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Abstract. In this paper we consider Multi-Armed Gambler Bandits
(MAGB), a stochastic random process in which an agent performs suc-
cessive actions and either loses 1 unit from its budget after observing a
failure, or earns 1 unit after a success. It constitutes a survival problem
where the risk of ruin must be taken into account. The agent’s initial
budget evolves in time with the received rewards and must remain posi-
tive throughout the process. The contribution of this paper is the defini-
tion of an original heuristic which aims at improving the probability of
survival in a MAGB by replacing the time by the budget as the factor
that regulates exploration in UCB-like methods. The proposed strategy
is then experimentally compared to standard algorithms presenting good
results.

Keywords: Multi-armed bandits · Risk of ruin · Safety-critical
systems

1 Introduction

Multi-Armed Bandits (MAB) constitute a classic framework to model online
sequential decision-making while facing the exploration-exploitation dilemma
[11,16]. A MAB is typically represented by an agent interacting with a ran-
dom process. At each successive round t, the agent chooses an action At to
perform among k possible actions and receives a corresponding reward Rt. The
agent must estimate the reward functions associated to each action by sampling
them. Rewards resulting from a same action are independent but identically dis-
tributed, and do not give any information about other actions. In that standard
version, budget and risk are not taken into account. The objective is to maximise
the expected future sum of rewards [1]. Different methods and guarantees have
been proposed in the literature depending on the available information and on
the assumptions on the reward distributions [3,8].

Survival Multi-Armed Bandits (SMAB) [13,14] and in particular Multi-
Armed Gambler Bandits (MAGB) [12] are recent extensions of the standard
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MAB problem in which the agent has a budget that must remain positive
throughout the process, otherwise the agent is ruined. An initial budget B0 = b
evolves with the received rewards while the agent is alive, so as Bt = Bt−1 + Rt

if Bt−1 > 0, otherwise Bt = 0, the agent is ruined and the process no longer
evolves. In that scenario, the agent can either increase the probability of running
the process indefinitely, becoming infinitely rich, or inversely, can increase the
probability of ruin, until eventually running out of budget, which means that
maximising the sum of rewards requires reducing the chances of being ruined.

This paper focuses on MAGB problems [12], where the rewards are limited
to two values, +1 and −1, and the initial budget is a positive integer. When
occasionally Bt = 0 is achieved for the first time, the agent is ruined. The
rewards are drawn from underlying stationary Bernoulli distributions. Formally,
{k ∈ N | k ≥ 2} is the number of actions, {b ∈ N | b > 0} is the initial budget,
{pi ∈ R | 0 ≤ pi ≤ 1} is the probability of success after executing action i, which
returns reward +1, and 1 − pi is the complementary probability of failure, with
reward −1. It means that Xt ∼ Bern(pi) and Rt = 2Xt − 1 for At = i. The
expected mean reward of action i is μi = 2pi − 1.

There are few results concerning SMAB and MAGB into the literature [12–
14], and the definition of an optimal algorithm is still an open problem. Related
extensions like Risk Averse [4,7,15,18], and Budgeted MAB [2,6,20], even if
sharing similar concerns, cannot be reduced to the survival setting [13,14].

2 Standard MAB Algorithms

Lets assume that the agent always plays each action once at the beginning of the
process, so as At = t for 1 ≤ t ≤ k, in order to provide the decision algorithm
with a first observation of them. Empirical-Means is a greedy algorithm which
successively chooses the action with the best estimated mean reward, At+1 =
arg maxi

Si,t

Ni,t
, where Ni,t is the number of times the action i had been performed

until round t, and Si,t is the sum of received rewards due to that action. That
strategy is sub-optimal since no systematic exploration is performed, then it may
not converge to the best action.

Exploration can be performed by introducing some non-determinism on the
decision. ε-Greedy is a naive algorithm which chooses either the action with
best estimated mean reward with probability ε, a hand-tuned parameter, or a
random action otherwise. That strategy is sub-optimal since the exploration rate
remains constant throughout the process [5,19].

The standard approach for solving the exploration-exploitation dilemma is
the optimism in the face of uncertainty. An intelligent exploration can be made
by statistically controlling the confidence on the estimates. With similar mean
reward, less explored actions should be preferred. UCB1 [1] chooses, at each time
t, the action that maximises the estimated mean plus the maximum estimation
error given by a confidence bound that progressively increases over time, so as:

At+1 = arg max1≤i≤k

[
Si,t

Ni,t
+

√
α ln(t)
Ni,t

]
, (1)
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where α is the parameter regulating exploration. That strategy is asymptotically
optimal if α is sufficiently high.

Estimating the parameters of a Bernoulli bandit corresponds to estimating
the parameters of a binomial distribution. The binomial distribution represents
the probability of a given number of successes on a sequence of Bernoulli trials
when the parameter is known. The probability of having x successes in n trials,
given p is P(x | p, n) = Bin(p, n) =

(
n
x

)
px(1−p)(n−x). In a Bayesian approach,

the beta distribution corresponds to the conjugate prior for the binomial distri-
bution. Assuming a uniform prior, the posterior density function for p is given
by f(p | x, n) = Beta(x + 1, n − x + 1) = px(1 − p)n−x(n + 1)

(
n
x

)
. Bayes-UCB

[9] is an improved UCB-like method designed for Bernoulli bandits that is also
asymptotically optimal. It chooses the action that maximises the 1 − 1

t quantile
from the Beta posterior:

At+1 = arg max1≤i≤k

[
Q1−1/t

(
Beta(Xi,t + 1, Ni,t − Xi,t + 1)

)]
. (2)

Finally, Thompson-Sampling is another optimal Bayesian algorithm [10]. At
each round, it draws a sample from the posterior of each action to decide which
one to choose. This allows a non-optimal action to be sampled with a varying fre-
quency, which dynamically balances exploration as the posterior becomes more
precise:

At+1 = arg max1≤i≤k [Vi,t ∼ Beta(Xi,t + 1, Ni,t − Xi,t + 1)] . (3)

3 Our Contribution: The Gambler Methods

In a MAGB, the probability of being ruined by always performing action i is(
1−pi

pi

)b

if pi > 1
2 , and 1 if pi ≤ 1

2 [12]. The expected duration of the game is
b

1−2pi
if pi < 1

2 , and ∞ if pi ≥ 1
2 . It means that, in a MAGB, the action with

highest mean presents the best life expectancy and the best survival probability,
independent of the current budget, and then, like in the classic MAB, the action
with maximal mean reward is the optimal action, to which optimal methods
must asymptotically converge. However, when exploring, the agent must consider
the remaining budget and the estimated parameters of each action in order to
compare the estimated ruin probabilities associated to them.

In this paper, we suggest a heuristic modification that can be applied to UCB-
like methods, which consists in replacing t for Bt into the considered equations.
The intuition is that, for maximising the chances of survival, the lowest is the
budget, the more the agent must favour exploitation over exploration in order
to increase its budget and avoid ruin. In contrast, the higher is the budget, the
more the agent should prefer a classic optimal strategy.

In this way, the Gambler-UCB method modifies UCB1 (Eq. (1)) by adding√
α ln(Bt)

Ni,t
instead of

√
α ln(t)
Ni,t

to the estimated mean:

At+1 = arg max1≤i≤k

[
Si,t

Ni,t
+

√
α ln(Bt)

Ni,t

]
, (4)
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and the Gambler-Bayes-UCB method modifies Bayes-UCB (Eq. (2)) by taking
the 1 − 1/Bt quantile from the beta posterior, instead of the 1 − 1/t quantile
proposed on the original method:

At+1 = arg max1≤i≤k

[
Q1−1/Bt

(
Beta(Xi,t + 1, Ni,t − Xi,t + 1)

)]
. (5)

Fig. 1. Survival rate, i.e. the proportion of episodes in which the agent reaches the
time-horizon h = 1500 without ruin in n = 200 episodes.

Fig. 2. Budget progression as a function of time, averaged over n = 200 episodes.



350 F. S. Perotto et al.

4 Experimental Results

The proposed algorithms, Gambler-UCB (Eq. (4)) and Gambler-Bayes-UCB (Eq.
(5)) have been compared to classic and state-of-the-art MAB algorithms like
UCB1 [1], Bayes-UCB [9], and Thompson-Sampling [10], but also with naive meth-
ods like Empirical-Means and ε-Greedy [17]. The experimental scenario presents
k = 10 actions, the first 8 of them parameterised by p1 = ... = p8 = 0.45, which
corresponds to a slightly negative mean reward, leading the agent to ruin, and
the two last ones defined as p9 = 0.525 and p10 = 0.55, meaning that both are
slightly positive, but only the last one is optimal. The initial budget was set to
b = k = 10.

In the experiences, the survival rate, presented in the Figure 1, corresponds to
the ratio between the number of episodes running until the defined time-horizon
without ruin over the total number of episodes. The proposed methods performed
significantly better than the other methods considering the survival rates, cor-
roborating the intuition. Gambler-UCB, with parameter α varying between 0.1
and 2.0, as well as Gambler-Bayes-UCB, reached survival rates around 50%. The
hypothetical oracle strategy (not shown in the graphic), which always plays the
best action, ensures about 80% of survival. UCB1 and ε-Greedy presented sur-
vival rates below 30%, even when the exploration parameters (α and ε, respec-
tively) have been set to small values, losing theoretical guarantees of convergence.
Bayes-UCB and Thompson-Sampling, both ensuring the best theoretical guaran-
tees against the classic Bernoulli MAB problem, presented bad survival rates
against the experienced MAGB, lower than 10%, due to intense exploration in
the initial rounds. The greedy Empirical-Means method performs as well as the
standard methods, reaching almost 30% of survival, corroborating the findings
on [12].

The Figure 2 presents the average budget progression, which is affected by
the survival rate. If the agent is ruined during an episode, its budget remains
Bt = 0 until the simulation reaches the predefined time-horizon h = 1500. In
terms of budget, the performance of the proposed methods is disappointing. UCB1
and ε-Greedy with low exploration, as well as Empirical-Means, presented the
best performance on the proposed setting. Even if one instance of Gambler-UCB
reaches similar performance, the fact of having superior survival rates indicates
that it is making sub-optimal choices too often. It means that the proposed
heuristics are not converging to the optimal action, or are converging too slowly.

5 Conclusion and Perspectives

This paper approaches a Multi-Armed Bandit setting called MAGB, a specific
survival MAB problem, in which, in addition to solve the classical exploration-
exploitation dilemma, the agent must find a good trade-off between safety and
risk to avoid ruin, still trying to maximise the sum of rewards. Two algorithms
have been proposed, Gambler-UCB and Gambler-Bayes-UCB, modifying respec-
tively UCB1 and Bayes-UCB by replacing the time by the budget as the parameter
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that regulates exploration. The new methods presented good results in experi-
mental simulations considering the survival rate, but are apparently sub-optimal
in terms of convergence to the best action. Both methods are the result of a sim-
ple and intuitive heuristic, that seems to be efficient for preserving the agent
alive during the initial rounds of the process, when it is more vulnerable to ruin,
but the modified equations do not ensure gradative convergence to the best
action. The results are nevertheless very promising, and the proposed heuristics
should be the subject of theoretical analyses in future works, in order to find the
necessary adjustments for ensuring optimality.
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