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Relative influence of biophysical processes

The distance and direction of larval dispersal largely influence the demography and genetic structure of Claire B Paris
coral reef fish species. Their estimation in situ is difficult therefore models which aim at representing the cparis@rsmas.miami.edu
whole larval phase and estimating connectivity on large regions are emerging. The interaction of physical

Ashwanth Snirivasan
_ : _ _ _ _ ashirivasan@rsmas.miami.edu
and biological factors can influence the dispersal trajectories of larvae. All of them cannot be and probably Laurent M Cherubin

do not need to be accurately represented in those models. Two approaches are used here to estimate the Qgﬂ%ﬁgﬂgggg-miami-edu

relative importance of various parameters during the early life history of fish. A Biophysical Offline Lagrangian irisson@normalesup.org
Tracking System (BOLTS) allows to compute dispersal kernels and study connectivity patterns at various Serge Planes

: : . : . planes@univ-perp.fr
scales. A hybrid model operating on a small spatial scale serves to study more directly the influence of Robert K Cowen

larval behavioral strategies in the pelagic environment. rcowen@rsmas.miami.edu
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4_| Fig 1.2: Influence of model parameters on connectivity patterns. Parameters are:
grid size (G), Lagrangian time scale (T) and velocity variance (V). The online
T=30 T=5 nested simulation is the reference to which offline simulations are compared. Correct
V=200 parameters for this case scenario (Jan. climatology) are G=5,V=2,T=30 or
G=2,V=200,T=5
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Summary

- Long decorrelation times and weak variances
characterize coastal waters, while small T and
high V define the shelf break (Fig. 1.1)

- Connectivity patterns are more sensitive to
Langrangian parameters (V,T) for large grid sizes
(Fig. 1.2). Including K spatial anisotropy in critical
In accurately estimating dispersal distances.

Environment description
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- Total recruitment levels (i.e. subsidy + self- T T — 71— 34
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recruitment (SR)) are sensitive to mortality rates e . .
and OVM with increasing PLDs, while OVM has s Decision Generator Trajectory Simulator

more impact on SR even at short PLDs and
changes connectivity patterns (Fig. 2.1,3) 15
- Differences in connectivity networks in the case L
of snapper and grouper in the Caribbean are 55
mainly driven by the seasonality of spawning 3 I '

production rather than by PLDs (Fig. 2.2) . |

- Including vertical and horizontal swimming ‘ . ‘ -3.9
behavior of larvae is crucial in explaining self-

recruitment in a small isolated island system (Fig
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