Investigation of Catalytic Dehydrocoupling of Dimethylamine-borane by Titanocene: A DFT and Topologic Study
 Jingwen Zhu, Emilie-Laure Zins, M. Alikhani

To cite this version:

Jingwen Zhu, Emilie-Laure Zins, M. Alikhani. Investigation of Catalytic Dehydrocoupling of Dimethylamine-borane by Titanocene: A DFT and Topologic Study. 11th Triennial Congress of the World Association of Theoretical and Computational Chemistry, Aug 2017, Munich, Germany. hal-03955690

HAL Id: hal-03955690
https://hal.science/hal-03955690
Submitted on 25 Jan 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Dimethylamine-borane by Titanocene:

Laboratoire MONARIS-UMR 8233, Université Pierre et Marie Curie, Sorbonne Universités, 4 Place Jussieu, 75005 Paris, France

Problem position

$>$ Increasing demand of clean, efficient and renewable energy carriers $=>$ Molecular hydrogen H_{2}
$>$ Main problems to be solved: sources of H_{2} and techniques for hydrogen storage [1]
$>$ Potential hydrogen storage vectors: Catalytic dehydrogenation of ammonia borane and its related amine borane (AB) compounds [2]

Dehydrogenation/dehydrocoupling of amine borane
$>$ Need for inexpensive, environmentally friendly, easily synthesized and stable organometallic catalysts
$>$ Reaction mechanisms still remain uncertain [3][4][5]
Objectives

- Characterization of 3-centre 2-electron (3C/2e) intermediates with the topological tools: the QTAIM (Quantum Theory of Atoms in Molecules) and the ELF (Electron Localization Function) approach;
- Reinvestigation of different reaction pathways of catalytic dehydrocoupling $\mathrm{HMe}_{2} \mathrm{~N} \cdot \mathrm{BH}_{3}$ with the DFT method at molecular level.

Topological Approaches				
			Intramolecular	Intermolecular
QTAIM Analysis		$\rho[\mathbf{B C P}(\mathbf{M}-\mathrm{H})]$ $\nabla^{2} \rho[\mathbf{B C P}(\mathrm{M}-\mathrm{H})]$	[0.044; 0.072] e a.u. ${ }^{-3}$ $+0.10 \sim+0.17$	$0.049 \sim 0.087$ e a.u. ${ }^{-3}$ $0.00 \sim+0.16$
$\begin{gathered} \text { ELF } \\ \text { Analysis } \end{gathered}$		Population of the protonted basin V(H) Atomic contribution of metallic centre C(M)	$\begin{aligned} & 1.84 \sim 1.97 \mathrm{e} \\ & 0.08 \sim 0.13 \mathrm{e} \end{aligned}$	$\begin{aligned} & 1.90 \sim 2.08 \mathrm{e} \\ & 0.05 \sim 0.16 \mathrm{e} \end{aligned}$
	Hydrogen Bond [6][7]	$3 \mathrm{C} / 2 \mathrm{e} \text { i }$	teraction [7][8] _	$-\rho[\mathrm{BCP}(\mathrm{M}-\mathrm{H})]$
0.002 e a.u. ${ }^{-3}$				
Topological features of hydrogen bonds and 3C/2e interactions				

- Weak influence of the exchange-correlation functionals on molecular geometries and electronic (topological) properties
- No influence of the D3-correction on the description of M $\cdots \mathrm{H}-\mathrm{B}$ interactions
- Importance of relativistic treatment of the metal atom on the description of M $\cdots \mathrm{H}-\mathrm{B}$ interactions.
\square Geometric optimization: B3LYP/6-311++G(2d,2p)+LanL2DZ \square Electronic description: B3LYP-DKH2 (Second-order Douglas-KrollHess relativistic Hamiltonian)/DZP-DKH
\square Intermolecular complexes
\square Intramolecular complexes

- $\mathrm{M}=\mathrm{Ti}, \mathrm{Zr}$ and Hf
- X=N (Amine Borane) and P (Phosphine Borane)
- R=H, Me and Ph
- Oxidation state: +III and +IV(E and Z isomers)
- $\mathrm{M}=\mathrm{Ti}, \mathrm{Zr}, \mathrm{V}$ and Nb
- $\mathbf{R}=$ Aliphatic

Aromatic
Oxygenated

References:

