

cN = steps(M [N ]) = steps(M [N + 1]) = cN+1. Since cN ≥ 2p(n)|Sc
N | by induction, we373

have that cN+1 ≥ 2p(n)|Sc
N+1|. Moreover, the following adaptation of Corollary 6 holds for374

Algorithm 2.375

▶ Lemma 7. Let c be the state reached when Algorithm 1 stops. Then N := length(M)− 1 =376

1 + log(♯I(x)) and for every i ≤ N , ci ≥ 2ip(n).377

Proof. The lower bound ci ≥ 2ip(n) for i ≤ N is proven by induction exactly as in the proof378

of Lemma 5. The induction holds as long as 2i−1 ≤ ♯I(x), because we need this assumption379

to prove that there are at least 2i−1 solutions in the interval [1, 2i−1p(n)]. Now, one can380
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easily see that if i ≤ 1 + log(♯I(x)) and ci ≥ 2ip(n) then the simulation M [i] has reached381

2i−1p(n) at some point and thus, has created a new simulation M [i + 1]. Thus, by induction,382

the algorithms creates at least 1 + log(♯I(x)) = N new simulations. Thus length(M) ≥ N + 1383

(as M starts with one element).384

Finally, observe that M [N ] outputs solutions in the zone ZN = [2N−1p(n) + 1, 2N p(n)]385

and that 2N−1p(n) = ♯I(x)p(n) which is an upper bound on the total time of I on input386

x. Thus, the simulation M [N ] will end without creating a new simulation. In other words,387

length(M)− 1 = N . ◀388

Delay of Algorithm 2. While establishing the correctness of Algorithm 2 is similar to the389

one of Algorithm 1, proving a bound on the delay of Algorithm 2 is not as straightforward.390

By Lemma 7, the size of M remains bounded by 2 + log(♯I(x)) through the algorithm, so391

there are at most 2p(n)(2 + log(♯I(x))) executions of move between two solutions, for the392

same reasons as before. However, we also have to account for the execution of copy. When393

implemented naively, this operation requires a time O(s(n)) to copy the entire configuration394

of the simulation in some fresh part of the memory. It would add O(s(n)) to the delay of395

Algorithm 2 compared to Algorithm 1. However, one can amortize this copy operation by396

lazily copying the memory while running the original simulation and by adapting the sizes of397

the zones so that we can still guarantee a delay of O(log(♯I(x))p(n)) in Algorithm 2. The398

method is formally described in Appendix A.4.399

Total time of Algorithm 2. A minor modification of Algorithm 2 improves its efficiency400

in terms of total time. By definition, when simulation M [i] exits Zj , it does not output401

solutions anymore. Thus, it can be removed from the list of simulations. It does not change402

anything concerning the correctness of the algorithm. One just has to be careful to adapt403

the bounds in Algorithm 2. Indeed, 2jp(n) is not the right bound anymore as removing404

elements from M may shift the positions of the others. It can be easily circumvented by also405

maintaining a list Z such that Z[i] always contains the zone that M [i] has to enumerate.406

By doing it, it can be seen that each step of I having a position in Zi will only be visited407

by two simulations: the one responsible for enumerating Zi and the one responsible for408

enumerating Zi+1. Indeed, the other simulations would either be removed before entering Zi409

or will be created after the last element of M has entered Zi+1. Thus, the move operation is410

executed at most 2T (|x|) times where T (|x|) is the total time taken by I on input x and the411

total time of this modification of Algorithm 2 is O(T (n)) where T (n) is the total time of I.412

All previous comment on Algorithm 2 allows us to state the following improvement of413

Theorem 3, where no upper bound on ♯I(x) is necessary but s(n) and p(n) are known.414

▶ Theorem 8. Given an IncP1-enumerator I with incremental delay p(n), space complexity415

s(n) and total time T (n), one can construct a DelayP-enumerator I ′ which enumerates I(x)416

on any input x ∈ Σ∗ with space complexity O(s(n) log(♯I(x))), delay O(log(♯I(x))p(n)) and417

total time O(T (n)).418

We observe that Algorithm 2 can be modified so that it can work with IncP1-enumerators419

having a preprocessing. Indeed one only needs, as a preprocessing step of Algorithm 2, to420

run the first simulation created by the algorithm until it outputs its first solution to be in421

the same state as the case where there is no preprocessing.422

We need to know two additional parameters (or an upper bound on them) to run423

Algorithm 1: the space of the amortized algorithm and its incremental delay. By using424

dynamic data structures, one could adapt our algorithm when the space used by the425
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enumerator is not known for a very small overhead. Moreover, it is possible to give a lower426

bound showing that one cannot get a O(p(n)) polynomial delay when the incremental delay427

p(n) is unknown (if I is a blackbox). We leave this improvement for a longer version of this428

paper.429

3.3 Geometric Amortization for IncPi with i > 1430

The dynamic version of the total time is called incremental time: Given an enumeration431

problem A, we say that a machine M solves ΠA in incremental time f(i)g(n) if on every input432

x, and for all i ≤ ♯A(x), TM (x, i) ≤ f(i)g(|x|). The linear incremental time corresponds to433

the case f(i) = i. We generalize IncP1, by polynomially bounding the incremental time.434

▶ Definition 9 (Polynomial incremental time). A problem ΠA ∈ EnumP is in IncPa if there435

is a constant b and a machine M which solves it with incremental time O(ianb). Such a436

machine is called an IncPa-enumerator. Moreover, we define IncP =
⋃

a≥1 IncPa.437

Allowing arbitrary polynomial preprocessing does not modify the class IncPa since this438

preprocessing can be interpreted as the polynomial time before outputting the first solution.439

The class IncP is believed to be strictly included in OutputP, the class of problems solvable440

in total polynomial time, since this is equivalent to TFNP ̸= FP [11]. Moreover, the classes441

IncPa form a strict hierarchy assuming the exponential time hypothesis [11].442

▶ Definition 10 (Usual definition of incremental time.). A problem ΠA ∈ EnumP is in443

UsualIncPa if there are b and c integers and a machine M which solves ΠA such that for all444

x and for all 0 < t ≤ ♯A(x), T (x, t)− T (x, t− 1) < cta|x|b.445

Our definition of IncP captures the fact that we can generate t solutions in time polynomial446

in t and in the size of the input, which seems more general than bounding the delay because447

the time between two solutions is not necessarily regular. Using geometric amortization,448

we can show that both definitions are equivalent even when the space is required to be449

polynomial.450

For a ≥ 0, we denote by IncPpoly
a (respectively UsualIncPpoly

a ), the class of problems that451

can be solved by an IncPa (respectively UsualIncPa) algorithm and polynomial space. The452

following generalises Corollary 4 since DelayP = UsualIncP0.453

▶ Theorem 11. For all a ≥ 0, IncPpoly
a+1 = UsualIncPpoly

a .454

Proof. The inclusion UsualIncPpoly
a ⊆ IncPpoly

a+1 is straightforward and follows by a simple455

computation of the time to generate i solutions, see [11].456

The inclusion IncPpoly
a+1 ⊆ UsualIncPpoly

a is done by geometric amortization, by adapting457

Algorithm 1. Let I be an algorithm solving a problem in IncPa+1. We assume we know458

ta+1p(n), a bound on its incremental time.459

Then, the only modification we do in Algorithm 1 is to maintain a counter S of the460

number of output solutions and modify the initialization of b in the for loop at line 6 to461

Sa(a + 1)2p(n). By construction of the amortization algorithm, the delay between two462

solutions before the algorithm ends is bounded by Sa(a + 1)2p(n) log(s), where S is the463

number of solutions output up to this point of the algorithm and s the total number of464

solutions. Thus, the algorithm is in UsualIncPa.465

We still have to prove that all solutions are enumerated by the algorithm. Assume that466

the first i + 1 machines M [0], . . . , M [i] have output all the solutions in their zones, then we467

prove as in Corollary 6, that the the machine M [i + 1] has also output all its solutions. The468
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number of solutions output by M [0], . . . , M [i] is the number of solutions output by I up to469

time step 2ip(n). Let si be this number, then sa+1
i p(n) ≥ 2ip(n) since I is in incremental470

time ta+1p(n). Hence, si ≥ 2i/(a+1).471

When a solution is output by a machine M [j] with j ≤ i, then j is set to N and all472

machines M [k] with k > i move by at least Sa(a + 1)2p(n) steps where S is the current473

number of output solutions before M [i] moves again. Hence, we can lower bound the number474

of moves of the machine M [i + 1] by
∑si

S=0 Sa(a + 1)2p(n) ≥
∑2i/(a+1)

S=0 Sa(a + 1)2p(n). Since475 ∑n
S=0 Sa ≥

∫ n

0 Sa dS ≥ na+1/(a+1), the number of moves of M [i+1] is larger than 2i+1p(n)476

which is the upper bound of its zone. ◀477

4 Other Applications of Geometric Amortization478

4.1 Amortizing Self-Reducible Problems479

Given an enumeration problem ΠA, we assume from now on, to lighten the exposition, that480

the solutions in A(x) are sets over some universe U(x). From A, we define the predicate Ã481

which contains the pairs ((x, a, b), y) such that y ∈ A(x) and a ⊆ y ⊆ b. From this predicate,482

we define a self-reducible3 variant of ΠA and the extension problem ExtSol·A defined as483

the set of triples (x, a, b) such that there is a y in Ã(x, a, b).484

Solving ΠA on input x is equivalent to solving ΠÃ on (x, ∅, U(x)). Let us now formalize485

a recursive method to solve ΠÃ, sometimes called binary partition, because it partitions486

the solutions to enumerate in two disjoint sets. Alternatively, it is called flashlight search,487

because we peek at subproblems to solve them only if they yield solutions. To our knowledge,488

all uses of flashlight search in the literature can be captured by this formalization, except489

for the partition of the set of solutions which can be in more than two subsets. We only490

present the binary partition for the sake of clarity, but our analysis can be adapted to finer491

partitions.492

Given an instance (x, a, b) of ΠÃ and some global auxiliary data D, a flashlight search493

consists in the following (subroutines are not specified, and yield different flashlight searches):494

if a = b, a is ouput and the algorithm stops495

choose u ∈ b \ a;496

if (x, a ∪ {u}, b) ∈ ExtSol·A, compute some auxiliary data D1 from D and make a497

recursive call on (x, a ∪ {u}, b);498

if (x, a, b \ {u}) ∈ ExtSol·A, compute some auxiliary data D2 from D1 and make a499

recursive call on (x, a, b \ {u}), then compute D from D2.500

Flashlight search can be seen as a depth-first traversal of a partial solutions tree. A501

node of this tree is a pair (a, b) such that (x, a, b) ∈ ExtSol·A. Node (a, b) has children502

(a ∪ {u}, b) and (a, b \ {u}) if they are nodes. A leaf is a pair (a, a) and the root is (∅, U(x)).503

The cost of a node (a, b) is the time to execute the flashlight search on (x, a, b) except the504

time spent in recursive calls. Usually, the cost of a node comes from deciding ExtSol·A505

and modifying the global data structure D used to solve ExtSol·A faster.506

The cost of a path in a partial solution tree is the sum of the costs of the nodes in the507

path. We define the path time of a flashlight search algorithm as the maximum over the cost508

of all paths from the root. Twice the path time bounds the delay since, between two output509

solutions, a flashlight search traverses at most two paths in the tree of partial solutions.510

3 For a classical definition of self-reducible problems, see e.g. [25, 5].
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To our knowledge, all bounds on the delay of flashlight search are proved by bounding the511

path time. The path time is bounded by ♯U(x) times the complexity of solving ExtSol·A.512

Auxiliary data can be used to amortize the cost of evaluating ExtSol·A repeatedly, generally513

to prove that the path time is equal to the complexity of solving ExtSol·A once, e.g., when514

generating minimal models of monotone CNF [31].515

Using flashlight search, we obtain that ΠA ∈ DelayP if ExtSol·A ∈ P and indeed many516

enumeration problems are in DelayP because their extension problem are in P, see e.g.,517

[38, 29]. However, there are NP-hard extension problems whose enumeration problem is in518

DelayP, e.g., the extension of a maximal clique, whose hardness can be derived from the fact519

that finding the largest maximal clique in lexicographic order is NP-hard [23].520

The average delay (also amortized delay or amortized time) of a machine M solving ΠA521

on input x is T (x, ♯A(x))/♯A(x). The average delay of an enumerator is bounded by its delay522

but it can be much smaller. This happens in flashlight search when the internal nodes of523

the tree of partial solutions are guaranteed to have many leaves. Uno describes the pushout524

method [38] harnessing this property to obtain constant average delay algorithms for many525

problems such as generating spanning trees.526

To make sense of very low complexity enumeration algorithms, we may separate the527

preprocessing T (x, 1) from the rest of the computation. We say that a machine with528

preprocessing has incremental delay d(n) if, for all x and i, T (x, i)− T (x, 1) ≤ i · d(|x|). The529

preprocessing is not taken into account in the incremental delay. When the preprocessing530

time is not zero, it is explicitly specified and we use preprocessing only in this section. We531

now prove, using Theorem 3, that the average delay of a flashlight search can be turned into532

a delay up to a small multiplicative factor. It relies on a small queue for amortization, so533

that its incremental delay is equal to its average delay, and on geometric amortization to534

turn the incremental delay into a delay.535

▶ Theorem 12. Let ΠA be an enumeration problem solved by a flashlight search algorithm,536

with space s(n), path time p(n) and average delay d(n). Let b(n) be the size of a single537

solution. There is an algorithm solving ΠA on any input x, with preprocessing O(p(n)b(n)),538

delay O(d(n) log(♯I(x))) and space O(s(n) log(♯I(x)) + p(n)b(n)).539

Proof. Let I be the flashlight search algorithm solving ΠA. Let us first describe an algorithm540

I ′ in incremental linear time, which produces the same solutions as I on any input x of size541

n. The preprocessing of I ′ is to run I for p(n) steps and to store each solution output in542

a queue. It takes a time at most O(p(n)b(n)) since there are at most p(n) solutions of size543

b(n) to store in the queue. The queue requires an additional space of O(p(n)b(n)). After the544

preprocessing, we first output all solutions in the queue and then I is simulated for the rest545

of its run and the solutions output by I are output by I ′ right away.546

Checking the queue for emptiness and outputting a solution can be done in constant547

time. Hence, we can guarantee that there is a constant C, such that after C computation548

steps of I ′, one step of I is executed. Let us evaluate the number of solutions output when549

I ′ has run for a time Ct after the preprocessing. If at this time the queue is not empty, then550

a solution has been output at each time step, hence there are at least t output solutions.551

If the queue is empty, the number of solutions output by I ′ is the same as the number552

of solutions output by I after running for a time p(n) + t. At this point in time, the553

flashlight search is considering some node (a, b) of the partial solutions tree and we denote554

by (∅, U(x)) = (a0, b0), . . . , (ai, bi) = (a, b) the path from the root to (a, b). The time spent555

on the nodes of this path is bounded by p(n), the path time of I. Hence, I spends at least a556

time t in the subtrees whose root is a child of some (ai, bi).557



F. Capelli and Y. Strozecki 20:15

Current subproblem
Enumerated subproblems

. . .

(a0, b0)

(a, b)

(a1, b1)
(a2, b2)

(a0 ∪ {u0}, b0)

(a2 ∪ {u2}, b2)

Figure 1 A traversal of the tree of partial solutions by the flashlight search. The subproblems
completely solved recursively in blue, the path to the current solution in red.

Also, observe that a subtree rooted at a child (c, d) of (ai, bi) with (c, d) ̸= (ai+1, bi+1) has558

been either completely explored by the flashlight search or not at all, as shown in Figure 1.559

Since I is a flashlight search, it works recursively on subtrees, corresponding to subproblems.560

If a subtree rooted at (c, d) has been completely explored, then the flashlight search has561

recursively solved the problem Ã(x, c, d). By definition of the average delay, the solutions562

in Ã(x, c, d) have been produced by flashlight search in total time less than d(n)♯Ã(x, c, d).563

Hence, the subproblems entirely solved by I contribute at least t/d(n) solutions. Therefore,564

in time Ct, I ′ outputs at least t/d(n) solutions.565

Therefore, we have proven that I ′ is in incremental delay O(d(n)), space O(s(n)+p(n)b(n))566

and preprocessing O(p(n)b(n)). Applying Theorem 3 to I ′ yields an algorithm with the567

stated complexity. ◀568

4.2 Enumeration of the Models of DNF Formulas569

In this section, we explore consequences of Theorem 12 on the problem of generating models570

of a DNF formula, which has been extensively studied in [12]. Let us denote by n the number571

of variables of a DNF formula, by m its number of terms and by ΠDNF the problem of572

generating the models of a DNF formula. The size of a DNF formula is at least m and573

at most O(mn) (depending on the representation and the size of the terms), which can574

be exponential in n. Hence, we want to understand whether ΠDNF can be solved with a575

delay polynomial in n only, that is depending on the size of a model of the DNF formula576

but not on the size of the formula itself. A problem that admits an algorithm with a delay577

polynomial in the size of a single solution is said to be strongly polynomial and is in the class578

SDelayP. One typical obstacle to being in SDelayP is dealing with large non-disjoint unions579

of solutions. The problem ΠDNF is an example of such difficulty: its models are the union580

of the models of its terms, which are easy to generate with constant delay.581

The paper [12] defines the strong DNF enumeration conjecture as follows: there is no582

algorithm solving ΠDNF in delay o(m). It also describes an algorithm solving ΠDNF in583

average sublinear delay. It is based on flashlight search, with appropriate data structures and584

choice of variables to branch on (Theorem 10 in [12]). Thanks to Theorem 12, we can trade585

the average delay for a guaranteed delay and falsify the strong DNF enumeration conjecture.586

▶ Corollary 13. There is an algorithm solving ΠDNF with linear preprocessing, delay587

O(n2m1−log3(2)) and space O(n2m).588

Proof. The algorithm of [12] enumerates all models with average delay O(nm1−log3(2)) and589

the space used is the representation of the DNF formula by a trie, that is O(mn). We apply590

Theorem 12 to this algorithm. We have a bound on the incremental delay, the space used591

and the number of solutions, hence we can use Theorem 3 to do the geometric amortization592

without overhead in the method of Theorem 12. The auxiliary queue used in Theorem 12 is593
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of size n2m, since the path time is nm. The number of models is bounded by 2n, hence the594

delay obtained by amortization is O(n2m1−log3(2)) and the space O(n2m), which proves the595

theorem. ◀596

For monotone DNF formulas, Theorem 14 of [12] gives a flashlight search with an average597

delay of O(log(mn)). Hence, we obtain an algorithm with delay O(n log(mn)) listing the598

models of monotone DNF formulas with strong polynomial delay by Theorem 12. It gives an599

algorithm having a better delay, preprocessing and space usage than the algorithm given by600

Theorem 12 of [12].601

▶ Corollary 14. There is an algorithm solving ΠDNF on monotone formulas with polynomial602

space, linear preprocessing and strong polynomial delay.603

We have not proven that ΠDNF ∈ SDelayP, and the DNF Enumeration Conjecture, which604

states that ΠDNF /∈ SDelayP still seems credible. Theorem 3 shows that this conjecture can605

be restated in terms of incremental delay, suggesting that the conjectured hardness should606

rely on the incremental delay and not on the delay.607

▶ Conjecture 15. There is no polynomial p such that ΠDNF can be solved with polynomial608

space and incremental delay p(n).609
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A Oracles to RAM706

In this Appendix, the size of the input of the algorithm is denoted by n. We assume in707

this section that the polynomial p(n) is the known delay of I, the simulated RAM. The708

complexity of any operation in the RAM model, say a + b is (log(a) + log(b))/ log(n). If a709

and b are bounded by some polynomial in n, then (log(a) + log(b))/ log(n) < C for some710

constant C. All integers used in this section are bounded by a polynomial in n and can711

thus be manipulated in constant time and stored using constant space. We assume an712

infinite supply of zero-initialized memory, that is all registers of the machines we use are first713

initialized to zero. It is not a restrictive assumption, since we can relax it, by using a lazy714

initialization method (see [30] 2, Section III.8.1) for all registers, for only a constant time715

and space overhead for all memory accesses.716

A.1 Pointers and Memory717

To implement extensible data structures, we need to use pointers. A pointer is an integer,718

stored in some register, which denotes the index of the register from which is stored an719

element. In this article, the value of a pointer is always bounded by a polynomial in n, thus720

it requires constant memory to be stored. Using pointers, it is easy to implement linked lists,721

each element contains a pointer to its value and a pointer to the next element of the list.722

Following a pointer in a list can be done in constant time. Adding an element at the end of723

a list can be done in constant time if we maintain a pointer to the last element. We also use724

arrays, which are a set of consecutive registers of known size.725

In our algorithms, we may need memory to extend a data structure or to create a new726

one, but we never need to free the memory. Such a memory allocator is trivial to implement:727

we maintain a register containing the value F , such that no register of index larger than F728

is used. When we need k consecutive free registers to extend a data structure, we use the729

registers from F to F + k − 1 and we update F to F + k.730

A.2 Counters731

All algorithms presented in this paper rely, sometimes implicitly, on our ability to efficiently732

maintain counters, for example, to keep track of the number of steps of a RAM that have733

been simulated so far. Implementing them naively by simply incrementing a register would734

result in efficiency loss since these registers may end up containing values as large as 2poly(n)
735

and we could not assume that this register can be incremented, compared, or multiplied in736

constant time in the uniform cost model that we use in this paper.737

To circumvent this difficulty, we introduce in this section a data structure that allows us738

to work in constant time with counters representing large values. Of course, we will not be739

able to perform any arithmetic operations on these counters. However, we show that our740

counter data structure enjoys the following operations in constant time: inc(c) increases the741

counter by 1 and mbit(c) returns the index of the most significant bit of the value encoded742

by c. In other words, if k = mbit(c) then we know that inc(c) has been executed at least 2k
743

times and at most 2k+1 times since the initialization of the counter.744

The data structure is based on Gray code encoding of numbers. A Gray code is an745

encoding enjoying two important properties: the Hamming distance of two consecutive746

elements in the Gray enumeration order is one and one can produce the next element in the747

order in constant time. The method we present in this section is inspired by Algorithm G748

presented in [26] which itself is inspired by [7] for the complexity. The only difference with749
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Algorithm G is that we maintain a stack containing the positions of the 1-bits of the code in750

increasing order so that we can retrieve the next bit to switch in constant time which is not751

obvious in Algorithm G. Our approach is closer to the one presented in Algorithm L of [26]752

but for technical reasons, we could not use it straightforwardly.753

We assume in the following that we have a data structure for a stack supporting initial-754

ization, push and pop operations in constant time and using O(s) registers in memory where755

s is the size of the stack (it can be implemented by a linked list).756

Counters with a known upper bound on the maximal value. We start by presenting the757

data structure when an upper bound on the number of bits needed to encode the maximal758

value to be stored in the counter is known. For now on, we assume that the counter will be759

incremented at most 2k − 1 times, that is, we can encode the maximal value of the counter760

using k bits.761

To initialize the data structure, we simply allocate k consecutive registers R0, . . . , Rk−1762

initialized to 0, which can be done in constant time since the memory is assumed to be763

initialized to 0, and we initialize an empty stack S. Moreover, we have two other registers A764

and M initialized to 0.765

We will implement mbit and inc to ensure the following invariants: the bits of the Gray766

Code encoding the value of the counter are stored in R0, . . . , Rk−1. A contains the parity of767

the number of 1 in R0, . . . , Rk−1. M contains an integer smaller than k that is the position768

of the most significant bit in the Gray Code (the biggest j ≤ k − 1 such that Rj contains769

1). Finally, S contains all positions j such that Rj is set to 1 in decreasing order (that is if770

j < j′ are both in S, j will be poped before j′).771

To implement mbit, we simply return the value of M . It is well-known and can be easily772

shown that the most significant bit of the Gray Code is the same as the most significant bit773

of the value it represents in binary so if the invariant is maintained, M indeed contains a774

value j such that the number of times inc(c) has been executed is between 2j and 2j+1 − 1.775

To implement inc, we simply follow Algorithm G from [26]. If A is 0 then we swap the776

value of R0. Otherwise, we swap the value of Rj+1 where j is the smallest position such777

that Rj = 1 (if j is k − 1 then we have reached the maximal value of the code which we778

have assumed to be impossible, see below to handle unbounded counters). One can find779

j in constant time by just popping the first value in S, which works if the invariant is780

maintained. Now, one has to update the auxiliary memory: A is replaced by 1−A so that it781

still represents the parity of the number of 1 in the Gray Code. To update S, we proceed as782

follows: if A is 0 then either R0 has gone from 0 to 1, in which case we have to push 0 in S783

or R0 has gone from 1 to 0, in which case we have to pop one value in S, which will be 0784

since S respects the invariant. It can be readily proven that this transformation preserves785

the invariant on S. Now, if A is 1, then either the value of Rj+1 has gone from 0 to 1 which786

means that we have to push j + 1 and j on the stack (j is still the first bit containing 1 so it787

has to be pushed back on the top of the stack and j + 1 is the next bit set to 1 so it has to788

be just after j in S). Or the value of Rj+1 has gone from 1 to 0. In this case, it means that789

after having popped j from S, j + 1 sits at the top of S. Since Rj+1 is not 0, we have to pop790

j + 1 from S and push back j. Again, it is easy to see that these transformations preserve791

the invariant on S. Moreover, we never do more than 2 operations on the stack so this can792

be done in constant time. Finally, if Rj+1 becomes 1 and j + 1 > M , we set M to j + 1.793

Observe that we are using 2k + 2 registers for this data structure since the stack will794

never hold more than k values.795
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Unbounded counters. To handle unbounded counters, we start by initializing a bounded796

counter c0 with k bits (k can be chosen arbitrarily, k = 1 works). When c0 reaches its797

maximal value, we just initialize a new counter c1 with k + 1 bits and modify it so it contains798

the Gray Code of c0 (with one extra bit) and copy its stack S and the values of A and M .799

This can be done in constant time thanks to the following property of Gray code: the800

Gray code encoding of 2k − 1 contains exactly one bit set to 1 at position k − 1. Thus, to801

copy the value of c0, we only have to swap one bit in c1 (which has been initialized to 0 in802

constant time). Moreover, the stack of c0 containing only positions of bit set to 1, it contains803

at this point only the value k − 1 that we can push into the stack of c1. Copying registers A804

and M is obviously in constant time.805

To summarize, we have proven the following:806

▶ Theorem 16. There is a data structure Counter that can be initialized in constant time807

and for which operations inc and mbit can be implemented in constant time with the following808

semantic: mbit(c) returns an integer j such that v is between 2j and 2j+1 − 1 where v is809

the number of time inc(c) has been executed since the initialization of c. Moreover, the data810

structure uses O(log(v)2) register.811

One could make the data structure more efficient in memory by lazily freeing the memory812

used by the previous counters so that it is O(log(v)). However, such an optimization is not813

necessary for our purpose.814

A.3 Instructions load, move and steps for Known Parameters815

In this section, we explain formally how one can simulate a given RAM as an oracle with816

good time and memory guarantees. More precisely, we explain how one can implement the817

instructions load, move and steps that we are using in our algorithms so that their complexity818

is O(1) and their memory usage is O(s(n)) where s(n) is the memory used by I the simulated819

RAM on an input of size n. We do the following assumptions: we know an upper bound for820

both values s(n) and ⌈log(♯I(x))⌉. We also assume that s(n) is bounded by a polynomial.821

Note that ⌈log(♯I(x))⌉ is polynomial in n, since we consider only machines solving problems822

in EnumP.823

Configuration. Instruction load(I, x) returns a structure M which stores the configuration824

of I when its runs on input x. A configuration of I is the content of the registers up to the825

last one which has been accessed and the state of the machine, i.e. the index of the next826

instruction to be executed by I. Moreover, the number of executed move(M) instructions is827

also part of the configuration to support the steps instruction.828

Remark that we make explicit that machine I is simulated, by giving it as argument of829

load. However, the amortization algorithms we design all use load only on the machine I.830

They must be understood as a method to build an amortized algorithm for each I. Therefore,831

we do not need a universal machine to simulate I when executing a move(M) instruction.832

To simulate I in constant time, the crucial part is to be able to read and write the ith833

register of I as stored in M in constant time. If we know a bound s(n) on the space used834

by I, and a bound on the number of solutions ♯I(x) as in Algorithm 1, the structure M835

is very simple. For a structure M , we reserve s(n) registers which are mapped one to one836

to the registers R1 up to Rs(n) of I. We also require 1 register to store the index of the837

current instruction to be executed by I. We also initialize a counter c to 0 as explained in838

Section A.2 for steps(M) to keep track of the number of steps that have been simulated so839

far. This counter will use up to O(log(♯I(x))2) registers. To really account for steps(M), one840
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should increment c each time an instruction move is executed. However, in Algorithm 1 and841

Algorithm 2, one need to compare steps(M) with another value. We explain below how one842

can adapt this counter so that this comparison is constant time for both algorithms.843

Let m = s(n) + 2⌈log(♯I(x))⌉+ 2, then for all j from 0 to ⌈log(♯I(x))⌉+ 1, the structure844

M [j] uses the registers from jm to (j + 1)m− 1. Hence, if M [j] must simulate the access of845

I to register Ri, it accesses the register Rjm+i. This operation is in constant time, since it846

requires to compute jm + i, where i, m and j are polynomial in n.847

At Line 8 of Algorithm 1, one has to determine whether the number of steps simulated is848

in [2j−1p(n) + 1, 2jp(n)]. To check this inequality in constant time, we simply initialize a849

counter cj as in Section A.2. Instead of incrementing it each time move(M [j]) is called, we850

increment it every p(n) calls to move. This can easily be done by keeping another register R851

which is incremented each time move is called and whenever it reaches value p(n), it is reset852

to 0 and cj is incremented. Now to decide whether M [j] enters its zone, it is sufficient to test853

whether mbit(cj) = j − 1. The first time it happens, then exactly 2j−1p(n) steps of M [j]854

have been executed, so it will enter its zone in the next move, so we can remember it to start855

the enumeration. When mbit(cj) becomes j, it means that 2jp(n) steps of M [j] have been856

executed, that is, M [j] leaves its zone. Thus, we can perform the check of Line 8 in constant857

time.858

A.4 Instruction copy859

Algorithm 2, which does not require to know #I(x), relies on an instruction copy. This860

instruction takes as a parameter a data structure M storing the configuration of a RAM and861

returns a new data structure M ′ of the same machine starting in the same configuration (an862

exact copy of the memory). A straightforward way of implementing copy would be to copy863

every register used by the data structure M in a fresh part of the memory. However, this864

approach may be too expensive since we need to copy the whole memory used by M . Since865

we are guaranteed to have one output solution between each copy instruction, the delay of866

Algorithm 1 becomes O(log(#I(x))(p(n) + s(n))).867

In this section, we explain how one can lazily implement this functionality so that the868

memory of M is copied only when needed. This method ensures that copy runs in O(1),869

however, there is an overhead to the cost of the instruction move. We show it still runs in870

O(1) if the memory usage of I is well behaved, otherwise the overhead is small and exists871

only when log(#I(x)) ≤ log(n)2.872

Let us explain how the data structure M is lazily copied. The data structure contains a873

register for the index of the current instruction, a counter of the number of steps and an874

array to represent the registers of I the simulated machine. The counter in M ′ is stored as875

in Theorem 16. It is initialized so that it represents the value 2j−1p(n) and it counts up876

to 2j+1p(n). This value is represented by a regular counter of value 0 and the Gray code877

counter contains the 2j−1p(n)th integer in Gray code order for integers of size j + 1. This878

number is equal to 2j−1 + 2j−2, which has only two one bits (the second and the third),879

hence it can be set up in constant time. The auxiliary structure is the list of ones of the880

integer, which is here of size two and can thus be set up in constant time.881

We explain how we lazily copy an array. Assume we want to create an exact copy of the882

array A of size m. We create both A′ and U of size m initialized to zero. The value of U [r]883

is 0 if A′[r] has not been copied from A[r] and 1 otherwise. Each time move(M) is executed884

and it modifies the value A[r], if U [r] = 0, it first set A′[r] = A[r] and U [r] = 1. Each time885

move(M ′) is executed and reads the value A′[r], if U [r] = 0, it first set A′[r] = A[r] and886

U [r] = 1. This guarantees that the value of A′ is always the same as if we had completely887
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copied it from A when the instruction copy(M) is executed. The additional checks and888

updates of U add a constant time overhead to move. Moreover, we maintain a simple counter889

c, and each time a move(M ′) operation is executed, if U [c] = 0, we set A′[c] = A[c] and890

U [c] = 1. When c = m, the copy is finished and we can use A and A′ as before, without891

checking U .892

The described implementation of the copy operation is in constant time. The move893

instruction, modified as described, has a constant overhead for each lazy copy mechanism in894

action. To evaluate the complexity of Algorithm 2, we must evaluate the number of active895

copies. We prove, that when s(n) is known, a variant of Algorithm 2 has only a single active896

copy mechanism at any point in time.897

▶ Theorem 17. Given an IncP1-enumerator I, its incremental delay p(n) and its space898

complexity s(n), one can construct a DelayP-enumerator I ′ which enumerates I(x) on input899

x ∈ Σ∗ with delay900

O(log(#I(x))p(n))901

and space complexity O(s(n) log(#I(x))).902

Proof. We use a hybrid version of Algorithm 1 and Algorithm 2. First, in the preprocessing903

step, I is run for s(n) steps. If the computation terminates before s(n) steps, then we store904

all solutions during the preprocessing and enumerate them afterward.905

Otherwise, let i be the integer such that 2i−1p(n) ≤ s(n) < 2ip(n). We run Algorithm 1906

with log(s(n)/p(n)) as a bound on the number of solutions. It means that M [0] up to M [i] are907

loaded in the preprocessing. Since the number of solutions can be larger than log(s(n)/p(n)),908

we need machines M [j] for j > i. These machines are created dynamically as in Algorithm 2.909

When a machine M [j] is created, it is lazily copied from M [j − 1] using copy. There are910

at least 2j−1p(n) ≥ 2ip(n) ≥ s(n) instructions executed before the next copy instruction.911

Therefore, a single lazy copy is active at any point of the algorithm, which proves that the912

delay is O(log(#I(x))p(n)). ◀913
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