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X-ray-based non-destructive 3D grain mapping techniques are well established

at synchrotron facilities. To facilitate everyday access to grain mapping

instruments, laboratory diffraction contrast tomography (LabDCT), using a

laboratory-based conical polychromatic X-ray beam, has been developed and

commercialized. Yet the currently available LabDCT grain reconstruction

methods are either ill-suited for handling a large number of grains or require a

commercial licence bound to a specific instrument. To promote the availability

of LabDCT, grain reconstruction methods have been developed with multiple

reconstruction algorithms based on both forward and back calculations. The

different algorithms are presented in detail and their efficient implementation

using parallel computing is described. The performance of different reconstruc-

tion methods is assessed on synthetic data. The code to implement all the

described algorithms has been made publicly accessible with the intention of

fostering the development of grain mapping techniques on widely available

laboratory instruments.

1. Introduction

The production of high-performance metals and alloys has

benefitted substantially from a better understanding of the

fundamental processes, such as phase transformation and

recrystallization (Juul Jensen & Zhang, 2020). Microstructure

at the level of grains, grain boundaries and interfaces is often

tuned or even engineered to optimize material properties. To

facilitate this understanding and control of the microstructure,

3D characterization of grain orientations, volumes, shapes and

grain boundary characteristics, termed grain mapping, is

becoming increasingly popular (Miller et al., 2020). Based on

diffraction imaging, a number of X-ray grain mapping tech-

niques have been developed at synchrotron facilities for non-

destructive characterization of grain structures in 3D. These

include three-dimensional X-ray diffraction (3DXRD;

Poulsen, 2004; Suter et al., 2006; Hayashi et al., 2019),

diffraction contrast tomography (DCT; Ludwig et al., 2008,

2009), differential aperture X-ray microscopy (Larson et al.,

2002) and X-ray dark-field microscopy (Simons et al., 2015),

offering immense possibilities for 3D grain mapping and

sometimes even strain mapping over a broad range of length

and temporal scales (Poulsen, 2020). However, all these

techniques require the use of synchrotron radiation, placing a

serious limitation in terms of access to these instruments.

To broaden the use of grain mapping techniques and

overcome such limited access, laboratory-based X-ray

diffraction contrast tomography (LabDCT), adapted from

synchrotron DCT, has been developed (King et al., 2013,

2014; van Aarle, Ludwig et al., 2015) and commercialized
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(McDonald et al., 2015, 2017). Unlike synchrotron DCT using

a monochromatic parallel beam, LabDCT uses a polychro-

matic conical beam (with its size usually confined by an

aperture) to illuminate the sample. Transmitted diffracted

beams fulfilling Bragg’s diffraction condition are recorded by

the outer area of a 2D detector and give rise to diffraction

spots corresponding to different reflections of the illuminated

grains, whereas the direct transmitted beam is blocked by a

beamstop placed in the central part of the detector. A grain

map is then reconstructed from a series of diffraction images

recorded for a stepwise rotation of the sample over 360�

around a vertical axis.

While it does not require complex modifications of hard-

ware on a conventional tomography setup other than posi-

tioning the aperture and beamstop, the grain reconstruction

algorithm is rather complex for LabDCT grain mapping due to

the use of a conical white beam. A first complication is that the

photon energies for each diffraction spot are a priori

unknown, and secondly, the crude approximation that all

diffraction events occur at the sample centre (a common

assumption for far-field diffraction setups) becomes invalid.

Nevertheless, several grain reconstruction approaches have

been reported. The very first reconstruction approach devel-

oped for a magnified geometry (sample-to-detector distance

longer than sample-to-source distance, Lsd > Lss) uses Friedel-

pair spots for indexing and then adopts an iterative algebraic

reconstruction for grain shapes (King et al., 2013). However, it

can only deal with a moderate number of grains in the illu-

minated sample volume because of the need for explicit

identification of the Friedel pairs over rotation angles, i.e. spot

overlapping should be minimal. The later commercialized

grain reconstruction approach [GrainMapper3D software

(XnovoTech), initially working in a Laue focusing geometry,

Lsd = Lss] is based on forward modelling and has been shown

to perform rather well in reconstructing grain orientations and

shapes for various types of sample using multiple scanning

strategies (Bachmann et al., 2019; Oddershede et al., 2022).

However, detailed implementation of this approach has not

been reported, and it has been restricted to a specific instru-

ment and requires a commercial licence, preventing its use on

other, more widely available, laboratory instruments.

To give a true boost to the use of grain mapping by

LabDCT, we have developed grain reconstruction methods

based on forward and back calculations. These methods share

the characteristic of working on binarized images, where spot

intensities are neglected, and reconstructing the grains one by

one. In this paper, we present algorithms for indexing and

growth (assigning the indexed orientation to the surrounding

voxels) and show how to implement efficient computation

using modern parallel GPU computing. As backbones for the

reconstruction algorithm, the principles of the forward and

back calculations for a general geometric configuration are

described in detail in Appendix A. Lastly, we validate and

compare performances of various grain reconstruction

methods using a synthetic grain structure and the corre-

sponding simulated LabDCT projections generated by a

forward projection model in both Laue focusing and magni-

fied geometries. In a follow-up paper, we will demonstrate the

implementation of these grain reconstruction methods for real

experimental samples measured on a conventional tomo-

graphy setup and evaluate the accuracy on the basis of

comparisons with synchrotron DCT measurements. To allow

scientists to implement grain mapping on their own tomo-

graphy setups (primarily for X-rays but can also be extended

to neutrons), we have made the code for grain mapping by

LabDCT publicly accessible.

2. Algorithms for grain reconstruction

2.1. Overall procedure

Fig. 1 shows a flowchart of the overall procedure for the

grain reconstruction method developed in this work. Note in

particular that LabDCT can so far only deal with grains with

negligible lattice strain and small intragranular orientation

spread, although a recent study theoretically attempted to

estimate elastic strain from synthetic LabDCT data (Lindkvist

& Zhang, 2022). In this work, we limit our grain reconstruction

method to strain-free samples with known crystallographic
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Figure 1
A flowchart for LabDCT grain reconstruction.



lattice parameters. To start a grain mapping, the following

inputs are required:

(i) A sample volume obtained from absorption tomographic

reconstruction, which is segmented to provide a volume mask

for determining where to reconstruct grains.

(ii) Geometric information, including Lss, Lsd , dety0, detz0,

Sy , Sz , ’x , ’y and ’z (see notation definitions in Appendix A),

and detector parameters including pixel pitch, width and

height. It is not necessary for the geometric information to be

accurate in the first run as it can be refined by fittings after a

grain reconstruction result is obtained.

(iii) Diffraction projections at each rotation angle.

(iv) Lattice parameters of the sample.

(v) Self-defined reconstruction parameters, including the

number of {hkl} families for indexing so a list of (hkl) can be

computed, minimum completeness (Cmin), trust completeness

(Ctrust), maximum acceptable median distance between

forward projected and experimental spots (maxDmedian),

maximum acceptable distance of completeness weighted

centres (maxDcentre), and drop-off parameter (�drop-off), which

controls the growth of the region around an indexed seeding

voxel. Here, the completeness is defined in the same way as in

many other articles (e.g. Bachmann et al., 2019), i.e. the

number of forward signals intersecting with experimental

signals divided by the number of theoretical expected signals.

Cmin and maxDmedian are used to control whether an orienta-

tion indexing can be accepted or not; maxDcentre is the distance

tolerance (typically set as �3 pixels) below which updating of

the centre of the grown region is stopped. More details of the

reconstruction parameters are presented in Section 2.2.

The LabDCT projections are then preprocessed, e.g. by a

rolling median to remove most of the background noise

(Ludwig et al., 2008), and binarized to segment the diffraction

spots as accurately as possible. From these binarized images,

distance maps are computed (nearest Euclidean distance to

find a spot signal for deriving Dmedian during subsequent

indexing) and spot features such as centre of mass and size are

calculated. The orientation space of a fundamental zone for a

specific type of crystal symmetry is discretized to have a

maximum neighbouring misorientation of 2 or 1�, depending

on the subsequent indexing method. In this work, we adopt

the hyperspherical orientation sampling method developed by

Larsen & Schmidt (2017) as it provides a reduced number of

orientations and generates a better overall distribution of

misorientation errors compared with the random or nearly

uniform sampling methods (Quey et al., 2018; MTEX toolbox,

Bachmann et al., 2011).

Seeding voxels are generated by controlling the minimum

allowed distance between them. This minimum allowed

distance is first assigned a relatively large value and then

decreases with iterative reconstruction procedures, which

corresponds to an increase in the number of seeding voxels.

The degree of fineness of the seeding voxel is referred to as the

sample gridding level, starting from level 1 (coarse) to typi-

cally 10 or above (fine). During each reconstruction iteration,

the orientation for each seeding voxel is indexed and the same

orientation will be assigned to neighbouring voxels if the

computed completeness and Dmedian are met with the preset

criteria. The latter operation is termed region growth. When

all the seeding voxels have been tested for one sample

gridding level, a stop criterion, usually defined as the minimum

acceptable indexed volume fraction, is checked to determine

whether to continue generating new seeding voxels with a

finer gridding level or to exit for subsequent merging of

regions. Individual grains are identified from these merged

regions with misorientation smaller than a preset value

(typically 0.5�). After that, an optional procedure is to revise

‘suspicious’ indexed voxels (e.g. those forming very small

grains) or force indexing for empty voxels, both achieved by

comparing completeness values using indexed orientations

from nearby voxels. In the following, we present algorithms

for the indexing and growth in detail.

2.2. Indexing and growth

Given a seeding voxel i, the indexing aims to find an

orientation that gives maximum completeness (Cmax) for this

voxel. During the subsequent growth step, this orientation is

carried over to neighbouring voxels, provided that (i) the

completeness stays above a certain percentage of Cmax and (ii)

Dmedian of the voxel is not larger than the value previously

assigned to it. Initially, the completeness values for all voxels

are assigned to 0 and a relatively large value (e.g. 20 pixels) is

assigned to Dmedian .

The indexing comprises three steps: (i) find promising

candidates from all the orientations sampled from the whole

orientation space; (ii) sample orientations in a local orienta-

tion space around each candidate (resulting in typically

Nlocal_OR = 126 orientations with a misorientation of up to

2.5�) and forward compute completeness values, from which

we choose the one giving Cmax as starting value for a

subsequent fit; and (iii) fit the orientation in order to maximize

the completeness further to find the solution, i.e. Ui =

argmaxC(seed i; U), where U expresses the orientation.

During the subsequent growth step, the spot median distance,
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Figure 2
A schematic diagram illustrating the guidance of Dmedian for choosing the
orientation between two candidates for accepting a voxel into a grown
region. Both orientations give the same completeness (C = 2/5 = 0.4),
whereas Dmedian is smaller for orientation 1 than for orientation 2.
Therefore, orientation 1 is assigned to this voxel as long as the
completeness value fulfils the growth criterion.



Dmedian(seed i; Ui), is calculated between all the forward spots

expected on the detector and each nearest experimental spot,

similar to the approach used by Raventós et al. (2019). When

the completeness is high (C� 0.5), Dmedian tends to be small or

equal to 0 and this parameter does not play a role in either

indexing or growth. Conversely, when the completeness is

small (C < 0.5, e.g. close to a grain boundary), Dmedian is

typically larger than zero and exhibits gradients which

continue to provide guidance for the growth process. Fig. 2

shows a schematic diagram to illustrate the effect of Dmedian on

choosing orientations when they give the same completeness

values.

For the primary step of the indexing, two approaches have

been developed, based on forward and back calculations,

respectively. Using the forward calculation, orientations are

ranked according to the completeness values and candidates

are selected from the top ones (typically Ncandidates = 50).

Using the back calculation, orientations are ranked by the

number of matched diffraction vectors (they are matched if

the angle between ĜGlab B calculated for the spot centre of mass

and ĜGlab is smaller than a certain angle, typically set as 1�) and

candidates are selected from the top ones.

If C(seed i; Ui) < Cmin or Dmedian(seed i; Ui) > maxDmedian ,

the indexing is rejected and a new seed voxel is chosen.

Otherwise, the indexing is accepted and growth starts using an

algorithm similar to that of Bachmann et al. (2019).

Completeness values for neighbouring voxels, C(voxel j; Ui)

and Dmedian(voxel j; Ui), are computed. When C(voxel j; Ui) >

C(seed i; Ui) � (1 � �drop-off) and Dmedian(voxel j; Ui) is not

greater than the existing median distance value for voxel j, Ui

is assigned to voxel j to grow the indexed region. This process

continues until no further voxel neighbouring the indexed

region fulfils the growth criterion. After that, a completeness

weighted centre-of-mass position is calculated and the

distance between the centre and the seeding position is

compared with maxDcentre. If it is smaller, the indexing and

growth stage for this seeding voxel is finished; otherwise, the

seeding voxel is replaced by the new centre and then re-

indexed. For the re-indexing, calculations on all the orienta-

tions [as shown above in step (i) of the indexing] are not

required and only calculations on orientations gridded over

the local orientation space around Ui are performed, because

Ui is already very close to the optimal solution. This process

continues until the distance between the new centre and the

previous centre is smaller than maxDcentre, resulting in a final

centre position expected to be close to the grain centroid.

2.3. Implementation of indexing and growth

The essential point of the indexing is to rank the orientation

candidates that are close to the true solution as high as

possible. Thus, the number of candidates can be chosen to be

minimal for subsequent orientation refining, thereby signifi-

cantly reducing the computational cost. To test the ranking, we

generated an artificial Fe sample containing 144 grains with an

average equivalent spherical diameter of 98.7 mm and a

random distribution of orientations. This virtual sample is the

same as that reported by Fang et al. (2020). Using a forward

simulation model (Fang et al., 2020), 181 LabDCT projections

were simulated under a Laue focusing geometry and 121

projections for a magnified geometry (see Table 1 for

geometry information). For both simulations, the diffraction

spots for the first four {hkl} families were computed and an

anisotropic point spread function was used to distribute the

intensity from each diffraction event onto the detector pixels.

An intensity threshold was applied to the diffraction images to

remove spots with low intensities, mimicking the reality that

signals that are too weak cannot be detected. These two types

of simulated data correspond to typical experimental data sets

acquired on a Zeiss Xradia 520 Versa commercial setup and

on a conventional tomography instrument in the SIMaP

laboratory (Fang et al., 2022), respectively. Fig. 3 shows the

LabDCT projections simulated under the two geometries.

Given the simulated data as ground truth, we randomly

select one grain to test the indexing. Fig. 4 shows values of

completeness (C) and matched number of ĜGlab (NG) for all the

orientations discretizing the whole fundamental zone with a

misorientation of 2 and 1�. It can be seen in Fig. 4(a) that a

potential orientation candidate can be ranked at the top

according to NG for 2�, whereas this orientation is ranked

relatively low according to C. However, the potential candi-

date can be ranked at the top by C if a finer 1� discretization is

used [Fig. 4(b)]. This indicates that ranking by C requires a

much higher accuracy of the discretized orientation space, i.e.

a higher number of orientations, than ranking by NG to find a

promising candidate close to the true orientation. In general,
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Table 1
Geometric information for simulating LabDCT projections under Laue
focusing and magnified geometries.

See Appendix A for the notation used.

Geometry
Lss

(mm)
Lsd

(mm)
dety0
(mm)

detz0
(mm)

’x

(�)
’y

(�)
’z

(�)

Detector
width � height,
pitch size
(mm pixel�1)

Laue focusing 11 11 0 0 0 0 0 2032 � 2032, 3.36
Magnified 6.14 52.89 �0.24 1.59 0.01 0.64 0.35 2040 � 2040, 24

Figure 3
Forward projections simulated under (a) Laue focusing geometry and (b)
magnified geometry using a virtual input grain structure, shown in Fig. 6.
Diffraction spots have line shapes due to the Laue focusing effect in panel
(a) and they resemble grain shapes better in panel (b).



we find that the potential candidates can be ranked in the top

50 by NG for both 2 and 1� discretization, while ranking by C

requires 1� discretization to make the potential candidates lie

in the top 50.

Following the selection of potential orientation candidates

on the ranking list, finer discretization over the local orien-

tation space and subsequent fitting for maximizing C are

performed, as described in Section 2.2. The reason for further

discretization is that good and robust fitting results can only be

achieved when the starting input of the orientation is within

about 0.5� of the true orientation. In this way, successful

indexing can usually be achieved except for voxels located

close to grain boundaries.

After successful indexing, neighbouring voxels can be

assigned to the indexed seeding orientation by comparing C

with the seeding voxel and Dmedian with their previous values.

Unlike previous reports considering C only, we have intro-

duced Dmedian to improve the accuracy of the growth, espe-

cially for voxels near the grain boundary. This is because

competing for a smaller Dmedian helps to suppress false

orientation assignments caused by scenarios where the

completeness values still meet the growth requirement

because forward calculated spots happen to coincide with

experimental spots, especially for the case with crowded

projection images (see the sketch in Fig. 2). Using the same

data as shown in Fig. 3, we computed C and Dmedian for all

voxels within grain No. 1 using its true orientation, as well as

using any one of the orientations of the neighbouring grains.

The results show that about 4% of voxels have a higher C with

wrong neighbouring orientations than with their own correct

orientation, whereas the proportion can be reduced to about

2% when computing both C and Dmedian . This justifies the

choice of including Dmedian in the computation. Note that this

estimate is based on a random neighbouring misorientation

case, representing an average level of inaccuracies.

2.4. Parallel computing for efficient computation

There are three main procedures limiting the computational

speed for each run of indexing and growth: (i) ranking to

search for potential orientation candidates; (ii) computing

locally sampled orientations and fitting the orientation; and

(iii) growing the indexed region by assigning the seeding

orientation to neighbouring voxels that fulfil the growth

criteria. For the first step by NG ranking with back calculation,

the computation cost scales with NOR � Nproj � Nspots � Nhkl,

where NOR , Nproj , Nspots and Nhkl are the numbers of discre-

tized orientations, projections, spots per projection and hkl

reflections, respectively, while the computation scales with

NOR�Nproj� Nhkl by C ranking with forward calculation. For

C ranking the computation does not depend on Nspots but it

requires a much higher NOR compared with NG ranking.

For a typical LabDCT data set as shown in Fig. 3 with the

magnified geometry, Nproj = 121, Nspots ’ 210 and Nhkl = 40,

and vectorized computation of both NG and C rankings for

one orientation takes about 0.05 s using one single CPU core

(Intel i7-10700). This means it would take 1638 s to compute

32 768 orientations and 13 107 s for 262 144 orientations using

one CPU core. To reduce such long computation times to a

more realistic number, parallel computing is thus required.

Using an eight-core CPU such as is readily available nowa-

days, the computation time for NG ranking can be reduced to

about 200 s. To accelerate the computation further, we used

GPU computing (NVIDIA Tesla V100-PCIE 32 GB) with

CUDA programming (no further tuning for specific hardware)

and reduced the time to about 2 s for both NG and C rankings.

For samples with lower symmetry than cubic, the computation

time will increase but remain in the range of seconds using

GPU computing. For subsequent computations for locally

sampled orientations and fitting, the computation scales with

Ncandidates � Nlocal_OR , where typically Ncandidates = 50 and

Nlocal_OR = 126. The computing time here can also be reduced

to about 2 s using a GPU.

The original algorithm for growing regions involves

checking neighbouring voxels one by one. This means that the

computation must be performed successively and thus cannot

be parallelized [see Fig. 5(a)], leading to slow computation.

Alternatively, and in order to enable parallel computing, we
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Figure 4
Computed completeness (C) and matched number of ĜGlab (NG) using all
the discretized orientations for grain No. 1 in the virtual Fe sample in
magnified geometry. (a) 32 768 orientations with an average misorienta-
tion of 2�. (b) 262 144 orientations with an average misorientation of 1�.
Blue circles highlight the orientations close to the true grain orientation
(misorientation < 3�). The arrow in panel (a) indicates that the candidate
ranks fourth according to NG and 1359th according to C, while that in
panel (b) indicates that the candidate ranks first according to NG and
second according to C. With subsequent computations for further
discretized orientations over the local orientation space and fitting, the
completeness ultimately increases to 0.78.

Figure 5
Sketches showing region growth around the indexed seeding voxel
(coloured black and numbered 0). (a) The voxels grow successively, with
one neighbouring voxel checked each time. The numbers represent a
probable order of growth. (b) All the voxels within a bounding box are
tested. The ones fulfilling the criterion are allowed to grow (marked
yellow), whereas the rest are rejected for growth (marked red).



compute C and Dmedian for all the voxels

within a bounding box and accept the

ones fulfilling the growth criterion [see

Fig. 5(b)]. Therefore, checking the

availability of neighbouring voxels is

not needed and the computation can be

parallelized. For example, this can

reduce the growth time for 10 000

voxels from about 400 to 2 s. Here, the

length of the bounding box is deter-

mined by the sizes of the spots asso-

ciated with the indexed seeding voxel

for a specific geometry.

In summary, we have developed

three approaches for the grain recon-

struction: (i) CPU-G, using only CPU computing with NG

ranking and successive growth, which is slow but with the

option to reconstruct and merge sub-volumes without using a

GPU; (ii) GPU-G, using GPU computing with NG ranking and

independent growth; and (iii) GPU-C, using GPU computing

with C ranking and independent growth. All the imple-

mentations were coded in MATLAB coupled with CUDA

programming. The code has been published and is freely

accessible (https://gricad-gitlab.univ-grenoble-alpes.fr/TomoX_

SIMaP/GrainRecon).

3. Results

3.1. Comparison of grain reconstructions

We used different approaches to reconstructing the grains

based on LabDCT projections in the Laue focusing and

magnified geometries as shown in Fig. 3. The voxel size for the

reconstruction was 2.5 mm, resulting in about 4.82 � 106

voxels in the whole sample volume. Reconstruction para-

meters were set as Ctrust = 0.85, maxDmedian = 10 pixels,

maxDcentre = 3 pixels and �drop-off = 0.02 for both geometries,

whereas Cmin = 0.55 for the Laue focusing geometry and Cmin =

0.45 for the magnified geometry. These reconstruction para-

meters are typical values for a new grain reconstruction.

Table 2 summarizes the grain reconstruction results

compared with the ground-truth input. All reconstructions

render the same number of correctly indexed grains as the

input, while other parameters, including average grain size,

disorientation (�OR), differences in positions of grain centre

of mass (�COM,grain) and individual grain size differences

(�D), are all in good agreement with the input. �OR and

�COM,grain are systematically smaller for reconstructions under

the Laue focusing geometry than for the magnified geometry.

This is primarily due to the use of a higher-resolution detector

for the Laue focusing geometry, whereas it has little to do with

the fact that more projections are used in the former geometry.

To verify the latter statement, we performed an additional

grain reconstruction with 181 projections in the magnified

geometry (the number of spots per grain increases from �233

for 121 projections to �261 for 181 projections). The obtained

grain reconstruction result has similar �OR and �COM,grain to

those obtained with 121 projections, thus still showing inferior

accuracy compared with the Laue focusing geometry.

As we pointed out earlier, the two simulated data sets of

LabDCT projections mimic typical data sets obtained from

two different tomography instruments. The aim of the

comparison of grain maps is not to compare reconstruction

performances under different geometries, but to demonstrate

that all the current reconstruction methods are applicable to

different geometries. Below, we select the reconstruction

result using the method of GPU-G from projections in the

magnified geometry to illustrate the comparison in more

detail.

Fig. 6 shows a comparison of grain maps between the input

and the LabDCT reconstruction. In general, good agreements
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Table 2
Summary of grain reconstructions compared with the ground truth.

hDi is the average grain diameter, Ngrain the number of grains, Ntotal the total number of indexed grains,
Ncorrect the number of correctly indexed grains, �OR the average disorientation for grain pairs, �COM,grain

the average distance between grain centroids, �D the relative grain size difference and trec the
reconstruction time. Values are expressed by a mean value with or without a standard deviation. The
CPU-G result was obtained using a computing node with 28 CPU cores.

Ngrain

Data set or geometry Method hDi (mm) Ntotal Ncorrect �OR (�) �COM,grain (pixel) �D trec (h)

Ground truth – 98.6 � 11.1 144 – – – – –
Laue focusing CPU-G 98.2 � 13.1 144 144 0.019 1.7 � 0.6 0.035 186

GPU-G 98.1 � 13.4 144 144 0.018 1.7 � 0.6 0.043 22
GPU-C 98.5 � 13.8 144 144 0.017 1.9 � 0.8 0.044 22

Magnified GPU-G 98.4 � 12.3 144 144 0.038 2.2 � 0.9 0.041 21
GPU-C 98.5 � 12.2 144 144 0.034 2.1 � 0.8 0.031 21

Figure 6
Comparison of grain maps. (a) A virtual input grain structure in a cylinder
shape (diameter � height = 400 � 600 mm). (b) A reconstructed grain
map using the GPU-G method from the LabDCT projections in the
magnified geometry and (c) the corresponding completeness map. (d) A
2D XZ slice of the input. (e) A 2D XZ slice of the reconstructed grain
maps. ( f ) A 2D XZ slice of the spatial deviation map, with a unit of pixels
where 1 pixel = 2.5 mm. Note that the spatial deviations (�S) for each pixel
are computed in three dimensions using the method proposed by Fang,
Hovad et al. (2021) but only visualized in two dimensions in panel ( f ).



in grain shapes and orientations (indicated by the IPF-Z

colours) can be seen in Figs. 6(a) and 6(b). Minor differences

are observable at grain boundaries and, in particular, at grain

junctions, where completeness values are relatively low

[Fig. 6(c)]. Closer examination can be achieved with the 2D

slices [Figs. 6(d) and 6(e)], and a quantitative map of spatial

deviation is shown in Fig. 6( f). This last figure shows that most

pixels have zero deviation, whereas the main deviating pixels

lie close to grain boundaries, and the maximum deviation is

found to be about 6.5 pixels for this slice.

A more quantitative comparison of both spatial and

orientation accuracies can be seen in Fig. 7. Ninety per cent of

the sample voxels are completely matched between the input

and the reconstruction (�S = 0 pixels), while for 99% of voxels

�S is no more than three pixels [Fig. 7(a)]. This confirms a

rather good spatial accuracy. Fig. 7(b) shows that �OR 	 0.07�

for 95% of the reconstructed grains, whereas a few grains have

disorientations up to 0.12�. By checking the forward simu-

lated/projected spots (projections of the reconstructed grain

volumes) overlaid onto the ‘experimental’ projections (ground

truth), it was found that the spots for these grains have a

higher frequency of intersecting with the overlapped spots

compared with other grains. However, further analysis has not

found any significant correlations between the more

pronounced �OR with either grain shape deviation or grain

location (measured as the distance from the centre of mass to

the rotation axis), although the latter was found to affect the

reconstruction accuracy for an experimental LabDCT data set

(Fang, Hovad et al., 2021).

Another way of verifying the reconstructed grain map is to

overlay forward projected spots on the ‘experimental’

projections, which is useful when there is no ground-truth

grain map for comparison. Fig. 8(a) shows that the forward

projected spot sizes, shapes and locations are in good agree-

ment with the experimental spots. Visualization of the differ-

ences in spot centre positions allows a further assessment and

quantification of the accuracy of the reconstructed grain map

[Fig. 8(b)]. Minor differences can be seen more clearly in the

zoom-in. The average difference in spot centre position was

found to be about 2.3 � 1.4 pixels based on statistics of 6940

spot pairs.

3.2. Computing time

To illustrate the grain mapping procedure, we plot the

indexed volume fraction (findexed) and number of seeds (Nseeds)

as a function of iteration number in Fig. 9. A greater iteration

number corresponds to a finer grid for generating seeding

voxels. The figure shows a linear increase in findexed for the first

eight or nine iterations, after which findexed increases more

slowly and reaches a maximum of about 0.980 while Nseeds

increases exponentially. As illustrated in the figure, the first

nine iterations were completed in 6.1 h with findexed = 0.956 and

a total of 1484 seeding voxels. At this point, most of the grains

have been correctly reconstructed, suggesting that the algo-

rithm is efficient in reconstructing a near-complete volume.

For a fast reconstruction one can stop the reconstruction early

with a compromise on a few mis-indexings and small errors in

the grain shapes. Nevertheless, it takes a much longer time to

complete the remaining few percent of empty volumes with

trials on many more seeding voxels. The reason is that in the

later iterative computations most of the seeding voxels tend to

be located close to grain boundaries, leading to more failures

in the indexing, and thus more trials are needed.
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Figure 7
Histograms of (a) spatial deviation (�S) for all sample voxels and (b)
disorientation (�OR) for each grain with respect to the input ground
truth.

Figure 8
Checking forward spots on the LabDCT projection. (a) Outlines of the
forward spots coloured according to {hkl} families and (b) positions of the
centres of mass for forward (red points) and ‘experimental’ (blue points)
spots overlaid onto the projection.

Figure 9
The reconstructed volume fraction (findexed) and number of seeding
voxels (Nseeds) as a function of iteration number. The insets show 3D
volumes obtained after the fourth, ninth and 12th iterations, respectively,
and their reconstruction times.



It should also be noted that findexed has not reached 1 in the

final iterations, suggesting that empty voxels remain in the

sample. To solve this issue more quickly, rather than trying to

index with many more seeding voxels (as shown by the stag-

nant increase in findexed in Fig. 9), we compute and compare the

completeness for each empty voxel using orientations from

indexed voxels within a certain distance (typically 20 pixels),

from which the orientation giving the maximum completeness

is assigned to the empty voxel (see Fig. 1). This significantly

accelerates the computation speed, but also brings a risk of

mis-indexing for the empty voxels. This is, however, consid-

ered to be tolerable when a large amount of computing time is

saved, although in this specific case there were no mis-index-

ings. This completeness comparison approach has also been

used for further checking of the voxels belonging to very small

grains (e.g. <5 voxels) with too low a completeness.

4. Discussion

4.1. Characteristics of the current reconstruction methods

Comparisons of the reconstructed grain maps with the

ground-truth data demonstrate that the algorithms can handle

well LabDCT data with a large number of spots for different

geometries. The reconstructed grains have good spatial and

orientation accuracies. Although the reconstruction is

currently limited to strain-free grains, the obtained grain map

can be used as an input for resolving elastic lattice strains and

intra-granular orientations, for which a fit to spot intensities

will be required.

A well known limitation imposed by serious spot overlap

applies to the current reconstruction methods, similar to many

previously reported reconstruction methods for 3DXRD and

its variants (cf. Lauridsen et al., 2001; Ludwig et al., 2008;

Bernier et al., 2011; Schmidt, 2014; Johnson et al., 2008). As

illustrated in the disorientation comparison, more spot overlap

harms the accuracy of the indexed orientation, although

moderate spot overlap is tolerable (in this work for the Laue

focusing geometry, 13% of spots in the diffraction images

contain more than one intensity peak, while the percentage is

18% for the magnified geometry). For a successful indexing

with an error less than 0.1� the majority of the spots should not

be connected with others. Spot segmentation is also critical to

the reconstruction quality, even for the simulated projections

with no background noise presented here, because point

spread of spot intensities gives uncertainty for thresholding.

Usually a Laplacian of Gaussian based segmentation works

fine and, recently, a deep learning based spot segmentation has

been demonstrated to be accurate, as well as less dependent

on tuning of the segmentation parameters (Hovad et al., 2021;

Fang, Juul Jensen & Zhang, 2021).

4.2. Differences between the algorithms

The main features distinguishing the different reconstruc-

tion algorithms are (i) the way of ranking the orientation

candidates for indexing and (ii) whether it is run with a GPU

or only with a CPU. Each method has advantages and dis-

advantages. As summarized in Table 3, the CPU-G method is

slow but gives accurate reconstruction results and does not

require a GPU, so is suitable for use with limited computing

resources. We have implemented an acceleration for this

method by cropping the full volume into sub-volumes for the

reconstructions. Both the GPU-G and GPU-C methods are

fast and accurate but they also have some disadvantages. The

GPU-G method is more susceptible to spot overlap because it

uses the spot centre of mass for back calculation, whereas it is

less sensitive to geometric error because it compares the

angles of the diffraction vectors. Conversely, the GPU-C

method is more sensitive to geometric error, whereas it is less

susceptible to spot overlap. The different features of the

methods make them complementary to each other. For

example, one may take advantage of the GPU-G method for

grain reconstruction for a roughly known geometry, while

using the GPU-C method for a data set with significant spot

overlap.

All the proposed methods suffer from a common issue – the

successful indexing rate decreases at later stages because

seeding voxels are mainly found close to grain boundaries. To

improve the indexing for ranking by NG, one option is to

discard the spots associated with already-reconstructed grains.

Therefore, wrong matches to these discarded spots can be

avoided and the ranking of potential orientation candidates

can be promoted. For ranking by C, the number of selected

potential candidates can be increased to improve the

successful indexing rate, or a finer global orientation sampling

can be performed.

4.3. Influence of reconstruction parameters

The reconstruction parameters, particularly Cmin , have a

significant influence on the final reconstruction. Too high a

value of Cmin may lead to too many false negatives (not-
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Table 3
Summary of advantages and disadvantages for different grain reconstruction methods.

‘OR’ stands for orientation.

Method Advantages Main disadvantages Comments

CPU-G (i) No need for GPU Slow Full volume can be cropped into sub-volumes for reconstruction
GPU-G (i) Fast More susceptible to spot overlapping Discard spots associated with already-reconstructed grains during

ĜGlab B calculation(ii) Less sensitive to geometric error
(iii) Coarser OR discretization

GPU-C (i) Fast (i) More sensitive to geometric error Increased number of selected potential candidates, Ncandidates

(ii) Less susceptible to spot overlapping (ii) Finer OR discretization



indexed voxels), whilst a Cmin that is too low may cause too

many false positives (wrongly indexed voxels). In this work,

the value of Cmin was set as a ‘standard’ for the magnified

geometry (Cmin = 0.45). It was set a bit higher for the Laue

focusing geometry, due to the much higher average spot

intensities, resulting in fewer spots being removed by intensity

thresholding during the production of the diffraction projec-

tions. The parameter maxDmedian also affects the indexing

when Cmin is set below 0.5. An increased value for maxDmedian

allows more successful indexing but also increases the risk of

having more false-positively indexed voxels. Normally,

maxDmedian should be set below 20 pixels and coordinated

with the setting for Cmin .

The parameter Dmedian is found to be beneficial for

the reconstruction accuracy for voxels with completeness

values below 0.5, as shown in Section 2.3. Generally, low-

completeness voxels correspond to relatively small grains and

thus are associated with relatively weak diffraction spots,

imposing a greater segmentation error compared with bright

spots. However, this segmentation error can be compensated

using Dmedian in combination with the completeness to

compare the region growth.

Other parameters such as maxDcentre and �drop-off also affect

the region growth. maxDcentre relates to the accuracy of the

grain centre position. Usually, this parameter is set as three

pixels, considering the balance of accuracy and computation

time – a smaller value requires more iterations of the indexing

and growth. The setting for �drop-off also has to take into

account balancing the accuracy and the computation time – a

value that is too high promotes too much over-growth, while a

value that is too low makes the computation too slow. A value

of 0.02 seems to be a reasonable setting in most cases.

The setting for the number of {hkl} families depends on the

crystal structure. Three families are usually sufficient for a

body-centred cubic crystal, while four are preferred for a face-

centred cubic crystal. For other crystal structures with lower

symmetry, at least four {hkl} families are required.

4.4. Other potential reconstruction approaches

Current reconstruction methods are based on a grain-by-

grain approach, i.e. indexing one orientation followed by

expanding this orientation to other voxels. Our methods can

be adapted further to other potential approaches that separate

the indexing and the growth completely, i.e. which index all

possible orientations first using the method presented here,

and then reconstruct the grain shape for each indexed orien-

tation. The latter can be realized either by tomographic back

projection or by comparing completeness for neighbouring

orientations.

The tomographic back projection approach has been

successfully implemented in synchrotron DCT with the

simultaneous iterative reconstruction technique using the 3D

model of the ASTRA toolbox (Ludwig et al., 2009; Reischig et

al., 2013; van Aarle, Palenstijn et al., 2015). It was also used in

the very first reconstruction approach with LabDCT (King et

al., 2013), which required an affine transformation of spot

shapes accounting for astigmatism (the magnifications for the

projected spots are different in directions parallel and

perpendicular to the diffraction vector). The implementation

of an accurate polychromatic cone-beam projection model

was proposed by van Aarle, Ludwig et al. (2015). Other than

that, there will be an issue with empty voxels and gaps

between grains after the back projection. Whilst a dilation

approach has been used in synchrotron DCT, a more physics-

based approach would be to compare the completeness (and

Dmedian if the computational cost does not increase too much)

using the orientation candidates nearby, as we also use in our

current methods for completing the final volume (see Section

3.2).

The other approach is based on a brute force indexing for a

uniform and fine sample grid. After the indexing, non-indexed

voxels will be assigned by one of the neighbouring orienta-

tions that gives a maximum completeness. We implemented

this approach by setting a constant box size of 20 pixels for

searching the candidates. While a similar grain reconstruction

can be obtained, this approach requires much more compu-

tation time (because of a finer sample grid) and often causes

noisy single voxels (with orientation different from neigh-

bouring voxels), being slower and less robust. However,

optimization for the generation of seeding voxels and

searching the range of orientation candidates may improve

this approach.

In parallel with other grain mapping algorithms introduced

in the review papers (Poulsen, 2012; Reischig & Ludwig, 2020)

and the references therein, our methods are open source and

are intended to foster the development of the laboratory-

based grain mapping technique, and other related synchrotron

white or pink beam based diffraction imaging techniques,

complementary to the current well established techniques

using a monochromatic synchrotron beam.

5. Conclusions

Multiple grain reconstruction algorithms based on forward

and back calculations have been presented in detail. Differing

in their indexing strategy and computational implementation,

three reconstruction methods have been developed, among

which an efficient computation is achieved with GPU parallel

computing.

These grain reconstruction methods have been demon-

strated on a synthetic data set containing 144 grains and

moderate spot overlap for both Laue focusing and magnified

geometries. Comparisons of grain maps show that, on average,

the reconstructed orientation accuracy is 0.03�, the error in the

grain centre-of-mass position is within two pixels and the

relative grain size difference is 4%.

These methods are not limited to a specific instrument and

can be applied to various types of LabDCT data sets acquired

on different instruments. Possibilities for extending the

current algorithms to other reconstruction methods have also

been presented.
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APPENDIX A
A1. Setup geometry

Fig. 10 shows an overview of the LabDCT geometry in a

conventional system. All coordinates are defined in a right-

handed laboratory frame, for which the origin is located on the

rotation axis and sits inside the sample. The x̂x axis is along the

beam, the ŷy axis is transverse to the beam in the horizontal

plane and the ẑz axis is along the vertical rotation axis. Ideally,

the X-ray source aligns with the origin and detector centre,

and the detector is perpendicular to the X-ray beam. In

practice, however, both the source and the detector may be

offset horizontally and vertically. In addition, the detector may

not be perpendicular to the beam, i.e. it may be tilted with

respect to the beam.

To generalize the geometry, let us define the X-ray source

position as (�Lss, Sy , Sz) and the detector centre position as

(Lsd , dety0, detz0). For a tilted detector with respect to the

incoming beam along the direction (1, 0, 0), we define ’x, ’y

and ’z as the tilt angles about the x, y and z axes, respectively

(being positive in a counterclockwise direction). The corre-

sponding rotation matrices Rx, Ry and Rz are

Rx ¼

1 0 0

0 cosð’xÞ � sinð’xÞ

0 sinð’xÞ cosð’xÞ

2
4

3
5; ð1Þ

Ry ¼

cosð’yÞ 0 sinð’yÞ

0 1 0

� sinð’yÞ 0 cosð’yÞ

2
4

3
5; ð2Þ

Rz ¼

cosð’zÞ � sinð’zÞ 0

sinð’zÞ cosð’zÞ 0

0 0 1

2
4

3
5: ð3Þ

The total rotation can thus be expressed as Rdet = RzRyRx as

a 3 � 3 matrix. For an ideal geometry, Sy = Sz = 0, dety0 =

detz0 = 0 and ’x = ’y = ’z = 0�. For a tilted detector, the tilt

angles can either be calculated from the coordinates of three

orthogonal positions, e.g. as indicated by P1, P2 and P3 in

Fig. 10, if such information is encoded by the measured data,

or be preset to zeros and further refined by subsequent fitting

on the geometry based on the initial grain mapping result.

As shown in Fig. 10, the scattering vector Glab in the

laboratory coordinate system for an (hkl) plane of a grain

fulfilling the Bragg diffraction condition can be determined as

Glab ¼ �Tg�1BGhkl; ð4Þ

where � is a matrix transforming a rotated system to the

laboratory system, T is a matrix transforming a sample system

to the rotated system, g�1 is a matrix transforming a Cartesian

crystal system to the sample system, i.e. crystal orientation, B

is a matrix transforming reciprocal space to the Cartesian

crystal system and Ghkl ¼ ðhklÞ
T. The formulation of these

transformation matrices is presented by Poulsen (2004).

The incoming wavevector Kin of the diffraction event

occurring at a sample position Mðxl; yl; zlÞ can be expressed as

Kin ¼
2�

�hkl

Lss þ xl; yl � Sy; zl � Sz

� �
Lss þ xl; yl � Sy; zl � Sz

� ��� �� ; ð5Þ

where �hkl is the photon wavelength that fulfils Bragg’s law.

The scattered wavevector Kout can thus be expressed as

Kout ¼ Kin þGlab: ð6Þ

The unit vector of Kout can be written as

v ¼
Kout

Kout

�� �� : ð7Þ

Given the diffraction position M and Glab, to work out the

position where Kout hits the detector is usually referred to as

forward calculation, whereas computation of Glab given M and

the intersection position of the diffracted beam on the

detector is called back calculation. Several forward projection

models for LabDCT have been reported (van Aarle, Ludwig et

al., 2015; Niverty et al., 2019; Fang et al., 2020), while a method

for dealing with a non-ideal setup geometry has yet to be

presented in detail. In the following, a generalized framework

of forward and back calculations considering offsets and tilts

(which are often present in practice) is presented. This
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Figure 10
A schematic overview of the LabDCT technique with the setup geometry defined in a laboratory right-handed coordinate system (x̂x, ŷy, ẑz). The incoming
beam, emitted from a point source (S), travels through an aperture and illuminates the sample, and the detector records the transmitted signals. For a
diffraction event occurring at the sample position M, the incoming wavevector Kin and scattered wavevector Kout together determine the scattering

vector Glab . Position Q indicates the intersection point of the diffracted beam with an ideal detector and PQ
�!

stands for the projection of Glab on the
detector. P1, P2 and P3 indicate the centre, the centre of the top edge and the centre of right edge of the detector, respectively. Note that the dimensions
are not to scale.



framework is partly inspired by a geometric treatment for

3DXRD (Wright, 2005). Since the proposed grain recon-

struction works on binarized spot images, the calculation of

signal intensity is not required and will not be presented here;

it has previously been reported in detail by Fang et al. (2020).

A2. Forward calculation

We first derive the expected intersection position of Kout on

the detector without any offset and tilt (ideal case). Then, we

take into account the detector offset and tilt and subsequently

derive the actual intersecting position.

Given the sample position Mðxl; yl; zlÞ and Glab, the

expected intersection position Q (Lsd , ydet_ideal , zdet_ideal) on an

ideal detector can be determined using

ðydet ideal; zdet idealÞ ¼ ðyp; zpÞ þ
Ldiff Glabð2Þ;Glabð3Þ

� �
Glabð2Þ

2
þGlabð3Þ

2
� �1=2

; ð8Þ

where yp and zp are given by

yp ¼ ðyl � SyÞ
Lss þ Lsd

Lss þ xl

;

zp ¼ ðzl � SzÞ
Lss þ Lsd

Lss þ xl

;
ð9Þ

and the length of the diffraction displacement Ldiff (PQ
�!

in

Fig. 10) can be calculated using

Ldiff ¼
ðLsd � xlÞ sinð2�Þ

cosð�Þ sinð�Þ
: ð10Þ

Here,

� ¼ arctan
ðyl � SyÞ

2
þ ðzl � SzÞ

2
� �1=2

Lss þ xl

( )
ð11Þ

is the angle between SM
�!

and SO
�!

, and � is the angle between

PQ
�!

and Kout (see Fig. 10). The angle � can be calculated as

� ¼ arccos
0;Glabð2Þ;Glabð3Þ
� �

Lss þ Lsd; yp; zp

� �
0;Glabð2Þ;Glabð3Þ
� ��� �� Lss þ Lsd; yp; zp

� ��� ��
( )

� 2�;

ð12Þ

where (Lss + Lsd , yp , zp) is the vector SP
�!

and [0, Glab(2),

Glab(3)] is a vector parallel to PQ
�!

.

Given the derived position for Q (Lsd , ydet_ideal , zdet_ideal),

we can now rewrite the unit vector of Kout as

vF ¼
Lsd; ydet ideal; zdet idealð Þ � xl; yl; zlð Þ

Lsd; ydet ideal; zdet idealð Þ � xl; yl; zlð Þ
�� �� : ð13Þ

Considering the offset and tilt of the detector, the inter-

section positions (detyF, detzF) on the offset and tilt detector

fulfil

Rdet

0

detyF

detzF

0
@

1
Aþ Lsd

dety0

detz0

0
@

1
A ¼ xl

yl

zl

0
@

1
Aþ t vF: ð14Þ

From this equation, t can be solved as

t ¼
R11ðLsd � xlÞ þ R21ðdety0� ylÞ þ R31ðdetz0� zlÞ

R11vF1 þ R21vF2 þ R31vF3

; ð15Þ

where Rij (i, j = 1, 2 or 3) denotes an element of Rdet . Thus, the

intersection positions (detyF, detzF) can be derived as

detyF ¼ R12;R22;R32ð Þ t vF þ

xl � Lsd

yl � dety0

zl � detz0

0
@

1
A

2
4

3
5; ð16Þ

detzF ¼ R13;R23;R33ð Þ t vF þ

xl � Lsd

yl � dety0

zl � detz0

0
@

1
A

2
4

3
5: ð17Þ

Here, detyF and detzF are expressed as coordinate values in

the detector frame with its origin sitting at the centre of the

detector. Now it becomes straightforward to convert (detyF,

detzF) to pixel coordinates by taking account of the pixel pitch

and the width and height of the detector.

A3. Back calculation

Given the sample position Mðxl; yl; zlÞ and a diffraction

signal position (detyB, detzB) on the tilted detector specified in

the detector frame, we can back calculate Glab. First, we

convert the detector centre (Lsd , dety0, detz0) specified in the

detector frame to the laboratory frame (L0sd; dety00; detz00),

L0sd

dety00

detz00

0
@

1
A ¼ d1=R11

R12L0sd � d2

R13L0sd � d3

0
@

1
A; ð18Þ

where d is a 3 � 1 matrix and can be calculated as d =

RT
detðLsd; dety0; detz0Þ. Then, the unit vector of Kout from the

back calculation can be derived as

K̂Kout B ¼

L0sd � xl; detyB � dety00 � yl; detzB � detz00 � zl

� �
L0sd � xl; detyB � dety00 � yl; detzB � detz00 � zl

� ��� ��
" #T

:

ð19Þ

Thus, the unit vector of Glab can be computed as

ĜGlab B ¼
K̂Kout B � K̂Kin

K̂Kout B � K̂Kin

��� ��� ; ð20Þ

where

K̂Kin ¼
L0sd � xl; dety00 � yl; detz00 � zl

� �
L0sd � xl; dety00 � yl; detz00 � zl

� ��� ��
" #T

: ð21Þ

For a specific {hkl} with a lattice spacing of dhkl leading to the

diffraction, the magnitude of Glab equals 2�/dhkl . For the

sample position M, one can now compare the angles of Glab

between the back [expressed in equation (20)] and the

forward calculations [expressed in equation (4)].
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