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Introduction

Background and motivation

On the one hand, the autonomous assembly of large structures in space is a key challenge for missions possessing structures to be self-deployed as a single piece, like PULSAR, which is able to overcome the size restrictions of current launchers [START_REF] Cumer | Modelling and attitude control design for autonomous in-orbit assembly[END_REF][START_REF] Deremetz | Mosar-WM: a relocatable robotic arm demonstrator for future applications[END_REF][START_REF] Rognant | Autonomous assembly of large structures in space: a technology review[END_REF]. On the other hand, there are also many ongoing on-orbit servicing (OOS) projects, which fall into three main categories: observation, motion and manipulation [START_REF] Crepy-Marglais | Development of a Robust and Combined Controller for On-Orbit Servicing Missions[END_REF]. Both ESA's Clean Space initiative and NASA's Orbital Debris Program Office are mainly focused on de-orbiting satellites while investigating the capture of a satellite by means of space robotics [START_REF] Wormnes | Esa technologies for space debris remediation[END_REF]. However, the use of robotics can also be a solution for different types of OOS missions such as maintenance, repair, refueling, upgrade and docked inspection of a satellite, which come under the manipulation category. NGIS' MEV-1 [START_REF] Glogowski | Application of solar electric propulsion in the emerging satellite servicing industry[END_REF] and EROSS [START_REF] Dubanchet | Eross project-European autonomous robotic vehicle for on-orbit servicing[END_REF][START_REF] Dubanchet | Validation and demonstration of EROSS project: the European robotic orbital support services[END_REF][START_REF] Andiappane | Mission and system design for EROSS project: the European robotic orbital support services[END_REF] are some of the examples.

Over the years, a wide variety of studies has been conducted on the topic of spacecraft on-orbit rendezvous and assembly with disturbance rejection. Lieu et al. [START_REF] Liu | Sample data game strategy for active rendezvous with disturbance rejection[END_REF] used a sampled-data strategy to produce optimal actions against disturbance and limited measurements for a rendezvous problem between two spacecraft, while other studies proposed controls based on an adaptive active disturbance rejection control and higher-order sliding mode control in the presence of uncertain disturbance torques to address the problem of spacecraft rendezvous [START_REF] Biggs | Robust spacecraft rendezvous using a variable speed control moment gyro and thruster[END_REF][START_REF] Henry | A 6-DOF sliding mode fault tolerant control solution for in-orbit autonomous rendezvous[END_REF]. Additionally, some papers focused on presenting a Guidance, Navigation and Control framework for rendezvous/docking F l (G (s) , K) Lower LFR of the system G (s) and the controller K. F u (G (s) , ) Upper LFR of the system G (s) and the uncertainty block . [START_REF] Colagrossi | Guidance, navigation and control for 6DOF rendezvous in Cislunar multi-body environment[END_REF][START_REF] Samsam | Multi-impulse smooth trajectory design for long-range rendezvous with an orbiting target using multi-objective non-dominated sorting genetic algorithm[END_REF], whereas Chai et al. [START_REF] Chai | Robust event-triggered game-based attitude control for on-orbit assembly[END_REF] presented a robust attitude control for on-orbit assembly in order to control the attitude of a substructure subject to disturbance. However, most of these studies neglect flexibility and study the system as a rigid body.

In order to address the problem of docking for an on-orbit rendezvous, Henry et al. [START_REF] Henry | A 6-DOF sliding mode fault tolerant control solution for in-orbit autonomous rendezvous[END_REF] assumed the capture mechanism to be a simple basket. Nonetheless, the situation becomes totally different if the capture is made using a robotic arm or a solid contact between a capture probe and a berthing fixture mechanism. Moosavian et al. [START_REF] Moosavian | Free-flying robots in space: an overview of dynamics modeling, planning and control[END_REF] introduced a brief review of various algorithms for controlling robotic manipulators. In addition, Wang et al. [START_REF] Wang | Modeling and simulation of robotic system for servicing Hubble space telescope[END_REF] addressed the modeling, simulation and controls of a robotic servicing system for the Hubble Space Telescope servicing missions whereas Raina et al. [START_REF] Raina | Impact modeling and reactionless control for post-capturing and maneuvering of orbiting objects using a multi-arm space robot[END_REF] provided a framework to study the behavior of a multi-arm robotic system mounted on a servicing satellite while capturing orbiting objects. Moreover, Brannan et al. [START_REF] Brannan | Modeling flexible-body dynamics in real-time robotic systems used in satellite servicing simulations[END_REF] showed how to model a spacecraft with flexible appendages in order to ultimately assess whether or not any flexible modes will be excited during grappling by the robot servicer. Being able to model dynamic flexible structures is thus very important, since spillover effects might arise when considering two satellites connected to each other via a robotic arm [START_REF] Gasbarri | Dynamic/control interactions between flexible orbiting space-robot during grasping, docking and post-docking manoeuvres, in: Dynamics and Control of Space Systems[END_REF]. Nevertheless, these studies do not analyze in depth the change in mechanical properties that results from a chaser's robotic arm movement while being docked to a target spacecraft with flexible appendages and considerable mass/inertial properties. Several docking mechanisms such as HOTDOCK [START_REF] Deremetz | Mosar-WM: a relocatable robotic arm demonstrator for future applications[END_REF] or ASSIST [START_REF] Medina | Towards a standardized grasping and refuelling on-orbit servicing for geo spacecraft[END_REF] are also being developed in order to make OOS missions possible. The contact dynamics model of ASSIST is built in a simulator [START_REF] Medina | Towards a standardized grasping and refuelling on-orbit servicing for geo spacecraft[END_REF] by considering the forces and torques caused by physical contact between the chaser and target spacecraft. However, no symbolic linear model is obtained in order to consider this effect when designing a controller.

Sands [START_REF] Sands | Optimization provenance of whiplash compensation for flexible space robotics[END_REF][START_REF] Sands | Flattening the curve of flexible space robotics[END_REF] addressed a method called whiplash compensation of space robots, whose provenance lies in optimization. This technique uses Pontryagin's minimization of Hamiltonian systems in order to derive controls that account for interaction with robot structural dynamics. Finally, it provides autonomous trajectories permitting deterministic artificial intelligence, which represents a way of dealing with unknown and presumed time-varying parameters like mass, damping and stiffness [START_REF] Sands | Flattening the curve of flexible space robotics[END_REF][START_REF] Sands | Development of deterministic artificial intelligence for unmanned underwater vehicles (UUV)[END_REF][START_REF] Sandberg | Autonomous trajectory generation algorithms for spacecraft slew maneuvers[END_REF].

From an Attitude and Orbit Control System (AOCS)/Guidance, Navigation and Control (GNC) point of view, this type of mission is particularly challenging due to the time-varying & coupled flexible dynamics. Consequently, the success of these projects is constrained by the ability to have an accurate model of the system and analysis tools that allow the prediction of the worst-case scenarios during preliminary design phases.

In this context, this paper aims at proposing an end-to-end structure/control co-design activity for an on-orbit servicing mission scenario. The ambition is to fill an important gap in the literature by taking into account flexibility and system uncertainty in the design of a robust controller to be used in an orbital servicing operation. In fact, this kind of scenario will be more and more frequent in the near future of space missions, where on-orbit operations of large and flexible structures will be put in place. In this context, a full modeling of multibody complex structures can help predict in a very early phase the worst-case scenarios and push the control system to its limits of performance. Moreover, the availability of a model valid for any possible configuration simplifies the synthesis of the controller, which does not have to switch from one control mode to another. The transition between different control phases is in fact a critical aspect of the control design, that often implies intermediate tranquilization time windows.

The goal is then to establish a methodology for performing robust control system design and worst-case analysis for an on-orbit servicing scenario involving the interaction between two flexible vehicles. A Linear Parameter-Varying (LPV) model of two flexible multibody systems was first obtained. This model is fully parameterized according to the system's geometrical configuration and was built using the Two-Input Two-Output Ports (TITOP) approach, which offers the possibility to model complex multibody mechanical systems, while keeping the uncertain nature of the plant and condensing all the possible mechanical configurations in a single low order LFR. Perez et al. [START_REF] Perez | A flexible appendage model for use in integrated control/structure spacecraft design[END_REF][START_REF] Perez | Linear dynamic modeling of spacecraft with open-chain assembly of flexible bodies for ACS/structure co-design[END_REF] stated the basis for the model parameterization in LFR form for co-design/robust control of TITOP assemblies. Perez et al. [START_REF] Gonzalez | Flexible multibody system linear modeling for control using component modes synthesis and double-port approach[END_REF] finally presented a rigorous formalization of the TITOP approach with a comparison with non-linear existing models. Chebbi et al. [START_REF] Chebbi | Linear dynamics of flexible multibody systems: a system-based approach[END_REF] completed the formulation by presenting a rigorous comparison of the TITOP model of an uniform beam for several boundary conditions, with results provided by the Euler-Bernoulli theory. However, all the previous works only dealt with simple beams in open or closed kinematic chain assemblies. The main contribution of Sanfedino et al. [START_REF] Sanfedino | Finite element based n-port model for preliminary design of multibody systems[END_REF][START_REF] Sanfedino | Integrated modeling of microvibrations induced by solar array drive mechanism for worst-case end-to-end analysis and robust disturbance estimation[END_REF] was to better investigate the TITOP inversion operation in order to provide coherent models not only for analytical simple models but also for numerical models provided by FEM commercial software products.

The models built with the TITOP approach are then ready for robust control synthesis as well as robust stability and performance assessment [START_REF] Preda | Robust and adaptable dynamic response reshaping of flexible structures[END_REF]. All the models derived with the TITOP approach have been systematically implemented in the last release of the Satellite Dynamics Toolbox (SDT) [START_REF] Alazard | Satellite dynamics toolbox library (SDTlib) -user's guide[END_REF], which allows the user to easily build the model of a flexible spacecraft with several appendages by assembling elemental Simulink customized blocks.

The chosen scenario is a system composed of two different spacecraft, a chaser and a target, both with large flexible solar arrays. The target, also designated as client satellite, is considered collaborative and prepared as it should be designed with specific features to facilitate the rendezvous and capture. First, the chaser performs a rendezvous with the target. Subsequently, the collaborative target is grasped by means of a robotic arm. Finally, the target vehicle is rigidly attached to one of the docking ports on the chaser to free up the robotic manipulator. This type of mission could be used to perform some maintenance on the target spacecraft, but also to use this target as a mission extension pod. It should be noted that this is just a scenario chosen to demonstrate the capabilities of the proposed approach. A multitude of other mission concepts such as on-orbit assembly or refueling could be explored using the same toolset.

Contributions and paper organization

The paper introduces the following key contributions:

• The development of a complete model fully capturing the dynamics and interactions between all subsystems of an OOS scenario: robotic arm, flexible appendages and decoupled/coupled configurations in a single LFR. This model includes the various interactions and uncertainty effects in a very compact representation. The fact that this model is minimal is critical to allow the usage of modern controller synthesis and analysis tools, which call for reduced numerical complexity.

• A new approach to the modeling of a closed-loop kinematic chain, which uses an uncertain local damping and stiffness in order to model the dynamical behavior of a docking mechanism.

• A thorough controller synthesis and analysis procedure for the design of a static and structured attitude controller, taking into account all the various interactions and couplings which exist between different subsystems. This paper is organized into three parts: system modeling, controller design and stability and performance analysis. In the first part (section 2), a symbolic linear model for control synthesis is obtained using SDT. The result is an LFR, minimal in terms of parameter occurrences. The proposed modeling design is verified using a non-linear physics simulator built with the Simscape multibody toolset from Mathworks. In the second part of the paper (section 3), the SDT model is used to design and optimize a controller capable of complying with the performance requirements which are imposed as constraints on the feedback loop. Finally, the third part (section 4) details the rigorous analysis procedure that was used to obtain robust performance and robust stability certificates.

Multibody modeling approach

The TITOP approach

The link L i connected to the parent substructure L i-1 at point P i and to the child substructure L i+1 at point C i is depicted in Fig. 1a.

The double-port or TITOP model T 

L i P i ,C i (s)
• the six components in R i = P 0 i ; x i , y i , z i of the wrench [W L i+1 /L i ,C i ] R i = F L i+1 /L i T L i+1 /L i ,C i R i
applied by the substructure L i+1 to the link L i at point C i : F L i+1 /L i stands for the three-component force vector applied by L i+1 to L i , and T L i+1 /L i ,C i stands for the threecomponent torque vector applied at point C i ;

• the six components in R i of the acceleration twist

[ẍ P i ] R i = a P i ωP i R i
of point P i : a P i stands for the three-component linear acceleration vector at point P i , and ωP i stands for the three-component angular acceleration vector at point P i ;

and 12 outputs:

• the six components in R i of the acceleration twist [ẍ C i ] R i = a C i ωC i R i ; • the six components in R i of the wrench [W L i /L i-1 ,P i ] R i = F L i /L i-1 T L i /L i-1 ,P i R i
that are applied by the link L i to the substructure L i-1 at point P i ;

and can be represented by the block-diagram depicted in Fig. 1b. The way to obtain such a TITOP model T L i P i ,C i (s) will be detailed later in this paper.

The TITOP model displayed in Fig. 1 is composed of the direct dynamic model (transfer from acceleration twist to wrench) at point P i and the inverse dynamic model (transfer from wrench to acceleration twist) at point C i .

SDT and Simscape modeling

For the on-orbit servicing mission scenario being studied in this paper, two different spacecraft are considered, the chaser and the target, which can be observed in Fig. 2. The chaser spacecraft is composed of a rigid hub, two symmetric flexible solar arrays and one robotic arm. The target vehicle consists of a rigid hub and two flexible solar arrays. Initially, the chaser's robotic arm is stretched near the bottom surface of the vehicle. While the chaser performs a rendezvous with the target, the arm starts its motion in order to dock to the other spacecraft. After seizing the vehicle, the robotic manipulator attaches it to the chaser's rigid body by means of another docking mechanism. Finally, the chaser's solar panels start rotating with the objective of optimizing the power being provided to the coupled system. For a better understanding of the mission scenario being studied, Fig. 3 depicts six different representations of the decoupled and coupled systems during the whole final rendezvous phase.

Let us now introduce in Table 1 the block-diagram representations based on the dynamic models of the several elements that will be used to build the full model of the system. A detailed analysis of each model will be provided later in the following sections of this paper. In this table, [τ P B ] R B describes the rigid kinematic model between the degrees of freedom (DOF) of point P and the DOF of point B projected in frame R B . It is given by:

[τ P B ] R B = I 3 * -→ P B 0 3×3 I 3 with * -→ P B = ⎡ ⎣ 0 -z y z 0 -x -y x 0 ⎤ ⎦ R B (1) 
where * -→ P B represents the skew-symmetric matrix that results from the vector

-→ P B and x y z T R B is the coordinate vector of -→ P B
projected in frame R B . Furthermore, the transformation matrix T R B /R A between frames R B and R A is equal to:

T R B /R A = DCM R B /R A 0 3×3 0 3×3 DCM R B /R A (2)
where DCM R B /R A is a Direct Cosine Matrix (DCM) that transforms R A = P ; x p , y p , z p to R B = (B; x b , y b , z b ) (i.e., the matrix of com- ponents of unitary vectors x p , y p , z p in R B ). T R B /R A is a six-by-six matrix due to the fact that six DOF are being considered (three translations and three rotations).

Rigid hub model

A general rigid hub RH with center of mass G can be modeled using the SDT's block Multi-port rigid body, which computes the inverse linearized dynamic model of a rigid body at n given points, as explained in the SDT's user guide [START_REF] Alazard | Satellite dynamics toolbox library (SDTlib) -user's guide[END_REF]. Considering that the rigid body is submitted to external forces/moments F ext , T ext,G and to forces/moments F RH/A , T RH/A,P due to the interactions with an appendage A connected at point P , the linearized Newton/Euler equations read:

F ext -F RH/A T ext,G -T RH/A,G = D RH G a G ω with D RH G = m RH I 3 0 3×3 0 3×3 J RH G ( 3 
)
where D RH G is the static direct dynamic model of RH at the body's center of mass G and a G is the linear acceleration vector of RH at G. Furthermore, m RH is the mass of RH and J RH G represents the inertia tensor of RH written in the body frame of the rigid hub. Looking now at the case of the OOS mission scenario being studied, the rotating body frames of the rigid hubs of the chaser and target spacecraft are represented in Fig. 2 (for the sake of simplicity, the x-axes are displayed in solid red lines, the y-axes in dashed green lines and the z-axes in dash-dotted blue lines). The body reference frame of the chaser's rigid hub RH 1 is given by R

RH 1 = G 1 ; x G 1 , y G 1 , z G 1 ,
where G 1 is the center of mass and reference point of the main body. The same applies to the target's rigid hub RH 2 , with

R RH 2 = G 2 ; x G 2 , y G 2 , z G 2 .
Since the chaser's rigid hub is considered to be the system's main body, ω is denoted as the angular acceleration vector of the body frame R RH 1 with respect to the inertial frame

R O = (O ; x O , y O , z O ), expressed in R RH 1 .
Initially, when the chaser spacecraft is decoupled from the target, RH 1 is connected to two solar arrays at points P 1 and P 2 as well as to one robotic arm at point J 0 . However, point D 3 of RH 2 will eventually dock to point D 1 of RH 1 , as can be observed in illustrations 5 and 6 in Fig. 3. For that reason, this port also needs to be considered. Furthermore, it is also considered that external forces and torques W ext,G 1 = F ext T ext,G 1 are acting on RH 1 at point G 1 . RH 1 is finally modeled using the compact representation A shown in Table 1. The inverse linearized dynamic model of RH 1 defined in R RH 1 is then equal to

[I RH 1 G 1 P 1 P 2 J 0 D 1 ] R RH 1 .
Connection between rigid hubs: The frame transformation block

-diagram R R RH 1 /R RH 2 based on the compact representation E in Table 1 is used to connect RH 1 to RH 2 at point D 1 ≡ D 3 .
Similarly to the chaser's rigid hub, RH 2 is connected to two solar arrays at points P 3 and P 4 . However, two docking phases will occur. Firstly, the end effector of the robotic arm located at point J 7 will dock to point D 2 of the target's rigid hub RH 2 , as can be seen in illustrations 5 and 6 , with point J 7 being displayed in Fig. 4a. Secondly, port D 3 of RH 2 will also dock to port D 1 of RH 1 , as referred before.

Mechanical uncertainty mec : One of the objectives of this paper is to demonstrate how to design a controller in the presence of significant model uncertainty. For that reason, relative uncertainty is taken into account on the mass and moments of inertia of RH 2 , since the robust stability and performance of the coupled system need to be ensured even when the mechanical characteristics of the target's rigid hub are not perfectly known. As an example, let us now consider the mass of the target's rigid body m RH 2 as uncertain:

m RH 2 = m RH 2 0 (1 + r m RH 2 δ m RH 2 ) ( 4 
)
where m

RH 2 0
is the body's nominal mass, r m RH 2 is used to set the maximum percent of variation for the body's mass and δ m RH 2 ∈ [-1, 1] is a normalized real uncertainty. In the case of the mass, δ m RH 2 appears three times in a minimal LFR of a rigid body [START_REF] Alazard | Satellite dynamics toolbox library (SDTlib) -user's guide[END_REF]. Therefore, the uncertainty block regarding the mass of RH 2 is equal to m RH 2 = δ m RH 2 I 3 . Similarly, relative uncertainty is also considered on the inertial properties of RH 2 . However, only the diagonal moments of inertia were assumed to be uncertain while the off-diagonal terms are kept at their nominal values. For the moments of inertia of the target's rigid hub J xx RH 2 , J yy RH 2 and J zz RH 2 , the normalized real uncertainties δ J xx RH 2 , δ J yy RH 2 and δ J zz RH 2 have just one occurrence in the same minimal LFR [START_REF] Alazard | Satellite dynamics toolbox library (SDTlib) -user's guide[END_REF], where δ J

• RH 2 ∈ [-1, 1] and r J • RH 2
are used to set the maximum percent of variation for J • RH 2 , just like in Eq. ( 4). Therefore, the mechanical uncertainty block of the target's rigid body can be

written as mec = diag m RH 2 , δ J xx RH 2 , δ J yy RH 2 , δ J zz RH 2 .
The dynamic model of RH 2 will although be defined later in this paper.

In Simscape, the Inertia block is used to model a rigid body, which assumes the mass to be distributed in space, allowing the rigid hubs to have non-zero moments of inertia, products of inertia and center-of-mass coordinates.

Dynamic model of a cantilevered solar array

A general flexible solar array SA connected to a parent body RH at point P can be modeled in SDT using the block One-port flexible body, as explained in [START_REF] Alazard | Satellite dynamics toolbox library (SDTlib) -user's guide[END_REF]. The effective mass model of the solar array M SA P (s) relates the six DOF acceleration vector of point P and the six DOF forces/moments vector applied by the parent body to the appendage SA at point P :

F RH/SA T RH/SA,P = M SA P (s) a P ω with M SA P (s) = D SA P ,0 + N i=1 M SA i,P 2ξ i SA ω i SA s + ω 2 i SA s 2 + 2ξ i SA ω i SA s + ω 2 i SA (5) 
where:

• a P is the linear acceleration vector of SA at P .

• ω i SA , ξ i SA and l SA i,P are the natural frequency, the damping ratio and the 6 DOF participation factor vector of the i-th flexible mode of the appendage SA.

• L SA P = l SA 1,P , . . . , l SA i,P , . . . , l SA
N,P is the matrix of modal participation factors of the N flexible modes of the appendage at point P .

• D SA P ,0 = D SA P -N i=1 M SA i,P = D SA P -L SA P L SA P T
is the 6-by-6 residual mass/inertia of the appendage rigidly cantilevered to the parent body RH at point P .

• M SA i,P = l SA i,P l SA i,P
T is the 6-by-6 effective mass/inertia matrix of the i-th flexible mode of the appendage.

MATLAB's Partial Differential Equation (PDE) Toolbox is used to perform finite element analysis and extract all these structural dynamics parameters based on the 3D model of each solar array, its material properties and the boundary conditions. All the reference frames of the solar arrays R SA • = P • ; x P • , y P • , z P • are depicted in Fig. 2, where points P • represent the connection and reference points of the four flexible appendages. In addition, points S • are the solar arrays' centers of mass. The effective mass models of the solar arrays are based on the compact representation C shown in Table 1 andequal 

to -[M SA • P • ] R SA• (s), with M SA • P • (s)
being described in Eq. ( 5).

In Simscape, the same process is achieved by means of the Reduced Order Flexible Solid block, which takes into account three mass, stiffness and damping matrices which are obtained by applying the Craig-Bampton order reduction method while considering the solar arrays R SA • to be cantilevered at points P • .

Modal uncertainty mod : Changes in structural parameters can provoke variations in the natural frequency of some flexible modes. Since the final goal is to design a controller where the bandwidth of interest can be highly impacted by these parameters, relative uncertainty is taken into consideration on the natural frequencies of all the solar arrays' first flexible modes, which are given by ω 1 SA• .

Similarly to how mec was constructed, it results that:

ω 1 SA• = ω 0 1 SA• (1 + r ω 1 SA• δ ω 1 SA• ) (6)
where ω 0 1 SA• represents the nominal natural frequencies, δ ω 1 SA• ∈ [-1, 1] are normalized real uncertainties and the parameters r ω 1 SA• are used to set the maximum percent of variation for ω 1 SA• . Since the uncertainties δ ω 1 SA• appear two times per flexible mode in a minimal LFR of a flexible appendage, as explained in [START_REF] Guy | Dynamic modeling and analysis of spacecraft with variable tilt of flexible appendages[END_REF], the modal uncertainty block linked to each solar array SA • is equal to

ω • = δ ω 1 SA• I 2 .
Furthermore, the uncertainty block regarding the modal properties of all the four solar arrays can be described as

mod = diag ω 1 , ω 2 , ω 3 , ω 4 .
Connection between rigid hubs and solar arrays:

The frame transformation blocks R R RH • /R 0 SA• are needed to project [ẍ P • ] R RH• onto frames R 0 SA • and [W SA • /RH • ,P • ] R R 0 SA• onto frames R RH • . Here, frames R 0 SA • = P • ; x 0 P • , y 0 P • , z 0 P • correspond exactly to frames R SA •
when the geometrical configuration of the solar arrays θ • is equal to 0 rad. These blocks are based on the compact representation defined in E .

Varying tilt angles of the solar arrays θ • : The system is also parameterized according to the solar arrays' tilt angles θ • , respectively expressed in the reference frames R SA • . The fact that these configurations are considered as time-varying is of paramount importance because these structures are cantilevered on the main bodies of both spacecraft with a varying tilt angle, which has a direct influence on the dynamic behavior of both the decoupled and coupled systems. In essence, the attitude control system must be robust to such a variation. The frame transformation blocks R θ • defined in D are needed to project

[ẍ P • ] R 0 SA• onto frames R SA • and [W SA • /RH • ,P • ] R R SA• onto frames R 0 SA •
. These block-diagrams are parameterized according to τ θ • = tan(θ • /4), which leads to a minimal LFR-type representation, as proposed by Dubanchet in [START_REF] Dubanchet | Modeling and control of a flexible space robot to capture a tumbling debris[END_REF]. Since τ θ • is repeated eight times per T θ • , τ θ • appears sixteen times for each connection between a rigid hub and a solar array. In the end, the uncertainty block describing the varying tilt angles of the flexible appendages is equal to

θ = diag θ 1 , θ 2 , θ 3 , θ 4 , with θ • = τ θ • I 16 and τ θ • ∈ [-1, 1]

(which characterizes a complete revolution of the flexible appendages).

It should also be noted that θ • = 0 rad in Fig. 2. R θ • are also defined according to the coordinates of 3-by-1 rotation axis vectors. In this case, the rotations happen around y P • ≡ y 0 P • , as depicted in Fig. 2. In Simscape, the same process is achieved by attaching Revolute Joint blocks to the respective Reduced Order Flexible Solid blocks. Furthermore, the revolute joints are considered to be actuated in motion, meaning that the physical signal input provides the desired trajectory and the actuation torque is automatically computed and applied based on model dynamics.

Robotic arm model

Ultimately, the chaser spacecraft uses a robotic arm RA for catching the target on-orbit, which is inspired by the Universal Robots' UR5 robotic arm [START_REF] Kebria | Kinematic and dynamic modelling of UR5 manipulator[END_REF]. First, it should be noted that α • represents the arm's angular configuration, as depicted in Fig. 4a. In addition, all the arm's 7 different links L • are assumed to be rigid. Each link L • can be taken into account using the Multi-port rigid body block of the SDT library. The TITOP dynamic model of each link L i (for i = 0...6) is given by [Z

L i J i J i+1 ] R L i
, since L i is connected to a parent substructure at point J i and to a child substructure at point J i+1 . These TITOP models are built using the compact representation defined in B .

Connection between the chaser's rigid hub and the robotic arm:

The frame transformation block-diagram R R RH 1 /R L 0 is used to connect the chaser's rigid hub to the robotic arm RA at point J 0 .

Varying tilt angles of the robotic arm α • : The robotic manipulator is assumed to be motion actuated. The system is also parameterized according to the manipulator's geometrical configuration α • , respectively expressed in the reference frames R L 4a. This means that the block-diagram depicted in E is once again used to model the change of frame blocks R α • , as can be observed in the block-diagram displayed in Fig. 4b. Similarly to how θ was built, the uncertainty block describing the changing geometrical configuration of the robotic arm is given by RA

• = J • ; x J • , y J • , z J • displayed in Fig.
= diag α 1 , α 2 , α 3 , α 4 , α 5 , α 6 , with α • = τ α • I 16 and τ α • ∈ [-1, 1].
Fig. 4c displays the equivalent global LFR form of the robotic arm, where w RA RA = z RA . Furthermore, w RA and z RA are the endogenous inputs and outputs of the arm manipulator model. It should also be noted that the angular configuration of the arm represented in Fig. 4a is given by α 2,4 = -π /2 rad and α 1,3,5,6 = 0 rad.

In Simscape, the robotic arm model consists of a combination of Inertia and Revolute Joint blocks.

Modeling of the decoupled/coupled configurations

The coupled and decoupled configurations are modeled with the help of two real parametric uncertainties δ C 1 and δ C 2 , as described in F . If δ C • = 0, the respective channels are completely switched off and there is no attachment between bodies. In case δ C • = 1, then docking has occurred and the bodies are connected to each other. Three different possibilities are considered. The first one can be seen in representation 1 , where the target is completely detached from the chaser. In this case, both δ C 1 and δ C 2 are equal to 0. Moreover, the second case is illustrated in representations 2 , 3 and 4 , where δ C 1 = 1 and δ C 2 = 0, since the robotic arm is docked to the target. The third and last case occurs when the target is attached to the chaser's rigid hub and completely disconnected from the robotic arm, as can be observed in 5 and 6 . In this case, δ C 1 = 0 and δ C 2 = 1. Since the objective is to connect/disconnect all the six DOF, the uncertainty blocks that allow for the modeling of the decoupled/coupled configurations in a single LFR are equal to

C 1 = δ C 1 I 12 and C 2 = δ C 2 I 12 .
All the required information to build the dynamic model of RH 2 has now been obtained. One of the inputs of the model 

[I RH 1 G 1 P 1 P 2 J 0 D 1 ] R RH
G 2 is given by δ C 1 ---→ G 2 D 2 + δ C 2 ---→ G 2 D 3 ,
considering that both δ C 1 and δ C 2 cannot be equal to 1 at the same time. From Eq. ( 1), the corresponding skew-symmetric matrix is equal to:

* ------→ G 2 D 2 /D 3 = ⎡ ⎣ 0 -δ C 1 z G 2 D 2 -δ C 2 z G 2 D 3 δ C 1 y G 2 D 2 + δ C 2 y G 2 D 3 δ C 1 z G 2 D 2 + δ C 2 z G 2 D 3 0 -δ C 1 x G 2 D 2 -δ C 2 x G 2 D 3 -δ C 1 y G 2 D 2 -δ C 2 y G 2 D 3 δ C 1 x G 2 D 2 + δ C 2 x G 2 D 3 0 ⎤ ⎦ R RH 2 (7) with ---→ G 2 D 2 = x G 2 D 2 y G 2 D 2 z G 2 D 2 T R RH 2 and ---→ G 2 D 3 = x G 2 D 3 y G 2 D 3 z G 2 D 3 T R RH 2
. Since the rank of the 3-by-3 matrix * ------→ 

[τ G 2 D 2 /D 3 ] R RH 2
appears once in the non-transposed form and once in the transposed form. Therefore, the new uncertainty block linked to the body RH 2 is equal to

RH 2 = diag mec , δ C 1 I 4 , δ C 2 I 4 .
All the numerical values and range of variations of the numerous system parameters which are employed in this section are described in Table 2.

Complete model of the system

A global LFR representation is obtained, minimal in terms of mechanical parameter occurrences. This model fully captures the dynamics and interactions between all the subsystems of the OOS scenario being studied: robotic arm, flexible appendages and decoupled/coupled configurations. Furthermore, it also takes into account the various uncertainty effects in a very compact representation.

Fig. 5 illustrates the internal structure of the overall LFR model as well as the interconnections between the several subsystems. In this representation, all the block uncertainties are isolated at the component level. However, a low order global uncertainty block system can be built in a very straightforward way by just concatenating the individual uncertainty blocks [START_REF] Preda | Robust and adaptable dynamic response reshaping of flexible structures[END_REF], as shown in Fig. 6, with 

P = diag ω 1 , ω 2 , ω 3 , ω 4 , θ 1 , θ 2 , θ 3 , θ 4 , RA , C 1 , C 2 , RH

Connection model using two spring-damper systems

As previously anticipated, docking mechanisms in reality do not act as simple 6 DOF clamped connections. For that purpose, local spring-dampers are used, implementing the model of a massless spring-damper system in order to close the kinematic chain of two rigid bodies at a particular point of the mechanism loop. The new connection model, which is displayed in Fig. 7a, replaces C 1 and C 2 by two spring-damper systems SM 1 and SM 2 . It can also be observed that the dynamic model of the target's rigid hub is now given by [I RH 2 D 2 D 3 P 3 P 4 ] R RH 2 , since both spring-damper models output the wrenches to be applied to the rigid hub RH 2 . The dynamic model of a general spring-damper system SM • , also displayed in G , reads: where uncertainties which describe the torsional stiffness and damping coefficients of the spring-dampers. Therefore, the uncertainty block of each spring-damper system is given by SM

x L• x-coordinate of the CoM of L • written in R L• [0, 0, 0.28, 0.25, 0, 0, 0] m y L• y-coordinate of the CoM of L • written in R L• [0, 0, 0, 0, 0, 0, 0] m z L• z-coordinate
ẍC -ẍP = δ ẍQ • and W SM • /.,C = -K Q • δx Q • + D Q • δ ẋQ • W SM • /.,P = K Q • δx Q • + D Q • δ ẋQ • (8) 
K Q • = δ shear K • I 3 0 3×3 0 3×3 δ tors K • I 3 and D Q • = δ shear D • I 3 0 3×3 0 3×3
• = diag δ shear K • I 3 , δ tors K • I 3 , δ shear D • I 3 , δ tors D • I 3 . Since K Q • and D Q • are
considered uncertain, one can investigate the system's behavior while docking/undocking occurs. Eq. ( 8) is always written in the respective reference points Q • of the systems SM • . Furthermore, Eq. ( 8) is also projected in reference frames R SM• Q

• ; x Q • , y Q • , z Q • , depicted in Fig.
The two docking phases of this OOS mission scenario are shown Fig. 7b. Illustration 7 shows the moment in which the robotic arm docks to the target spacecraft. Moreover, illustration 8 shows the instant where the target's rigid hub docks to the chaser's rigid hub, followed by the robotic arm disengaging from the target spacecraft. Two different LFR models are built in order to study each one of these two different docking phases, which are obtained by introducing the new connection system displayed in Fig. 7a in the block-diagram representation shown in Fig. 5. Docking phase 7 : Even though the robotic arm configuration is static and known in 7 , this model is also parameterized according to α • , which gives the possibility to study this type of docking for different robotic arm configurations. However, this LFR model cannot be parameterized according to SM 2 , since the system is only in equilibrium when K Q 2 = 0 6×6 and D Q 2 = 0 6×6 , due to the fact that D 1 ≡ D 3 . A new global LFR form is thus obtained, as depicted in Fig. 8a.

Docking phase 8 :

The connection model depicted in Fig. 7a is also used here. However, instant 8 differs from 7 in the sense that it introduces a closed-loop kinematic chain. Simply put, for closed-loop kinematic chain systems, the number of rigid and independent DOF is reduced due to the loop closure constraints:

• g α tot , x f = 0 (on positions), • ∂g ∂α tot T α tot + ∂g ∂x f T ẋ f = 0 (on velocities), • ∂g ∂α tot T α tot + ∂g ∂x f T ẍ f + d dt ∂g ∂α tot T α tot + d dt ∂g ∂x f T ẋ f non-linear terms = 0 (on accelerations),
with α tot = [α 1 , α 2 , α 3 , α 4 , α 5 , α 6 ] T and x f being the deformation DOF vector of the whole system. These constraints g are non-linear equations which are not solved in SDT, which means that the system parameterized according to the robotic arm geometrical configuration cannot be derived in this case. It is however possible to provide a geometrical configuration of the robotic arm α ref satisfying these constraints and the equilibrium conditions, i.e. g α ref , 0 = 0. Then, SDT can be used to compute a linear model which is valid for small variations around the geometrical configuration α ref while satisfying the linearized loop closure constraints at the acceleration level:

∂g ∂α tot T α tot + ∂g ∂x f T ẍ f = 0 (9) 
In the circumstances displayed in 8 , the non-linear loop closure constraint at the acceleration level is given by [ẍ

D 1 ] R RH 1 = [τ D 1 D 3 ] R RH 1 [ẍ D 3 ] R RH 1 , where [τ D 1 D 3 ] R RH 1
depends on α tot . Nevertheless, for this on-orbit servicing mission, docking occurs when the robotic arm is static and α ref is perfectly known. Since

D 1 ≡ D 3 ≡ Q 2 and J 7 ≡ D 2 ≡ Q 1 , the blocks SM • are left uncertain. A new
global LFR form is derived, as depicted in Fig. 8b. The 2 LFR models displayed in Fig. 8 are thus obtained in order to model the system during the two existent docking phases that take place during the OOS mission scenario in question.

Analysis of the system dynamics

Before proceeding to control design, it has to be ascertained whether the SDT open loop model represented in Fig. 5 and the Simscape system which was built in parallel are identical in the linear domain. Let us now compare the singular values between the Simscape and nominal SDT systems for all six different configurations displayed in Fig. 3 considering the plant shown in Fig. 6. The varying parameters θ • , α • and δ C • are set according to the instants displayed in Fig. 3. Additionally, the uncertainties real are initially set to their nominal values, since the first objective is to analyze the behavior of the nominal systems. For instance, if the transfer function from the first component of the external torque T ext,G 1 to the first component of the angular acceleration ω is considered, Fig. 9 shows an excellent match, since the red and dashed dark blue lines overlap. The plot is also coherent with the properties of both spacecraft's flexible elements, definition [START_REF] Guy | Dynamic modeling and analysis of spacecraft with variable tilt of flexible appendages[END_REF]. Indeed, the antiresonances occur at the frequencies of the cantilevered flexible modes corresponding to the solar arrays. Since SDT computes the inverse linearized dynamic model of the whole system projected in R RH 1 and the channel T ext,G 1 {1} → ω{1} is being analyzed, the static gains of all the plots in Fig. 9 represent the inverse of the first moment of inertia 1/J xx measured at point G 1 and with respect to R RH 1 for all the different moments depicted in Fig. 3. Furthermore, Fig. 9 also depicts the effect that the set of real parametric uncertainties real = diag ( mec , mod ) has on the singular values of the channel T ext,G 1 {1} → ω{1}. Logically, all the varying tilt angles θ • and α • are once again set according to the geometrical configurations that can be observed in the illustrations of Fig. 3. The parametric uncertainties δ C • are also replaced accordingly.

Moreover, Fig. 10 assesses the behavior of the channel T ext,G 1 {2} → ω{2} when docking happens. For that reason, the LFR models depicted in Fig. 8 are used. The tilt angles θ • and α • are replaced accordingly and all the modal and mechanical uncertainties real are set as nominal. When the damping and stiffness coefficients are very big, a spring-damper system behaves just like a clamped attachment. In addition, when a body docks to another one, the stiffness coefficients are initially small and increase with respect to time. Fig. 10a shows how the system behaves when the robotic arm docks to the target spacecraft, where the shear and torsional damp-

ing coefficients of SM 1 are equal to δ • D 1 = 100 [N s m -1 ] or [N m s rad -1 ] and the stiffness coefficients δ • K 1 vary from 0.1 to 1 × 10 5 [N m -1 ] or [N m rad -1 ] . Since SM 2 is disconnected, δ • D 2 = 0 [N s m -1 ] or [N m s rad -1 ] and δ • K 2 = 0 [N m -1 ] or [N m rad -1 ] . When δ • K 1 are
small, the flexible modes of the target's solar arrays show very small or even non-existent antiresonances/resonances. This can be explained by the fact that the connection to the target is still very weak when δ • K 1 are small and therefore the flexible modes do not have a relevant effect on the system dynamics. As the coefficients δ • K 1 increase, these resonances and antiresonances start showing up. One of the examples is the antiresonance at around 0.65 Hz, which corresponds to the first flexible mode of the target's solar arrays. Since

δ • D 1 = 100 [N s m -1 ] or [N m s rad -1 ]
, the six flexible modes which are introduced by SM 1 are noticeable even when δ • K 1 are very big.

Logically, as the coefficients δ • K 1 increase, there is a shift of these flexible modes to the right, as can be observed in Fig. 10a.

Moreover, Fig. 10b and10c show both phases of the second docking. First, δ • K 2 increase in order to mimic the docking of the target spacecraft to the chaser's rigid hub. Then, once this connection is rigid, δ • K 1 decrease in order to detach the robotic arm from the target's rigid hub. The damping coefficients of SM 2 are equal to δ

• D 2 = 100 [N s m -1 ] or [N m s rad -1 ]
. In this case, the flexible modes which are introduced by SM • do not interfere with the system dynamics for frequencies smaller than 10 Hz. In addition, it can also be observed that the evolution of the system is similar for both cases when δ • K 2 increase and when δ • K 1 decrease. Another aspect which can be perceived is that the static gain of the singular values plot shown in Fig. 10a is smaller than the one shown in Fig. 10b and10c. This makes sense since the singular values displayed in Fig. 10 correspond to the channel T ext,G {2} → ω{2} and the second moment of inertia of the coupled system J yy measured at point G 1 with respect to R RH 1 is bigger in 7 than in 8 .

Time-varying analysis

By means of both connection models, this system fully captures the dynamics and interactions between all subsystems as well as the decoupled/coupled configurations. Nevertheless, the trajectories of the robotic arm and solar arrays still need to be defined. With that purpose, fifth-order polynomials are generated, which achieve a given set of input waypoints expressed in terms of joint configurations.

The result is displayed in Fig. 11. It should also be noted that the target's solar panels are considered to be static. Henceforth, θ 3 and θ 4 are not represented in Fig. 11 and are both equal to 0 rad. The first thing to notice is that the robotic arm starts unfolding during the approach phase, before the first docking occurs at around t = 255 s. Afterwards, the target is attached to the chaser's bottom surface at t = 880 s. Next, the robotic arm undocks from the target and moves to another configuration. Finally, the chaser's solar arrays start tilting at t = 1100 s. For better analyzing the behavior of the nominal open loop system, the evolution of the products and moments of inertia with respect to time is obtained and depicted in Fig. 12.

It should also be noted that these inertias are measured with respect to R RH 1 . In fact, this plot outlines why it is so fundamental to parameterize the system with respect to its geometrical configuration and to be able to take these inertial changes into account when applying a control methodology. When the first docking occurs, an increase in the moments and products of inertia can be easily observed. However, as the robotic arm moves and brings the target closer to the chaser's rigid body, the inertia tensor entries start approaching their original values. Around moments 5 and 6 , some variations can be noticed due to the movement of the solar arrays. Since these rotations happen around y P 1 and y P 2 , J yy stays constant. Moreover, by inspecting the singular values for different frequencies and system configurations, Fig. 13 shows in a clear manner how the system's flexible modes evolve when the robotic arm moves and the tilt angles of the solar arrays vary. The channel T ext,G 1 {1} → φ{1} is considered, where φ = φ x φ y φ z T denotes the linearized Euler angles of the main body RH 1 with respect to the inertial frame R O . It should also be noted that φ is obtained from a double integration of ω.

Before the first docking, the flexible modes remain practically constant, since the movement of the robotic arm is almost negligible.

However, after the first docking occurs at t = 255 s, some of the flexible modes in the mid-range frequency show a very interesting evolution, which can be explained by the fact that the robotic arm is bringing the target spacecraft closer to the chaser's rigid hub, thus causing great changes in the inertial characteristics of the coupled system. Next, a stabilization can be observed after t = 880 s, since the second docking takes place and the robotic arm movement does not provoke big changes in the mechanical parameters. Finally, when the chaser's solar arrays start tilting at t = 1100 s, a symmetric evolution of some flexible modes can be observed. This behavior can be explained by the fact that the chaser's solar arrays are almost symmetric and they undergo a revolution of 180 degrees. 

Control architecture and synthesis methodology

Baseline attitude controller

Some of the challenges of an OOS mission scenario include the control structure interactions between the flexible appendages and the AOCS, the time-varying inertial properties, the flexible dynamics, the system uncertainties and also the dynamic couplings. Initially, the control design is divided into two different parts, namely the translational and the attitude. However, only attitude control design is addressed, since this paper's objective is to focus on the very last phase of the rendezvous between the chaser and target spacecraft. A baseline attitude controller is tuned based on the inertial properties of the coupled system when the first docking takes place at t = 255 s, as follows: [START_REF] Liu | Sample data game strategy for active rendezvous with disturbance rejection[END_REF] where u represents the torque control output and ω is the angular velocity of the chaser spacecraft defined in R RH 1 with respect to

u = K att φ ref -φ ω ref -ω and K att = k att c att with k att = ω 2 att J tot c att = 2ξ att ω att J tot
the inertial frame R O = (O ; x O , y O , z O
) and obtained from integrating ω. Moreover, J tot is the inertia tensor of the collection of all the body elements, measured with respect to R RH 1 . The objective is to have a critically damped system that returns to rest slowly without oscillating when tracking the reference signals φ ref and ω ref .

For that reason, ξ att = 1 and ω att = 0.01 Hz represent the controller's damping ratio and natural frequency, respectively. These values of ξ att and ω att are merely an initial tuning guess which were chosen to avoid overshoot and to achieve a large settling time.

The attitude controller is to take action during the complete mission scenario, which involves big changes in the orientation and magnitude of the inertia tensor. Consequently, this tuning methodology is far from appropriate when considering such a challenging and complex scenario. Nevertheless, as stated before, this controller is useful as an initial guess when using more powerful and advanced control methodologies, such as H ∞ , which is able to optimize a first approximation until reaching the limits of robustness and performance.

H ∞ control

In order to design a control law that accommodates the desired performance requirements, the synthesis problem is recast into the nonsmooth H ∞ framework [START_REF] Apkarian | Nonsmooth H ∞ synthesis[END_REF] by first assembling the weighted interconnection shown in Fig. 14a. First, the plant model P represented in Fig. 6 is introduced. However, only the T ext,G 1 → ω channels are considered, since the objective is to improve the attitude controller. This interconnection is composed of the following blocks:

• Sensor and actuator models: First, the star tracker dynamics SST corresponds to a first order low pass filter with a cutoff frequency of 8 Hz. Secondly, the gyroscope dynamics GYRO is represented by a first order low pass filter with a 200 Hz cutoff frequency. Finally, the reaction wheel system dynamics RW is approximated by a second order transfer, with a damping ratio equal to 0.7 and a natural frequency of 200 Hz. N m is tuned to take into account these robotic arm disturbances and also orbital perturbations acting on the system, like magnetic or gravity gradient torques.

• Performance weights W u and W p : The purpose of the weight W u = diag (0.5, 0.5, 0.5) N -1 m -1 is to impose a desired closed- loop upper bound of 2 N m on the worst-case actuator signals at different frequencies. Similarly, the Absolute Pointing Error (APE) requirement W p = diag (127.32, 127.32, 127.32) rad -1 imposes an upper bound of 0.0079 rad on all the three different axes.

• Roll-off filter F ro : A 4th-order roll-off Butterworth filter with a cutoff frequency of 0.7 Hz is also added to the output control signal u, ensuring the controller is not sensitive to high frequency content.

• Structured controller K: The desired ACS (Attitude Control System) is a static and structured three-by-six controller. All 18 tunable gains are initially set to the values obtained with the baseline controller, whose tuning is based on the initial inertial properties of the coupled system. The closed-loop model, denoted M, is achieved with the lower linear fractional transformation F l (•) [START_REF] Preda | Robust and adaptable dynamic response reshaping of flexible structures[END_REF] between the open loop model and the tunable three-by-six controller. This interconnection can be observed in Fig. 14b, where M = F l P tot , K . Ultimately, the uncertain closed-loop model is given by M unc = F u (M, P ), where F u (•) represents the upper linear fractional transformation.

First, an array of 200 different plant models M 200 is obtained from M unc , by replacing θ • and α • with 200 equally distributed geometrical configuration waypoints in the time domain. These plant models are obtained with the connection model depicted in Fig. 6, where δ C 1 and δ C 2 are also substituted accordingly. A soft constraint is considered on the H ∞ norm between the normalized disturbances d and outputs e of the system, as can be seen below: min K γ so that max real M 200 ∞ ≤ γ [START_REF] Biggs | Robust spacecraft rendezvous using a variable speed control moment gyro and thruster[END_REF] Following Eq. [START_REF] Biggs | Robust spacecraft rendezvous using a variable speed control moment gyro and thruster[END_REF], any controller for which γ < 1 satisfies the robust performance and stability requirements. The control methodology is finally applied on the array of 200 different plant models, where real remains uncertain. In the end, this multimodel control design approach pretends to optimize a controller while taking into account all the big inertia changes that happen during the OOS mission scenario that is being studied. In the case of the optimization shown in Eq. ( 11), a controller K was found to achieve a performance level of γ = 0.4, meaning that the soft constraint has been completely satisfied. This control synthesis methodology allows for the design of a structured static controller in one shot, which is able to comply with the imposed requirements for all the different plant models. An in-depth worst-case analysis is now provided in section 4.

Performance and stability analysis

Worst-case analysis

Let us now introduce the structured singular value function μ δ (•) [START_REF] Packard | The complex structured singular value[END_REF], which provides very precise information about the magnitude of uncertainty which is needed to destabilize the loop at any frequency [START_REF] Preda | Robust and adaptable dynamic response reshaping of flexible structures[END_REF]. If the nominal system (i.e. the block M d→e ) shown in Fig. 14b is stable, then the stability of this loop is conditioned by the existence of I -M w p →z p -1 . This is assessed by evaluating for different frequencies ω μ ∈ R the structured singular value μ δ M w p →z p ( jω μ ) , with μ δ (•) being defined for a complex matrix M ∈ C n×m and a set of uncertainties ∈ ⊂ RH m×n ∞ as:

μ δ (M) = 1 min{ σ ( ) : ∈ , det(I -M ) = 0} (12)
where C n×m is the set of n-by-m complex matrices, σ ( ) represents the maximum singular value of and the set RH m×n ∞ describes the set of finite gain transfer matrices with m outputs and n inputs. For G ∈ RH m×n ∞ , the value G ∞ represents the L 2 system gain. If no ∈ makes I -M singular, then μ δ (M) := 0. Following this definition and under the assumption that the nominal system M d→e is stable, then F u (M, ) is stable ∀ ∈ , σ ( ) < if and only if: μ δ M w p →z p ( jω μ ) < 1/ν; ∀ω μ ∈ R. In this context, μ δ gives a measure of the smallest structured uncertainty that causes closed-loop instability for any frequency ω μ ∈ R. Moreover, the L 2 gain of this destabilizing perturbation is exactly 1/μ δ . This fact will be used to evaluate the stability margin of the with to different structures in the analysis phase. However, due to its non-convex character, μ δ can be difficult to compute For that reason, some very efficient algorithms [START_REF] Balas | Robust control toolbox user's guide[END_REF] have been developed in order to estimate the bounds of μ δ . In order to assess the and performance robustness of the system, two further uncertainties are also considered:

• Additive uncertainty add additive uncertainty matrix add ⊂ 3×3 ∞ is an uncertainty block with a very clear physical interpretation, since it maps the torque signals T ext,G 1 to the angular acceleration signals ω. This 3-by-3 matrix is full (nonzero off-diagonal terms), therefore accounting for unknown cross-couplings between the different axes. These imprecisions are covered by following model: P = P + W add add with W add = -75I 3 dB [START_REF] Colagrossi | Guidance, navigation and control for 6DOF rendezvous in Cislunar multi-body environment[END_REF] The weight W add is used to scale the magnitude of additive LTI uncertainty block add , with add ∞ ≤ 1. The purpose of this additive uncertainty is then to model variation on the inertia matrix of the system. As can be seen in Fig. 15, this type of uncertainty has a clear impact on the system low-frequency response. For instance, it can be observed that the first moment of inertia of the complete system J xx is now bounded between approximately 511 kg m 2 and 625 kg m 2 at the instant 2 displayed in Fig. 3.

• Multiplicative uncertainty mul : The multiplicative uncertainty block mul = diag mul L , mul R is used to model neglected dynamics, gain fluctuations in the actuators and also phase uncertainty. The new uncertain control torques to the plant Text,G 1 are equal to:

Text,G 1 = I 3 + W mul L mul L + W mul R mul R T ext,G 1 with mul L = ⎡ ⎣ δ mul xx 0 0 0 δ mul yy 0 0 0 δ mul zz ⎤ ⎦ mul R = ⎡ ⎣ 0 δ mul xy δ mul xz δ mul yx 0 δ mul yz δ mul zx δ mul zy 0 ⎤ ⎦ ( 14 
)
where δ mul • are scalar normalized LTI uncertainties satisfying σ δ mul • ≤ 1. In addition, the weights W mul L = diag(4 × 10 -2 , 4 × 10 -2 , 4 × 10 -2 ) and W mul R = diag 4 × 10 -3 , 4 × 10 -3 , 4 × 10 -3 are used for scaling the magnitude of the multiplicative LTI uncertainty blocks mul L and mul R . In addition, it should also be noted that the diagonal terms of the expression W mul L mul L + W mul R mul R are one order of magnitude larger than the off-diagonal terms, with the objective of considering possible couplings due to unmodeled effects or actuator misalignments. Fig. 15 shows the separate effects of each type of uncertainty on the gains of the transfer function from ω{1} to T ext,G 1 {1} regarding the open loop system for moment 2 .

A new uncertain closed-loop interconnection Munc is obtained using the controller K synthesized in the previous section, which is given by Munc = F u M, P , with P = diag ( P , add , mul ). A new array of 330 different plant models M330 is obtained from Munc . Similarly to how M 200 was accomplished, M330 results from replacing θ • , α • , δ C 1 and δ C 2 accordingly along 330 equally distributed waypoints in the time domain. In this case, the block tot = diag ( real , add , mul ) remains uncertain.

The robust stability of M330 is finally evaluated. This assessment is done by calculating the bounds on the structured singular value μ δ across a dense grid of frequencies ω μ , while taking into account all the uncertain 330 plant models. Fig. 16a depicts the upper bounds of μ δ for the complete set of considered uncertainties tot . Furthermore, Fig. 16b illustrates the side views of the upper bounds of the same function with respect to several different sets of uncertainty. The peak μ δ , which corresponds to the minimum in stability margin, occurs around t = 275 s, which means it happens right after the first docking. Furthermore, this peak also occurs for a frequency of 0.55 Hz, which corresponds to the worst-case ω 1 SA 3,4 . However, even when combining all the uncertainty, μ δ remains below 0.79 and therefore the loop can tolerate an increase in the uncertainty tot of 26% while maintaining stability.

The impact of all the subsets of uncertainties was also assessed on different performance indicators using structured singular value computations. Fig. 17 illustrates the upper bounds on the peak gain for different performance signals across frequencies ω μ and for M330 .

The first performance transfer d → e p can be observed in Fig. 17a, corresponds to the absolute pointing error tracking channel.

In this case, the highest peak happens for frequencies around 0.08 Hz. This peak is mainly caused by the worst-case add and mul , which causes an increase in the gain the closed-loop system for frequencies around 0.08 Hz. For μ > 0.5 Hz, worst-case gains are mainly sensitive to modal uncertainties mod . The peaks that occur at 0.59, 0.66 and 0.72 Hz are once again caused by the uncertain natural frequencies ω 1 SA 3,4 . For ω μ > 1 some small peaks can be in Fig. 17a around the flexible modes' natural frequencies.

However, they do not compromise the tracking performance.

The worst-case gains of a second performance channel d → e u corresponding to the maximum control effort are shown in Fig. 17b. It can be observed that the channel maintains values close to nominal ones even in the presence of significant model uncertainty. However, this channel is also slightly sensitive to the presence of modal uncertainties mod for frequencies ω μ around ω 1 SA 3,4 . Indeed, Fig. 17b clearly shows that the highest peak happens around ω 1 SA 3,4 . Afterwards, there is a visible roll-off, which is caused by F ro . The increase in control effort around 0.08 Hz is once again caused by the worst-case add and mul , which forces the controller to work harder around this frequency. 

Stability analysis for the first docking phase

Fig. 10 has shown that taking into account the dynamic behavior of the docking mechanisms when modeling such a complex system is of paramount importance. Let us now consider the case of Fig. 10a, where the robotic arm is docking to the target, since 7 represents the most critical docking phase. For that reason, the interconnection displayed in as well as for a frequency equal to 0.58 Hz, which corresponds once again to the worst-case ω 1 SA 3,4 . This peak of μ δ is equal to 1.04, what means that the closed-loop can only tolerate 96% of the considered uncertainty tot while maintaining stability. This stability analysis thus shows the importance of being able to study the behavior of docking mechanisms, by having springdamper systems parameterized according to their stiffness and damping characteristics. These LFR models can be taken into account when designing a controller, so that the closed-loop system does not go unstable when docking takes place. Furthermore, these models can also be used for worst-case analysis and controller validation, as it was demonstrated in this section.

This structured singular value analysis can thus be carried out to perform this type of preliminary Validation and Verification cycles on the linearized model of the system. The obtained results can then be utilized to run a guided Monte Carlo simulation where the most problematic areas are explored in more detail. The sensitivity analysis depicted in Fig. 15 can also be used to understand which uncertainties have more impact on the dynamic behavior of the system. In addition, these results can be used to inform the control and system design process in order to perform quick design iterations. It must be noted that the method described in this paper expects the system to undergo small variations around the linearization point, so that the dynamics remain fairly linear. Since most space missions tend to avoid large deflections and nonlinearities in the structural dynamics by design, this approach covers a vast range of applications. In case relevant nonlinearities are present, which can result from the flexible structures undergoing big deflections, this effect has to be considered during the tuning and validation procedures. Additionally, no spillover effects should be expected since six flexible modes are being considered for each solar array and also because a roll-off filter has been added to the output control signal to make sure no high frequency neglected flexible modes can lead to this undesired spillover effect. The fact that the target satellite may have been operating in space for several years could surely have caused a change in the natural frequencies of the solar panels' flexible modes. However, the uncertainty block mod already accounts for those changes, so that a robust controller can be designed to tackle such possible and undesired effects.

Conclusion

This paper outlined a full modeling and control design methodology for an on-orbit servicing scenario. The presented framework shows how to build a very compact representation of the system by taking into account all the elements which make OOS missions so complex and challenging, namely the coupled flexible spacecraft and robotic arm interactions. This modeling process also introduced a new approach using two spring-damper systems with local uncertain damping and stiffness, offering the possibility of modeling the dynamic behavior of a docking mechanism and also a closed-loop kinematic chain when the robotic arm configuration is static and perfectly known. The controller synthesis procedure includes a thorough description of how to assemble the design model, including all the details related to the different requirements and limits of performance. The posterior robust performance assessment which was performed is a necessary step to ensure the safety and reliability of the proposed control law. The precious information that can be extracted from this analysis can be used to inform the control and system design process. Afterwards, it can also be utilized to perform quick design iterations. This can lead to structural design adjustments or even to the optimization of certain mechanical parameters, like the mass or the inertial properties of a spacecraft. In addition, the possibility to have these Validation and Verification cycles without the need for high computational burden simulations in such a preliminary phase is extremely important.
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 1 Fig. 1. (a) i-th flexible appendage of a complex sub-structured body. (b) TITOP model T Li P i ,Ci (s) block-diagram.

Fig. 2 .

 2 Fig. 2. Chaser and target spacecraft composed of two rigid hubs, four solar arrays and one robotic arm (Note: for the sake of simplicity, the x-axes are displayed in solid red lines, the y-axes in dashed green lines and the z-axes in dash-dotted blue lines). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3 .

 3 Fig. 3. Six different illustrations of the decoupled and coupled systems regarding the OOS mission scenario being studied: 1 decoupled system; 2 , 3 and 4 the robotic arm has docked to the target spacecraft and it is bringing it closer to the chaser's rigid hub; 5 , 6 the target spacecraft is docked to the chaser's rigid hub and the chaser's solar arrays start tilting.

Fig. 4 .

 4 Fig. 4. Robotic manipulator representation: (a) robotic arm kinematics (Note: for the sake of simplicity, the x-axes are displayed in solid red lines, the y-axes in dashed green lines and the z-axes in dash-dotted blue lines). (b) block-diagram of the parameterized robotic arm written in LFR form. (c) equivalent LFR form of the manipulator.

  [START_REF] Deremetz | Mosar-WM: a relocatable robotic arm demonstrator for future applications[END_REF] and w P P = z P . Nevertheless, this LFR does not allow for the investigation of what occurs when docking takes place. For that reason, spring-damper systems are introduced.

  of the CoM of L • written in R L• [0, 0, 0, 0, 0, 0, 0] m J xxL • first MoI of L • at the CoM of L • written in R L• [0.0044, 0.0103, 0.0152, 0.0041, 0.1112, 0.1112, 0.0171] kg m 2 J yyL • second MoI of L • at the CoM of L • written in R L• [0.0044, 0.0103, 0.2269, 0.0494, 0.1112, 0.1112, 0.0171] kg m 2 J zzL • third MoI of L • at the CoM of L • written in R L• [0.0072, 0.0067, 0.2269, 0.0494, 0.2194, 0.2194, 0.0338] kg m 2 J xyL • first PoI of L • at the CoM of L • written in R L• [0, 0, 0, 0, 0, 0, 0] kg m 2 J xzL • second PoI of L • at the CoM of L • written in R L• [0, 0, 0, 0, 0, 0, 0] kg m 2 J yzL • third PoI of L • at the CoM of L • written in R L• [0, 0, 0, 0, 0, 0, 0] kg m 2

Fig. 5 .

 5 Fig. 5. Block-diagram of the uncertain plant written in LFR form.

Fig. 6 .

 6 Fig. 6. Equivalent global LFR form of the complete system.

δ tors D • I 3 are

 3 uncertain stiffness and damping six-by-six matrices acting on the six different DOF, respectively. Furthermore, δ shear K • [N m -1 ] and δ shear D • [N s m -1 ] are real parametric uncertainties describing the shear stiffness and damping properties of these spring-damper systems, respectively. Similarly, δ tors K • [N m rad -1 ] and δ tors D • [N m s rad -1 ] are real parametric

Fig. 7 .

 7 Fig. 7. (a) Connection model considering two spring-damper systems. (b) Two different moments where docking takes place: 7 the robotic arm docks to the target spacecraft;8 the target's rigid hub docks to the chaser's rigid hub and the robotic arm disconnects from the target afterwards (Note: for the sake of simplicity, the x-axes are displayed in solid red lines, the y-axes in dashed green lines and the z-axes in dash-dotted blue lines).

Fig. 8 .

 8 Fig. 8. Global LFR representations: (a) Docking phase 7 . (b) Docking phase 8 .

Fig. 9 .

 9 Fig. 9. Comparison between the gains of the SDT -uncertain, SDT -nominal and Simscape systems for the six moments displayed in Fig. 3; transfer between the first components of the external torque T ext,G1 and angular acceleration ω (T ext,G1 {1} → ω{1} channel).

Fig. 10 .

 10 Fig. 10. Gains of the channel T ext,G {2} → ω{2} for moments 7 and 8 when considering two spring-damper systems: (a) the robotic arm docks to the target spacecraft. (b) the target docks to the chaser. (c) the robotic arm undocks from the target (Note: The units of δ • K• are [N m -1 ] or N m rad -1 and the units of δ • D• are

Fig. 11 .Fig. 12 .

 1112 Fig. 11. Geometrical configuration of the robotic arm α • and chaser's solar arrays θ 1,2 computed along 1500 seconds.

Fig. 13 .

 13 Fig. 13. Singular values of the nominal open loop system with respect to time and along a dense grid of frequencies; transfer between the first components of the external torque T ext,G1 and linearized Euler angles of the main body φ (T ext,G1 {1} → φ{1} channel).

Fig. 14 .

 14 Fig. 14. (a) System architecture used for controller synthesis and worst-case analysis. (b) Equivalent standard form of the interconnection.

Fig. 15 .

 15 Fig. 15. The effects of different sets of uncertainties on the gains of the channel T ext,G1 {1} → ω{1} for 2 .

Fig. 16 .

 16 Fig. 16. Robust stability plots: (a) upper bound across a dense grid of frequencies and different geometrical configurations. (b) side views of the upper bounds computed with respect to different subsets of uncertainty.

Fig. 17 .

 17 Fig. 17. Upper bounds on the gains of different performance channels with respect to different uncertainty sets: (a) the absolute pointing error tracking channel d → e p . (b) the control effort channel d → e u .

Fig. 18 .

 18 Fig. 18. Robust stability plots: side views of the upper bounds computed with respect to tot (Note: The units of δ • K• are N m -1 or N m rad -1 and the units of δ • D• are

  Fig. is now derived by considering the global LFR representation shown in Fig.A new uncertain closed-loop M7unc = F u M 7 , P7 is obtained using the controller K synthesized in the previous section, with M 7 = F l P 7 tot , K and P7 = diag P 7 , add , mul . A new array of 300 different plant models M7 300 is obtained from M7 unc by replacing δ • K 1 with 300 systematically increasing values from 0.1 to 1× 10 5 [N m -1 ] or N m rad -1and by setting the dampingcoefficients of SM 1 as δ • D 1 = 100 [N s m -1 ] or [N m s rad -1 ]. Furthermore, α • and θ • are constant for all the 300 different plant models and set according to the system's geometrical configuration displayed in 7 .

Fig. 18 depicts

 18 Fig.18depicts the side views of the upper bounds of μ δ with respect to tot . The peak of μ δ occurs around δ• K 1 = 2.5 × 10 3 [N m -1 ] or N m rad -1

Table 1

 1 Block-diagram representations based on the dynamic models of the several elements that are used to build the full model of the system.

Table 1 .

 1 [START_REF] Cumer | Modelling and attitude control design for autonomous in-orbit assembly[END_REF] is the wrench applied by RH 2 to RH 1 when both bodies are attached at point D 1 ≡ D 3 , which has necessarily to be one of the outputs of the dynamic model of RH2 . Similarly, [W RH 2 /L 6 , J 7 ] R L 6is one of the robotic arm model inputs when J 7 ≡ D 2 . As stated before, the uncertainty block mec is taken into account on the linearized model of RH 2 . Furthermore, the SDT's block Multi-port rigid body takes as input the positions of the connection points of RH 2 defined in R RH 2 with respect to the reference point G 2 . Since D 2 and D 3 share the same port, the position of the connection point D 2 /D 3 (inverted port) with respect to

Therefore, the linearized inverse dynamic model of RH 2 has to be computed for points P 3 , P 4 and the linearized direct dynamic model (with a minus sign) of RH 2 has to be computed for points D 2 , D 3 . However, only one port can be inverted, which means that points D 2 and D 3 have to share the same port. The result is the model [Z RH 2 D 2/3 P 3 P 4 ] R RH 2 defined in R RH 2 , which is achieved with the block-diagram B shown in

  G 2 D 2 /D 3 is always equal to 2, each one of the uncertainties δ C 1 and δ C 2 will have 2 occurrences per kinematic model [τ G 2 D 2 /D 3 ] R RH 2 . Looking now at the block-diagram B displayed in Table 1, the kinematic model

Table 2

 2 Chaser and target spacecraft mechanical data. Nomenclature: MoI (Moment of Inertia); PoI (Product of Inertia); CoM (Center of Mass). SA 1,2 , ω 2 SA 1,2 , ω 3 SA 1,2 , ω 4 SA 1,2 , ω 5 SA 1,2 , ω 6 SA 1,2 ] 20%, 6.5896, 7.5231, 9.6937, 26.1311, 28.2408] Hz [ξ 1 SA 1,2 , ξ 2 SA 1,2 , ξ 3 SA 1,2 , ξ 4 SA 1,2 , ξ 5 SA 1,2 , ξ 6 SA 1,2 ]

		Parameter					Description	Value and uncertainty
	Chaser's rigid hub RH 1	----→ G 1 P 1,2 --→ G 1 J 0					distance vector between G 1 and P 1,2 written in R RH1 distance vector between G 1 and J 0 written in R RH1	[0, ±0.4365, 0] m [0.6508, 0, -0.4020] m
		m RH1 ⎡ ⎢ ⎣ J xx RH 1	J xy RH 1 J yy RH 1	J xz RH 1 J zz RH 1 J yz RH 1	⎤ ⎥ ⎦		mass of RH 1 inertia of RH 1 at G 1 written in R RH1	188.5 kg ⎡ 41.98 3.84 ⎣ 43.89	42.64 0 0	⎤ ⎦ kg m 2
	Chaser's solar	-----→ P 1,2 S 1,2					distance vector between P 1,2 and S 1,2 written in R SA1,2	[0, 1.0934, 0.0014] m
	arrays SA 1,2	m SA1,2 ⎡ ⎢ ⎣ J xx SA 1,2	J xy SA 1,2 J yy SA 1,2	J xz SA 1,2 J yz SA 1,2	⎤ ⎥ ⎦	mass of SA 1,2 inertia of SA 1,2 at S 1,2 written in R SA1,2	88.93 kg ⎡ 33.0918 ⎣	0 7.3819 -0.0002 0	⎤ ⎦ kg m 2
				J zz SA 1,2					40.4578
		[ω 1 flexible modes' frequencies [1.2850 ± flexible modes' damping 0.01
								⎡	-0.0007 -0.0078 7.8872 11.7690 0.0005	0.0010	⎤
		L SA1,2 P1,2					modal participation factors	⎢ ⎢ ⎢ ⎢ ⎢ ⎣	-7.9401 -0.3604 0.0019 -0.0066 3.9818 0 0.0007 -0.0008 0.1089 12.1014 0 0.0006 0.0017 -2.6631 0.5399 0.9098 -0.0007 -0.0033 0.0272 0.0003 -0.0145 -0.0019 0.4907 -0.0221	⎥ ⎥ ⎥ ⎥ ⎥ ⎦
									-0.0010 0.0357 -2.2185 -0.2320 -0.0029 0.0012
	Chaser's								
	robotic								
	arm RA								

m L• mass of L • [4, 3.7, 8.393, 2.275, 1.219, 1.219, 0.1879] kg

  SA 3,4 , ω 2 SA 3,4 , ω 3 SA 3,4 , ω 4 SA 3,4 , ω 5 SA 3,4 , ω 6 SA 3,4 ] SA 3,4 , ξ 2 SA 3,4 , ξ 3 SA 3,4 , ξ 4 SA 3,4 , ξ 5 SA 3,4 , ξ 6 SA 3,4 ]

	Target's rigid	----→ G 2 P 3,4					distance vector between G 2 and P 3,4 written in R RH2	[0, ±0.3395, 0] m
	hub RH 2	m RH2 ⎡ ⎢ ⎣ J xx RH 2	J xy RH 2 J yy RH 2	J xz RH 2 J zz RH 2 J yz RH 2	⎤ ⎥ ⎦		mass of RH 2 inertia of RH 2 at G 2 written in R RH2	24.96 ± 10% kg ⎡ 2.684 ± 10% ⎣	0.058 2.012 ± 10%	2.32 ± 10% 0.054 -0.104	⎤ ⎦ kg m 2
	Target's solar	-----→ P 3,4 S 3,4					distance vector between P 3,4 and S 3,4 written in R SA3,4	[0, 0.7446, 0] m
	arrays SA 3,4	m SA3,4 ⎡ ⎢ ⎣ J xx SA 3,4	J xy SA 3,4 J yy SA 3,4	J xz SA 3,4 J yz SA 3,4	⎤ ⎥ ⎦	mass of SA 3,4 inertia of SA 3,4 at S 3,4 written in R SA3,4	11.3497 kg ⎡ 1.9566 ⎣ 0.3404 0	0 0	⎤ ⎦ kg m 2
				J zz SA 3,4						2.2968
		[ω 1 flexible modes' frequencies	[0.6493 ± 20%, 2.2480, 3.9870, 4.3455, 10.9601, 18.2744] Hz
		[ξ 1 flexible modes' damping	0.01 ⎡ 0.0003	0	-2.7332 -2.8462 0.0001 -0.0003	⎤
		L SA3,4 P3,4					modal participation factors	⎢ ⎢ ⎢ ⎢ ⎢ ⎣	2.8655 -0.0002 -0.0119 0	0 0 0 0	0 -1.5206 -0.3709 0.0022 0.0002 -0.0025 -2.9305 0.0003 -0.0058 -0.0017 -0.5800 0.0123 0 .8207 0.0958 0.0002 -0.0001	⎥ ⎥ ⎥ ⎥ ⎥ ⎦
									0.0008 0.0001 -0.0007	0	0.0596 -0.0009

•

  Disturbance weights W n,gyro , W n,sst and W n,ext : The measurement noise weights W n,gyro and W n,sst are used to define the upper bounds on the expected spectral amplitude of the closed-loop noise measurements. In this case, W n,gyro = 9.1987 × 10 -4 I 3 rad s -1 and W n,sst = 1.5343 × 10 -5 I 3 rad. Similarly, the purpose of the weight W n,ext is to model the upper bound on the expected closed-loop orbital and robotic arm disturbances at different frequencies. Even though the control loop should include a feedforward term responsible for counteracting the resistance against motion on the locked axes of the joint connecting the robotic arm and the chaser's rigid hub, some residual constraint torques will still continue to exist. Therefore, the disturbance weight

	W n,ext = diag	0.002577 2.236s+0.2236 , 0.009685 2.236s+0.2236 ,	0.01239 2.236s+0.2236
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