

Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions

Masahito Ueyama, Sara H Knox, Kyle B Delwiche, Sheel Bansal, William J Riley, Dennis Baldocchi, Takashi Hirano, Gavin Mcnicol, Karina Schafer,

Lisamarie Windham-myers, et al.

▶ To cite this version:

Masahito Ueyama, Sara H Knox, Kyle B Delwiche, Sheel Bansal, William J Riley, et al.. Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions. Global Change Biology, 2023, 29 (8), pp.2313-2334. 10.1111/gcb.16594 . hal-03955531

HAL Id: hal-03955531 https://hal.science/hal-03955531

Submitted on 25 Jan 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

1	Modeled production, oxidation and transport processes of wetland
2	methane emissions in temperate, boreal, and Arctic regions
3	
4	Masahito Ueyama ¹ , Sara H. Knox ² , Kyle B. Delwiche ³ , Sheel Bansal ⁴ , William J. Riley ⁵ , Dennis
5	Baldocchi ³ , Takashi Hirano ⁶ , Gavin McNicol ⁷ , Karina Schafer ⁸ , Lisamarie Windham-Myers ⁹ ,
6	Benjamin Poulter ¹⁰ , Robert B. Jackson ¹¹ , Kuang-Yu Chang ⁵ , Jiquen Chen ¹² , Housen Chu ¹³ , Ankur
7	R. Desai ¹⁴ , Sébastien Gogo ¹⁵ , Hiroki Iwata ¹⁶ , Minseok Kang ¹⁷ , Ivan Mammarella ¹⁸ , Matthias
8	Peichl ¹⁹ , Oliver Sonnentag ²⁰ , Eeva-Stiina Tuittila ²¹ , Youngryel Ryu ²² , Eugénie S. Euskirchen ²³ ,
9	Mathias Göckede ²⁴ , Adrien Jacotot ²⁵ , Mats Nilsson ²⁶ , Torsten Sachs ²⁷
10	
11	¹ Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
12	² Department of Geography, The University of British Columbia, Vancouver, Canada
13	³ Department of Environmental Science, Policy & Management, UC Berkeley, Berkeley, CA, USA
14	⁴ U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND 58401 USA
15	⁵ Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley,
16	CA, USA
17	⁶ Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
18	⁷ Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL,
19	USA
20	⁸ Department of Earth and Env Science, Rutgers University Newark, NJ, USA
21	⁹ Water Mission Area, U.S. Geological Survey, Menlo Park, CA, USA
22	¹⁰ NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, MD, USA
23	¹¹ Department of Earth System Science, Stanford University, Stanford, CA, USA
24	¹² Department of Geography, Environment, and Spatial Sciences, Michigan State University, East
25	Lansing, MI, USA
26	¹³ Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA,
27	USA
28	¹⁴ Dept of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI,
29	USA
30	¹⁵ ECOBIO (Écosystèmes, Biodiversité, Évolution), Université Rennes 1, CNRS, UMR 6553,
31	35000, Rennes, France

- ³² ¹⁶ Department of Environmental Science, Faculty of Science, Shinshu University, Matsumoto,
- 33 Japan
- ³⁴ ¹⁷ National Center for Agro Meteorology, Seoul, South Korea
- ¹⁸ Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of
- 36 Helsinki, Helsinki, Finland
- ¹⁹ Department of Forest Ecology and Management, Swedish University of Agricultural Sciences,
- 38 901 83 Umeå, Sweden
- ²⁰ Université de Montréal, Département de géographie, Université de Montréal, Montréal, QC
- 40 H2V 0B3, Canada
- 41 ²¹ School of Forest Sciences, University of Eastern Finland, Joesnuu, Finland
- 42 ²² Department of Landscape Architecture and Rural Systems Engineering, Seoul National
- 43 University, Seoul, South Korea
- ²³ University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, AK, USA
- 45 ²⁴ Max Planck Institute for Biogeochemistry, Department of Biogeochemical Signals, Jena,
- 46 Germany
- 47 ²⁵ INRAE, UMR 1069 SAS, 65 rue de Saint-Brieuc, 35042 Rennes, France
- ²⁶ Department of Forest Ecology and Management, Swedish University of Agricultural Sciences,
- 49 901 83 Umeå, Sweden
- ²⁷ GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
- 51
- 52 Corresponding author: M. Ueyama, Graduate School of Agriculture, Osaka Metropolitan
- 53 University, Sakai, Japan (Tel: +81-72-254-9432) (<u>mueyama@omu.ac.jp</u>)
- 54

55 ORCiD

- 56 M. Ueyama : https://orcid.org/0000-0002-4000-4888
- 57 S. Knox : https://orcid.org/0000-0003-2255-5835
- 58 K. B. Delwiche : https://orcid.org/0000-0002-5981-2500
- 59 S. Bansal : https://orcid.org/0000-0003-1233-1707
- 60 W. J. Riley : https://orcid.org/0000-0002-4615-2304
- 61 D. Baldocchi : http://orcid.org/0000-0003-3496-4919
- 62 T. Hirano : https://orcid.org/0000-0002-0325-3922

- 63 G. McNicol : https://orcid.org/0000-0002-6655-8045
- 64 K. Schafer : No ID
- 65 L. Windham-Myers : https://orcid.org/ 0000-0003-0281-9581
- 66 B. Poulter : https://orcid.org/ 0000-0002-9493-8600
- 67 R. B. Jackson : https://orcid.org/0000-0001-8846-7147
- 68 K.-Y. Chang : https://orcid.org/ 0000-0002-7859-5871
- 69 J. Chen : https://orcid.org/0000-0003-0761-9458
- 70 H. Chu : https://orcid.org/0000-0002-8131-4938
- 71 A. R. Desai : https://orcid.org/0000-0002-5226-6041
- 72 S. Gogo : https://orcid.org/0000-0002-0867-497X
- 73 H. Iwata : https://orcid.org/0000-0002-8962-8982
- 74 M. Kang : https://orcid.org/0000-0003-4901-4465
- 75 I. Mammarella : https://orcid.org/0000-0002-8516-3356
- 76 M. Peichl : https://orcid.org/0000-0002-9940-5846
- 77 O. Sonnentag : https://orcid.org/0000-0001-9333-9721
- 78 E.-S. Tuittila : https://orcid.org/0000-0001-8861-3167
- 79 Y. Ryu : https://orcid.org/0000-0001-6238-2479
- 80 E. S. Euskirchen : https://orcid.org/0000-0002-0848-4295
- 81 M. Göckede : https://orcid.org/0000-0003-2833-8401
- 82 A. Jacotot : https://orcid.org/0000-0002-0126-7597
- 83 M. Nilsson : https://orcid.org/0000-0003-3765-6399
- 84 T. Sachs : https://orcid.org/0000-0002-9959-4771

86 Abstract

Wetlands are the largest natural source of methane (CH_4) to the atmosphere. The eddy covariance 87 88 method provides robust measurements of net ecosystem exchange of CH₄, but interpreting its spatio-temporal variations is challenging due to the co-occurrence of CH₄ production, oxidation, 89 and transport dynamics. Here we estimate these three processes using a data-model fusion 90 approach across 25 wetlands in temperate, boreal, and Arctic regions. Our data-constrained model 91- iPEACE - reasonably reproduced CH₄ emissions at 19 of the 25 sites with normalized root mean 92square error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of 0.87. 93 Among the three processes, CH₄ production appeared to be the most important process, followed 94by oxidation in explaining inter-site variations in CH₄ emissions. Based on a sensitivity analysis, 95CH₄ emissions were generally more sensitive to decreased water table than to increased gross 96 primary productivity or soil temperature. For periods with leaf area index (LAI) of $\geq 20\%$ of its 97annual peak, plant-mediated transport appeared to be the major pathway for CH₄ transport. 98Contributions from ebullition and diffusion were relatively high during low LAI (<20 %) periods. 99 The lag time between CH₄ production and CH₄ emissions tended to be short in fen sites (3 ± 2) 100 101 days) and long in bog sites $(13 \pm 10 \text{ days})$. Based on a principal component analysis, we found that parameters for CH₄ production, plant-mediated transport, and diffusion through water explained 10277% of the variance in the parameters across the 19 sites, highlighting the importance of these 103 parameters for predicting wetland CH₄ emissions across biomes. These processes and associated 104105parameters for CH₄ emissions among and within the wetlands provide useful insights for interpreting observed net CH_4 fluxes, estimating sensitivities to biophysical variables, and 106 107modeling global CH₄ fluxes.

108

109 Running title: Estimating processes for wetland CH₄ emissions

110 Keywords: Methane emissions, Eddy covariance, Bayesian optimization, Multi-site synthesis,

111 Methane model, Data-model fusion

113 **1. Introduction**

Wetlands are the largest natural source of methane (CH_4) – a potent greenhouse gas contributing 114115to climate warming. Methane emissions from wetlands contribute approximately 20% of total annual CH₄ emissions (Saunois et al., 2020). Despite their importance, estimates of wetland CH₄ 116emissions are highly uncertain (Bohn et al., 2015; Melton et al., 2013) because direct 117measurements of CH₄ emissions (Delwiche et al., 2021) are far fewer than those of carbon dioxide 118 119(CO₂) fluxes (Pastorello et al., 2020). In particular, the variability in CH₄ emissions appears high 120across spatial and temporal scales (Knox et al., 2019; Delwiche et al., 2021). As a result of the associated uncertainties, current estimates of the global CH₄ budget contain large discrepancies 121between top-down and bottom-up approaches (Saunois et al., 2020; Jackson et al. 2020). 122

123Methane emissions from wetlands also exhibit a wide range of magnitudes and responses to biophysical variables. Because CH₄ is primarily produced by anaerobic methanogens and oxidized 124by aerobic bacteria (Bridgham et al., 2013; Conrad 2009), water table depth (WTD) has been 125identified as an important thermodynamic boundary and thus potential predictor of wetland CH₄ 126127emissions (Brown et al., 2014; Moore and Roulet, 1993; Rinne et al., 2018). Methanogens produce 128CH₄ using substrates both from carbon recently fixed through photosynthesis (Whiting and Chanton, 1993) and previously fixed carbon (Glaser et al., 2004; Karofeld and Tõnisson, 2014). 129Thus, CH₄ emissions are often correlated with plant primary production and/or soil respiration 130(Turetsky et al., 2014; Villa et al., 2020; Whiting and Chanton, 1993). Because temperature affects 131132CH₄ production kinetics, soil temperature is typically correlated with CH₄ emissions (Knox et al., 2019; Yvon-Durocher et al., 2014), albeit substantial seasonal hysteresis was reported to occur in 133134many sites, likely due to substrate-temperature driver interactions (Chang et al. 2020, 2021). In addition to production and oxidation, transport pathways are also crucial in modeling CH₄ 135136emissions. Because CH₄ in soils is transported through plant aerenchyma, ebullition bubbles 137through standing water, and/or diffusion, CH₄ emissions were shown to be often correlated with 138leaf area index (LAI), latent heat flux, and/or barometric pressure (PA) (Kwon et al., 2017; Sturtevant et al., 2016; Tokida et al., 2005; Ueyama et al. 2020). 139

To better understand wetland CH₄ emissions, the eddy covariance (EC) method has been widely used at various wetlands along with measurements of other ancillary covariates such as WTD and soil temperature (Morin, 2018; Knox et al., 2019; Delwiche et al., 2021). The EC method provides quasi-continuous measurements of CH₄, CO₂, and energy exchanges between the land 144surface and the atmosphere (Baldocchi, 2014). The direct measurements have been used to evaluate magnitudes of CH_4 emissions, their interannual variations, and their responses to various 145146biophysical variables (Chang et al., 2021; Chu et al., 2014; Knox et al., 2019; Rinne et al., 2018; Yuan et al., 2022). Previous studies have identified biophysical variables such as soil and air 147temperature and WTD as the primary drivers for the temporal and spatial variations in CH₄ 148emissions (Knox et al., 2019; Turetsky et al., 2014; Yuan et al., 2022), but their importance varies 149150substantially among wetlands and across time scales (Koebsch et al., 2015; Knox et al., 2021). Furthermore, complex interactions hinder the use of simple correlation analyses for disentangling 151responses of CH₄ emissions to biophysical variables, leading to large uncertainties when 152interpreting observations (Chang et al. 2020; Sturtevant et al., 2016; Knox et al., 2021). Recently, 153the FLUXNET-CH₄ database was curated for supporting synthesis of wetland CH₄ emissions using 154the EC methods (Knox et al., 2019; Delwiche et al., 2021) and, for example, was used to evaluate 155156inter-site variations in CH₄ emissions (Chang et al. 2021; Knox et al., 2021, 2021; Yuan et al., 2022). 157

To improve the mechanistic understanding and accurate modeling of CH₄ emissions, the 158159relative contributions of CH₄ emission pathways have been measured or estimated with various field measurements (Table 1). These measurements include chamber techniques (Korrensalo et al., 160161 2022; Tokida et al., 2007a, b), bubble traps (Stanley et al., 2019), isotope techniques (Dorodnikov et al., 2011), and dissolved CH₄ concentrations in pore water (McNicol et al., 2017). Recently, a 162163 wavelet analysis of EC measurements examined the contribution of ebullition to total CH4 164emissions (Göckede et al., 2019; Iwata et al., 2018; Hwang et al., 2020; Richardson et al., 2022; 165Schaller et al., 2018). These analyses revealed that plant-mediated transport was the most important pathway for wetland CH₄ emissions (up to 98% of the total emissions), but the other 166 167two pathways were also important under environmental conditions such as flooded wetlands without emergent vegetation and shallow ponds. Many process-based models (Table 1) have also 168169shown that CH₄ emissions occur mostly through plant-mediated transport (Castro-Morales et al., 1702018; Ma et al., 2017; Peltola et al., 2018; Susiluoto et al., 2018; Wania et al., 2010), although one 171model found ebullition was the dominant pathway (Ito, 2019). Although previous studies conducted across relatively few wetland sites are useful for understanding CH₄ transport pathways, 172comparisons of transport mechanisms across multiple wetlands remain challenging. The challenge 173174lies in uncertainties in measurement techniques, spatial representation of measured processes in

the field, and different model structures in process-based models.

176Data-model fusion approaches have recently been used for evaluating wetland CH₄ emissions 177(Ma et al., 2017; Müller et al., 2015; Salmon et al., 2022; Susiluoto et al., 2018; Ueyama et al., 2022). These methods use observed data for constraining process-based models that are often 178difficult to calibrate, and can be used to evaluate processes of CH₄ emissions and their sensitivity 179to biophysical drivers. To reduce the uncertainties in a process-based model, Müller et al. (2015) 180 181 used observed data for constraining a model for CH₄ dynamics and found that detailed process-182based models were not well constrained owing to the complexity of the model. Susiluto et al. (2018) calibrated a detailed model using nine years of EC-based CH₄ flux data in a northern fen. 183Their results suggested that CH₄ production was the most important factor responsible for the 184interannual variations in CH₄ emissions, whereas plant-mediated transport was the most important 185CH₄ transport pathway. Data-model fusion approaches to study CH₄ emissions have been applied 186only for a limited number of individual sites; thus, their applicability should be evaluated across 187 wide arrays of wetland sites and biomes. 188

189 Recently, Ueyama et al. (2022) developed a process-based model (i.e., inferring Processes for 190 Ecosystem-Atmosphere CH₄ Exchange – iPEACE) for partitioning CH₄ emissions using a datamodel fusion approach for a cool temperate bog in Japan. Their approach constrained the model 191using CH₄ emissions and associated biophysical variables from the EC tower with the goal to 192determine a parameter set for reproducing daily CH₄ emissions under various environmental 193 194 conditions. These conditions included growing and dormant seasons, wet and dry conditions, high and low LAI, and various ranges of gross primary production (GPP), soil temperature, and PA. 195196The model reasonably identified processes that were qualitatively consistent with previous field experiments to shed light on processes in the bog. Findings include: 1) ebullition and plant-197 198mediated transport as the important CH₄ transport pathways, 2) high contributions of the deep organic layer (i.e., <30 cm) to total CH₄ emissions due to very low CH₄ concentrations in the 199200surface organic layer (Tokida et al., 2007a), and 3) gaseous-bubble accumulation in deep organic layer (Tokida et al., 2005, 2007a, b). A chamber-based study further suggested that contributions 201202of bubble transport to total CH₄ emissions ranged from 67-95% during the snow-free season in the 203bog (Tokida et al., 2005, 2007a, b), which was close to the iPEACE model estimates (64%).

Here, we modified iPEACE to simulate CH_4 fluxes and infer processes related to CH_4 emissions (i.e., production, oxidation, and transport pathways) from 25 wetlands across mid- to high-latitudes included in the FLUXNET-CH₄ database. Applying the data-model fusion method

207 (Ueyama et al., 2022) across these wetland sites spanning temperate, boreal, and Arctic regions,

our objectives were to: 1) evaluate the model's suitability for simulating CH_4 emissions across

wetland types, 2) quantify inter-site variations in estimated processes related to CH_4 emissions, 3)

evaluate the sensitivities of CH_4 emissions to GPP, soil temperature, and WTD, and 4) examine

- 211 inter-site variations in parameters for improved predictions of wetland CH₄ emissions.
- 212

213 **2. Materials and methods**

214 2.1 Dataset and model inputs

We used daily EC CH₄ flux data archived in the FLUXNET-CH₄ database (Delwiche et al., 2021). We selected all mid- to high-latitude freshwater wetland sites from the database (Table 2) that contained all relevant forcing variables (i.e., soil and air temperature, WTD, PA, and GPP). The selected 25 sites represent wetland types of bog (ombrotrophic), fen (minerotrophic), marsh, wet tundra, and rice paddy in temperate, boreal, and Arctic regions. The mean annual air temperature ranged from -5 °C to 17 °C across the sites, and minimum WTD ranged from -0.62 m to 0.68 m.

We used daily gap-filled CH₄ fluxes and the ancillary biophysical variables at the tower sites. 221The daily mean values of the gap-filled half-hourly variables were provided in the FLUXNET-222223CH₄ database (Delwiche et al., 2021). We used two types of daily CH₄ fluxes (i.e., FCH4 F and FCH4 F ANN median) in the database. FCH4 F was gap-filled using a multidimensional scaling 224(MDS) approach in REddyProc (Delwiche et al., 2021), but still contained periods of time with 225long data gaps (<2 months). FCH4 F ANN median was gap-filled based on an artificial neural 226227network method, which fills all data gaps (Knox et al., 2019). As input drivers from the FLUXNET-CH₄ database, daytime-based GPP (GPP DT) in the database (Lasslop et al., 2010), 228229air temperature (TA F), barometric pressure (PA F), soil temperature (TS), and WTD (WTD F) were used. The gaps in the meteorology (i.e., TA F, and PA F) were filled using the ERA-Interim 230231reanalysis data (Vuichard and Papale, 2015), whereas those of WTD and soil temperatures were 232filled using the MDS method. We used soil temperature at two depths for representing the surface and deep layers in the model. For sites affected by permafrost (RU-Ch2, US-Ics, and US-Uaf), we 233assumed that the deepest soil temperature measurement was representative of the bottom of the 234active layer. Data for RU-Ch2, US-Ics, US-Bzf, and US-Bzb sites did not include WTD data in 235236the FLUXNET-CH₄ database, but WTD data were directly provided from principal investigators.

Since WTD for RU-Ch2 was based on discrete manual measurements, we linearly interpolated thedata to the daily timescale.

239We prepared daily LAI as a model input based on satellite-based LAI smoothed using GPP. First, the four-day LAI data (MCD15A3H; collection 6) was downloaded from MODIS land 240products subsets. The spatial resolution of the product is 500 m. We used a single grid cell of data 241centered on the site location. The LAI data were first set to zero for the snow periods, and were 242then smoothed using a Savitzky-Golay filter (Chen et al., 2004). The snow conditions were 243determined based on the MODIS reflectance products (MCD43A4; collection 6) from the MODIS 244land products subsets. Because smoothed LAI often failed to explain seasonal peaks when peak 245LAI was missing, daily LAI was then modeled using the smoothed LAI and daily GPP normalized 246with a maximum GPP (*nGPP*). LAI at day (*i*) was modeled with a non-centered moving mean of 247the normalized GPP multiplying a scale factor. 248

249

$$LAI_i = L_s \sum_{j=i-D}^i nGPP_j / (D+1)$$
(1)

251

Two empirical parameters of the scale factor for explaining maximum LAI (L_s) and moving window for explaining a lag between GPP and LAI (D) were the parameters determined based on a differential evolution method. Since there was no clear relationship between LAI and GPP for NZ-Kop, LAI for NZ-Kop was estimated simply based on 10-day moving mean of the satellitebased LAI. The smoothed LAI well mimicked the satellite-derived LAI, where mean and standard deviation of root mean square error (RMSE) and correlation coefficient (R) were 0.46 ± 0.24 and 0.84 ± 0.11, respectively, across the sites.

259 2.2 The iPEACE model

Partitioning CH_4 emissions from the EC measurements was conducted by optimization of a process-based model with the data. We used the iPEACE model (Ueyama et al., 2022), which was originally proposed to infer CH_4 dynamics at a temperate bog in Japan, but has been generalized for the current analysis (Fig. 1).

The iPEACE model consists of two soil layers, a surface layer susceptible to oxic conditions and a deep layer prone to anoxic conditions, and considers CH_4 production and oxidation in each layer, as well as three transport pathways: plant-mediated transport, ebullition, and diffusion. The 267modeled mechanisms are similar to those used in current process-based models (Ralvonen et al., 2682017; Walter and Heimann, 2000; Wania et al., 2010; Riley et al., 2011). The simple formulation 269of iPEACE allows to effectively fit the model to data at reduced computational costs. The model is driven with GPP for substrate availability, LAI for transport potential through plant stems, soil 270temperature in the two layers for driving kinetics, oxygen (O₂) concentration for redox potential, 271WTD for diffusivity and hydrostatic pressure that drives ebullition, and PA for ebullitive transport. 272273The O₂ concentration was not included in the FLUXNET-CH₄ database, and thus was determined from WTD. When the water table position is above or below a soil layer, the layer is assumed to 274be anoxic or fully oxic, respectively. When WTD is within a soil layer, O₂ concentration in that 275layer is linearly related to that fraction of the layer that is inundated between fully oxic to anoxic 276277conditions.

To explore the underlying processes, the model contains 10 parameters and two initial values of the CH_4 pools in each soil layer (mol- CH_4 m⁻³), which are calibrated with data (Table 3). For adapting the model to the current analysis, the thickness of the surface layer and root fraction (described below) in the surface layer are calibrated for each site, whereas the previous study (Ueyama et al., 2022) used a fixed value.

Thickness of the surface layer $(z_{surf}; m)$ is the parameter constrained by the data. Thickness of 283284the deep layer is calculated as the difference between total soil thickness (1 m, except for permafrost sites) and the thickness of the surface layer. For sites affected by permafrost, total soil 285286thickness is defined as the active layer depth (0.5 m for RU-Ch2, 1.0 m for US-ICs, and 0.6 m for US-Uaf). Seasonal changes in soil thickness associated with soil thaw are not considered in the 287288model for simplicity. Surface root fraction (fs_{root}) is the parameter explaining how roots are concentrated in the surface layer relative to the total roots. The model assumes that root density is 289290higher in the surface layer than the deep layer.

Methane production is assumed to depend on substrate availability from GPP, kinetics as determined by soil temperature, and anaerobic status as determined by O_2 concentration. The fraction of GPP to CH₄ substrate ($p_{production}$; mmol-CH₄ g⁻¹ C) and temperature sensitivity (Q_{10}) are both empirical parameters. Modeled CH₄ production increases with soil temperature and substrate availability but decreases with increased O_2 concentration. The $p_{production}$ parameter is the aggregated parameter for explaining the fraction of root exudates from GPP and the efficiency from exudates to CH₄ production and relates to the base production rate in a Q_{10} equation (Chen,

Global Change Biology

2021). The model does not explicitly consider anaerobic peat decomposition; thus, CH_4 production by decomposition are implicitly incorporated through a decrease in the CH_4 pools. Partitioning of CH_4 substrate in each soil layer is assumed to be a function of the root distribution between the surface and deep soil layers. CH_4 oxidation is calculated with a Michaelis-Menten equation (Wania et al, 2010) with CH_4 concentration and O_2 concentration, where the maximum CH_4 oxidation rate $(p_{oxidation}; mol-CH_4 m^{-3} s^{-1})$ is a calibrated parameter.

Plant-mediated transport is calculated by the concentration gradient between a soil layer and the atmosphere, root fraction in each layer, and LAI. The transfer efficiency under a given concentration gradient (p_{plant} ; 10⁻³ d⁻¹) is a calibrated parameter. The model does not consider CH₄ transport by dead plants, which are not accounted for by LAI, with the assumption that collapsed aerenchymatous tissue in senesced leaves has low transport capacity (Korrensalo et al., 2022).

Ebullitive transport is calculated based on a concentration threshold scheme (Peltola et al., 309 2018), which has two empirical parameters: nondimensional conductivity for bubble transport 310 (p_{ebullition}) and a parameter for explaining episodic CH₄ bubble transport driven by barometric 311pressure changes (ppressure; hPa⁻¹). Since the model assumes that CH₄ is not immediately emitted as 312313 ebullition but accumulated as bubbles, p_{ebullition} represents the transport efficiency of bubbles. The p_{pressure} parameter empirically explains the sensitivity to decreasing barometric pressure, i.e., the 314relative increase in ebullition per 1 hPa decrease in mean PA. In the model, the ebullition flux from 315each layer is assumed to be directly transported to the atmosphere, when WTD is within the top 31631710 cm of the soil based on a field study (Stanley et al., 2019). When WTD is deeper than 10 cm, CH₄ transport through ebullition is added to the surface layer CH₄ pool, which is a modification 318 319 from the original model of Ueyama et al. (2022).

Diffusive flux is calculated using Fick's first law. The diffusion coefficients for gas and water are calculated based on Riley et al. (2011), and then their calibrated correction factors ($p_{diffusion-gas}$ and $p_{diffusion-water}$) are multiplied to the respective diffusion coefficients.

323 2.3 Model applications

The model parameters, initial conditions, and model error (σ) were determined from the observed data by the Bayesian method as follows:

(2)

326

327
$$F_{OBS} \sim Normal(F_{MODEL},\sigma^2)$$

328

where the function *Normal* represents the normal distribution, F_{OBS} is the observed CH₄ emission, and F_{MODEL} is the modeled CH₄ emission. The *a priori* distribution of σ was assumed to be a log normal distribution with mean of log(0.5) mg CH₄ m⁻² d⁻¹ and standard deviation of 0.1 mg CH₄ m⁻² d⁻¹, where the hierarchical structure was used to reduce computational costs. Equation 2 assumes that variance for the model-observation mismatch was temporally uniform without incorporating temporal correlation in the observed data.

The *a priori* distributions of the parameters were generally assumed to be uniform (Table 3). 335The range of uniform distributions were determined by adding plus/minus to the values determined 336 by the differential evolution method for each site (Table S1). The pre-constraint of a priori 337 distribution effectively reduces computational costs without decreasing model performance and 338 improves model convergence, based on a preliminary analysis. For constraining the behavior that 339 root density must be higher in the surface layer than the deep layer in the Bayesian optimization, 340 the thickness of the surface layer and root distribution were determined without results from the 341mathematical optimization. For the parameter optimization, we did not assume the hierarchy in the 342343 statistical model.

The posterior distributions of the parameters were estimated using a Markov Chain Monte 344Carlo (MCMC) method with the No-U-Turn Sampler (NUTS). NUTS is an extension of 345Hamiltonian Monte Carlo and provides very effective samples without requiring user intervention 346347or costly tuning runs (Hoffman and Gelman, 2014). The efficiency of NUTS was more than 1,000 times that of Metropolis or Gibbs sampling. Posterior distributions of the parameters were 348 349 estimated using four chains with 1,000 samples after warm-up based on 1,000 sampling. Bayesian inference was performed using the PyStan library (version 2.19.1.1). Owing to a complex and 350351multimodal parameter space, consistent solutions from each chain were not obtained or some 352chains were not converged for some sites. In this case, we used results from chains that estimated the lowest model errors. The conservative treatment was required because bad chains seem to 353converge to local minima rather than to mathematically meaningful multimodal distributions and 354355the problem was not fixed using different a priori, different initial values or further sampling. The trace plots and probability density functions for all parameters in all sites are shown in Fig. S1, 356which shows that at least two chains were well converged. Convergence of MCMC was evaluated 357by the Gelman–Rubin method with the potential scale reduction factor (PSRF), which showed that 358

Global Change Biology

all parameters for all sites were well converged (PSRF < 1.05) except slightly high PSRF for two parameters for US-Uaf (PSRF < 1.12; Table S3). Computational costs of the Bayesian inference ranged from 0.35 hours to 2.5 days per site with an average of 6.16 hours (Table S4).

Model parameters were estimated using daily CH₄ fluxes and the ancillary biophysical 362variables. Specifically, we used daily gap-filled CH₄ flux (FCH4 F), which contained only long 363data gaps (>2 months), and did not assume embedded functional relationships. In addition, we 364 used FCH4 F ANN median when uncertainties in the neural network (FCH4 uncertainty) were 365less than absolute of FCH4 F ANN median. The use of gap-filled fluxes with low uncertainties 366 could prevent propagating uncertainties associated with long-term gap-filling data into the 367 parameter estimation. We also evaluated how the gap-filled data influenced modeled processes. 368 where we eliminated data records where daily CH₄ emission contained more than 80% gaps in 369 half-hourly data, in constraining the model. Apart from this issue, some high-latitude and rice 370371paddy sites provided only growing-season fluxes, which hampered constraining the model for cold non-growing and fallow seasons, respectively. We also found that flux data for the first few days 372of a model run were important for constraining the initial CH₄ pools (i.e., initial conditions). 373 374Without the data, initial conditions were not well converged, and estimated dormant season emissions were unrealistic. Consequently, when FCH4 F was missing, we used the gap-filled CH4 375flux (FCH4 F ANN median) during the first six days of a model run and for the winter period 376 (air temperature < -10 °C). The benefits of selectively using gap-filled data could outweigh the 377378propagation of gap-filled errors, where unrealistic CH₄ emissions were not estimated.

The model constraints for each site were evaluated by RMSE normalized by mean, R, and normalized standard deviation (SD) in daily CH_4 flux. For further interpreting and analyzing modeled results, we eliminated unconstrained site-data where normalized RMSE was >0.9, R was <0.6, normalized SD was <0.7, or normalized SD was >1.3.

The sensitivities to the forcing variables were performed using the models successfully constrained for each site. First, we applied perturbations to the inputs of: 1) 1 °C increase to the observed soil temperatures, 2) 10% increase in GPP and LAI, 3) 10 cm increase in WTD, and 4) 10 cm decrease in WTD with all other inputs held at measured conditions. Next, we examined the changes in modeled CH_4 emissions with unperturbed input (control experiment). We conducted the sensitivity analysis for sites spanning at least three years of data because the uncertainties are high in models constrained by short-term data (Ueyama et al., 2022). 390 To understand the variabilities in the estimated parameters across the sites, we applied principal component analysis (PCA) toward seven parameters: pproduction, Q10production, poxidation, 391pebullition, pplant, pdiffusion-water, and ppressure. The parameter for gas diffusion (pdiffusion-gas) was not 392included in the PCA because p_{diffusion-gas} did not show a bell-shaped density curve at approximately 393half of the sites (Fig. S1). The parameters were first standardized with mean and SD and then 394compressed into two principal components (PC) using the scikit-learn library in python. We chose 395two principal components because they explained more than 70% of the variance in the parameters 396 across the sites. 397

398 **3. Results**

399 3.1. Model performance

400 Across the 25 sites, 19 sites had reliable performance that satisfied the criterion for normalized RMSE, R, and normalized SD (section 2.3). According to the Taylor diagram (Fig. 2), model-data 401 402 agreement was the best (R > 0.9) for RU-Ch2, FI-Lom, SE-Deg, FI-Sii, and CA-SCB. Among the 403 accepted 19 sites, the median of normalized RMSE, R, and normalized SD were 0.59, 0.82, and 0.87, respectively. Except for the five sites with good model fit noted above, the model 404 underestimated the SD of CH₄ flux, where the mean and SD of the normalized SD was 0.84 ± 0.13 405406 across all sites. For the six sites excluded from subsequent analyses due to low performance (US-Sne, DE-Hte, DE-Zrk, DE-Sfn, US-Bzf, and US-Wpt), the mean seasonality was inconsistent 407 between observations and models (Fig. 3), despite a moderate R and normalized RMSE. The low 408 409 performance may represent a lack of important processes in the model and insufficient data to constrain the model. For example, US-Sne is a newly restored wetland and has a heterogeneous 410 surface of open water and emergent vegetation, which make it difficult to constrain the processes 411 based only on measured CH₄ fluxes for three years. Overall, there was no significant difference in 412the model performance in terms of wetland type and the number of years used for calibration. 413

In general, there were no obvious differences in modeled results with the optimized data containing fully gap-filled data or data when excluding days with >80% gaps. However, five sites (US-Sne, DE-Hte, DE-Zrk, FR-LGt, and NZ-Kop) did not meet the standard for a well constrained model with the non-gap-filled data (Fig. S2). The median of normalized RMSE, R, and normalized SD were 0.57, 0.83, and 0.90, respectively, in the model with the data not containing fully gapfilled data. The estimated CH₄ transport, production, and oxidation were also consistent among the 420 two models constrained with two data criteria, except for sites having low record numbers (e.g.,

421 RU-Ch2 and JP-Mse) (Fig. S3). Other results, including inter-site differences in CH_4 emission 422 processes and sensitivity to biophysical drivers, were generally consistent among the two models 423 constrained with two data criteria.

424 *3.2. Estimated transport processes*

Based on model results, plant-mediated transport and ebullition were more important pathways 425426 for CH₄ emissions than diffusive transport across sites (Fig. 3, 4; Table 2). In most cases, plantmediated transport tended to be the major pathway for fen sites $(72\% \pm 10\%, n = 8; mean \pm SD)$ 427and bog sites $(55\% \pm 16\%, n = 8; mean \pm SD)$ (Fig. 4). Ebullition accounted for $27\% \pm 10\%$ of the 428429total emission for the fen sites and $26\% \pm 10\%$ for the bog sites. In contrast, ebullition was 430 estimated to be the major pathway at the two tundra sites $(64\% \pm 4\%)$ owing to shallow WTD (Fig. 4). Because the modeled plant-mediated transport increased with LAI, relative contribution of 431432ebullition and/or diffusion was found high during periods of low LAI. When LAI was $\geq 20\%$ of 433the annual peak, plant-mediated transport was the major pathway ($70\% \pm 14\%$), except for three sites (RU-Ch2, US-Bzb, and KR-Crk) during the growing season (Fig. 3; Table 2). Diffusion was 434a minor pathway at most sites, but tended to be high in two marsh sites (US-Myb and US-Tw1) 435436and a bog site (SE-Sto). For the three sites, the model predicted an anoxic surface layer, negligible oxidation, and high CH₄ concentrations in the surface layer at high WTD sites, allowing for surface 437diffusion. Since US-Myb was a restored wetland, the contribution of diffusion was approximately 438half of the CH₄ emissions in open water conditions (2010-2011) and then decreased to $31\% \pm 6\%$ 439with the expansion of emergent vegetation from 2012 to 2018. 440

Based on cross-correlation analysis, CH₄ emissions lagged CH₄ production by 1-32 days (Fig. 5). There was more than a 30-day lag between CH₄ production and CH₄ emissions at US-Uaf. Lags tended to be, on average, longer in bogs (13 ± 10 days; n = 7; mean \pm SD) than in fens (3 ± 2 days; n = 5), rice paddies (11 ± 3 days; n = 2), or tundra (6 ± 3 days; n = 2). Even in a longlagged site (> 30 days for US-Uaf), the correlation between CH₄ production and CH₄ emission was good (R > 0.70), indicating that CH₄ production controlled temporal variations in CH₄ emission. Inter-site variations in CH₄ production explained inter-site variations in CH₄ emissions ($R^2 =$

448 0.72; p = 0.01), except for sites where the ratio of oxidation to production was high (Fig. 6a). For 449 sites with high oxidative fraction to production, CH₄ emissions were relatively low considering

their production (Fig. 6a). These sites with high oxidation generally exhibited low minimum WTD 450(Fig. 6b), CH_4 production and emission were positively correlated with soil temperature and GPP 451452across the sites having low oxidation (Fig. 6c-f). This result is unexpected because the model was constrained in each site using temporal variations in the variables, as there was no assumption 453about inter-site variations in constraining the model. Based on the variable importance analysis 454using random forest regression, soil temperature and GPP almost equally explained the inter-site 455variations in CH₄ production. In contrast to production and oxidation, inter-site variations in three 456transport pathways did not correlate with CH₄ emissions. 457

458 *3.3. Estimated parameters*

459Most parameters in our model were well converged (Table S3), but pdiffusion-gas did not show a bell-460 shaped density curve with a single peak at 8 of the 19 sites (Fig. S1). Substrates for CH₄ production per GPP ($p_{production}$) were converged on the lower end of *a priori* range (median = 1.1 mmol m⁻² 461 gC⁻¹ m²) over the 19 sites. The median and SD of Q_{10} of CH₄ production was 3.7 ± 1.9 , where 462there was a weak negative correlation between $p_{production}$ and Q_{10} across the sites ($R^2 = 0.31$; p =4630.01). The maximum oxidation parameter was estimated to be in the middle of the prescribed upper 464 and lower range at most sites. Estimated pebulition and pplant were not correlated with contributions 465from ebullition and plant-mediated transport to CH₄ emission, respectively. Ebullition from 9 sites 466 had a marginal sensitivity to pressure decline (< 2% hPa⁻¹), where there was no correlation between 467 p_{pressure} and contributions of ebullition to the total emission across the sites. There was no 468significant difference (p < 0.05) in all parameters aggregated by aerenchymatous and moss 469 470 vegetation.

Based on the PCA analysis, 77% of the variance in the parameters among the sites was compressed with two PCs (Fig. 7). The first PC represented a tradeoff of two parameters for CH_4 production between high $p_{production}$ and low Q_{10} and *vice versa*, representing 61% of the parameter distribution across the sites. The second PC explained 16% of the distribution and represented a tradeoff between CH_4 production and transport through plants and gas diffusion. There were weak clusters for bog sites with relatively high Q_{10} , tundra sites with low transport parameters, and rice paddies with high transport parameters. No clusters were apparent for fen and marsh sites.

The thickness of the surface layer, z_{surf} , was the conceptual depth separating surface oxic and deeper anoxic layers, and thus negatively correlated to WTD for sites where minimum WTD was below -0.1 m ($z_{surf} = -1.2 * WTD - 0.05$ m; $R^2 = 0.48$; p=0.03; n = 10). The regression analysis showed that z_{surf} was close to minimum WTD. In contrast, there was no significant trend in the surface layer thickness for sites with high mean annual WTD (> -0.1 m). For sites with high WTD (i.e., always above the ground surface), the thickness of the soil layers did not control the degree of redox conditions for the two layers because the surface layer was always anaerobic.

485 *3.4. Sensitivity to biophysical variables*

Based on the sensitivity analysis, CH_4 emissions increased by 9.6% or 3.5 g CH_4 m⁻² yr⁻¹ (median relative increase), with 10% increase in GPP across the sites, with the increases higher in the sites with high annual soil temperatures (Fig. 8a). The sensitivity analysis was performed on sites that had at least three years of data (14 sites) among the 19 sites. The sensitivities aggregated for high or low WTD sites (sites having mean water table position above or below the ground surface) indicated that the relative increases in CH_4 emissions did not differ significantly between the two WTD classes (p = 0.35 in Welch's t test; inset in Fig. 8a).

The 1 °C increases in soil temperatures increased CH₄ emissions by 6.6% or 2.5 gCH₄ m⁻² yr (median relative increase) (Fig. 8b). The increases were similar in magnitude to those from the 10% increase in GPP. Compared with the sensitivity to GPP, the increased magnitudes appeared to not be clearly related to the mean annual soil temperatures and WTD, likely because temperature sensitivity (Q₁₀) for CH₄ production differed by site. The increases in CH₄ emissions also did not differ significantly between the two WTD classes (p = 0.80; inset in Fig. 8b).

The increase in CH₄ emissions with 1 °C increases were lower than those estimated based on an empirical Q_{10} relationship between daily mean soil temperature and CH₄ emissions (Fig. 9). Eight of the 14 sites were estimated to have higher CH₄ emission sensitivity using the empirical Q_{10} model than iPEACE. Across all 14 sites, the relative increases in CH₄ emissions tended to be higher in the empirical Q_{10} model (12%) than the iPEACE model (8%) across the sites (p = 0.12) (US-Uaf was not included in relative changes in emission owing to the small magnitude in emission).

506 Decreased CH_4 emissions associated with a 10 cm decrease in WTD were greater than 507 increased CH_4 emissions with a 10 cm increase in WTD (Fig. 8c, d). A decrease in WTD decreased 508 CH_4 emissions at most sites and *vice versa*, where the median changes by the decrease and increase 509 in WTD were -31% and +6.5%, respectively. A site with a WTD permanently well above the 510 ground surface (US-Myb) did not exhibit significant responses to changing WTD, as WTD always 511 remained above the surface. The relative changes in CH_4 emissions did not differ significantly 512 between sites with low and high WTD with 10 cm increases in WTD (inset in Fig. 8c; p = 0.34) 513 and 10 cm decrease in WTD (inset in Fig. 8d; p = 0.15).

There were two mechanisms for reduced CH₄ emissions by decreased WTD. The first 514mechanism is associated with changes in the frequency with which the surface layer becomes oxic 515516conditions. In this mechanism, CH₄ production from the surface layer decreases when the WTD decreases with the perturbed input mostly fluctuating within the surface layer throughout the year. 517The second mechanism is related to the long-lasting change in redox conditions in the deep layer. 518We argue that reduced anaerobic conditions in the deep layer, which was rarely affected by oxic 519conditions with the unperturbed WTD, but was affected by the perturbed decrease in WTD. Owing 520to the loss of anaerobic conditions, CH₄ in the deep layer was consumed through oxidation; thus, 521the effects were relatively long-lasting until CH₄ concentrations built-up again. The median 522decrease in CH₄ production was -6.9 gCH₄ m⁻² yr⁻¹, and median increase in CH₄ oxidation was 52312.9 gCH₄ m⁻² yr⁻¹, indicating that the second mechanism was the major process responsible for 524525the reduction in CH₄ emissions. As an exceptional response examined at NZ-Kop, the decreased WTD could change sustained anoxic conditions to oxic conditions in the deep layer, resulting in 526decreased CH₄ production, reduced CH₄ pool, and finally decreased oxidation. 527

528

529 **4. Discussion**

The estimated processes for CH_4 emissions provide meaningful insights for interpreting observed 530531data and estimating sensitivities to the forcing variables. The current analysis aims to shed light on the relative importance of processes involved in CH₄ production, transport, and oxidation across 53253325 freshwater wetland sites in temperate, boreal, and Arctic regions. The observed data included in the FLUXNET-CH₄ database were used to constrain a process-based model which has a similar 534structure used in previous modeling studies (Walter and Heimann, 2000; Wania et al., 2010; Riley 535et al., 2011). Flux partitioning is typically applied to net CO₂ fluxes for estimating GPP and 536537ecosystem respiration (Reichstein et al., 2005), and has successfully provided deeper insights on their biotic and abiotic controls (Jung et al., 2017; Mahecha et al., 2010). Compared to the 538partitioning of CO₂ fluxes, more complex models are required to explain wetland CH₄ emissions 539and partition net CH₄ flux observations (Wania et al., 2010; Riley et al., 2011; Grant et al., 2019; 540

541 Chen 2021). Partitioned CH₄ fluxes can be useful for evaluating inter-site differences in fluxes

542 (Figs. 3, 4), time lags between surface emissions and production (Fig. 5), different responses of

543 CH₄ processes (e.g., production, oxidation, and transport) to biophysical variables (Figs. 6 and 8),

and model parameterizations (Fig. 7). Key processes and parameters estimated in this study need

- to be better constrained with further long-term observations and different data streams.
- 546

547 *4.1. Inter-site variations in estimated processes*

The inter-site variations in CH_4 emissions were found to be primarily associated with those in CH_4 548production rather than those in oxidation and transport (Fig. 6), especially for sites with high WTD 549and low CH₄ oxidation. These results could explain the correlation of annual CH₄ emissions with 550mean annual air or soil temperature across global wetlands in the FLUXNET-CH₄ database (Knox 551et al., 2019; Delwiche et al., 2021), where temperature was found to be an important driver of 552methanogenesis substrates (Chang et al. 2021) and CH₄ production (Yvon-Durocher et al., 2014). 553In contrast, oxidation increased with decreasing WTD (Fig. 6b), resulting in oxidation as the 554second most important process for explaining inter-site variations in CH₄ emissions. These results 555556are also consistent with global syntheses, which showed that a positive correlation between CH_4 emissions and WTD was only detected in sites with relatively low WTD (i.e., mean annual WTD 557was below the soil surface) (Knox et al., 2019, 2021). 558

Transport processes were estimated to regulate the time-lag between CH₄ production and 559560emissions (Fig. 5), albeit we found no significant effect on total CH₄ emissions because annual emissions were mainly controlled by CH₄ production (Fig. 6). The lag between production and 561emission occurred due to the time required to increase the CH₄ concentrations to drive CH₄ 562transport. The lag of CH₄ emissions to soil temperature or GPP was reported in studies using 563564FLUXNET-CH₄ (Chang et al., 2019; Delwiche et al., 2021; Knox et al., 2021; Yuan et al., 2022). For example, Knox et al. (2021) estimated that on average CH₄ emissions lagged soil temperature 565566and GPP by 5.4 days and 20.7 days, respectively, across wetlands globally. The lag between CH₄ emission and production (Fig. 5) nonetheless partly explained the lag between emission and 567568biophysical variables, as time is required for building up sufficient CH₄ concentrations driving CH₄ emissions. 569

570

572The estimated sensitivity of CH₄ emissions to GPP (Fig. 8a, b) indicates the importance of 573substrate availability. A strong relationship between net ecosystem production and CH₄ emissions 574was previously reported across wetlands extending from subarctic peatlands to subtropical marshes associated with substrate availability (Whiting and Chanton, 1993). The estimated sensitivity 575occurred because CH₄ production in iPEACE was driven by GPP and soil temperature, reflecting 576the concept that increased GPP will increase substrate availability and thereby CH₄ emissions. The 577strong relationship with GPP (Fig. 8a) was unexpected, however, because the sensitivity to GPP 578(p_{production}) was calibrated in each site and thus was expected to show high variability among the 579sites. It is worth noting that the estimated sensitivity to GPP might be caused by model assumptions. 580The model assumed that substrates for CH₄ were only provided by GPP, but old peat previously 581fixed is also known to be a substrate for CH₄ production (Chasar et al., 2000). Substrates from 582recent primary production and peat organic carbon should be incorporated into future modeling 583with iPEACE. 584

Based on our sensitivity analyses, CH₄ emissions were sensitive to a decrease in WTD for most 585sites (Fig. 8). The most important mechanism associated with decreased WTD was increased 586587oxidation at the deep layer. Because the buildup of the CH₄ pool after loss of anaerobic conditions is time consuming, the effects can be long-lasting. This result is consistent with previous studies. 588Brown et al. (2014) indicated that a long recovery time was required for CH₄ emissions after re-589wetting following a drop in WTD at a site where the mean WTD was below the surface. They 590591proposed a reason for the long recovery time as breaking the critical zone for CH₄ emissions by low WTD conditions. Simultaneously, when increased WTD resulted in aerobic layers switching 592to anaerobic conditions, CH₄ emissions increased, but the response was smaller than those to a 593decreasing WTD. This difference occurs because increased WTD increased the frequency of 594595anoxic conditions at the surface layer, but the surface layer was still susceptible to oxic conditions even with perturbation increase in WTD, resulting in limited increases in CH₄ concentration. When 596deep soil remained anaerobic owing to shallow WTD, increases in soil temperature and GPP were 597 equally important drivers of CH₄ emissions through kinetics and substrate availability, respectively 598599(Fig. 8).

600

601 4.3. Comparison of estimated processes to observations from previous studies

Estimated transport flux was compared to EC measurements at various sites (Table 1). The high

603 ebullition (50% of total emissions) was measured with chamber measurements at JP-Bby (Tokida 604 et al., 2007a, b), which was consistent with the current study. Windham-Myers et al. (2018) 605measured ebullition with a static chamber during five days in summer at US-Tw1, and ebullition contributions to the total emission (10-30%) were comparable to those by the current study (26%). 606 In contrast, plant-mediated transport estimated with chambers for FI-Sii (31%) and FI-Si2 (21%) 607 was smaller than our model estimates (91% for FI-Sii and 67% for FI-Si2). However, Susiluoto et 608 609 al. (2018) reported contributions similar to the current study based on process-based models also 610 constrained using EC data (75-95%) for FI-Sii. Kwon et al., (2017) measured lower contributions of plant-mediated transport (25%) and ebullition (2%) in RU-Ch2 than the model estimates. 611 McNicol et al. (2017) measured ebullition by bubble traps (< 1.3%) and diffusion by dissolved 612 CH_4 (< 4.1%) from open water bodies within the flux footprint US-Myb, values which are smaller 613 than the current estimates (18% and 24%, respectively). One reason for the inconsistency might 614be the spatial heterogeneity at US-Myb. Their study did not consider areas of emergent vegetation 615 where contributions by ebullition can be higher (Villa et al., 2021). Hwang et al. (2020) estimated 616 smaller ebullition (10-17%) than the current study (61%) based on the wavelet analysis of EC data 617 618 at KR-Crk. For KR-Crk data in the FLUXNET-CH₄ database, WTD under drainage was provided as 0 cm; thus, the model predicted more saturated conditions at the surface than the actual 619620 conditions, resulting in higher contributions by ebullition.

Based on the site-scale validation, iPEACE estimates were consistent with production, 621622 ebullition, or diffusive flux observations at two sites, but inconsistent with observations from four sites. A comprehensive validation of estimated transport fluxes is challenging at the site scale 623 owing to limited sites with both EC data and process studies available at the same location (Table 624 1). Furthermore, no study has in-situ measured the three transport fluxes simultaneously, resulting 625 626 in uncertainties in how transport fluxes by process studies are consistent with CH₄ emissions measured with EC towers. Plant-mediated transport could be the priority for in-situ measured 627628 transport fluxes to validate CH₄ emissions, since it was estimated to be a major pathway in most sites (Table 2) and in other modeling studies (Table 1). Differences in spatial representativeness 629 630 between EC towers and process studies could also contribute to inconsistencies.

631 Our estimated wetland CH_4 emissions were within the range of those measured or predicted 632 with process-based models regardless of difficulties in direct comparisons at the site scale. 633 Although the contributions of each transport flux were highly variable among previous studies 634 (Table 1), plant-mediated transport and ebullition tended to be major transport pathways, 635consistent with our current estimates (Fig. 4). Previous models also estimated plant-mediated 636 transport as the major pathway (Table 1), although the VISIT model predicted ebullition as the major pathway for Arctic wetlands (Ito, 2019). In contrast, iPEACE tended to estimate higher 637contributions from ebullition and lower contributions from diffusion. This difference could be 638caused by the assumption that ebullition occurs when WTD is greater than 10 cm below the ground 639 (Stanley et al., 2019). The contribution of plant-mediated transport was similar to previous 640modeling studies because of similar model structure, but tended to be higher than measurements 641(Table 1). Rhizospheric oxidation (Bansal et al., 2020; Korrensalo et al., 2022) is a potential reason 642for low CH₄ emissions through vegetation, which was not considered in the current version of 643 iPEACE. 644

645

646 *4.4. Toward refined parameterizations*

Based on the PCA (Fig. 7), modeling wetland CH₄ emissions could be improved with refined 647 parameterization and representation of CH₄ production, plant-mediated transport, and diffusion 648 649 through water. The importance of parameterizations for production and plant-mediated transport was also estimated in a study constraining a global CH₄ model with observed CH₄ emissions at 16 650wetland sites (Müller et al., 2015). The high explanatory power in the first PC by the production 651 parameters suggests that CH₄ production was important for inter-site variations in CH₄ emissions. 652Considering the structure of iPEACE, sites with high pproduction could be more limited by substrate 653availability, whereas sites with high Q_{10} could be more limited by kinetics. The second PC 654 655explained CH₄ emissions that are limited by production and/or transport. A similar trade-off between parameters of production and plant-mediated transport was also inferred in an optimized 656 657process-based model (Salmon et al., 2022). These results suggest that a model for explaining variabilities in parameters of production and plant-mediated transport across wetlands is needed 658for refined simulations rather than determining one set of parameters. 659

660

661 4.5. Next steps in modeling wetland CH_4 emissions

The estimated processes were the most likely processes for explaining observed CH_4 emissions under the model structure of iPEACE (section 2.2), suggesting that careful interpretation is required. iPEACE considers important processes to explain CH_4 emissions that have been incorporated in some previous modeling studies (Walter and Heimann, 2000; Wania et al., 2010; Riley et al., 2011). However, definitions and formulations of CH_4 -related processes are often different among models (Melton et al., 2013). For instance, iPEACE does not include processes included in more mechanistic models (e.g., Salmon et al., 2022; Susiluto et a., 2018). We need to better define processes in the model and to validate modeled processes, where the model-data fusion could be useful to bridge model and observation.

671 To improve our understanding of CH₄ emissions from wetlands, future improvements are 672possible with increased availability of EC data, additional observations, and by incorporating more processes into the model. First, in-situ observations of transport fluxes and production parameters 673 with incubations would be useful to constrain the model because Bayesian optimization can 674 effectively incorporate the additional constraints from observations. Second, more long-term data 675 are required for better constraining the model. The period of the current study ranged from one to 676 677 nine years with a median of four years. Ueyama et al. (2022) indicated that long-term data (e.g., >3 years) effectively constrained the partitioned fluxes. Furthermore, we did not focus on tree-678 679 dominated wetlands (e.g., swamps) owing to the importance of unaccounted processes, such as 680 CH_4 transport to the atmosphere by tree stems (Pangala et al., 2012), or from O_2 transport to the rhizosphere via aerial roots (Purvaja et al., 2004). In this study, we predicted O₂ concentration in 681 the soil based on WTD, but the relationship between O₂ concentrations and WTD is complex 682 (Ueyama et al., 2020). Thus, measurements of WTD and O₂ concentrations are strongly 683 684 recommended for evaluating CH₄ emissions in wetlands. The current model considers a 1 m thick soil, but anaerobic peat deeper than 1 m could play a role in CH_4 emissions (Tokida et al., 2007a, 685b; Peltola et al., 2018). Since flux tower measurements did not continuously monitor the O_2 and 686 CH₄ concentrations in the deep peat, constraining processes at the deep peat were difficult in this 687 688study. Finally, refined modeling wetland CH₄ emission will be possible by evaluating how partitioned emissions are consistent across different models constrained with the same data. 689

The Bayesian inference in this study might be improved after considering the outlined limitations. We did not obtain reliable results for 6 of 23 sites. The inability could be caused by lack of important processes, but might be resolved with improved mathematical techniques. The error distribution was assumed with Gaussian distribution, which lacked the ability to fit long-tail, such as data containing outliers. Use of other error distributions might improve posterior inference (Hamura et al., 2022). For 12 sites, at least one chain was not well converged (Fig. S1), possibly due to a problem of slow convergence associated with complex multimodal parameter distributions.

- 697 Introducing Extended Ensemble Monte Carlo (Iba, 2001), such as the replica exchange method,
- 698 could improve convergence. The techniques for complex parameter distributions could improve
- 699 the parameter optimization, where some parameters in the current study hit the range of prior
- distributions (Fig. S1) possibly owing to the equifinality problem (Schulz et al., 2001).

701 Acknowledgements

- We acknowledge support from the John Wesley Powell Center for Analysis and Synthesis of the
- 703 U.S. Geological Survey (USGS)("Wetland FLUXNET Synthesis for Methane" working group,
- 704 https://www.usgs.gov/centers/john-wesley-powell-center-for-analysis-and-

705 synthesis/science/wetland-fluxnet-synthesis) and the USGS Ecosystem Mission Area, Land 706 Change Science programs. We thank Dr. Eric J Ward for providing useful comments on the manuscript. ESE was supported by the grants from the Arctic Observatory Program of the National 707 708 Science Foundation (grant numbers 1936752, 1503912, 1107892) and by the US Geological 709 Survey, Research Work Order 224 to the University of Alaska Fairbanks, the Bonanza Creek Long-Term Ecological Research Program funded by the National Science Foundation (NSF DEB-710 1026415, DEB-1636476) and the NSF Long-Term Research in Environmental Biology Program 711 712(NSF LTREB 2011276). MU was supported by the Arctic Challenge for Sustainability II (ArCS II; JPMXD1420318865) and JSPS KAKENHI (20K21849). IM was supported by ICOS-Finland, 713Academy of Finland project N-PERM and Horizon Europe project GreenFeedBack. MK was 714715supported by the Rural Development Administration (PJ014892022022). TS was supported by the Helmholtz Association of German Research Centres (VH-NG-821). DE-Zrk is a Terrestrial 716 Environmental Observatories Network (TERENO) site. SD was supported by the U.S. Geological 717718Survey, Ecosystems Mission Area, Land Change Science Program. SG was supported by the SNO Tourbières, CNRS-INSU. OS was supported by the Canada Research Chairs, Canada Foundation 719 for Innovation Leaders Opportunity Fund, and Natural Sciences and Engineering Research 720 721 Council Discovery Grant Programs. WJR and KYC were supported by the Reducing Uncertainties in Biogeochemical Interactions through Synthesis and Computation (RUBISCO) 722Scientific Focus Area, Office of Biological and Environmental Research of the U.S. Department 723 of Energy Office of Science. YR was supported by the Ministry of Environment of Korea 724(2022003640002). Lawrence Berkeley National Laboratory (LBNL) is managed by the University 725

of California for the U.S. Department of Energy under contract DE-AC02-05CH11231, California

727 Department of Water Resources, CA Fish and Wildlife, and US DOE Ameriflux. Any use of trade,

firm, or product names is for descriptive purposes only and does not imply endorsement by theU.S. Government.

730

731 Data availability statement

The data that support the findings of this study are available in the FLUXNET-CH₄ Community Product, available at https://fluxnet.org/data/fluxnet-ch4-community-product/. DOIs for individual site data are provided in Table 2. The iPEACE source code is available upon request to the authors.

736

737 References

- Baldocchi, D. (2014). Measuring fluxes of trace gases and energy between ecosystems and the atmosphere
 the state and future of the eddy covariance method. Global Change Biology, 20, 3600-3609.
- Bansal, S., Johnson, O. F., Meier, J., & Zhu, X. (2020). Vegetation affects timing and location of wetland
 methane emissions. Journal of Geophysical Research: Biogeosciences, 125, e2020JG005777.

Bohn T. J., Melton, J. R., Ito, A., Kleinen, T., Spahni, R., Stocker, B. D., Zhang, B., Zhu, X., Schroeder,

743 R., Glagolev, M. V., Maksyutov, S., Brovkin, V., Chen, G., Denisov, S. N., Eliseev, A. V., Gallego-

Sala, A., McDonald, K. C., Rawlins, M. A., Riley, W. J., ... Kaplan, J. O. (2015). WETCHIMP-WSL:

intercomparison of wetland methane emissions models over West Siberia. Biogeosciences, 12, 3321-3349.

- Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., & Zhuang, Q. (2013). Methane emissions from wetlands:
 biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change
 Biology, 19, 1325-1346.
- Brown, M. G., Humphreys, E. R., Moore, T. R., Roulet, N. T., & Lafleur, P. M. (2014). Evidence for a
 nonmonotonic relationship between ecosystem-scale peatland methane emissions and water table depth.
 Journal of Geophysical Research Biogeosciences, 119, 826-835.
- Butterbach-Bahl, K., Papen, H., & Rennenberg, H. (1997). Impact of gas transport through rice cultivars
 on methane emission from rice paddy fields. Plant, Cell and Environment, 20, 1175-1183.
- Campbell, D., & Goodrich, J. (2020). FLUXNET-CH₄ NZ-Kop Kopuatai. New Zealand.
 https://doi.org/10.18140/FLX/1669652
- 757 Castro-Morales, K., Kleinen, T., Kaiser, S., Zaehle, S., Kittler, F., Kwon, M. J., Beer, C., & Göckede, M.
- 758 (2018). Year-round simulated methane emissions from a permafrost ecosystem in Northeast Siberia,

- 759 Biogeosciences, 15, 2691-2722.
- 760 Chang, K.-Y., Riley, W., Knox, S., Jackson, R., McNicol, G., Poulter, B., Aurela, M., Baldocchi, D., Bansal,
- S., Bohrer, G., Campbell, D., Cescatti, A., Chu, H., Delwiche, K., Desai, A., Euskirchen, E., Friborg,
- T., Gockede, M., Helbig, M., ... Zona, D. (2021). Substantial hysteresis in emergent temperature
 sensitivity of global wetland CH₄ emissions. Nature Communications, 12, 2266.
- 764 Chang, K.-Y., Riley, Crill, P. M., Grant, R. E., & Saleska, S. R. (2020). Hysteretic temperature sensitivity
- of wetland CH₄ fluxes explained by substrate availability and microbial activity. Biogeosciences, 17,
 5849-5860.
- Chasar, L. S., Chanton, J. P., Glaser, P. H., Siegel, D. I., & Rivers, J. S. (2000). Radiocarbon and stable
 carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved
 inorganic carbon, and CH₄ in a northern Minnesota peatland. Global Biogeochemical Cycles, 14, 10951108.
- Chen, J. (2021). *Biophysical Models and Applications in Ecosystem Analysis*. Michigan State University
 Press.
- Chen, J., & Chu, H. (2020). FLUXNET-CH₄ US-WPT Winous Point North Marsh. United States.
 https://doi.org/10.18140/FLX/1669702
- Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., & Eklundh, L. (2004). A simple method for
 reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote
 Sensing of Environment, 91, 332-344.
- Chu, H., Chen, J., Gottgens, J. F., Ouyang, Z., John, R., Czajkowski, K., & Becker, R. (2014). Net
 ecosystem methane and carbon dioxide exchanges in a Lake Erie coastal marsh and a nearby
 cropland. *Journal of Geophysical Research: Biogeosciences*, *119*(5), 722-740.
- Conrad, R. (2009). The global methane cycle: recent advance in understanding the microbial processes
 involved. Environmental Microbiology Reports, 1, 285-292.
- Delwiche, K. B., Knox, S. H., Malhotra, A., Fluet-Chouinard, E., McNicol, G., Feron, S., Ouyang, Z.,
 Papale, D., Trotta, C., Canfora, E., Cheah, Y.-W., Christianson, D., Alberto, M. C. R., Alekseychik, P.,
- Aurela, M., Baldocchi, D., Bansal, S., Billesbach, D. P., Bohrer, G., ... Jackson, R. B. (2021).
- FLUXNET-CH₄: A global, multi-ecosystem dataset and analysis of methane seasonality from
- freshwater wetlands. Earth System Science Data, 13, 3607-3689.
- 788 Desai, A. R. (2020). FLUXNET-CH₄ US-Los Lost Creek. United States.
 789 https://doi.org/10.18140/FLX/1669682
- 790 Dorodnikov, M., Knorr, K.-H., Kuzyakov, Y., & Wilmking, M. (2011). Plant-mediated CH₄ transport and
- contribution of photosynthates to methanogenesis at a boreal mire: a ¹⁴C pulse-labeling study.
 Biogeosciences, 8, 2365-2375.

- Eichelmann, E., Knox, S., Rey-Sanchez, A. C., Valach, A., Sturtevant, C., Szutu, D., Verfaillie, J., &
 Baldocchi, D. (2020). FLUXNET-CH₄ US-Tw4 twitchell east end wetland. United States.
 https://doi.org/10.18140/FLX/1669698
- Euskirchen, E., Bret-Harte, M., & Edgar, C. (2020). FLUXNET-CH₄ US-ICs Imnavait Creek Watershed
 Wet Sedge Tundra, United States. https://doi.org/10.18140/FLX/1669678
- Euskirchen, E., & Edgar, C. (2020a). FLUXNET-CH₄ US-BZF Bonanza Creek Rich Fen, United States.
 https://doi.org/10.18140/FLX/1669669
- 800 Euskirchen, E., & Edgar, C. (2020b). FLUXNET-CH₄ USBZB Bonanza Creek Thermokarst Bog, United
 801 States. https://doi.org/10.18140/FLX/1669668
- Glaser, P. H., Morin, C. P., Rosenberry, D. O., Siegel, D. I., Ruud, O., Chasar, L. I., & Reeve, A. S. (2004).
 Surface deformations as indicators of deep ebullition fluxes in a large northern peatland. Global
 Biogeochemical Cycles 19, GB1003, doi:10.1029/2003GB002069.
- 805 Goeckede, M. (2020). FLUXNET-CH₄ RU-Ch2 Chersky reference, Russian Federation.
 806 https://doi.org/10.18140/FLX/1669654
- Göckede, M., Kittler, F., & Schaller, C., (2019). Quantifying the impact of emission outbursts and non stationary flow on eddy covariance CH₄ flux measurements using wavelet techniques. Biogeosciences,
 16, 3113-3131.
- Gogo, S., Guimbaud, C., Laggoun-Défarge, F., Catoire, V., & Robert, C. (2011). In situ quantification of
 CH₄ bubbling events from a peat soil using a new infrared laser spectrometer. Journal of Soils
 Sediments, 11, 545-551.
- 813 Grant, R. F., Mekonnen, Z. A., Riley, W. J., Arora, B., & Torn, M. S., (2019). Modeling climate change
- 814 impacts on an arctic polygonal tundra: 2. changes in CO₂ and CH₄ exchange depend on rates of
 815 permafrost thaw as affected by changes in vegetation and drainage. Journal of Geophysical Research:
 816 Biogeosciences, 124, 1323-1341.
- Hamura, Y., Irie, K., Sugasawa, S., (2022). Log-regularly varying scale mixture of normals for robust
 regression. Computational Statistics & Data Analysis, 173, 107517.
- Hoffman, M. D., & Gelman, A., (2014). The No-U-Turn sampler: adaptively setting path lengths in
 Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15, 1593-1623.
- Hwang, Y., Ryu, Y., Huang, Y., Kim, J., Iwata, H., & Kang, M. (2020). Comprehensive assessments of
 carbon dynamics in an intermittently-irrigated rice paddy. Agricultural and Forest Meteorology, 285286, 107933.
- Iba, Y., (2001). Extended Ensemble Monte Carlo. International Journal of Modern Physics C, 12, 623-656.
- 825 Ito, A. (2019). Methane emission from pan-Arctic natural wetlands estimated using a process-based model,
- 826 1901–2016. Polar Science, 21, 26-36.

- 827 Iwata, H. (2020). FLUXNET-CH₄ JP-Mse Mase rice paddy field. Japan.
 828 https://doi.org/10.18140/FLX/1669647
- Iwata, H., Hirata, R., Takahashi, Y., Miyabara, Y., Itoh, M., & Iizuka, K. (2018). Partitioning eddycovariance methane fluxes from a shallow lake into diffusive and ebullitive fluxes. Boundary-Layer
 Meteorology, 169, 416-428.
- Iwata, H., Ueyama, M., & Harazono, Y. (2020). FLUXNET-CH₄ US-Uaf University of Alaska, Fairbanks.
 United States. https://doi.org/10.18140/FLX/1669701
- Jackson, R. B., Saunois, M., Bousquet, P., Canadell, J. G., Poulter, B., Stavert, A. R., Bergamaschi, P.,
 Niwa, Y., Segers, A., & Tsuruta, A. (2020). Increasing anthropogenic methane emissions arise equally
 from agricultural and fossil fuel sources. Environmental Research Letters, 15, 071002
- Jacotot, A., Gogo, S., & Laggoun-Défarge, F. (2020). FLUXNET-CH₄ FR-LGt La Guette, France.
 https://doi.org/10.18140/FLX/1669641
- Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S., Ahlström, A., Arneth, A., CampsValls, G., Ciais, P., Friedlingstein, P., Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale, D., Poulter, B.,
- Raduly, B., Rödenbeck, C., Tramontana, G., ... Zeng, N. (2017). Compensatory water effects link
 yearly global land CO₂ sink changes to temperature. Nature, 541, 516-520.
- Kajiura, M., & Tokida, T. (2021). Quantifying bubbling emission (ebullition) of methane from a rice paddy
 using high-time-resolution concentration data obtained during a closed-chamber measurement. Journal
 of Agricultural Meteorology, 77, 245-252.
- Karofeld, E., & Tónisson, H. (2014). Spatio-temporal changes in bog pool bottom topography temperature
 effect and its influence on pool development: an example from a raised bog in Estonia. Hydrological
 Processes 28:958-968.
- Knox, S. H., Jackson, R. B., Poulter, B., McNicol, G., Fluet-Chouinard, E., Zhang, Z., Hugelius, G.,
 Bousquet, P., Canadell, J. G., Saunois, M., Papale, D., Chu, H., Keenan, T. F., Baldocchi, D., Torn, M.
 S., Mammarella, I., Trotta, C., Aurela, M., Bohrer, G., ... Zona, D. (2019). FLUXNET-CH₄ synthesis
- activity: objective, observations, and future directions. Bulletin of the American Meteorological
 Society, 100, 2607-2632.
- Knox, S. H., Bansal, S., McNicol, G., Schafer, K., Sturtevant, C., Ueyama, M., Valach, A. C., Baldocchi,
- D., Delwiche, K., Desai, A. R., Euskirchen, E., Liu, J., Lohila, A., Malhotra, A., Melling, L., Riley, W.,
- Runkle, B. R. K., Turner, J., Vargas, R., ... Jackson, R B. (2021). Identifying dominant environmental
 predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales. Global Change
 Biology, 27, 3582-3604.
- Koebsch, F., & Jurasinski, G. (2020). FLUXNET-CH₄ DE-Hte Huetelmoor. Germany.
 https://doi.org/10.18140/FLX/1669634

Global Change Biology

- Koebsch, F., Jurasinski, G., Koch, M., Hofmann, J., & Glatzel, S. (2015). Controls for multi-scale temporal
 variation in ecosystem methane exchange during the growing season of a permanently inundated fen.
 Agricultural and Forest Meteorology, 204, 94-105.
- Korrensalo, A., Mammarella, I., Alekseychik, P., Vesala, T., & Tuittila, E-S. (2022). Plant mediated
 methane efflux from a boreal peatland complex. Plant Soil, 471, 375-392.
- Kutzback, L., Wagner, D., & Pfeiffer, E.-M., (2004). Effect of microrelief and vegetation on methane
 emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochemistry 69:341-362.
- Kwon, M. J., Beulig, F., Ilie, I., Wildner, M., Küsel, K., Merbold, L., Mahecha, M. D., Zimov, N., Zimov,
- S. A., Heimann, M., Schuur, E. A. G., Kostka, J. E., Kolle, O., Hilke, I., & Göckede, M. (2017). Plants,
 microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic
 floodplain, Global Change Biology, 23, 2396-2412.
- Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr, A., Stoy, P., & Wohlfahrt, G.
- (2010). Separation of net ecosystem exchange into assimilation and respiration using a light response
 curve approach: critical issues and global evaluation, Global Change Biology, 16, 187–208.
- Lohila, A., Aurela, M., Tuovinen, J.-P., Laurila, T., Hatakka, J., Rainne, J., & Mäkelä, T. (2020).
 FLUXNET-CH₄ FI-Lom Lompolojankka. Finland. https://doi.org/10.18140/FLX/1669638
- Ma, S., Jiang, J., Huang, Y., Shi, Z., Wilson, R. M., Ricciuto, D., Sebestyen, S. D., Hanson, P. J., & Luo,
 Y. (2017). Data-constrained projections of methane fluxes in a Northern Minnesota peatland in
 response to elevated CO₂ and warming. Journal of Geophysical Research: Biogeosciences, 122, 28412861.
- Mahecha, M. D., Reichstein, M., Carvlhais, N., Lasslop, G., Lange, H., Seneviratne, S. I., Vargas, R.,
 Ammann, C., Arain, M. A., Cescatti, A., Janssens, I. A., Migliavacca, M., Montagnani, L., &
 Richardson, A. D. (2010). Global convergence in the temperature sensitivity of respiration at ecosystem
 level. Science, 329, 838-840.
- Männistö, E., Korrensalo, A., Alekseychik, P., Mammarella, I., Peltola, O., Vesala, T., & Tuittila, E.-S.,
 (2019). Multi-year methane ebullition measurements from water and bare peat surfaces of a patterned
 boreal bog. Biogeosciences 16:2409-2421.
- 888 Matthes, J. H., Sturtevant, C., Oikawa, P., Chamberlain, S. D., Szutu, D., Ortiz, A. A., Verfaillie, J., &
- Baldocchi, D. (2020). FLUXNET-CH₄ US-Myb Mayberry Wetland. United States.
 https://doi.org/10.18140/FLX/1669685
- McNicol, G., Sturtevant, C. S., Knox, S. H., Dronova, I., Baldocchi, D. D., & Silver, W. L. (2017). Effects
 of seasonality, transport pathway, and spatial structure on greenhouse gas fluxes in a restored wetland.
 Global Change Biology 23:2768-2782.
- Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C. A.,

- 895 Beerling, D. J., Chen, G., Eliseev, A. V., Denisov, S. N., Hopcroft, P. O., Lettenmaier, D. P., Riley, W.
- J., Singarayer, J. S., Subin, Z. M., Tian, H., Zürcher, S., ... Kaplan, J. O. (2013). Present state of global
- wetland extent and wetland methane modelling: conclusions from a model inter-comparison project
 (WETCHIMP). Biogeosciences, 10, 753-788.
- Moore, T. R., & Roulet, N. T. (1993). Methane flux: water table relations in northern wetlands. Geophysical
 Research Letter, 20, 587-590.
- Morin, T. H. (2018). Advances in the eddy covariance approach to CH₄ monitoring over two and a half
 decades. Journal of Geophysical Research: Biogeosciences, 124, 453-460.
- Morrissey, L. A., & Livingston, G. P. (1992). Methane emissions from Alaska Arctic tundra: An assessment
 of local spatial variability. Journal of Geophysical Research: Atmospheres 97:16661-16670.
- Müller, J., Paudel, R., Shoemaker, C. A., Woodbury, J., Wang, Y., & Mahowald, N. (2015). CH₄ parameters
 estimation in CLM4.5bgc using surrogate global optimization. Geoscientific Model Development, 8,
- 907 3285-3310.
- 908 Nilsson, M. B., & Peichl, M. (2020). FLUXNET-CH₄ SE-Deg Degero. Sweden.
 909 https://doi.org/10.18140/FLX/1669659
- Pangala, S. R., Moore, S., Hornibrook, E. R. C., & Gauci, V. (2013). Trees are major conduits for methane
 egress from tropical forested wetlands. New Phytolotist, 197, 524-531.
- Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C., Chen, J.,
 Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C.,
- 914 Vuichard, N., Zhang, L., Amiro, B., Ammann, C., ... Law, B. (2020). The FLUXNET2015 dataset and
- 915 the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 7, 225.
- 916 https://www.nature.com/articles/s41597-020-0534-3
- Peltola, O., Raivonen, M., Li, X., & Vesala, T. (2018). Technical note: comparison of methane ebullition
 modelling approaches used in terrestrial wetland models. Biogeosciences, 15, 937-951.
- Purvaja, R., Ramesh, R., & Frenzel, P. (2004). Plant-mediated methane emission from an Indian mangrove.
 Global Change Biology, 10, 1825–1834.
- 921 Raivonen, M., Smolander, S., Backman, L., Susiluoto, J., Aalto, T., Markkanen, T., Mäkelä, J., Rinne, J.,
- Peltola,O., Aurela, M., Lohila, A., Tomasic, M., Li, X., Larmola, T., Juutinen, S., Tuittila, E-.S.,
 Heimann, M., Sevanto, S., Kleinen, T. Brovkin, V., Vesala, T. (2017). HIMMELI v1.0: HelsinkI Model
- 924 of MEthane buiLd-up and emIssion for peatlands. Geoscientific Model Development, 10, 4665-4691.
- 925 Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann,
- 926 N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A.,
- 927 Laurila, T., Lohila, A., Loustau, D., Matteucci, G., ... Valentini, R. (2005). On the separation of net
- 928 ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm.

- 929 Global Change Biology, 11, 1-16.
- 930 Richardson, W. P., Reba, M. L., & Runkle, B. R. (2022). Modification of wavelet-based method for 931detecting ebullitive methane fluxes in eddy-covariance observations; application at two rice fields. 932Boundary-Layer Meteorology 184:71-111.
- 933 Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S., Meng, L., Mahowald, N. M., & 934 Hess, P. (2011). Barriers to predicting change in global terrestrial methane fluxes: analyses using 935CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences, 8, 1925-1953.
- 936 Rinne, J., Tuittila, E.-S., Peltola, O., Li, X., Raivonen, M., Aleksevchik, P., Haapanala, S., Pihlatie, M., 937Aurela, M., Mammarella, I., & Vesala, T. (2018). Temporal variation of ecosystem scale methane 938 emission from a boreal fen in relation to temperature, water table position, and carbon dioxide fluxes. 939Global Biogeochemical Cycles, 32, 1087-1106.
- Ryu, Y., Kang, M., & Kim, J. (2020). FLUXNET-CH₄ KR-CRK Cheorwon Rice paddy. Republic of Korea. 940 https://doi.org/10.18140/FLX/1669649 941
- 942Sachs, Т., & Wille, C. (2020). FLUXNET-CH₄ DE-Zrk Zarnekow. Germany. 943 https://doi.org/10.18140/FLX/1669636
- 944 Salmon, E., Jégou, F., Guenet, B., Jourdain, L., Qiu, C., Bastrikov, V., Guimbaud, C., Zhu, D., Ciais, P., 945 Peylin, P., Gogo, S., Laggoun-Défarge. F., Aurela, M., Bret-Harte, M. S., Chen, J., Chojnicki, B. H., 946 Chu, H., Edgar, C. W., ... Ziemblińska, B. (2022). Assessing methane emissions for northern peatlands 947
- in ORCHIDEE-PEAT revision 7020. Geoscientific Model Development, 15, 2813-2838.
- 948Santoni, G. W., Lee, B. H., Goodrich, J. P., Vammer, R. K., Crill, P. M., McManus, J. B., Nelson, D. D., 949Zahniser, M. S., & Wofsy, S. C. (2012). Mass fluxes and isofluxes of methane (CH_4) at a New 950 Hampshire fen measured by a continuous wave quantum cascade laser spectrometer. Journal of Geophysical Research 117, D10301, doi:10.1029/2011JD016960 951
- 952Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., 953 Dlugokencky, E. J., Houweling, S., Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi,
- 954P., Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol, M., ... Zhuang, Q. (2020). The
- 955global methane budget 2000–2017. Earth System Science Data, 12(3), 1561–1623. 956https://doi.org/10.5194/essd-12-1561-2020
- Schaller, C., Kittler, F., Foken, T., & Göckede, M., (2019). Characterisation of short-term extreme methane 957958fluxes related to non-turbulent mixing above an Arctic permafrost ecosystem. Atmospheric. Chemistry 959and Physics, 19, 4041-4059.
- Schmid, H. P., & Klatt, J. (2020). FLUXNET-CH₄ DE-SfN Schechenfilz Nord, Germany. 960 961 https://doi.org/10.18140/FLX/1669635
- 962 Schulz, K., Jarvis, A., & Beven, K. (2001). The predictive uncertainty of land surface fluxes in response to

- 963 increasing ambient carbon dioxide. Journal of Climate, 14, 2551-2562.
- Shannon, R. D., White, J. R., Lawson, J. E., & Gilmour, B. S., (1996). Methane efflux from emergent
 vegetation in peatlands. Journal of Ecology 84:239-246.
- Shortt, R., Hemes, K., Szutu, D., Verfaillie, J., & Baldocchi, D. (2020). FLUXNET-CH₄ US-Sne Sherman
 Island Restored Wetland, United States. https://doi.org/10.18140/FLX/1669693
- 968 Sonnentag, O., & Helbig, M. (2020). FLUXNET-CH₄ CA-SCB Scotty Creek bog. Canada.
 969 https://doi.org/10.18140/FLX/1669613
- Stamp, I., Baird, A. J., & Heppell, C. M. (2013). The importance of ebullition as a mechanism of methane
 (CH₄) loss to the atmosphere in a northern peatland. Geophysical Research Letters 40:2087-2090.
- Stanley, K. M., Heppell, C. M., Belyea, L. R., Baird, A. J., & Field, R. H. (2019). The importance of CH₄
 emission in floodplain fens. Journal of Geophysical Research: Biogeosciences, 124, 1750-1763.
- 974 Sturtevant, C. S., Ruddell, B. L., Knox, S. H., Verfaillie, J., Matthes, J. H., Oikawa, P. Y., & Baldocchi, D.
- 975 (2016). Identifying scale-emergent, nonlinear, asynchronous processes of wetland methane exchange.
 976 Journal of Geophysical Research: Biogeosciences, 121, 188-204.
- Susiluoto, J., Raivonen, M., Backman, L., Laine, M., Peltola, O., Vesala, T., & Aalto, T. (2018). Calibrating
 the sqHIMMELI v1.0 wetland methane emission model with hierarchical modeling and adaptive
 MCMC. Geoscientific Model Development, 11, 1199-1228.
- Tokida, T., Miyazaki, T., & Mizoguchi, M. (2005). Ebullition of methane from peat with falling
 atmospheric pressure. Geophysical Research Letters, 32, L13823, doi:10.1029/2005GL022949.
- 982 Tokida, T., Miyazaki, T., Mizoguchi, M., Nagata, F., Takakai, F., Kagemoto, A., & Hatano, R. (2007a).
- Falling atmospheric pressure as a trigger for methane ebullition from peatland. Global Biogeochemical
 Cycles, 23, GB2003. doi:10.1029/2006GB002790.
- Tokida, T., Mizoguchi, M., Miyazaki, T., Kagemoto, A., Nagata, O., & Hatano, R. (2007b). Episodic
 release of methane bubbles from peatland during spring thaw. Chemosphere, 70, 165-171.
- Turetsky, M. R., Kotowska, A., Bubier, J., Dise, N. B., Crill, P., Hornibrook, E. R. C., Minkkinen, K.,
 Moore, T. R., Myers-Smith, I. H., Nykänen, H., Olefeldt, D., Rinne, J., Saarnio, S., Shurpali, N., Tuittila,
- 989 E.-S., Waddington, J. M., White, J. R., Wickland, K. P., & Wilmking, M. (2014). A synthesis of
- methane emissions from 71 northern, temperate, and subtropical wetlands. Global Change Biology, 20,2183-2197.
- 992 Ueyama, M., Hirano, T., & Kominami, Y. (2020). FLUXNET-CH₄ JP-BBY Bibai bog. Japan.
 993 https://doi.org/10.18140/FLX/1669646
- Ueyama, M., Yazaki, T., Hirano, T., & Endo, R. (2022). Partitioning methane flux by the eddy covariance
 method in a cool temperate bog based on a Bayesian framework. Agricultural and Forest Meteorology,
 316, 08852.

- Ueyama, M., Yazaki, T., Hirano, T., Futakuchi, Y., & Okamura, M. (2020). Environmental controls on
 methane fluxes in a cool temperate bog. Agricultural and Forest Meteorology, 281, 107852.
- Valach, A., Szutu, D., Eichelmann, E., Knox, S., Verfaillie, J., & Baldocchi, D. (2020). FLUXNET-CH₄
 US-Tw1 twitchell wetland west pond. United States. https://doi.org/10.18140/FLX/1669696
- 1001 Vesala, T., Tuittila, E.-S., Mammarella, I., & Alekseychik, P. (2020a). FLUXNET-CH₄ FI-Si2 Siikaneva2 Bog. Finland. https://doi.org/10.18140/FLX/1669639
- 1003 Vesala, T., Tuittila, E.-S., Mammarella, I., & Rinne, J. (2020b). FLUXNET-CH₄ FI-Sii Siikaneva. Finland.
 1004 https://doi.org/10.18140/FLX/1669640
- Villa, J. A., Ju, Y., Stephen, T., Rey-Sanchez, C., Wrighton, K. C., & Bohrer, G. (2020). Plant-mediated
 methane transport in emergent and floating-leaved species of a temperate freshwater mineral-soil
 wetland. Limnology and Oceanography, 65, 1635-1650. https://doi.org/10.1002/lno.11467
- Villa, J. A., Ju, Y., Yazbeck, T., Waldo, S., Wrighton, K. C., & Bohrer, G. (2021). Ebullition dominates
 methane fluxes from the water surface across different ecohydrological patches in a temperate
 freshwater marsh at the end of the growing season. Science of the Total Environment 767:
- 1011 Vuichard, N., & Papale, D. (2015). Filling the gaps in meteorological continuous data measured at
 1012 FLUXNET sites with ERA-Interim reanalysis. Earth System Science Data, 7, 157-171.
- Walter, P. B., & Heimann, M. (2000). A process-based, climate-sensitive model to derive methane
 emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and
 climate. Global Biogeochemical Cycles, 14, 745-765.
- Wania, R., Ross, I., & Prentice, I. C. (2010). Implementation and evaluation of a new methane model within
 a dynamic global model: LPJ-WHyMe v1.3.1. Geoscientific Model Development, 3, 565-584.
- Whiting, G. J., & Chanton, J. P. (1993). Primary production control of methane emission from wetlands.
 Nature, 364, 794-795.
- Windham-Myers, L., Bergamaschi, B., Anderson, F., Knox, S., Miller, R., & Fujii, R. (2018). Potential for
 negative emissions of greenhouse gases (CO₂, CH₄ and N₂O) through coastal peatland re-establishment:
 Novel insights from high frequency flux data at meter and kilometer scales. Environmental Research
 Letters, 13, 045005.
- 1024 Yuan, K., Zhu, Q., Li, F., Riley, W. J., Torn, M. S., Chu, H., McNicol, G., Chen, M., Knox, S. H., Delwiche,
- 1025 K., Wu, H., Baldocchi, D., Ma, H., Desai, A., Chen, J., Sachs, T., Uevama, M., Sonnentag, O., Helbig,
- 1026 M., Tuittila, E., Jurasinski, G., Koebsch, F., Campbell, D., Schmid, H. P., Lohila, A., Goeckede, M.,
- 1027 Nilsson, M. B., Friborg, T., Jansen, J., Zona, D., Euskirchen, E., Krauss, K. W., Bohrer, G., Jin, Z., Liu,
- 1028 L., Iwata, H., Goodrich, J. P., & Jackson, R. (2022). Causality guided machine learning model on 1029 wetland CH_4 emissions across global wetlands. Agricultural and Forest Meteorology, 324, 109115.
- 1030 Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., Thanh-Duc, N., &

- 1031 del Giorgio, P. A. (2014). Methane fluxes show consistent temperature dependence across microbial to
- 1032 ecosystem scales. Nature, 507, 488-491.

1033

1034	Figures and table captions
1035	Fig. 1. Schematic representation of the model structure for methane (CH ₄) flux. The model consists
1036	of two soil layers: a surface layer susceptible to oxic conditions and a deep layer prone to anoxic
1037	conditions. Ecosystem-atmosphere CH_4 fluxes are the net result of CH_4 production (p _{production}
1038	and Q_{10}), oxidation ($p_{oxidation}$), and transport processes. Transport is the sum of diffusion ($p_{diffusion}$ -
1039	gas and pdiffusion-water), plant-mediated transport (pplant), and ebullition (pebullition and ppressure).
1040	Substrate for CH ₄ production associated with gross primary productivity (GPP) is divided into
1041	surface and deep layers (z_{surf}), considering root distribution (f_{root}). The model is driven by
1042	biophysical variables: soil temperature (Ts) in the two soil layers, water table depth (WTD), leaf
1043	area index (LAI), GPP, and barometric pressure (PA). Calibrated parameters are shown with
1044	parentheses, and dashed lines represent a major flow of causality.
1045	
1046	Fig. 2. Taylor diagram of the model performances in daily methane (CH ₄) fluxes for each site. The
1047	benchmark corresponding to observations is shown as Obs with red dots. RMSE = root mean
1048	square error.
1049	
1050	Fig. 3. Mean seasonal variations of observed and modeled methane (CH ₄) fluxes and the transport
1051	components of plant-mediated transport, ebullition, and diffusion. The seasonality is calculated
1052	as a mean across years, and then a seven-day moving mean is applied for smoothing. Note
1053	differences in y-axis ranges among panels. Frames colored by blue are the sites having
1054	acceptable model performance (normalized root mean square error was >0.9, correlation
1055	coefficient was <0.6, normalized standard deviation was <0.7, or normalized standard deviation
1056	was >1.3), and those colored by brown are the sites having low performance.
1057	
1058	Fig. 4. Ternary plot for modeled annual methane (CH ₄) transport pathways of plant-mediated
1059	transport, ebullition, and diffusion.
1060	
1061	Fig. 5. Lag time between modeled methane (CH ₄) production and CH ₄ flux based on a cross-
1062	correlation analysis, plotted against the correlation coefficient between CH_4 fluxes and lagged
1063	CH_4 production.
	• 1

1064

1065Fig. 6. Relationships between modeled methane (CH_4) production and CH_4 flux (a), between minimum water table position and ratio of oxidation to production (b), between mean annual 1066 1067 soil temperature and modeled CH₄ production (c), between gross primary productivity (GPP) and modeled CH_4 production (d), between soil temperature and modeled CH_4 flux (e), and 1068between GPP and CH₄ flux (f). Annual mean or minimum for the study period are shown. Blue 1069lines in (a, c, d, e, f) represent linear regression (all p < 0.001) based on sites where modeled 1070 oxidation contributed less than 70% of CH₄ production, where shading represents the prediction 1071 interval (p = 0.1). Dashed line in (a) represents the 1:1 line between production and flux. The 1072high CH₄ production for NZ-Kop (525 mg CH₄ m⁻² d⁻¹) is too high to fit the range in the figure 1073(a, c, d). Points represent mean values over the observation period, and their colors represent the 1074 ratio of CH₄ oxidation to production. 1075

1076

Fig. 7. Biplots showing the first and second components based on the principal components (PC) of the estimated parameters across the sites: methane (CH₄) production per gross primary productivity ($p_{production}$), Q_{10} for CH₄ production, maximum CH₄ oxidation rate ($p_{oxidation}$), nondimensional conductivity for gaseous transfer ($p_{ebullition}$), diffusion coefficient for plantmediated transport (p_{plant}), diffusion coefficient multiplier for water ($p_{diffusion-water}$), and sensitivity of ebullition to barometric pressure ($p_{pressure}$).

1083

1084Fig. 8. Modeled sensitivity of annual mean methane (CH₄) flux to perturbed input of 10% high gross primary productivity (GPP) (a), biased input of 1°C high soil temperatures (Ts) (b), 10 cm 10851086 high water table position (WTP) (c), and 10 cm low WTP (d). The changes in fluxes were shown on climate space of mean annual soil temperature and mean annual WTP over the observation 1087 1088 period for each site. Boxplots represent the relative changes in flux for aggregated sites having annual high and low mean WTP (higher and lower above the ground, respectively), where dots 10891090 represent outliers. The relative changes by boxplots did not include US-Uaf, because the flux was too low and the ratio was anomalously high due to low denominator. The sensitivity 1091 1092 analysis was done for sites having at least three years of data.

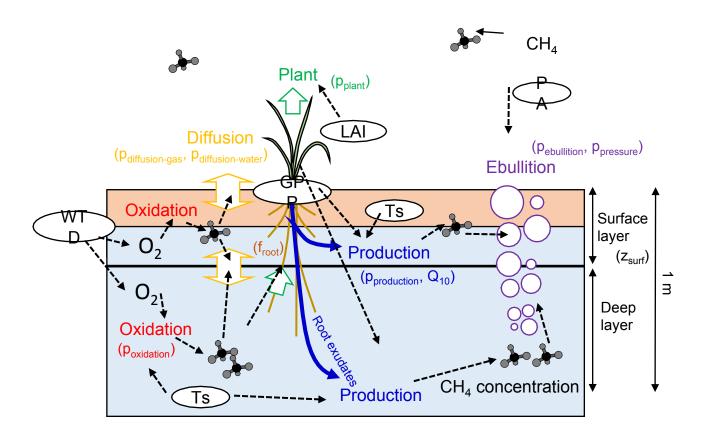
1093

Fig. 9. Change in methane (CH₄) flux estimated with a perturbed input of 1° C increase in soil temperatures for the empirical Q₁₀ model and iPEACE model. The colors in plots represent the

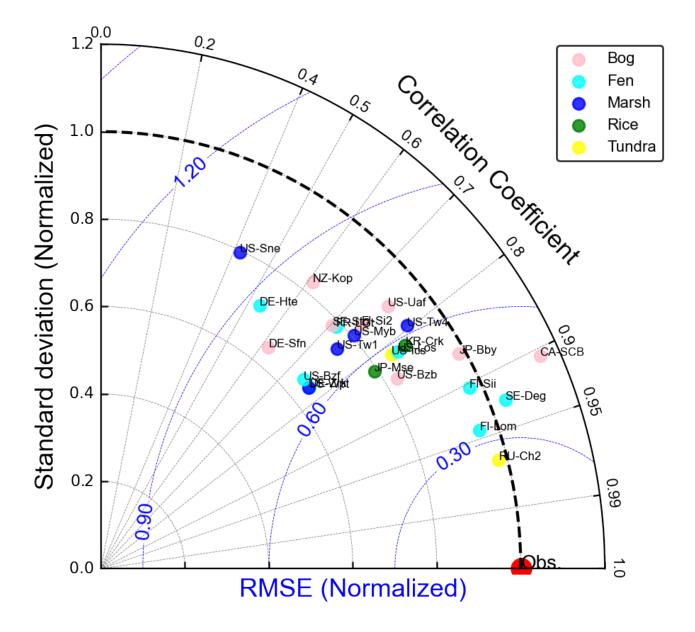
1096	empirical Q ₁₀ value between daily CH ₄ flux and soil temperature for the surface layer. Boxplots
1097	represent the relative changes in flux for aggregated sites having annual high and low mean
1098	water table positions (higher and lower above the ground, respectively). The relative changes
1099	by boxplots did not include US-Uaf, because the flux was too low and the ratio was anomalously
1100	high due to low denominator.
1101	
1102	Table 1. Literature survey for partitioned methane (CH ₄) emissions from wetlands (i.e., ebullition
1103	diffusion, and plant-mediated transport) based on field observations and modeling.
1104	
1105	Table 2. Description of study sites, showing wetland type, location, dominant vegetation type
1106	(DOM_VEG), mean annual air temperature (TAVE), GPP, annual maximum monthly leaf area
1107	index (LAI) (MCD15A3H), mean annual soil temperature (TS), water table depth during the
1108	period when soil was thaw (WTD gs), and modeled partitioned methane (CH ₄) emissions during
1109	the growing season when LAI was higher than 20% of the annual maximum.
1110	
1111	Table 3. Ranges of parameters for mathematical optimization and prior distributions for Bayesian
1112	optimization for the iPEACE model. The range of uniform distributions were determined by
1113	adding plus/minus to the values determined by the differential evolution method for each site
1114	(Table S1).

1115

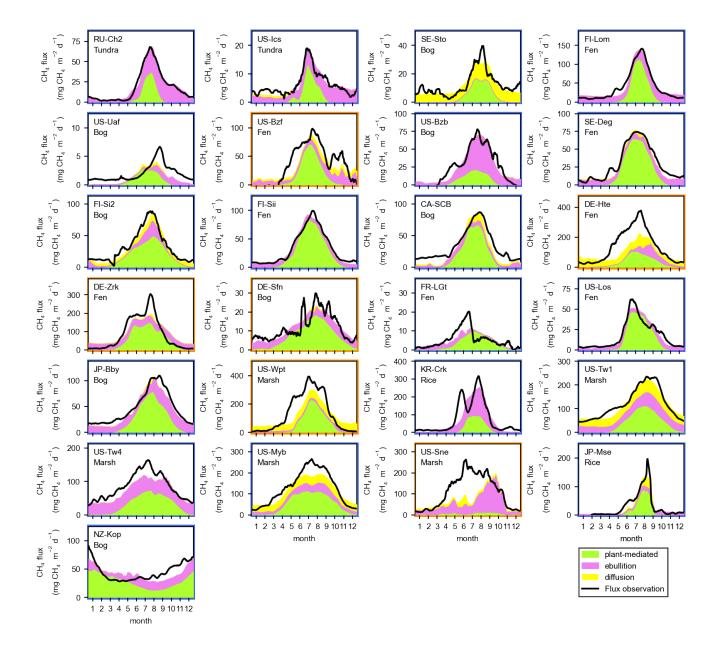
Figure 1



Schematic representation of the model structure for methane (CH₄) flux. The model consists of two soil layers: a surface layer susceptible to oxic conditions and a deep layer prone to anoxic conditions. Ecosystem-atmosphere CH₄ fluxes are the net result of CH₄ production ($p_{production}$ and Q_{10}), oxidation ($p_{oxidation}$), and transport processes. Transport is the sum of diffusion ($p_{diffusion-gas}$ and $p_{diffusion-water}$), plant-mediated transport (p_{plant}), and ebullition ($p_{ebullition}$ and $p_{pressure}$). Substrate for CH₄ production associated with gross primary productivity (GPP) is divided into surface and deep layers (z_{surf}), considering root distribution (f_{root}). The model is driven by biophysical variables: soil temperature (Ts) in the two soil layers, water table depth (WTD), leaf area index (LAI), GPP, and barometric pressure (PA). Calibrated parameters are shown with parentheses, and dashed lines represent a major flow of causality.



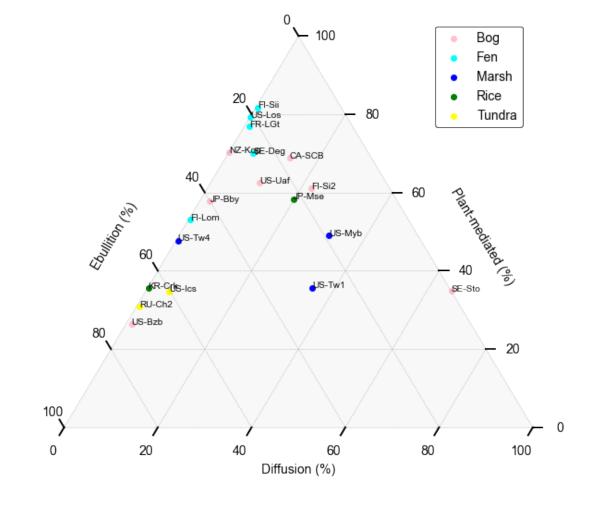
Taylor diagram of the model performances in daily methane (CH_4) fluxes for each site. The benchmark corresponding to observations is shown as Obs with red dots. RMSE = root mean square error.



Mean seasonal variations of observed and modeled methane (CH₄) fluxes and the transport components of plant-mediated transport, ebullition, and diffusion. The seasonality is calculated as a mean across years, and then a seven-day moving mean is applied for smoothing. Note differences in y-axis ranges among panels. Frames colored by blue are the sites having acceptable model performance (normalized root mean square error was >0.9, correlation coefficient was <0.6, normalized standard deviation was <0.7, or normalized standard deviation was >1.3), and those colored by brown are the sites having low performance.

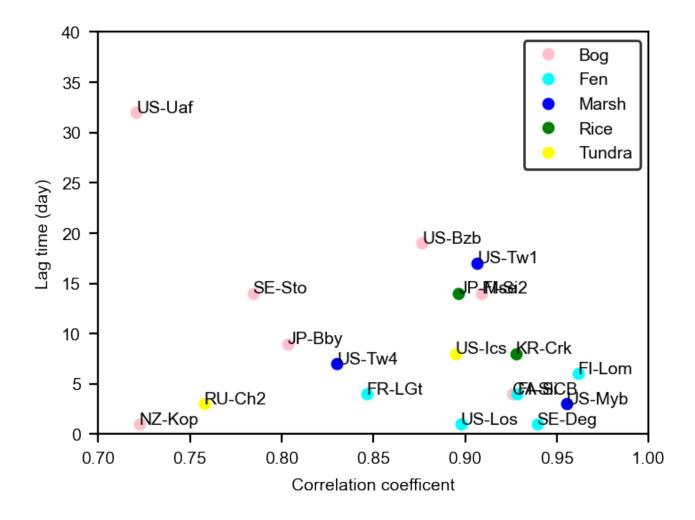
Global Change Biology

Page 41 of 49 Figure 4

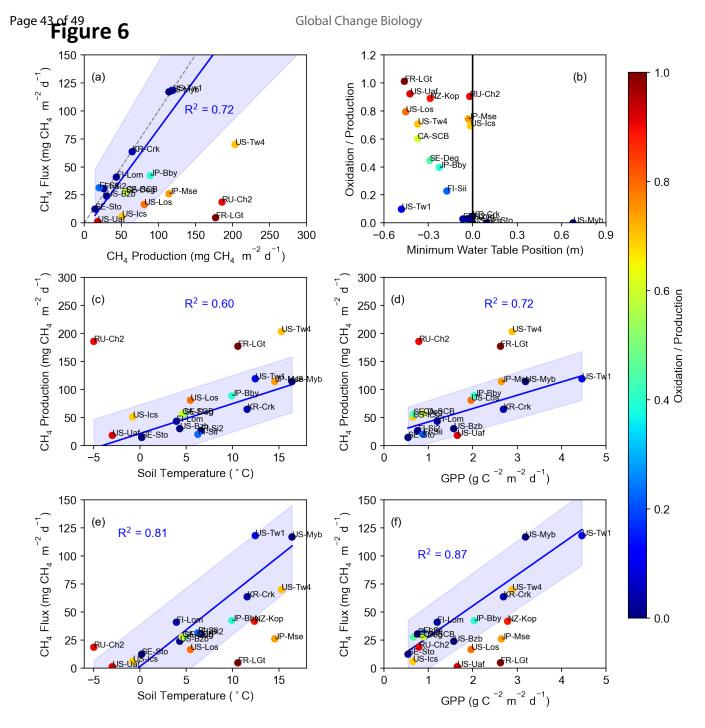


Ternary plot for modeled annual methane (CH₄) transport pathways of plant-mediated transport, ebullition, and diffusion.

Figure 5

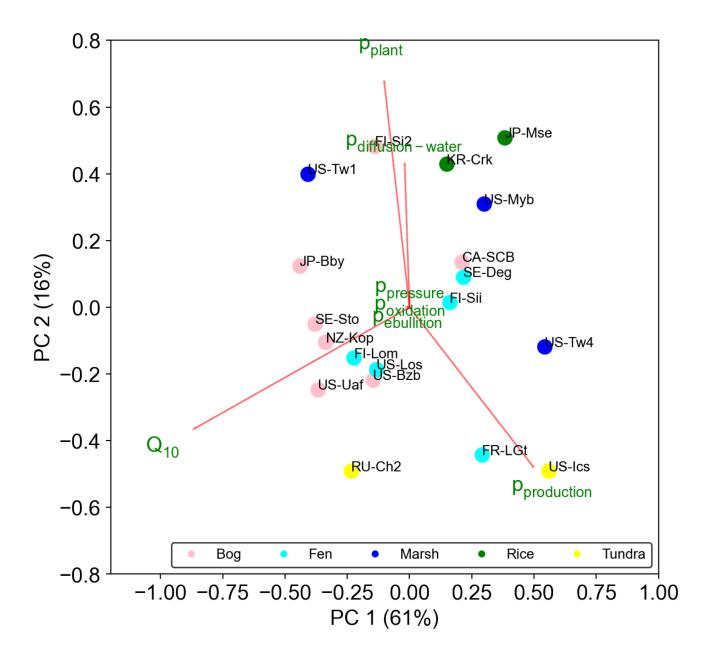


Lag time between modeled methane (CH₄) production and CH₄ flux based on a crosscorrelation analysis, plotted against the correlation coefficient between CH₄ fluxes and lagged CH₄ production.



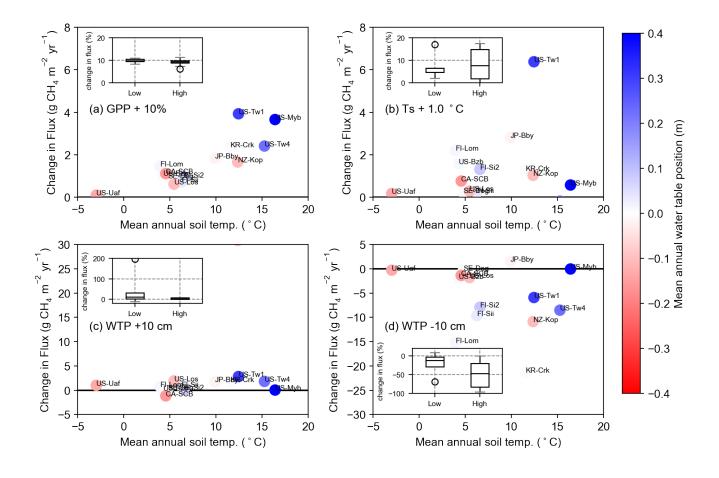
Relationships between modeled methane (CH₄) production and CH₄ flux (a), between minimum water table position and ratio of oxidation to production (b), between mean annual soil temperature and modeled CH₄ production (c), between gross primary productivity (GPP) and modeled CH₄ production (d), between soil temperature and modeled CH₄ flux (e), and between GPP and CH₄ flux (f). Annual mean or minimum for the study period are shown. Blue lines in (a, c, d, e, f) represent linear regression (all p < 0.001) based on sites where modeled oxidation contributed less than 70% of CH₄ production, where shading represents the prediction interval (p = 0.1). Dashed line in (a) represents the 1:1 line between production and flux. The high CH₄ production for NZ-Kop (525 mg CH₄ m⁻² d⁻¹) is too high to fit the range in the figure (a, c, d). Points represent mean values over the observation period, and their colors represent the ratio of CH₄ oxidation to production.

Figure 7



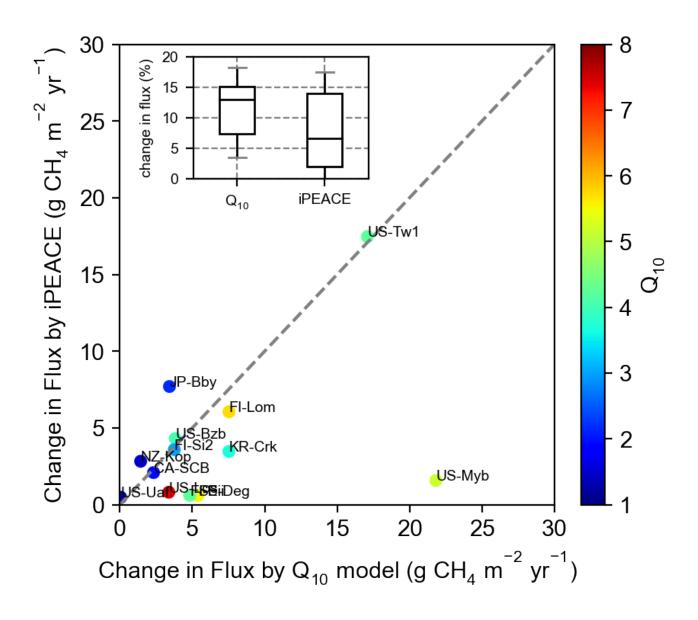
Biplots showing the first and second components based on the principal components (PC) of the estimated parameters across the sites: methane (CH₄) production per gross primary productivity ($p_{production}$), Q_{10} for CH₄ production, maximum CH₄ oxidation rate ($p_{oxidation}$), nondimensional conductivity for gaseous transfer ($p_{ebullition}$), diffusion coefficient for plant-mediated transport (p_{plant}), diffusion coefficient multiplier for water ($p_{diffusion-water}$), and sensitivity of ebullition to barometric pressure ($p_{pressure}$).

Page 45 of 49 Figure 8



Modeled sensitivity of annual mean methane (CH_4) flux to perturbed input of 10% high gross primary productivity (GPP) (a), biased input of 1°C high soil temperatures (Ts) (b), 10 cm high water table position (WTP) (c), and 10 cm low WTP (d). The changes in fluxes were shown on climate space of mean annual soil temperature and mean annual WTP over the observation period for each site. Boxplots represent the relative changes in flux for aggregated sites having annual high and low mean WTP (higher and lower above the ground, respectively), where dots represent outliers. The relative changes by boxplots did not include US-Uaf, because the flux was too low and the ratio was anomalously high due to low denominator. The sensitivity analysis was done for sites having at least three years of data.

Figure 9



Change in methane (CH₄) flux estimated with a perturbed input of 1°C increase in soil temperatures for the empirical Q_{10} model and iPEACE model. The colors in plots represent the empirical Q_{10} value between daily CH₄ flux and soil temperature for the surface layer. Boxplots represent the relative changes in flux for aggregated sites having annual high and low mean water table positions (higher and lower above the ground, respectively). The relative changes by boxplots did not include US-Uaf, because the flux was too low and the ratio was anomalously high due to low denominator.

Table 1. Literature survey for partitioned mathane (CH4) emissions from wetlands (i.e., ebullition diffusion, and plant-mediated transport) based on field observations and modeling.

Obs./Model	Wetland Type	Site	Ebullition	Diffusion Plant	N	ſethod	Period	Reference
Observation	Arctic Tundra				92-98 C	hamber	Summer	Morrissey and Livingston, 1992
Observation	Arctic Tundra			66 (polygo		hamber	August	Kutzbach et al., 2004
Observation	Aretic Tullula				gon rim)	namoer	August	Kutzbach et al., 2004
Observation	Arctic Tundra	RU-Ch2	2	25 (v	wet sites)	hamber	Summer	Kwon et al., 2017
observation		10 012	2	0 (0	dry sites)		Summer	,
Observation	Boreal bog	FI-Si2	2-8		31	ubble trap	Growing season	Männistö et al., 2019
	e				C	hamber		Korrensalo et al., 2022
Observation	Boreal fen	FI-Sii		20 (h		hamber		Korrensalo et al., 2022
01	Denvel free				mmocks)		12.1	Dec. 1.1
Observation	Boreal fen					C pulse labeling of mesocosms	12 days	Dorodnikov et al., 2011
Observation	Temperate bog	JP-Bby	50	51 ((hollows)	'hamber	Summer	Tokida et al., 2007a, b
Observation	Temperate bog	лг-воу				ubble trap	Growing season	Stamp et al., 2013
Observation	Temperate bog		14-10		64-90 C	1	May-December	Shannon et al., 1996
Observation	Temperate fen		38			subble trap	Spring & summer	Stanley et al., 2019
Observation	Temperate fen		~ 10			ddy covariance for isoflux	two days in summer	Santoni et al., 2012
Observation	Temperate ten				E	duy covariance for isoflux	two days in summer	Santoin et al., 2012
01	Temperate fen (Eriophorum vaginatum)		54.7 in May		0	1		Casa et al. 2011
Observation	Tommente for (Subserver and Partula and)	FR-LGt	40.7 in March		C	hamber	two months	Gogo et al., 2011
	Temperate fen (Sphagnum spp. & Betula spp.)		negligible		C	combined eddy covariance and process study		
Observation	Temperate marsh (open water)	US-Myb	~ 1.3	~ 4.1		Subble trap in open water area within the flux footprint	Annual	McNicol et al., 2017
Observation	remperate marsh (open water)	03-14190	1.5	4.1		as concentration in water for open water area	Annual	Wervieor et al., 2017
Observation	Temperate marsh (open water)		50	50 Not consier		Thamber at water surface not including vegetation		
Observation	Temperate marsh (floating vegetation)		50	50 Not consier		Thamber at water surface not including vegetation	September	Villa et al., 2021
Observation	Temperate marsh (emergent vegetation)		99	1 Not consier		hamber at water surface not including vegetation	~	
Observation	Temperate marsh (emergent vegetation)	US-Tw1	10-30			tatic chambers	Aug. 29- Sep. 2	Windham-Myers et al. (2018)
Observation	Rice paddy		9		Е	ddy covariance + Wavelet analysis	Growing season	Richardson et al., 2022
Observation	Rice paddy	KR-Crk	10-17		Е	ddy covariance + Wavelet analysis	Growing season	Hwang et al., 2020
Observation	Rice paddy			marginal	60-90 C	hamber	Growing season	Butterbach-Bahl et al., 1997
Observation	Rice paddy		4	marginal	96 C	hamber	Growing season	Kajiura and Tokida, 2021
Model	pan-Arctic wetland (regional mean)		51.5	1	47.5 V	'ISIT	Annual	Ito 2019
Model	Boreal bog		0.6	3.4		ECO calibrated with chamber data	Annual	Ma et al., 2017
Model	Boreal fen	FI-Sii	0	37		IIMMELI calibrated with eddy covariance data	Annual	Peltola et al., 2018
Model	Boreal fen	FI-Sii	5	30		qHIMMELI calibrated with eddy covariance data	Annual	Susiluoto et al., 2018
Model	Arctic Tunder near RU-Ch2		4.2	34.8		SBACH-methane	Annual	Castro-Morales et al., 2018
Model	Alpine tundra (Ruoergai)		0.3	28.8		PJ-WHyMe v 1.3.1	Annual	Wania et al., 2010
Model	Subarctic mire (Abisko)		0	15.5		PJ-WHyMe v 1.3.1	Annual	Wania et al., 2010
Model	Boreal fen (BOREAS)		0.9	29.2		PJ-WHyMe v 1.3.1	Annual	Wania et al., 2010
Model	Boreal fen (Salmisuo)		1.4	30.9		PJ-WHyMe v 1.3.1	Annual	Wania et al., 2010
Model	Boreal fen (Degero)		0.8	25.7		PJ-WHyMe v 1.3.1	Annual	Wania et al., 2010
Model	Temperate bog (Michigan)		0	24.4 22.9		PJ-WHyMe v 1.3.1	Annual	Wania et al., 2010 Wania et al., 2010
Model Model	Temperate fen (Minnesota)	US-Los	0.4 0.0	22.9 23.7		PJ-WHyMe v 1.3.1 PRCHIDEE-PEAT revision 7020	Annual	Salmon et al., 2010
Model	Temperate fen Boreal bog	US-Los US-Bzb	0.0	0.9		ORCHIDEE-PEAT revision 7020	Annual Annual	Salmon et al., 2022 Salmon et al., 2022
Model	Temperate fen	FR-LGt	0.0	-0.1		DRCHIDEE-PEAT revision 7020	Annual	Salmon et al., 2022
Model	Boreal fen	FI-Lon	0.0	-1.6		DRCHIDEE-PEAT revision 7020	Annual	Salmon et al., 2022
mouer	Temperate Marsh	US-Wpt	0.0	0.0		DRCHIDEE-PEAT revision 7020	Annual	Salmon et al., 2022

 Table 2
 Description of study sites, showing wetland type, location, dominant vegetation type (DOM_VEG), mean annual air temperature (TAVE), GPP, annual maximum monthly leaf area index (LAI) (MCD15A3H), mean annual soil temperature (TS), water table depth during the period when soil was thaw (WTD gs), and modeled partitioned methane (CH4) emissions during the growing season when LAI was higher than 20% of the annual maximum.

Site	Wetland	Latitude	Lanaituda	DOM		GPP	LAI	TS (°C)	WTD gs	WTD min	Start	End	Ebullition	Plant	Diffusi	on References
Site	type	Latitude	Longitude	_VEG	TAVE (°℃)	(g C m ⁻² yr ⁻¹	$(m^2 m^{-2})$	15(0)	(m)	(m)	year	year	(%)	(%)	(%)	References
RU-Ch2	Tundra	68.617	161.351	aerenchymatous	-10.6	284	2.0	-5.0	-0.01	-0.02	2014	2015	50		49	1 Goeckede (2020)
US-Ics	Tundra	68.606	-149.311	aerenchymatous	-5.9	237	1.7	-0.8	-0.01	-0.02	2015	2016	35		65	0 Euskirchen et al. (2020)
SE-Sto	Bog	68.356	19.0452	aerenchymatous	0.7	197	1.4	0.2	0.09	0.09	2014	2015	0		53	47 Knox et al. (2019)
FI-Lom	Fen	67.99724	24.20918	aerenchymatous	-0.4	434	2.0	3.9	0.02	-0.04	2006	2010	23		77	0 Lohila et al. (2020)
US-Uaf	Bog	64.86627	-147.8555	moss_sphagnum	-2.9	599	1.4	-3.0	-0.14	-0.42	2011	2018	18		70	12 Iwata et al. (2020)
US-Bzf	Fen	64.703733	-148.3133	aerenchymatous	-0.2	581	2.3	4.7	0.00	-0.01	2015	2016		-		Euskirchen and Edgar (2020a)
US-Bzb	Bog	64.695547	-148.3208	eri_shrub	-0.7	570	1.5	4.3	0.02	0.00	2014	2016	68		31	1 Euskirchen and Edgar (2020b)
SE-Deg	Fen	64.182029	19.556539	moss_sphagnum	2.5	241	2.2	4.8	-0.01	-0.29	2014	2018	12		84	5 Nilsson and Peichl (2020)
FI-Si2	Bog			moss_sphagnum	5.1	275	2.2	6.6	0.09	-0.07	2012	2016	16		67	17 Vesala et al. (2020a)
FI-Sii	Fen	61.832562	24.192933	moss_sphagnum	4.7	319	2.4	6.2	0.03	-0.17	2013	2018	9		91	0 Vesala et al. (2020b)
CA-SCB	Bog	61.308	-121.299	moss_sphagnum	-1.5	312	2.9	4.6	-0.16	-0.37	2014	2017	11		78	11 Sonnentag and Helbig (2020)
DE-Hte	Fen	54.210278	12.17611	aerenchymatous	10.0	774	4.9	10.6	-0.27	-0.62	2011	2018		-		Koebsch and Jurasinki (2020)
DE-Zrk	Fen	53.8759	12.88901	aerenchymatous	9.5	598	2.8	10.9	0.23	-0.12	2013	2018		-		Sachs and Wille (2020)
DE-Sfn	Bog	47.806389	11.3275	tree	8.3	772	2.9	7.8	-0.07	-0.24	2012	2014		-		Schmid and Klatt (2020)
FR-LGt	Fen	47.32291	2.284102	aerenchymatous	11.0	952	4.6	10.5	-0.23	-0.46	2017	2018	12		87	1 Jacotot et al. (2020)
US-Los	Fen	46.0827	-89.9792	eri_shrub	4.9	712	6.5	5.4	-0.11	-0.45	2014	2018	9		91	0 Desai (2020)
JP-Bby	Bog	43.323006	141.8107	aerenchymatous	7.0	737	2.7	9.9	-0.02	-0.23	2015	2018	27		70	2 Ueyama et al. (2020)
US-Wpt	Marsh	41.464639	-82.99616	aerenchymatous	11.3	636	2.8	13.4	0.38	0.14	2011	2013		-		Chen and Chu (2020)
KR-Crk	Rice	38.2013	127.2506	aerenchymatous	10.9	975	2.0	11.5	0.01	0.00	2015	2018	61		39	0 Ryu et al. (2020)
US-Tw1	Marsh	38.107	-121.647	aerenchymatous	15.1	1617	1.7	12.4	0.30	-0.48	2011	2018	26		45	29 Valach et al. (2020b)
US-Tw4	Marsh	38.103	-121.641	aerenchymatous	15.5	1048	1.3	15.3	0.23	-0.37	2013	2018	42		57	0 Eichelmann et al. (2020)
US-Myb	Marsh	38.05	-121.765	aerenchymatous	15.5	1157	2.1	16.4	1.23	0.68	2010	2018	18		58	24 Matthes et al. (2020)
US-Sne	Marsh	38.037	-121.755	aerenchymatous	15.0	329	1.8	16.9	0.10	-0.58	2016	2018		-		Shortt et al. (2020)
JP-Mse	Rice	36.054	140.0269	aerenchymatous	13.7	960	2.1	14.5	-0.01	-0.03	2012	2012	12		65	23 Iwata (2020)
NZ-Kop	Bog	-37.388	175.554	aerenchymatous	13.7	1017	5.0	12.4	-0.10	-0.29	2012	2015	30		70	0 Campbell and Goodrich (2020)

Table 3. Ranges of parameters for mathematical optimization and prior distributions for Bayesian optimization for the iPEACE model. The range of uniform distributions were determined by adding plus/minus to the values determined by the differential evolution method for each site (Table S1)

Parameter	Unit	in mathematical in	n mathematical	Prior range in Bayesian Prior distribution inference
Initial CH ₄ value at the surface layer	mol-CH ₄ m ⁻³	0	0.5	±0.1 uniform
Initial CH ₄ value at the deep layer	mol-CH ₄ m ⁻³	0	4	±0.2 uniform
Base production rate per gross primary productivity (pproduction)	mmol-CH4 g C ⁻¹	1	6	±0.5 uniform
Temperature sensitivity of CH ₄ production (Q _{10producton})		0.00001	5	±1 uniform
Maximum CH ₄ oxidation rate (poxidation)	mol-CH ₄ m ⁻² s ⁻¹	0.000000125	0.000125	$\pm \log(1.0)$ uniform
Nondimensional conductivity for gaseous transfer (pebullition)		0	0.01	b uniform
Diffusion coefficient for plant-mediated transport (pplant)	$10^{-3} d^{-1}$	0.001	3	±1 uniform
Diffusion coefficient multiplier for water (pdiffusion-water)		0.001	2	±0.3 uniform
Diffusion coefficient multiplier for gas (pdiffusion-gas)		0.001	2	±0.3 uniform
Sensitivity of ebullition to barometric pressure (ppressure)	hPa ⁻¹	0	1	±0.05 uniform
Thickness of the surface layer (z _{surf})	m	0.05	0.80	0.05-0.80 uniform
Surface root fraction (fsroot)		0.05	1.00	0.05-1.00 uniform
Residuals of the model	mg CH ₄ m ⁻² d ⁻¹			log normal