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Abstract

We consider N identical inertialess rigid spherical particles in a Stokes flow in a domain
Ω ⊆ R3. We study the average sedimentation velocity of the particles when an identical
force acts on each particle. If the particles are homogeneously distributed in directions
orthogonal to this force, then they hinder each other leading to a mean sedimentation
velocity which is smaller than the sedimentation velocity of a single particle in an infinite
fluid. Under suitable convergence assumptions of the particle density and a strong
separation assumption, we identify the order of this hindering as well as effects of small
scale inhomogeneities and boundary effects. For certain configurations we explicitly
compute the leading order corrections.

1 Introduction
The sedimentation velocity of a single inertialess rigid sphere in an infinite fluid follows
immediately from Stokes’ law for the drag force. This law entails that the sphere falls parallel
to the direction of the force acting on the particle (say gravity) with amplitude:

V St := |F |
6πµR, (1.1)

where F is the force acting on the particle, R its radius and µ the fluid viscosity. When several
particles fall in the flow, the possible interactions between the particles through the fluid make
however the situation much more complicated as soon as there are more than 3 particles, see
[GM12, Section 6.1].
When F is gravity, computing the mean sedimentation velocity of a cloud of particles in

a Stokes flow is then a classical problem that has been studied in many previous references
[Bat72; Bur38; Feu84; GM88; Has59; Saf73], to mention a few. We refer to the review [DA85]
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and to the introduction of [DG22] for a historical perspective. In these works it has been
observed (mostly on a formal level) that the mean sedimentation velocity of a cloud of N
particles in the whole space remains parallel to F and that its magnitude V̄ sed

N behaves in
fundamentally different ways dependent on the particle distribution.

(Dil) There is a characterization of diluteness of suspensions for which the settling particles
behave as if they were alone in the fluid [JO04].

(MF) If the particles are less dilute and not homogeneously distributed in directions orthogonal
to gravity, a macroscopic fluid flow is created which enhances sedimentation: for
sufficiently regular particle distributions, where not too much clustering occurs, the
mean sedimentation velocity is of order

V̄ sed
N ∼ max

{
V St,

NF

µL

}
(1.2)

where N is the number of particles and L is the typical length scale of the particle cloud
[Höf18; Mec19]. The additional term NF

µL is precisely the parameter that characterizes
diluteness in the above sense for such regular distributions and can be much larger than
V St.

(HS) If the particles are closer and homogeneously distributed in directions orthogonal to
gravity, the incompressibility of the fluid prevents the onset of a macroscopic fluid flow
that enhances sedimentation. Instead, a small fluid backflow is created that hinders
the particle sedimentation. The order of this hindering is again sensitive to the particle
distribution:

a) If the particles are periodically distributed, then

V̄ sed
N = V St(1− aperφ

1
3 + o(φ

1
3 )) (1.3)

for some aper > 0, where φ is the particle volume fraction inside the fluid [Has59].
b) If the particles are distributed according to hardcore Poisson process with hardcore

distance 2R, then

V̄ sed
N = V St(1− auniφ+ o(φ)) (1.4)

for some auni > 0 [Bat72].

The expansion (1.3) has been rigorously shown in [Has59] on the torus. In this contribution
we show that it persists to hold asymptotically for large N if the particles are placed in a
container Ω ⊆ R3 such that

• The particles respect a separation distance of order N−1/3.

• The container Ω is bounded in directions orthogonal to the direction of the acting force
and the particles are sufficiently close to a macroscopic density n which is constant in
directions orthogonal to the acting force.
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Although we are mainly interested in the (HS) situation, we complement the analysis in the
case (MF) when the orthogonality assumption is not satisfied.
The influence of the container on the sedimentation has been studied on a formal level in

several works, see e.g. [BM85; GM88; Bru+96]. In these works, the particles are distributed
according to a hardcore Poisson process as in [Bat72]. However, in contrast to [Bat72] where
the whole space is considered, a nonoverlapping condition with the boundary ∂Ω restricts the
particle centers to lie in ΩR = {x ∈ Ω : dist(x, ∂Ω) > R}. Since the particles are spherical,
this leads to a lower mean volume concentration of particles in Ω \ ΩR than in ΩR (where
this concentration is constant). This discrepancy leads to a macroscopic fluid flow vf just
like in (MF). However, since the inhomogeneity only occurs in the small region Ω \ ΩR, this
macroscopic fluid flow, called intrinsic convection, is much smaller than in (MF). The authors
in [BM85; GM88; Bru+96] obtain vf = O(φV St). Moreover vf decreases the sedimentation
speed of particles close to the boundary of the container while it increases the sedimentation
speed of particles in the bulk. In the present paper, we rigorously identify a related but
quantitatively different effect. Namely, for particle configurations satisfying both items above,
we analyze perturbations of the particle distributions on the N−1/3-scale that occur in the
bulk rather than at the boundary of the container. This leads to macroscopic fluid velocities
vf = O(N1/3φ1/3V St). The contribution of this macroscopic fluid velocity to the average
sedimentation velocity is much lower though, namely of order φ1/3V St.

All these approaches to the computation of sedimentation velocity (including the present
contribution) are based on a similar construction of the many-particle Stokes solution. Acting
a force on each particles entails a microscopic disturbance in the flow around the particle
that decays very slowly to zero at infinity. Summing the microscopic disturbances of all
the particles cloud on one particle then creates a macroscopic disturbance that modifies its
sedimentation velocity. A key-difficulty is then to prove that, despite the slow decay of the
microscopic distubances, the macroscopic disturbance remains bounded, motivating many of
the previous references on the topic. If the particles are sufficiently far one from the other then
the macroscopic disturbance can be shown to be neglectible and we recover [JO04]. While, if
the particles are closer, it turns out that the macroscopic disturbance can be proved to be
bounded only because of a backflow due to the fluid incompressibility. For instance, in the
case of particles on cubic lattices, Hasimoto mimicks the backflow on the torus by imposing
the constraint that the total fluid flow (after extending the fluid flow inside of the particles)
vanishes. By Fourier analysis, he then explicitly computed the expansion (1.3) [Has59].

In this contribution, we show that the boundaries make the macroscopic disturbance
converge: they induce naturally a normalization of the pressure that makes the backflow
explicit and the microscopic disturbances due to each particle decay faster. This improves the
simplicity of the analysis.

1.1 Setting
Let Ω ⊆ R3 be of class C2 and contained in an infinite cylinder with an orientation ξ, i.e.,

∃C1 > 0, s.t. Ω ⊆ {x ∈ R3 : dist(x, span{ξ}) < C1}. (H0)

We point out that Ω might be bounded as well as unbounded. For N ∈ N and r > 0, let
RN := N−1/3r and XN

i ∈ Ω such that BN
i := BRN (XN

i ) b Ω and B
N
i ∩ B

N
j = ∅ for all

1 6 i 6= j 6 N . We will write R, Xi and Bi instead of RN , XN
i and BN

i in the following. We
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assume throughout the paper that the distribution of particles is regular in the following sense.
Firstly, we have the following separation assumptions:

∃ c > 0 min
i 6=j
|Xi −Xj | > cN−1/3, min

i=1,...,N
dist(Xi, ∂Ω) > cN−1/3. (H1)

The key information here is that the constant c does not depend on N. Secondly, we assume
that the empirical measure

ρN = 1
N

N∑
i=1

δXi (1.5)

is close to a density n ∈ P(Ω) ∩ L∞(Ω) where P(Ω) denotes the space of probability measures
on Ω. For this, we impose the following control on the infinite Wasserstein distance:

W∞(ρN , n) 6 C0N
−1/3. (H2)

Again, the key information here is that the constant C0 is independent of the number of
particles. For simplicity, we assume that the cloud of particles is uniformly bounded, i.e.,

∃K b Ω, ∀ i ∈ {1, . . . , N}, Xi ∈ K. (1.6)

Our goal in this paper is to derive information on the mean sedimentation velocity of the
particles when they are submitted to a given force F ∈ R3. Since we restrict to a linear Stokes
problem, we assume without restriction that F is directed along the third vector e3 of the
canonical basis and we normalize its amplitude to N−

1
3 . In this way, the Stokes velocity (cf.

(1.1)) is independent of N , namely,

V St = V St
r = 1

6πr . (1.7)

We consider then the problem

−∆uN +∇pN = 0 in Ω \
N⋃
i=1

Bi,

div uN = 0 in Ω \
N⋃
i=1

Bi,

uN = 0 on ∂Ω,

uN (x) = Vi + Ωi × (x−Xi) in Bi for all 1 6 i 6 N,

−
ˆ
∂Bi

σ[uN , pN ]ν = N−
1
3 e3 for all 1 6 i 6 N,

−
ˆ
∂Bi

(x−Xi)× σ[uN , pN ]ν = 0 for all 1 6 i 6 N,

lim
|x|→∞

uN (x)= 0



(1.8)

In this system, we recall that ν is the normal to ∂Bi (directed inwards Bi). The symbol σ
stands for the fluid stress tensor given by Newton law:

σ[u, p] = 2D(u)− pI3 = (∇u+∇>u)− pI3.
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Note that the first equation in (1.8) reads also:

div(σ(uN , pN )) = 0

where the operator div acts rowwise on the matrix σ(uN , pN ). The symbols Vi and Ωi stand
respectively for the linear and angular velocities of particle Bi. We emphasize that these
velocities together with (uN , pN ) are the unknowns in (1.8). The system is then algebraically
well-posed, the velocities (Vi,Ωi) being the Lagrange multipliers of the two last equations in
(1.8). In particular, these velocities depend on N but we skip the dependencies for legibility.
The last condition in (1.8) is needed in the case when Ω is unbounded in order to rule out
Poiseuille type flows. We will in the following not write this condition explicitly. We will only
consider velocity fields in Ḣ1(Ω) though, and Poiseuille type flows are not contained in this
space.
We are interested in the average particle velocity

V̄N := 1
N

N∑
i=1

Vi. (1.9)

for large N under the assumption:

curl(ne3) = ∇n× e3 = 0. (Hom)

This assumption is reminiscent of (HS). We recall that, as mentioned in introduction, if the
limit density n is not constant in the directions perpendicular to e3 (namely, in case (MF)), the
particles create a collective fluid velocity proportional to the number of particles N and the
magnitude of V̄N scales differently in N. The importance of this assumption can be observed
as follows. If the particles are small and their distribution dilute, the force acting on the
particles is seen reciprocally by the fluid as a forcing term f concentrated in the particles:

f ∼
N∑
i=1

6πN−1/3e3δXi ∼ 6πN2/3ne3.

For large N we expect then that the leading term in the velocity-unknowns behaves like
N2/3(u, p) with (u, p) solution to

−∆u+∇p = 6πne3 in Ω,
div u = 0 in Ω

u = 0 on ∂Ω.

 (1.10)

One may then expect that the mean velocity V̄N has magnitude N2/3 unless u = 0. In this
latter case, we must have that ne3 is a gradient or equivalently that (Hom) holds true. Even
when (Hom) holds true, it will appear that the components of V̄N have different magnitudes.
Below, we call sedimentation velocity the projection of V̄N along e3:

V̄ sed
N = V̄N · e3.

To end this subsection, we point out that (Hom) together with (H0) entail that, if the axis
ξ and the force e3 are orthogonal, then n is necessarily constant in the direction ξ which
contradicts that n is a probability measure. This is not the situation that we are interested in
here.
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1.2 Main results
For N fixed, the system (1.8) is well posed via the following construction. A classical framework
is the space of extended velocity-fields:

H0[N ] := {w ∈ H1
0 (Ω) s.t. div w = 0 on Ω and D(w) = 0 on BN

i for all i} (1.11)

We remind that, since the Bi are connected, for arbitrary w ∈ H0[N ] there exists vectors
(W1, . . . ,WN ) and vectors (R1, . . . RN ) so that:

w(x) = Wi +Ri × (x−Xi) , ∀x ∈ Bi.

In particular, an extended velocity-field w ∈ H0[N ] encodes uN but also (Vi,Ωi)i=1,...,N .
Classically, we only need to compute these unknowns to solve our system since the pressure
pN is then recovered as the Lagrange multiplier of the divergence-free constraint. Eventually,
we have the weak formulation of (1.8):

Find uN ∈ H0[N ] such that,

ˆ
Ω
∇uN : ∇w =

N∑
i=1

e3 ·Wi

N1/3 , ∀w ∈ H0[N ].

Such a weak formulation is obtained by mutliplying formally the Stokes equation with w and
performing integration by parts to apply (pointwise and integral) boundary conditions on uN .
From this weak formulation, we immediately deduce

‖∇uN‖2L2(Ω) =
N∑
i=1

e3 · Vi
N1/3 = N2/3V̄ sed

N . (1.12)

We see on this energy identity that there is a non-trivial relationship between uN and V̄N .
One could have expected that the sedimentation velocity V̄ sed

N is of the same order (with respect
to N) as the fluid velocity uN itself. The energy identity, however, relates the sedimentation
velocity V̄ sed

N to the gradient of the fluid velocity uN and reveals a factor N2/3 between
‖∇uN‖2L2(Ω) and V̄ sed

N . Our first main result is then the identification of the magnitude of V̄N
in both cases when (Hom) holds true and does not hold true:

Theorem 1.1. Assume that (H0)–(H2) are satisfied.

(i) Assume that (Hom) is not satisfied. Then, there exists C depending only on Ω, on n
and on C0, c, from (H2) and (H1) such that

lim sup
N→∞

N−
2
3 |V̄N | 6 C, (1.13)

lim inf
N→∞

N−
2
3 V̄ sed

N >
1
C
. (1.14)

(ii) If (Hom) is satisfied then there exists C depending on Ω and on C0, c such that

lim sup
N→∞

N−
1
3 |V̄N | 6 Cr−1/2, (1.15)

lim sup
N→∞

|V̄ sed
N − V St

r | 6 C. (1.16)
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We remark that the factor r is related to the volume fraction φ through φ ∼ r3. For instance,
if n is the indicator of some connected open set K b Ω with |K| = 1 (say a unit cube for
instance), we can compute a local volume fraction φ = 4πr3/3. We recall also that V St

r ∼ r−1.
In particular, since r is independent of N we have N2/3 � V St for N � 1, and therefore, in
case (Hom) is not satisfied, (1.14) is coherent with (1.2). In case (Hom) holds true, (1.16) is a
prerequisite in order that an expansion (1.3) can be valid.
If (Hom) holds true, the solution to (1.10) is a pure pressure. With similar arguments as

previously, a more relevant approximation to (uN , pN ) for large N is then N2/3(ũ, p̃) where
(ũ, p̃) is the solution to:

−∆ũ+∇p̃ = 6π(ρN − n)e3 in Ω,
div ũ = 0 in Ω

ũ = 0 on ∂Ω.

 (1.17)

According to the rate of convergence (H2), one may then expect that the mean velocity V̄N is
of size N1/3. The even smaller size of the sedimentation velocity (in powers of N) comes from
the remark that:

V̄ sed
N = V̄N · e3 ∼ 〈N2/3ũ, ρNe3〉 = N2/3〈ũ, (ρN − n)e3〉

We used here again that, under assumption (Hom), the term ne3 is a pressure gradient.
The further gain of N1/3 then yields from (H2) again. This gain can be generalized to the
component of V̄N along any vector e ∈ S2 such that ∇n× e = 0.

In order to derive and characterize an expansion of the form (1.3), we introduce the two
following additional structural assumptions. The first assumption regards a refined convergence
of ρN to n. To this end, we first smooth out the density ρN as follows

σN := 1
N

N∑
i=1

1
|Qi|

1Qi , ρ̄N = 1
N

N∑
i=1

1
|∂Bi|

H2
∂Bi . (1.18)

Here H2
∂Bi

is the Hausdorff measure on ∂Bi while the Qi are disjoint cubes centered at Xi of
volume

1
C1N

6 |Qi| 6
C1
N
. (1.19)

with C1 independent of N. We emphasize that it is always possible to find such cubes thanks
to assumption (H1) with C1 = c−3. However, the Qi are not unique and we might change
construction depending on the computations. To characterize defects of ρN to n, we impose
that for a suitable choice of the cubes Qi, the following strong convergence holds:

N
1
3 (σN − n)→ g in H−1(Ω) for some g ∈ H−1(Ω). (Str)

We remark that by Proposition 2.1 below N
1
3 (σN − n) is already bounded in Ḣ−1(Ω) under

assumption (H2)–(H1).
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The second assumption is an almost periodicity assumption on the particles.:

∃ d > 0, tN ∈ R3, EN ⊆ Ω, IN ⊆ {1, . . . , N} s.t.

|tN |∞ 6 N−1/3, EN ⊆ EN+1,
|IN |
N
→ 1,

{Xi : i ∈ IN} = EN ∩ (tN + dN−
1
3Z)3,

EN =
⋃
i∈IN

Xi + [−N−1/3d,−N−1/3d]3
(Per)

Here EN should be understood as the set on which the configuration is periodic, IN the set
of particles which are periodically distributed and tN allows those particles to be uniformly
translated with respect to a lattice centered at the origin. We will give an example for a
particle configuration that satisfies both (Per) and (Str) with a nontrivial g in Section 2.2.

To give a characterization of the mean velocity, we introduce the following velocity fields.
We define vN,1 ∈ Ḣ1(R3) as the solution of the following Stokes equations in the whole space
R3 :

−∆vN,1 +∇pN,1 =
N∑
i=1

( 1
|∂BR(Xi)|

H2|∂BR(Xi) −
1
|Qi|

1Qi

)
e3,

div vN,1 = 0.

 (1.20)

Moreover, we consider the solution v∞,3 ∈ H1
0 (Ω) to the Stokes equations in Ω

−∆v∞,3 +∇p∞,3 = g, div v∞,3 = 0 in Ω,
v∞,3 = 0 on ∂Ω.

}
(1.21)

We keep the index 2 for a further velocity-fields that we require for technical convenience
below. With these definitions, our expansion is the content of the following result:

Theorem 1.2. Assume that assumption (H0)–(H2) and (Hom) are satisfied.

(i) If in addition (Str) is satisfied, then, for all δ > 0, there exists C > 0, depending only
on C0, C1, c, δ from (H2), (H1) and (H1) respectively such that

lim sup
N→∞

∣∣∣V̄ sed
N −

(
N−2/3‖∇vN,1‖2L2(R3) + ‖∇v∞,3‖2L2(Ω)

)∣∣∣ 6 Cr1−δ. (1.22)

Moreover,

‖∇v∞,3‖2L2(Ω) = lim
N→∞

N1/3〈v∞,3, ρ̄Ne3〉. (1.23)

and there exists a sequence wN ∈ H1
0 (Ω) with ‖∇wN‖L2(Ω) 6 CN1/3r3/2−δ such that

N−1/3(uN − wN ) ⇀ v∞,3 weakly in H1
0 (Ω). (1.24)

(ii) If in addition (Per) is satisfied and Qi = Xi + [−N−1/3d,N−1/3d]3 for all i ∈ IN , then

lim
N→∞

N−2/3‖∇vN,1‖2L2(R3) = ‖∇vper‖2L2(T3
d
) = V St

r (1− aper
r

d
+ o(r)), (1.25)
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for some constant aper > 0 and where vper is the unique solution to

−∆vper +∇pper =
( 1
|∂Br|

H2|∂Br(0) − 1T3
d

)
F in T3

d,

div vper = 0 in T3
d,ˆ

T3
d

vper dx = 0,


(1.26)

where T3
d = R3/(dZ)3.

A few remarks are in order. We first recall, in order to compare with the expansions for V̄ sed
N

discussed at the beginning of the introduction, that r ∼ φ1/3. The estimate (1.22) characterizes
the sedimentation velocity V̄ sed

N up to an O(r1−δ) error as the sum of two contributions. The
first contribution, encoded in vN,1, only depends on the particle configuration. It is completely
independent of the container Ω. Under the periodicity assumption (Per), we characterize this
contribution in (1.25) as the sum of the Stokes velocity V St

r and a correction of order rV St
r that

can be computed from the problem on the torus (1.26). Recall from (1.7) that r|V St
r | = O(1).

The second contribution to V̄ sed
N in (1.22) is encoded in v∞,3. Note that v∞,3 is independent

of r and therefore the contribution ‖∇v∞,3‖L2(Ω) is of order 1 if curl g 6= 0. Moreover, the
characterization (1.24) means that v∞,3 is the leading order normalized macroscopic fluid
flow and by (1.23) the contribution ‖∇v∞,3‖L2(Ω) equals the average of this leading order
macroscopic fluid flow in the particles. Note that even though the macroscopic fluid flow is of
order N1/3, (1.23) implies that its average at the particles is of order 1.

We also remark that the constant aper corresponds to the one from (1.3) analyzed in [Has59].
We do not investigate further the computation of ‖∇vN,1‖2L2(R3) for particle configurations
other than those satisfying (Per). One could expect though that the energy ‖∇vN,1‖2L2(R3)
can be generally expressed in terms of the 2-point correlation, similar as for the second order
correction of the effective viscosity of a suspension obtained in [GH20; DG20].

1.3 Organization of the remainder of the paper and notations
The remainder of the paper is devoted to the proofs of Theorem 1.1 and 1.2.

Section 2, contains preliminary investigations on the probability densities involved in the
analysis, namely the empirical measure of the particles smeared out to ∂Bi, the measure σN
and the limit density n. Section 2.1 contains estimates between these densities which will be
crucial for the subsequent analysis. In Section 2.2, we provide an example for assumption
(Str) with a nontrivial function g.

In Section 3 we prove Theorem 1.1 (ii) as well as Theorem 1.2 (i). The proof is based on the
splitting of uN into vN,1, vN,2, vN,3 and wN that account for a whole space solution, boundary
corrections, the defect between the measures σN and n as well as higher order hydrodynamical
interactions between the particles.
In Section 4 we show Theorem 1.2 (ii) by analyzing periodic particle configurations.
Finally, in Section 5, we give the proof of Theorem 1.1 (i) that concerns the mean particle

velocity in the ill-prepared case, when (Hom) is not satisfied. We complement the proof by
additional structural information, namely the strong convergence vN → v∗ in H1

0 (Ω) of the
leading part vN of uN in terms of the particle volume fraction r3 as well as a characterization
of the leading order of the limiting behavior of the mean velocity V̄N in terms of v∗.
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In what follows, we use classical notations for function spaces. We do not specify whether
we handle vector or scalar functions. This shall be clear in the context. If U ⊆ R3 is bounded,
we denote  

U
f(x)dx = 1

|U |

ˆ
U
f(x)dx ∀ f ∈ Lp(U),

and Lp0(U) the subset of Lp(U) containing mean-free functions. Such definitions may be
generalized to functions defined on hypersurface of R3. Finally, for arbitrary U ⊆ R3, we
denote

Ḣ1(U) = {u ∈ L6(U) s.t. ∇u ∈ L2(U)}.

If U is bounded we have Ḣ1(U) = H1(U) that we endow with the classical norm. If U is
unbounded we endow Ḣ1(U) with the norm

‖u‖Ḣ1(U) = ‖∇u‖L2(U)

for which it is also a Hilbert space.
Below we use also constantly the symbol . for an inequality involving a harmless (multiply-

ing) constant.

2 Properties of (smoothened-)empirical measures
In our problem, particle distributions are encoded:

• via the associated empirical measures ρN at the discrete level,

• via the density n in the continuous model.

For technical convenience, we need in the sequel smoothened versions of ρN . Namely, we will
use:

σN = 1
N

N∑
i=1

1
|Qi|

1Qi ρ̄N = 1
N

N∑
i=1

1
|∂Bi|

H2
∂Bi (2.1)

where we recall that Qi are cubes centered in the Xi of volume scaling like 1/N (see assumption
(1.19)) while H2

∂Bi
is the Hausdorff measure on ∂Bi. In this section we prove at first some

preliminary Poincaré type estimates that are crucial for the later analysis. These inequalities
enable to control distances between smoothened empirical measures and between empirical
measures and their continuous conterparts. We provide then examples of particle distributions
for which assumption (Str) holds true with an explicit g.

2.1 Poincaré type inequalities
The first purpose of this section is the following estimates regarding particle distributions:

Proposition 2.1. Let p ∈ (1,∞) and assume that Bi ⊆ Qi for all i.

(i) If p 6= 3, there exists a constant C that depends only on p and the constant C1 from
(1.19) such that

‖ρ̄N − σN‖(W 1,p(Ω))∗ 6 Cr−(3/p−1)+N−
1
3 , (2.2)
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and, if p > 3/2,

‖ρ̄N − σN‖(W 2,p(Ω))∗ 6 CN−2/3, (2.3)

where (·)+ stands for the positive part of real numbers.

(ii) If p 6= 3 there exists a constant C that depends only on p and the constants C0, c and
C1 from (H2), (H1) and (1.19) such that

‖σN − n‖(W 1,p(Ω))∗ 6 CN−1/3, (2.4)

(iii) If p 6= 3 there exists a constant C that depends only on p, n and the constants C0 and c
from (H2) and (H1) such that

‖ρ̄N − n‖(W 1,p(Ω))∗ 6 Cr−(3/p−1)+N−1/3, (2.5)

We note that item (i) entails in particular that for all p ∈ (1,∞)

N1/3(ρ̄N − σN ) ⇀ 0 in (W 1,p(Ω))∗. (2.6)

It might be surprising that the scale in N changes between (2.2) and (2.3) making (2.2) seem
far from optimal. It must be noted, though, that by symmetry, all affine functions tested on
σN − ρ̄N vanish. We will then obtain our result by comparing expansions of test-functions
around each center Xi. The discrepancy between both estimates is due to the fact that only
zero-order expansions are available in W 1,p while first-order expansions are available in W 2,p.
Finally, inequality (2.3) in case p > 3/2 could be complemented with a similar inequality in
case p < 3/2. This will be however useless to our purpose.

For the proof, we furthermore introduce

ρ̃N := 1
N

N∑
i=1

1
|Bi|

1Bi , (2.7)

and we first show the following estimates involving ρ̃N :

Lemma 2.2. Let p ∈ [1,∞] \ {3} and assume that Bi ⊆ Qi for all i.

‖ρ̃N − σN‖(W 1,p(Ω))∗ 6 Cr−(3/p−1)+N−1/3, (2.8)

where C depends only on p and the constant C1 from (1.19).

Proof. We start with p < 3. Then, we may use the continuous embeddingW 1,p(Qi) ⊆ Lp∗(Qi),
where 1/p∗ = 1/p− 1/3, which implies here that for any ϕ ∈W 1,p(Qi) ∩ Lp0(Qi) we have:

‖ϕ‖Lp∗ (Qi) 6 C(C1, q)‖∇ϕ‖Lq(Qi)

with a constant C(C1, p) independent of ϕ by a straghtforward homogeneity argument. Con-
sequently, we have for all v ∈ W 1,p(Ω), via a sequence of discrete and continuous Hölder
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inequalities:

|〈ρ̃N − σN , v〉| =
3

N4πR3

N∑
i=1

ˆ
Bi

(
v(x)−

 
Qi

v(z)dz
)
dx

.
1
r3

N∑
i=1
|Bi|1−

1
p∗ ‖∇v‖Lp(Qi) .

1
r3 r

3(1− 1
p∗

)
N

1− 1
p
−(1− 1

p∗
)‖∇v‖Lp(Ω)

.
1
r

3
p∗
N

1
p∗
− 1
p ‖∇v‖Lp(Ω).

We conclude by recalling that 1/p∗ = 1/p− 1/3.
In the case p > 3 we have the embedding W 1,p(Qi) ⊆ C0,θ(Qi) with θ = 1/3 − 1/p. This

implies here that, for arbitrary ϕ ∈ W 1,p(Qi) ∩ Lp0(Qi) we have, by standard homogeneity
arguments:

‖ϕ‖L∞(Qi) 6
C(p, C1)
N

1
3−

1
p

‖∇ϕ‖Lp(Qi)

with a constant C(p, C1) depending only on p and C1. By standard arguments, we have then
that:

|〈ρ̃N − σN , v〉| 6
1
N
N
−( 1

3−
1
p

)
N∑
i=1
‖∇v‖Lp(Qi) 6

1
N
N
−( 1

3−
1
p

)
N

1− 1
p ‖v‖W 1,p(Ω).

This finishes the proof of (2.2).

We are then in position to prove our main result.

Proof of Proposition 2.1. The convergence (2.5) follows from (2.2) and (2.4). It remains to
show (2.2), (2.3) and (2.4).
Step 1: Proof of (2.2): Our result follows also immediately from Lemma 2.2 and the

standard Poincaré-like inequality

‖v −
 
∂Bi

v‖Lp(Bi) 6 CpR‖∇v‖Lp(Bi), (2.9)

where Cp depends only on p ∈ (1,∞). Indeed, we split ρ̄N − σN = ρ̄N − ρ̃N + ρ̃N − σN . The
second part is estimated via the previous lemma while for the first part, we have:

|〈ρ̃N − ρ̄N , v〉| 6
1
N

N∑
i=1

 
Bi

∣∣∣∣∣v −
 
∂Bi

v

∣∣∣∣∣ (2.10)

6

(
1
N

N∑
i=1

 
Bi

∣∣∣∣∣v −
 
∂Bi

v

∣∣∣∣∣
p) 1

p

6 CpN
− 1
pR

1− 3
p ‖∇v‖Lp(Ω) (2.11)

= CpN
− 1

3 r
1− 3

p ‖∇v‖Lp(Ω). (2.12)

Step 2: Proof of (2.3): The argument is analogous as the proof of Lemma 2.2 in the case
p > 3. Indeed, we observe that due to the assumption that Qi is centered in Xi, we have

〈ρ̄N − σN , v〉 = 1
N4πR2

N∑
i=1

ˆ
∂Bi

(
v(x)−

 
Qi

v(z)dz −
 
Qi

∇v(z)dz · (x−Xi)
)
dx. (2.13)
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Moreover, for all p > 3/2 and all ϕ ∈W 2,p(Qi) satisfying
ˆ
Qi

ϕ = 0
ˆ
Qi

∇ϕ = 0

we have, by a standard homogeneity argument

‖ϕ‖C0(Q̄i) 6
C(p, C1)
N

2
3−

1
p

‖∇2ϕ‖Lp(Qi)

where C(p, C1) depends only on p and C1 from (1.19). This entails that:

|〈ρ̄N − σN , v〉| 6
C(p, C1)

N1−1/pN2/3

N∑
i=1
‖∇2v‖Lp(Qi).

The assertion then follows again from application of the discrete Hölder inequality.
Step 3: Proof of (2.4): We observe that by the triangle inequality, assumption (H2) and

the definition of σN , we have

W∞(σN , n) 6W∞(σ̄N , ρN ) +W∞(ρN , n) 6 CN−1/3. (2.14)

where W∞ is the Wasserstein distance built on the sup-norm. By definition, the first term on
the right-hand side is bounded by 1/N1/3. Now the desired estimate follows from the result

‖µ− ν‖(W 1,p)∗ 6 C(‖µ‖∞ + ‖ν‖∞)1/pW∞(µ, ν). (2.15)

see [San15, Exercise 38] and [HS21, Proposition 5.1]. This concludes the proof.

2.2 Explicit construction of distributions satisfying (Str)
We focus now on the construction of an example of particle distributions so that (Str) holds
true:

N
1
3 (σN − n) converges in H−1(Ω).

To this end, we consider the case Ω = (−1, 1)× (0, 1)× R.
Fix M ∈ N∗ and N = 2M3. Firstly, we distribute N/2 particles covering (0, 1)2. For this, we

construct the cubes Q̃k (k ∈ {0, . . . ,M−1}3) with centers in X̃k = 1/M(k1 +1/2, k2 +1/2, k3 +
1/2), radius 1/M and thus volume 2/N.We choose then λ ∈ (0, 1/2) and set Xk = X̃k−λ/Me1.

Qk =
{
cube with center Xk and radius 1/(2M) if k1 > 1
cube with center Xk and radius 1/(2M)− λ/M if k1 = 0

The remaining particles and cubes are obtained by transforming the Xk with the symmetry
σ1 with respect to the plane {x1 = 0}. One easily checks that (H2) is satisfied for n =
1
21(−1,1)×(0,1)2 by considering the transport map T (x) = Xk for x ∈ Q̃k. Note that n =
1
21(−1,1)×(0,1]2 satisfies (Hom). Explicit computations then show that, denoting k̂ = (0, k2, k3)
for arbitrary (k2, k3) ∈ {0, . . . ,M − 1}2:

N1/3(σN−n)|(0,1)2×R = 2−
2
3M

 2
N

M−1∑
k2,k3=0

1
|Qk̂|

1Qk̂ − 1{x1∈(0,(1−λ)/M)}

− 1{x1∈(1−λ/M,1)}

 .
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Classical computations then entail that:

M

 M−1∑
k2,k3=0

1
M3|Qk̂|

1Qk̂ − 1{x1∈(0,(1−λ)/M)}

→ λδ{x1=0} in (W 1,2((0, 1)2 × R)∗ ,

M1{x1∈(1−λ/M,1} → −λδ{x1=1} in (W 1,2((0, 1)2 × R)∗ .

Using symmetry at x1 = 0 and that δ{x1=1} = 0 in H−1((−1, 1)× (0, 1)× R), we deduce that
(Str) holds true with g = 21/3λδx1=0 in H−1((0, 1)2 × R). We see on this example that the
term g encodes a finer description of the particle distribution. Indeed, we created artificially
a distribution in which particles around x1 = 0 are closer and thus have larger interactions.
Particles near x1 = 0 will therefore be slowed down in comparison to the particles near x1 = 1.
Such a difference will induce a variation of the velocity distribution in the cloud that is
captured by the term v∞,3 solution to (1.21).

3 Computation of V̄ sed
N when (Hom) holds true

Throughout this section, we assume that (H0)–(H2) and (Hom) are satisfied. Let (uN , pN ) be
the solution to (1.8). We remind the definition of ρ̄N from (2.1) introduce vN as the solution
to

−∆vN +∇qN = N
2
3 ρ̄Ne3 in Ω,

div vN = 0 in Ω,
vN = 0 on ∂Ω.

 (3.1)

and the remainder

wN := uN − vN . (3.2)

We will estimate the contribution of wN through the variational characterization of Stokes
solution that entails ‖∇wN‖L2(Ω) 6 C‖D(vN )‖L2(∪iBi). We therefore first turn to the analysis
of vN itself.

We furthermore remind the definition of σN from (2.1) and split vN further into vN =
vN,1 + vN,2 + vN,3 (resp. qN = qN,1 + qN,2 + qN,3) where

−∆vN,1 +∇qN,1 = N
2
3 (ρ̄N − σN )e3 in R3,

div vN,1 = 0 in R3,

 (3.3)

−∆vN,2 +∇qN,2 = 0 in Ω
div vN,2 = 0 in Ω,

vN,2 = −vN,1 on ∂Ω,

 (3.4)

and
−∆vN,3 +∇qN,3 = N

2
3 (σN − n)e3 in Ω,

div vN,3 = 0 in Ω,
vN,3 = 0 on ∂Ω.

 (3.5)
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The identity vN = vN,1 + vN,2 + vN,3 holds because, due to assumption (Hom), the term
involving n on the right-hand side of (3.5) can be absorbed into the pressure: there exists a
function pn ∈ L2

loc(Ω) such that ∇pn = ne3.
We will show the following properties of these functions.

Proposition 3.1. There exists a constant C > 0 depending only on Ω, and on C0 and c from
(H2)–(H1) as well as on C1 from (1.19) such that the following holds.

(i) N−1/3vN,1 ⇀ 0 weakly in Ḣ1(R3) and N−1/3vN,1 → 0 strongly in W 1,p(R3 \ Ω) for all
p ∈ (1,∞). Moreover, ∣∣∣V St

r −N−2/3‖∇vN,1‖2L2(R3)

∣∣∣ 6 C. (3.6)

(ii) For p = 2,

N−1/3‖∇vN,2‖L2(Ω) → 0. (3.7)

(iii) For p = 2,

N−1/3‖∇vN,3‖L2(Ω) 6 C. (3.8)

For all p ∈ (1,∞) and all bounded sets Ω′ ⊆ Ω there holds:

N−1/3‖∇vN,3‖Lp(Ω′) 6 C ′. (3.9)

with C ′ depending furthermore on Ω′. If in addition (Str) is satisfied, then N−1/3vN,3 →
v∞,3, strongly in H1(Ω), where v∞,3 is the solution to (1.21).

(iv) For all δ > 0

lim sup
N→∞

N−1/3‖D(vN )‖L2(∪iBi) 6 Cr3/2−δ (3.10)

where the constant C depends in addition on δ.

The proof of this proposition is postponed to Subsection 3.2.

3.1 Proof of Theorem 1.1 when (Hom) holds true
To treat the error wN , we note that wN can be associated to a pressure q̄N to yield a solution
to

−∆ψ +∇q = 0 in Ω \
N⋃
i=1

Bi,

divψ = 0 in Ω \
N⋃
i=1

Bi,

ψ = 0 on ∂Ω,
D(ψ) = D(ϕ) in Bi for all 1 6 i 6 N,ˆ

∂Bi

σ[ψ, q]n = 0 =
ˆ
∂Bi

σ[ψ, q]n× (x−Xi) for all 1 6 i 6 N.



(3.11)

with ϕ = −vN . The estimate for wN then follows from the following standard estimate (see
e.g. [GH21, Equation (27)])
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Proposition 3.2. Let ϕ ∈ H1(∪iBi) and let ψ be the solution to (3.11). Then

‖ψ‖H1(Ω) 6 C‖D(ϕ)‖L2(∪iBi) (3.12)

for a universal constant C.

We show how Proposition 2.1 and Proposition 3.1 imply Theorem 1.1 (ii) and Theorem
1.2 (i).

Proof of Theorem 1.1 (ii). We fix the choice of the cubes Qi by |Qi| = c3N−1 where c is the
constant from (H1). In this way, dependencies on C1 from (1.19) become dependencies on c.
Using that Vi =

ffl
∂Bi

uN , we first note that, for arbitrary direction e ∈ S2, there holds:

V̄N · e = 〈ρ̄Ne, uN 〉

Writing that uN = vN,1+vN,2+vN,3+wN and that ρ̄N = ρ̄N−n+n, we combine (3.6)-(3.7)-(3.9)
together with (2.5) in case p = 2 to yield (1.15).

Using assumption (Hom) and the fact that uN is divergence free and that Vi =
ffl
∂Bi

uN , we
rewrite

V̄ sed
N = 〈(ρ̄N − n)e3, uN 〉 (3.13)

We recall the decomposition uN = vN +wN = vN,1 + vN,2 + vN,3 +wN . By (3.10), Proposition
3.2 and (2.5) with p = 2

lim sup
N→∞

|〈(ρ̄N − n)e3, wN 〉| 6 Cδr
1−δ. (3.14)

Moreover, using the Stokes equations that vN solves,

〈(ρ̄N − n)e3, vN 〉 = 〈−∆vN +∇qN , vN 〉 = N−2/3‖∇vN‖2L2(Ω)

From (3.7) we infer that we have a remainder remN going to 0 as N →∞ such that:

〈(ρ̄N − n)e3, vN 〉 = N−2/3‖∇(vN,1 + vN,3)‖2L2(Ω) + remN .

and thus:

lim sup
N→∞

|V̄ sed
N − V St

r | 6 lim sup
N→∞

|N−2/3‖∇(vN1 + vN,3)‖2L2(Ω) − V
St
r |+ Cδr

1−δ (3.15)

At this point, we realize that, with (2.2) and (3.9) with p > 3

N−
2
3

ˆ
Ω
∇vN,1 : ∇vN,3 = 〈(ρ̄N − σN )e3, vN,3〉 6 C.

Therefore, expanding the square in (3.15), and using also (3.8) yields

lim sup
N→∞

|V̄ sed
N − V St

r | 6 lim sup
N→∞

|N−2/3‖∇vN1‖2L2(Ω) − V
St
r |+ C

and we obtain the expected result thanks to (3.6).

16



Proof of Theorem 1.2 (i) . We now turn to the proof of Theorem 1.2 (i). This time, we choose
the cubes Qi such that assumption (Str) is satisfied. We revisit the latter computations, using
that Proposition 3.1 provides the weak convergence N−1/3vN,1 ⇀ 0 in Ḣ1(Ω) and that, thanks
to (Str), we have the strong convergence N−1/3vN,3 → v∞,3. We infer:

lim sup
N→∞

〈(ρ̄N − n)e3, vN 〉 = lim sup
N→∞

N−2/3‖∇vN‖2L2(Ω)

= lim sup
N→∞

N−2/3
(
‖∇vN,1‖2L2(R3) + ‖∇v∞,3‖2L2(Ω)

)
,

(3.16)

where we also used that N−1/3vN,1 → 0 strongly in Ḣ1(R3 \ Ω) in order to replace Ω by R3.
Combining (3.16) with (3.13) and (3.14) yields (1.22). Moreover, by definition of v∞,3 there
holds:

‖∇v∞,3‖2L2(Ω) = lim
N→∞

N1/3〈v∞,3, (σN − n)e3〉

= lim
N→∞

(
N1/3〈v∞,3, ρ̄Ne3〉+N1/3〈v∞,3, (σN − ρ̄N )e3〉

)
, (3.17)

where we used again that 〈vN,3, ne3〉 = 0. We conclude (1.23) by observing that N1/3(σN −
ρN ) ⇀ 0 weakly in Ḣ−1(Ω) due to (2.2)–(2.3).

Finally, (1.24) is a consequence of the convergence N−1/3(vN,1 + vN,2) ⇀ 0 in Ḣ1(Ω) from
Proposition 3.1 as well as the bound on wN that follows from Proposition 3.2 and (3.10).

3.2 Proof of Proposition 3.1
Item (iii) is independent and proven in a first step. Item (ii) is a consequence to the properties
of vN,1 outside Ω and is proven in a last step after tackling item (i). Item (iv) will follow from
estimates that we show along the proof of items (i)–(iii). All the constants C involved in the
following computations are harmless constants. They may depend on the involved exponent p
and the constants c, C0 and C1 appearing in (H2)-(H1)-(H0).

Step 1: Proof of (iii):
To obtain (3.9) we proceed in two steps showing in passing the other statements in item

(iii). Firstly, since Ω is bounded in one direction (orthogonal to ξ) it is standard to adapt the
classical construction of solutions to (3.5) (see for instance [Gal11, Section IV.1]) to yield that
vN,3 ∈ H1

0 (Ω) with
N−1/3‖vN,3‖H1

0 (Ω) 6 C

and claimed convergence when N → ∞ thanks to (Str) and the linearity of the Stokes
equations.

Then, we introduce a truncation function χ such that Ωχ = supp(χ) ∩ Ω is C2 and satisfies
Ω′ := {χ = 1} ⊆ Ωχ ⊆ Ω. We set

vχN,3 = χvN,3 − ṽχ, qχN,3 = χqN,3 (3.18)

where ṽχ lifts the divergence of χvN,3 in H1
0 (Ωχ \ Ω′). We have then that div(vχN,3) = 0 and

ˆ
Ωχ
∇vχN,3 : ∇w = 〈N

2
3 (σN−n)e3, χw〉+

ˆ
Ωχ
v·(2∇w∇χ+∆χw)−

ˆ
Ωχ
∇ṽχ : ∇w+

ˆ
Ωχ
p∇χ·w.
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for any divergence-free w ∈ C∞c (Ωχ). Firstly, we use the embedding H1
0 (Ω) ⊆ L6(Ωχ) to yield

that up to a trivial extension ṽχ ∈ W 1,6
0 (Ωχ) (see [Gal11, Theorem III.3.1]). Thus, since

p ∈ L2(Ωχ) (see [Gal11, Lemma IV.1.1]) we deduce vχN,3 ∈ W
1,6
0 (Ωχ) (see [Gal11, Theorem

IV.6.1]) with bounds that entail

N−1/3‖vN,3‖W 1,6({χ=1}) 6 Cχ

with Cχ depending furthermore on Ωχ. This entails that vN,3 ∈ L∞({χ = 1}) We can then
reproduce the same argument with a second χ with support a little smaller to yield:

N−1/3‖∇vN,3‖Lp(Ω′) 6 C ′

whatever p ∈ (1,∞) with the expected dependencies for C ′.

Step 2: Proof of (i): The assertion that N−1/3vN,1 ⇀ 0 in Ḣ1(R3) is a consequence of (2.6).
We mention here only that the estimate we derived in (W 1,2(Ω))∗ extends straightforwadly
into an estimate in the dual of Ḣ1(R3). We write then:

vN,1 =
N∑
i=1

Ui, (3.19)

where

−∆Ui +∇Pi = N−1/3(δRi −
1
|Qi|

1Qi)e3 divUi = 0 in R3 (3.20)

and δRi = H2|∂Bi/|∂Bi| is the normalized uniform measure on ∂Bi. Then,

‖∇vN,1‖2L2(R3) =
N∑

i,j=1

ˆ
∇Ui : ∇Uj dx. (3.21)

For the diagonal terms, we split Ui = Ui,1−Ui,2, Pi = Pi,1−Pi,2 corresponding respectively to
the solutions of Stokes equations on R3 with source terms N−1/3δRi e3 and N−1/3|Qi|−11Qie3.
Thanks, to the theory on Stokes problem on R3 (see [Gal11, Section IV.2]), we know that
such solutions can be computed by convolution with a fundamental solution. We denote
Φ the fundamental solution for the velocity-field. We shall use below extensively that Φ is
(−1)-homogeneous (see [Gal11, Eq. IV.2.3] for the exact formula). In case of U1,i the existence
theory for Stokes problem in exterior domains yields that we have also an exact solution (see
[Gal11, Section V, Eq. (V.0.4)]). This formula entails in particular that Ui,1 = V St

r in Bi.

With these remarks at-hand now, we obtain by multiplying the Stokes equations for Ui,1
with Ui,1 that:

‖∇Ui,1‖2L2(R3) = N−1/3V St
r . (3.22)

Moreover, we have, using first the weak formulation of the Stokes equations and then standard
estimates for the convolution with Φ :

‖∇Ui,2‖2L2 + |(∇Ui,1,∇Ui,2)L2(R3)| 6 N−1/3‖Ui,2‖C0(Qi)

6 CN−1/3N2/3‖1Qi‖1/3∞ ‖1Qi‖
2/3
1 6 CN−1/3.

(3.23)
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Thus, expanding the sum for Ui when computing the L2-norm, we obtain:∣∣∣‖∇Ui‖2L2 −N−1/3V St
r

∣∣∣ 6 CN−1/3. (3.24)

Finally, since Ui,1 is constant in Bi, we may reproduce the convolution arguments with ∇Ui,2
to yield:

‖∇Ui‖L∞(Bi) 6 N2/3‖1Qi‖2/3∞ ‖1Qi‖
1/3
1 6 CN1/3. (3.25)

We are now in position to estimate the off-diagonal terms. For fixed i ∈ {1, . . . , N}, we
consider two cases for index j 6= i. Firstly, we say that Qj is a neighbor of Qi if i 6= j and
dist(Qi, Qj) 6 C1 with C1 being the constant from (1.19). We note that for each i there are
at most M neighbors Qj of Qi where M ∈ N depends only on C1. We observe now from the
explicit formula for Uj,1

|Uj,1(x)| 6 C
N−1/3

|x−Xj |
(3.26)

for all x ∈ R3 \Bj . Thus, combining this with the bound of Uj,2 derived in (3.23), we have for
all i 6= j

‖Uj(x)‖L∞(Qi) 6 C. (3.27)

This yields after integration by parts:∣∣∣∣∣∣
N∑
i=1

∑
Qj neighb. Qi

ˆ
R3
∇Ui : ∇Uj

∣∣∣∣∣∣ 6 N−1/3

∣∣∣∣∣∣
N∑
i=1

∑
j |Qj neighb. Qi

‖Uj‖L∞(Qi)

∣∣∣∣∣∣ 6 CN2/3 (3.28)

When Qj is not a neighbor of Qi we may use the following estimate for smooth test-functions
which is reminiscent of (2.13):

〈δRi − |Qi|−11Qi , ϕ〉 6 CN−2/3‖∇2ϕ‖L∞(Qi). (3.29)

Applying this twice, with Φ:∣∣∣∣ˆ ∇Ui : ∇Uj dx
∣∣∣∣ = N−1/3

∣∣∣〈δRi − |Qi|−11Qi , Uj · e3〉
∣∣∣

6 N−1‖∇2Uj‖L∞(Qi)

= N−4/3‖〈δRj − |Qj |−11Qj ,∇2Φ(x− ·)e3〉‖L∞(Qi) 6
N−2

|Xi −Xj |5

(3.30)

since |Xi − Xj | is comparable to |x − Xj | uniformly in x ∈ Qj when Qi and Qj are not
neighbors. Thus,∣∣∣∣∣∣∣∣∣

N∑
i=1

∑
i 6=j

Qi not neighb.Qj

ˆ
R3
∇Ui : ∇Uj dx

∣∣∣∣∣∣∣∣∣ 6 C
N∑
i=1

∑
i 6=j

N−2

|Xi −Xj |5
6 CN2/3. (3.31)
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Combining (3.24) and (3.28)–(3.31) yields (3.6).

Moreover, Xj is in the center of Qj so that Bi is far from the support of the convolution
defining Uj (the distance scales like 1/N1/3 with a constant depending on the parameters c, C1
involved in (H1)-(1.19)). Arguing as for (3.30), we find then a constant C such that, for i 6= j

‖∇Uj‖L∞(Bi) 6 C
N−1

|Xi −Xj |4
‖
∑
j 6=i
∇Uj‖L∞(Bi) 6 CN1/3. (3.32)

Combining with (3.25) yields

‖D(vN,1)‖L2(∪iBi) 6 Cr3/2 sup
i
‖D(vN,1)‖L∞(Bi) 6 Cr3/2N1/3. (3.33)

It remains to analyse the convergence of N−1/3vN,1 → 0 outside Ω. For this, we first provide
an L∞-bound that we formulate in the following lemma for future reference:

Lemma 3.3. Assume that for all i = 1, . . . , N we have Qi ⊆ Ω′ for some compact Ω′ ⊆ R3.
Then, for any x ∈ R3 \ Ω′, there holds:∣∣∣∣∣

N∑
i=1

Ui

∣∣∣∣∣ 6 C

(
1dist(x,Ω′)<2 +

1dist(x,Ω′)>1
dist(x,Ω′)3

)
∣∣∣∣∣
N∑
i=1
∇Ui

∣∣∣∣∣ 6 C

(
min(N1/3,dist(x,Ω′)−1)1dist(x,Ω′)<2 +

1dist(x,Ω′)>1
dist(x,Ω′)4

)
.

Proof. We provide a computation of the second bound since the first one is obtained similarly.
Fix x ∈ R3 \ Ω′. We have then:

N∑
i=1
∇Ui =

∑
Qineighb.x

(∇Ui,1 +∇Ui,2) +
∑

Qi not neighb.x
∇Ui. (3.34)

where we define “Qi neighboring x” as dist(Qi, x) < 2(C1/N)1/3 (with C1 given in (1.19)).
For the second sum, we proceed similarly to (3.32) to obtain that:∣∣∣∣∣∣

∑
i|Qi not neighb. of x

∇Ui

∣∣∣∣∣∣ 6
∑

i|Qi not neighb. of x

CN−1

|x−Xi|4
6 C dist(x,∪{Qi not neighb. of x})]−1

6 C min(N1/3, dist(x,Ω′)−1)

We note then that we may only have a finite number of indices in the first sum in (3.34) and
that, for each i neighbor of x there holds:

|∇Ui,1(x)| 6 CN−1/3

|x−Xi|2
6 CN1/3.

since Bi is C/N1/3 far from ∂Qi. We treat the second term with convolution arguments as in
(3.25) and we obtain |∇Ui,2(x)| 6 CN1/3. Eventually, we conclude that:∣∣∣∣∣

N∑
i=1
∇Ui(x)

∣∣∣∣∣ 6 C
(
min(N1/3,dist(x,Ω′)−1) +N1/31{dist(x,Ω′)<(2C1/N)1/3}

)
.
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We obtain the first bound when dist(x,Ω′) 6 2. When dist(x,Ω′) > 1 we remark that there
are no neighboring Qi to x and the above computations yield:∣∣∣∣∣

N∑
i=1
∇Ui(x)

∣∣∣∣∣ 6 C

N

N∑
i=1

1
|x−Xi|4

we conclude by noting that |x−Xi| > dist(x,Ω′) for each i in the sum.

We continue with the proof of Proposition 3.1 (i). Let Ω′ ⊆ Ω be chosen independent of N
containing all the cubes Qi which is possible due to assumption (1.6). Then, since vN,1 =

∑
i Ui,

the above lemma implies with dominated convergence that for arbitrary p ∈ (1,∞):

lim
N→∞

N−1/3‖∇vN,1‖Lp(R3\Ω′) = 0. (3.35)

In particular, we have the same convergence in W 1,p(R3 \ Ω).
Proof of (ii): Using that vN,2 is solution to the (homogeneous) Stokes solution inside Ω (with
boundary condition −vN,1 on ∂Ω), we have the variational characterization

‖∇vN,2‖L2(Ω) = min{‖∇v‖L2(Ω) : v ∈ Ḣ1(Ω), divv = 0, v|∂Ω = −vN,1}.

To construct a suitable competitor, we consider again a bounded (and connected) set Ω′ as
above and set v = vN,1 in R3 \ Ω′. Inside of Ω′ we then take a divergencefree extension of v.
It is classical that such an extension can be constructed (e.g. by use of a Bogovǩii operator)
since the condition

´
∂Ω′v · n = 0 is satisfied because div vN,1 = 0, and that the extension

satisfies

‖∇v‖L2(R3) . C‖∇v‖L2(R3\Ω′) = C‖∇vN,1‖L2(R3\Ω′)

In view of (3.35), this concludes the proof of (ii).
Proof of (iv): The statement is an immediate consequence of (3.33), item (ii) and item (iii)
applied with Ω′ that contains K from assumption (1.6) and with p sufficiently large.

4 Explicit computation of the first order correction for periodic
configurations

In this section, we complete the proof of Theorem 1.2 by justifying item (ii). We will thus
assume (Per) throughout this section. We will assume without loss of generality that td = 0
in (Per). Indeed, since we consider the norm of vN,1 in the whole space R3, the shift td does
not have any influence.
We first note that, by classical arguments, there is a unique vper ∈ Ḣ1(T3

d) (homogeneous
means here that we consider mean-free functions) to which we can associate a pressure
pper ∈ L2(T3

d) such that (1.26) holds true. We consider then in analogy to the cubes Qi,
1 6 i 6 N the covering of R3 by cubes (Qα)α∈Z3 where Qα = N−1/3d(α + (−1/2, 1/2)3.
Similarly, we adapt the notations introduced in Section 3.2: for α ∈ Z3, (Uα, Pα) is the
solution to

−∆Uα +∇Pα = N−1/3(δRα −
1
|Qα|

1Qα)e3 divUα = 0 in R3, lim
|x|→∞

|Uα(x)| = 0.

(4.1)
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and δRα is the normalized uniform measure on ∂Bα = ∂BrN−1/3(dN−1/3α). We keep for
technical convenience the labels α ∈ Z3 We then note by a scaling argument that:

vper(x) =
∑
α∈Z3

Uα(N−1/3x)−
 

[0,d]3
Uα(N−1/3y) dy vN,1 =

∑
i∈IN

Ui +
∑
i 6∈IN

Ui,

where we recall the set IN from (Per) and use the convention that the sums over the index i
runs over the set {1, . . . , N}.

The fact that the first sum converges in Ḣ1(T3
d) follows from the decay of ∇Uα (cf. (3.32)).

Let ZN ⊆ Z3 be such that ∪α∈ZNQα = ∪i∈INQi = EN with EN as in (Per). We then obtain
then:

‖∇vN,1‖2L2(R3) = N2/3‖∇vper(N1/3x)‖2L2(EN ) + rem1,N + rem2,N

where

rem1,N = −‖
∑
α/∈ZN

∇Uα‖2L2(EN ) − 2
ˆ
EN

N1/3∇vper(N1/3x) :
∑
α/∈ZN

∇Uα dx

rem2,N = ‖
∑
i∈IN

∇Ui‖2L2(R3\EN ) + ‖
∑
i/∈IN

∇Ui‖2L2(R3) + 2
ˆ
R3
∇vN,1 :

∑
i/∈IN

∇Ui dx

By standard arguments, we have:

lim
N→∞

‖∇vper(N1/3x)‖2L2(EN ) = ‖vper‖2Ḣ1(T3
d
)

and the the second identity in (1.25) yields from the analysis of the periodic problem in [Has59].
Our proof thus reduces to obtaining that:

lim sup
N→∞

N−2/3(rem1,N + rem2,N ) = 0.

Concerning rem1,N we note that we have first the bound:

|rem1,N | 6 C‖∇
∑
α/∈ZN

Uα‖L2(EN )

1 + ‖∇
∑
α/∈ZN

Uα‖L2(EN )


Then, we apply Lemma 3.3 to yield that, for arbitrary x ∈ EN there holds:∑

α/∈ZN

|∇Uα(x)| 6 C min(N1/3, dist(x, ∂EN )−1).

We note here that, to apply properly Lemma 3.3 we must invoke an “invading domain”
argument and firstly approximate the infinite sum by finite sums. The above bound yields
from the remark that the right-hand side does not depend on the finite subset of Z3 \ZN that
we would choose. Recalling EN ⊆ EN+1 from (Per) and that on the other side the sets EN are
contained in a compact set independently of N due to (1.6), we deduce with the dominated
convergence theorem

lim sup
N→∞

N−1/3‖∇
∑
α/∈ZN

Uα‖L2(EN ) = 0, lim sup
N→∞

N−2/3rem1,N = 0.
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Concerning rem2,N , we can get similarly as above

lim sup
N→∞

N−1/3‖
∑
i∈IN

∇Ui‖2L2(R3\EN ) = 0.

Moreover, since by assumption (Per) #{i /∈ IN} � N , we have from the bound on Ui in (3.25)
that

N−1/3‖
∑
i/∈IN

∇Ui‖L2(R3) = 0. (4.2)

Combining these estimates yields limN→∞N
−2/3rem2,N = 0 which concludes the proof.

5 Computations in the ill-prepared case
We provide here the computations in the ill-prepared case when (Hom) is not satisfied. Let
(uN , pN ) be the solution to (1.8). We introduce again (vN , qN ) the solution to

−∆vN +∇qN = N2/3ρ̄Ne3 in Ω
div vN = 0 in Ω

vN = 0 on ∂Ω

 (5.1)

and wN = uN − vN . We point out that, without assumption (Hom) we may not normalize the
pressure to add the −ne3 term to the right-hand side without modifying vN .
The main goal of this section is a proof of item (i) in Theorem 1.1. We complement the

proof with a more refined description of V̄N at the end of this section. To achieve our main
goal we first provide the following proposition:

Proposition 5.1. The vector-fields vN and wN introduced above satisfy the following state-
ments:

(i) there exists (v∗, q∗) ∈ H1
0 (Ω)×H−1(Ω) for which N−2/3vN → v∗ in H1

0 (Ω) and:

−∆v∗ +∇q∗ = ne3 in Ω,
div v∗ = 0 in Ω.

}
(5.2)

(i) there exists a constant C which depends only on c from (H1) and Ω such that, for N
sufficiently large:

‖wN‖H1(Ω) 6 CN2/3r3/2. (5.3)

Proof. Item i) is a direct consequence to (2.5) in Proposition 2.1 by standard arguments on
generalized solutions to Stokes system (see [Gal11, Theorem IV.1.1]). We point out that the
result holds actually whether data are well-prepared or ill-prepared. The main difference
between the ill-prepared and well-prepared setting is that v∗ = 0 in the latter one.

Since vN/N2/3 converges to v∗ in H1
0 (Ω), we can bound wN as follows thanks to Proposi-

tion 3.2:

‖∇wN‖L2(Ω) 6 C‖D(vN )‖L2(∪Bi) 6 CN2/3
(
‖D(v∗)‖L2(∪Bi) + C‖N−2/3vN − v∗‖H1(Ω)

)
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where the second term in the parenthesis can be made arbitrary small for N large. We remark
then that n ∈ L∞(Ω) so that standard elliptic regularity results entail in particular that
v∗ ∈W 2,4(Ω′) for arbitrary bounded Ω′ ⊆ Ω and thus v∗ ∈ C1(Ω̄). We infer then that the first
term in the parenthesis is bounded by r3/2. This ends the proof.

Proof of Theorem 1.1(i). Assume (Hom) is not satisfied. Then, by combining Proposition 5.1
and (2.5) in Proposition 2.1 (which implies the strong convergence of ρ̄N to n in H−1(Ω)), we
infer:

N−2/3V̄N = N−2/3〈vN , ρ̄N 〉H1,H−1 +N−2/3〈wN , ρ̄N 〉H1,H−1

→ 〈v∗, n〉H1,H−1 +O(r3/2) =
ˆ

Ω
v∗n+O(r3/2),

which yields (1.13) since ‖v∗‖H1(Ω) 6 C‖n‖L∞(Ω). Moreover, we have via a standard energy
estimate: ˆ

Ω
v∗ · ne3 = ‖∇v∗‖2L2(Ω), (5.4)

which yields (1.14) since v∗ 6= 0 if (Hom) is not satisfied. This ends our proof.

To complement the analysis of the ill-prepared case, we provide a sharper description of V̄N
for large values of N. For this, we introduce further notations for solutions to (5.2). Indeed, we
remark that this solution is fixed by the vector e3 so that changing this value to another vector
ẽ ∈ R3 would yield a different velocity-field. Below, we highlight this possible dependency
by writing v∗[ẽ] the solution associated with the vector ẽ ∈ R3. We can now state our main
proposition:

Proposition 5.2. Assume that (Hom) does not hold. Then, there exists V∗ ∈ R3 such that:

(i) there exists a constant C independent of N ∈ N sufficiently large for which

V̄N = N
2
3 (V∗ + remN ) with |remN | 6 Cr.

(i) there holds:
V∗ · e =

ˆ
Ω
∇v∗[e3] : ∇v∗[e] ∀ e ∈ S2

Remark 5.3. We first point out that v∗ does not depend on r. So, when ∇n× e 6= 0 we have
indeed captured the first order of V̄N with a remainder smaller than O(r). We note that we
can use the system satisfied by v∗ to rewrite:

V∗ · e =
ˆ

Ω
v∗[e3] · ne =

ˆ
Ω
v∗[e] · ne3

We also recall that, in the degenerate case ∇n × e = 0, there holds v∗[e] = 0. In this case,
the computations of the previous section hold and show that V̄N · e 6 CN1/3 similarly as we
obtained (1.15). In particular, the results obtained in the present section are not optimal in
this direction.
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Proof. We prove that, for arbitrary e ∈ S2, there holds:

V̄N · e = N
2
3

(ˆ
Ω
∇v∗[e3] : ∇v∗[e] +O(r)

)
This shall complete the two items of the proposition simultaneously.

Given e ∈ S2, let us denote by uN [e], vN [e], wN [e] the velocity-fields associated to the
problem (1.8) replacing e3 by e (analogously as the notation v∗[e] introduced above). By
Proposition 5.1, we have:

‖∇vN [e3]‖L2 + ‖∇vN [e]‖L2 6 CN2/3, ‖∇wN [e3]‖L2 6 CN2/3r
3
2

and
N−

2
3 vN [e3]→ v∗[e3] N−

2
3 vN [e]→ v∗[e] in H1

0 (Ω).

Furthermore, like in the previous proof, there holds:

N−
2
3 V̄N · e = N−

4
3 〈vN [e3],−∆vN [e] +∇qN [e]〉H1

0 (R3),H−1(R3) +N−
2
3 〈wN [e3], ρ̄Ne〉H1

0 (Ω),H−1(Ω)

= N−
4
3

ˆ
Ω
∇vN [e3] : ∇vN [e] +N−

2
3 〈wN [e3], ρ̄Ne〉H1

0 (Ω),H−1(Ω)

We conclude by remarking that by Proposition 5.1

lim
N→∞

ˆ
Ω
∇vN [e3] : ∇vN [e] =

ˆ
Ω
∇v∗[e3] : ∇v∗[e]

and, by (2.2) and (2.4) in Proposition 2.1 and the above bound on wN , that:

N−
2
3

∣∣∣〈wN [e3], ρ̄Ne〉H1
0 (Ω),H−1(Ω)

∣∣∣ 6 N−
2
3 ‖ρ̄N‖H−1(Ω)‖wN [e3]‖H1(Ω) 6 Cr.
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