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2 Université de Nantes, LS2N, INRIA, France

Abstract. We prove decidability for contextual equivalence of the _`a-
calculus, that is the simply-typed call-by-value _`-calculus equipped with
booleans and fresh name creation, with contexts taken in _`ref, that is
_`a-calculus extended with higher-order references.
The proof exploits a labelled transition system capturing the interactions
between _`a programs and _`ref contexts. The induced bisimulation
equivalence is characterized as equality of certain trees, inspired by the
work of Lassen. Since these trees are computable and finite, decidability
follows. Bisimulation coincides also with trace equivalence, which in turn
coincides with contextual equivalence.

1 Introduction

Dynamic allocation is central to many of programming constructions. Many
languages provide built-in support for dynamically-allocated resources, for ex-
ample, objects in Java or references in ML. The creation of these resources is
local, meaning that they can be accessed only within their scope. They can also
be passed around via function applications, meaning that their scope is not static
but evolves dynamically. While building semantics for such languages, one rep-
resents dynamic allocation as the creation of fresh locations, that can be seen as
atoms or names.

In this paper, we study a paradigmatic language with dynamic allocation,
namely the a-calculus, a simply-typed call-by-value _-calculus with fresh atom
creation and equality test of atoms, as introduced by Pitts and Stark in [27]. For
instance, the a-calculus program new = in _G.(G = =) allocates a new atom =,
receives an atom G and returns the result of the comparison between G and =.

A central question while studying this language is to determine when two
programs can be considered to be equivalent. The most studied approach to
express behavioral equivalence between programs is contextual equivalence. In-
tuitively, two programs are deemed equivalent if and only if whenever they are
run as part of an enclosing program called the context, it is not possible to dis-
tinguish one from the other. For instance, because the context has no way to
guess the atom =, we expect the program above to be equivalent to _G.false.

Reasoning on contextual equivalence for the a-calculus has shown to be chal-
lenging, due to the interplay between the higher-order control flow and the scope



extrusion of atoms. A variety of frameworks has been introduced to do so, based
on logical relations [27], environmental bisimulations [6], and game semantics [1].

However, the question of whether this equivalence is decidable remains open
since the introduction of this language 30 years ago.

In this paper, we address this question by working in an asymmetric setting,
giving contexts more discriminating power than just the mere creation of atoms.
Indeed, contextual equivalence depends on two languages: the language for pro-
grams, and the language for contexts interacting with these programs. We take
contexts in the _`ref-calculus, an extension of the a-calculus with both higher-
order references and continuations. In this setting, atoms are simply references
where only the unit value can be stored. Contextual equivalence is then coarser
than for the symmetric setting when the contexts are also taken in the a-calculus.
For example, one of the standard examples of equivalence of the literature,

new = in new =′ in _ 5 .( 5 = = 5 =′) ≃2C G _ 5 .true

is not an equivalence anymore, since a _`ref context can provide a function that
stores its argument in a reference and use it to discriminate these programs.

The main result we establish in this paper is the decidability of contextual
equivalence for terms of a-calculus with contexts in the _`ref-calculus. More gen-
erally, we establish this result for terms of the _`a-calculus, which corresponds
to terms of the _`ref-calculus that only uses references storing the unit value.

To establish this result, we provide a Böhm-like tree representation [7, 4]
for the terms of the _`a-calculus. Being in call-by-value, equality of such trees
coincides with Lassen’s eager normal form bisimulations [17]. Moreover, since
programs in the _`a-calculus are terminating, these trees, which we call Lassen
trees, are finite. It is thus straightforward to check their equality. Then, we prove
that Lassen trees equality is fully-abstract, that is it coincides with contextual
equivalence with contexts in the _`ref-calculus.

Proving this full-abstraction result is done through the introduction of an
operational game semantics (OGS) for _`ref by defining an Labelled Transition
System (LTS) that distinguishes between internal operations, Proponent moves
(originating in the program) and Opponent moves (originating in the context).
Trace equivalence based on these labelled transitions is shown to coincide with
the contextual equivalence of _`ref.

The OGS also gives rise to a notion of bipartite bisimulation, describing a
game between Proponent (the program in _`ref) and Opponent (a context in
_`ref). Proponent reduces the program until it reaches a normal form, that trig-
gers an interaction with the context. Along the game, knowledge is accumulated
in configurations. When it is Opponent’s turn to play, it chooses between an-
swering a previous function call from Proponent, or generating a new function
call, to which Proponent shall answer. Among this knowledge, we accumulate
the atoms that have been disclosed by the two players, so that Opponent cannot
use an atom private to Proponent.

The OGS LTS generates infinite trees since Opponent can interrogate an
arbitrary number of times each value provided by Proponent. The Lassen trees



used to decide contextual equivalence are generated using a linearized variant
of the OGS LTS, called the Prime Operational Game Semantics (POGS) LTS.
This LTS enforces that Opponent interrogates only once each value provided
by Proponent. For this linearization to be sound, one has to guess the disclosed
status of atoms as soon as they are created. Indeed, looking at the following
example of inequivalence

new = in _G.= ;2C G _G.new = in =

Opponent must be able to interrogate at least twice each of these two programs
to discriminate them. The first programwould then return the same atom at each
call, while the second program would return two different atoms. The Lassen tree
of the first program would declare = to be disclosed when giving back the control
to Opponent by providing the _-abstraction, but this could not be matched by
the second program, since = would not exist yet at that point of the interaction.

The main technical challenge at this point is to prove that this forecasting of
the disclosure process is sound and complete. This is done by proving that the
bipartite bisimilarities defined over the OGS LTS and the POGS LTS coincide.
One direction is proven by lifting POGS bisimulations into OGS bisimulation
via an up-to technique. The other direction is done by introducing a new limit
construction of the disclosed set of atoms appearing in the OGS bisimulations,
to transform it into a POGS bisimulation.

Paper outline. After introducing the _`ref-calculus and the _`a-calculus in Sec-
tion 2, we define the LTS for the OGS in Section 3. The induced trace equivalence
coincides with contextual equivalence. We then move to Lassen trees in Section 4,
and show that they yield an equivalence that coincides with bipartite bisimilar-
ity in the OGS in Section 5. We present concluding remarks in Section 7. For
lack of space, several technical developments are given in Appendix.

2 The ,-ref-calculus and the ,-.-calculus

The syntax of the _`ref-calculus is given by the following grammar:

Values V, W , G | () | _G.M | true | false | ℓ
Terms M, N , V | let G = M in N | VW | if V then N1 else N2

| V = W | new G = V in M | V := W |!V | `c.M | [c]M
Eval. Contexts E, E′ , [c]• | E[let G = • in M]
Contexts C, C′ , • | [c]C | let G = C in M | let G = M in C | _G.C | `c.C

| if V then C else M | if V then M else C | new G = V in C

Types f, g , Unit | Bool | f → g | reff | ⊥

with G ∈ Vars (variables), c ∈ Covars (continution variables), ℓ ∈ Locs (loca-
tions). We write supp(M) for the set of locations appearing in M, and FV(M) for
the free variables of M. This language has two binders, the standard _-abstraction,
and the ` binder for continuation variables c, 3 [25].



Γ(G) = f

Σ;Γ ⊢ G : f

Γ(c) = ¬f

Σ;Γ ⊢ c : ¬f

Σ(ℓ) = reff

Σ;Γ ⊢ ℓ : reff Σ;Γ ⊢ () : Unit

b ∈ {true, false}

Σ;Γ ⊢ b : Bool

Σ;Γ, G : f ⊢ M : g

Σ;Γ ⊢ _G.M : f → g

Σ;Γ ⊢ V : f → g Σ;Γ ⊢ W : f

Σ;Γ ⊢ VW : g

Σ;Γ ⊢ N : f Σ;Γ, G : f ⊢ M : g

Σ;Γ ⊢ let G = N in M : g

Σ;Γ ⊢ V : Bool Σ;Γ ⊢ M1 : f Σ;Γ ⊢ M2 : f

Σ;Γ ⊢ if V then M1 else M2 : f

Σ;Γ ⊢ V : g Σ;Γ, G : ref g ⊢ M : f

Σ;Γ ⊢ new G = V in M : f

Σ;Γ ⊢ V : reff Σ;Γ ⊢ W : f

Σ;Γ ⊢ V := W : Unit

Σ;Γ ⊢ V : reff

Σ;Γ ⊢!V : f

Σ;Γ ⊢ V : reff Σ;Γ ⊢ W : reff

Σ;Γ ⊢ V = W : Bool

Σ;Γ, c : ¬f ⊢ M : ⊥

Σ;Γ ⊢ `c.M : f

Σ;Γ ⊢ M : f Γ(c) = ¬f

Σ;Γ ⊢ [c]M : ⊥

Γ(c) = ¬f

Σ;Γ ⊢ [c]• : ¬f

Σ;Γ, G : f ⊢ M : g Σ;Γ ⊢ E : ¬g

Σ;Γ ⊢ E[let G = • in M] : ¬f

Fig. 1. _`ref: typing rules for terms and evaluation contexts

A store, ranged over by S, T, is a finite mapping from locations to values. S(ℓ)
stands for the value associated to ℓ in S. We use notation S · [ℓ ↦→ V] for the
extension of S with a mapping for ℓ, which is only defined if ℓ is not defined in
S. S[ℓ ↦→ V] denotes the store S in which the value associated to ℓ is updated.

The operational semantics ↦→op of the _`ref-calculus is defined over configu-
rations, which are pairs (M, S) formed by a term and a store. It is given by the
following rules:

(E[(_G.M)V], S) ↦→op (E[M{G := V}], S)
(E[let G = V in M], S) ↦→op (E[M{G := V}], S)
(E[if true then N1 else N2], S) ↦→op (E[N1], S)
(E[if false then N1 else N2], S) ↦→op (E[N2], S)
(E[new G = V in M], S) ↦→op (E[M{G := ℓ}], S · [ℓ ↦→ V])
(E[ℓ := V], S) ↦→op (E[()], S[ℓ ↦→ V])
(E[!ℓ], S) ↦→op (E[S(ℓ)], S)
(E[ℓ = ℓ], S) ↦→op (E[true], S)
(E[ℓ = ℓ′], S) ↦→op (E[false], S)
(E[`c.M], S) ↦→op (M{c := E})

The typing system for terms is given by the rules in Figure 1. We chose
here a typing judgement with a single typing context Γ, so that continuation
variables are given types of the shape ¬f. Such negated types are also used
to type evaluation contexts, as given by the two last rules in Figure 1. While
we cannot store continuation variable c in a reference, we can always store its



associated function _G.[c]G. Typing rules force terms of type ⊥ to be of the shape
[3]M, following Parigot’s original presentation of the _`-calculus [25].

We also consider a typing judgement of the shape Σ ⊢ C : (Γ;f)  (Δ; g),
for contexts C that take terms M of type Σ;Γ ⊢ M : f and produce terms of type
Σ;Δ ⊢ C[M] : g. The typing rules defining this judgement are standard and not
recalled here.

In the following, we consider the _`a-calculus, the fragment of the _`ref-
calculus that only handles references of type refUnit. That is, for all the reference
type reff appearing in the typing derivation, we have f = Unit.

We use a, b, . . . to range over locations of type refUnit, also called atoms, and
introduce the slightly shorter notation new = in M to stand for new = = () in M

in _`a. The syntax for values and terms of the _`a-calculus is thus:

Values V, W , G | () | _G.N | true | false | a
Terms M, N , V | let G = M in N | VW | if V then N1 else N2 | V = W | new = in M

| `c.M

In this setting, we see stores S directly as sets of atoms, all mapping to the
unit value (). For L a set of atoms. we write L̂ for the store that maps atoms in
L to the unit value ().

We consider the following extension of the typing judgement respectively to
stores S, value-mapping substitutions W, and evaluation contexts:

∀ℓ ∈ dom(S),Σ;∅ ⊢ S(ℓ) : Σ(ℓ) dom(S) = dom(Σ)

⊢ S : Σ

∀G ∈ dom(Γ),Σ;Δ ⊢ W(G) : Γ(G) dom(W) = dom(Γ)

Σ;Δ ⊢ W : Γ

Definition 1. A normal form (M, S) is a configuration that is irreducible for the
reduction relation ↦→op. We write (M, S) ⇓ N when there exists a store T such that
(M; S) ↦→∗

op (N; T) and that (N; T) is a normal form.

We call the types Bool, Unit and reff positive types, while f → g and ¬f
are called negative types. By only allowing free variables of negative types, we
provide a sharp characterization of normal forms.

Theorem 2. Taking a term M such that Σ;Γ ⊢ M : ⊥ with Γ a typing context
mapping variables to negative types, if (M, S) is in normal form with respect to
↦→op, then M is either a named value [c]V or a neutral term E[GV].

Moreover, for any configuration (M, S) such that M is in _`a, Σ;Γ ⊢ M : ⊥ and
⊢ S : Σ, there exists N such that (M, S) ⇓ N.

Definition 3. Taking two terms M, N such that Σ;Γ ⊢ M : f and Σ;Γ ⊢ N : f, we
say that they are contextually equivalent, written Σ;Γ ⊢ M ≃2C G N : f, when for all
continuation variable c and context C such that Σ ⊢ C : (Γ;f)  (c : ¬Unit;⊥),
and for all store S such that ⊢ S : Σ′, we have (C[M], S) ⇓ [c] () if and only if
(C[N], S) ⇓ [c] ().



In the definition above, we use _`ref contexts to observe _`a terms. Such con-
texts can use higher-order references, and lead to divergent computations. For
this reason, testing for convergence to () is enough when defining ≃2C G .

3 Operational Game Semantics

We now introduce a fully-abstract trace semantics for _`ref programs. We follow
a modular presentation, inspired by the one provided by Laird in [16], where the
semantics is built from a synchronization product of three LTS:

– the Interactive LTS LI, that represents the raw interactions of programs with
their environment.

– the Typing LTS LTy, that keeps track of the polarization and types of names
exchanged, to preserve well-typedness.

– the Disclosing LTS LDi, that prevents the environment to use private re-
sources that have not been disclosed by Proponent.

3.1 Abstract values

To represent the interaction between the program and its environment, we dis-
tinguish between values that we can observe and values that we can interact
with. The two players only exchange observable values, called abstract values in
this paper. They are defined by the following grammar:

A, B , f | a | true | false | ()

with f a function name, that is a variables used to represent functions exchanged
between the two players. They correspond to the positive part of values, and are
also called ultimate patterns in [18]. Like for terms, supp(A) stands for the set of
atoms occurring in A. We consider the typing judgement Δ 
 A : f for abstract
values, with f a positive type, that is defined similarly than for terms, with the
extra condition that all variables appearing in A are distinct.

Then we introduce the abstraction relationt that transforms a value V into
a pair (A, W) formed by an abstract value and a substitution, such that A{W} = V:

f, g function names

ft(g, [g ↦→ f]) ()t((), Y)

b ∈ {true, false}

bt(b, Y)

a an atom

at(a, Y)

_G.Mt(f, [f ↦→ _G.M])

3.2 Labelled Transition Systems

The two players, Opponent and Proponent, exchange moves, which are in one
of six forms:

P-question P-answer O-question O-answer P-init question O-init question

f (A, c) c(A) f (A, c) c(A) ?(
−→
A8) ?(

−→
A8)



We use m to range over moves, and p (resp. o) to range over Proponent (resp.
Opponent) moves. Initial questions are the introductory moves. Compared to
other moves, they can introduce multiple abstract values in a row, which is used
to instantiate all the variables of a typing context Γ. They use a distinguished
function name ?.

Traces t are sequences of moves. We write m for the corresponding move
with reversed polarity (input switched to output, and vice-versa). We extend
this definition to switch traces, written t.

The three labelled transition systems we define are instances of the following
definition:

Definition 4. A labelled transition system (LTS) L is a triple (Confs,Actions,−→
) with Confs a set of configurations C,D, Actions a set of actions a, formed by
the moves m, together with a silent action op, corresponding to internal com-
putations, and −→⊆ Confs × Actions × Confs the labelled transition relation. We

write C
a
−→ D for (C, a,D) ∈ −→.

Taking C a configuration of an LTS L, we write TrL (C) for the set of traces, as
sequences of moves generated by this LTS over C (so with op actions removed).
We write C ≃tr D for the trace equivalence relation, which equates configurations
C,D when both have the same set of traces.

3.3 Interactive LTS

We consider interactive configurations I; J ∈ IConfs which are either passive
of the shape 〈S; W〉, or active of the shape 〈M; S; W〉 with M a term, S a store,
and W a substitution. The Interactive LTS LI is then defined as the triple
(IConfs,Actions,−→I) with −→I defined in Figure 2.

The two rules for Proponent moves describe transitions performed by normal
forms and make use of the abstraction relation. In the two rules for Opponent,

the notation S ⊙ [�supp(A)] stands for S extended with a binding a ↦→ () in the
case when A = a and a is fresh for Proponent, and simply S otherwise: Proponent
extends its store when a new atom is received.

3.4 Typing LTS

We consider type-context configurations S, T ∈ ConfsTy which are either active of
the shape 〈ΔO | ⊥;ΔP〉 or passive of the shape 〈ΔO | ΔP〉 with ΔO,ΔP two disjoint
typing contexts that map variables to negative types.

The Interactive LTS LI is then defined as the triple (ConfsTy,Actions,−→Ty)
with −→Ty defined in Figure 3. Notice that the type of the active term is ⊥ since
the reduction relation ↦→op is well defined only on terms of this type.

Typing configurations can be used to specify interactive configurations, via
the following validity judgement.

Definition 5. An interactive configuration I is said to be validated by a typing
configuration S, written I ⊲ S, when:



op
(M; S) ↦→op (N;T)

〈M; S; W〉
op
−−→I 〈N; T; W〉

PQ
Vt(A; W′)

〈E[fV]; S; W〉
f (A,c)
−−−−−→I 〈S; W · W′ · [c ↦→ E]〉

Vt(A; W′)

〈[c]V; S; W〉
c(A)
−−−→I 〈S; W · W′〉

PA

OQ

〈S; W〉
f (A,c)
−−−−−→I 〈[c]W (f)A; S ⊙ [ �supp(A)]; W〉 〈S; W〉

c(A)
−−−→I 〈W (c)[A]; S ⊙ [�supp(A)]; W〉

OA

Fig. 2. Definition of LI, the Interactive LTS: transitions of interactive configurations

PQ
ΔO (f) = f → g Δ 
 A : f

〈ΔO | ⊥;ΔP〉
f (A,c)
−−−−−→Ty 〈ΔO | ΔP,Δ, c : ¬g〉

ΔO (c) = ¬f Δ 
 A : f

〈ΔO | ⊥;ΔP〉
c(A)
−−−→Ty 〈ΔO | ΔP,Δ〉

PA

OQ
ΔP (f) = f → g Δ 
 A : f

〈ΔO | ΔP〉
5 (A,c)
−−−−−−→Ty 〈ΔO,Δ, c : ¬g | ⊥;ΔP〉

ΔP (c) = ¬f Δ 
 A : f

〈ΔO | ΔP〉
c(A)
−−−→Ty 〈ΔO,Δ | ⊥;ΔP〉

OA

Fig. 3. Definition of LTy , the typing LTS: transitions of type-context configurations

– either I = 〈S; W〉, S = 〈ΔO | ΔP〉, and there exists a store typing context Σ such
that Σ;ΔO ⊢ W : ΔP and ⊢ S : Σ.

– or I = 〈M; S; W〉, S = 〈ΔO | ⊥;ΔP〉, and there exists a store typing context Σ
such that Σ;ΔO ⊢ M : ⊥, Σ;ΔO ⊢ W : ΔP and ⊢ S : Σ.

3.5 Disclosing LTS

In order to enforce a non-omniscient condition on the Opponent transitions, we
introduce a Disclosing LTS LDi , (DConfs,Actions,−→Di) whose configurations
DConfs are pairs of sets of locations 〈L;D〉 with D a set of atoms contained in L,
and the transition function −→Di is defined in Figure 4. The condition L∩supp(o) ⊆
D corresponds to the fact that Opponent cannot play Proponent atoms that have
not been disclosed yet, i.e. not in D.

Definition 6. An interactive configuration I is said to be validated by a disclos-
ing configuration D = 〈L;D〉, written I⊲D, when writing S for the store component
of I, we have dom(S) = L.

3.6 Operational Game Semantics: LTS and Trace Equivalence

The Operational Game Semantics (OGS) LTS LOGS , (Confsogs,Actions,
a
−→ogs)

is defined over configurations G,H ∈ Confsogs of the shape (I, S,D), such that



op
〈L;D〉

op
−−→Di 〈L ∪ L

′;D〉

PQ/PA
〈L;D〉

p
−→Di 〈L;D ∪ supp(p)〉

L ∩ supp(o) ⊆ D

〈L;D〉
o
−→Di 〈L ∪ supp(o);D ∪ supp(o)〉

OQ/OA

Fig. 4. Definition of LDi, the Disclosing LTS

I ⊲ S and I ⊲ D, or of initial configurations 〈Σ;Γ ⊢ M : f〉 for Proponent and
〈c : ¬Unit ⊢ (S; X) : (Σ;Γ)〉 for Opponent. Its transition relation is defined by
the following rules:

I
a
−→I J S

a
−→Ty T D

a
−→Di E J ⊲ T J ⊲ E

(I, S,D)
a
−→ogs (J, T,E)

Γ =
−−−−−−−→
(G8 : f8)

−−−−−−−−−−→
Δ8 
 A8 : f8 L = (∪8supp(A8)) ∪ dom(Σ)

〈Σ;Γ ⊢ M : ⊥〉
?(
−→
A8 )

−−−−→ogs

(
〈M
−−−−−−−−→
{G8 := A8}; L̂; Y〉, 〈

−→
Δ8 |⊥;∅〉, 〈L; L〉

)

Γ =
−−−−−−−→
(G8 : f8)

−−−−−−−−−−−−−−→
X(G8)t(A8; W8)

−−−−−−−−−→
Δ8 
 A : f8 L = Σ

−1(refUnit)

〈c : ¬Unit ⊢ (S; X) : (Σ;Γ)〉
?(
−→
A8 )

−−−−→ogs

(
〈S;−→W8〉, 〈c : ¬Unit|

−→
Δ8〉, 〈L; L〉

)

The initial question generated by 〈Σ;Γ ⊢ M : f〉 provides a way for Opponent to
instantiate variables of Γ with abstract values. In this setting Σ only contains
atoms since M is a term of _`a. The transition for 〈c : ¬Unit ⊢ (S; X) : (Σ;Γ)〉
represents this behavior from the point of view of Opponent. Since contexts are
written in _`ref, these initial configurations come equipped with an initial store
S of type Σ, but only the locations of type refUnit are considered to be disclosed,
since the other ones cannot be used by Proponent. The continuation name c is
used for Opponent to perform its final answer, which is of type Unit, following
the notion of observation used to define contextual equivalence.

We use notation
p
=⇒

ogs
to denote a p transition preceded by a possibly empty

sequence of op transitions. Trace equivalence according to LOGS and contextual
equivalence coincide.

Theorem 7. Taking two terms M, N such that Σ;Γ ⊢ M, N : f, then 〈Σ;Γ ⊢ M :
f〉 ≃tr 〈Σ;Γ ⊢ N : f〉 if and only if Σ;Γ ⊢ M ≃2C G N : f.

Such a full-abstraction theorem was proven in [14] for RefML, that is the
intuitionistic fragment of _`ref-calculus, without control operators. It was also
proven in [11] for HOSC, a variant of the _`ref-calculus, with the call/cc op-
erator, but without atom disclosure. Such a full-abstraction result being rather
standard, we have chosen to present its proof in Appendix A.



op
(M; L̂) ↦→op (N; L̂′)

〈M; L〉
op
−−→PI 〈N; L

′〉

PQ
Vt(A; W)

〈E[fV]; L〉
f (A,c)
−−−−−→PI 〈L; W · [c ↦→ E]〉

Vt(A; W)

〈[c]V; L〉
c(A)
−−−→PI 〈L; W〉

PA

OQ

〈L; W〉
f (A,c)
−−−−−→PI 〈[c]W (f)A; L ∪ supp(A)〉 〈L; W〉

c(A)
−−−→PI 〈W (c)[A]; L ∪ supp(A)〉

OA

Fig. 5. Definition of LPI: transitions of prime interactive configurations

PQ
ΔO (f) = f → g Δ 
 A : f

〈ΔO | ⊥〉
f (A,c)
−−−−−→PTy 〈ΔO | Δ, c : ¬g〉

ΔO (c) = ¬f Δ 
 A : f

〈ΔO | ⊥〉
c(A)
−−−→PTy 〈ΔO | Δ〉

PA

OQ
ΔP (f) = f → g Δ 
 A : f

〈ΔO | ΔP〉
5 (A,c)
−−−−−−→PTy 〈ΔO,Δ, c : ¬g | ⊥〉

ΔP (c) = ¬f Δ 
 A : f

〈ΔO | ΔP〉
c(A)
−−−→PTy 〈ΔO,Δ | ⊥〉

OA

Fig. 6. Definition of LPTy: transitions of prime type-context configurations

In the remainder of the paper, we focus on the _`a-calculus. In particular,
we only consider OGS configurations corresponding to _`a from now on.

4 Lassen Trees for the ,-.-calculus

4.1 POGS and POGS bipartite bisimulation

We introduce Lassen trees for terms of the _`a-calculus, as a form of linearized
version of LOGS, where Opponent can interrogate a name provided by Proponent
only once, immediately after it has been introduced. So we consider prime inter-
active configurations which are either passive of the shape 〈L; W〉, or active of the
shape 〈M; L〉 with M a term, L a set of atoms, and W a substitution. Compared to
interactive configurations, the active configurations do not carry an environment
W. Furthermore, we have a set of atoms rather than a full store, since this LTS
is defined only for the _`a-calculus and not for the whole _`ref-calculus.

The Prime Interactive LTS, LPI, is then defined as (ConfsPI,Actions,−→PI),
with −→PI defined in Figure 5.

The corresponding Typing LTS is defined using the transitions given in Fig-
ure 6, which are very close in spirit to the transitions in Figure 3.

The transitions for the Disclosing LTS for POGS are presented on Figure 7.
We compare these with the Disclosing LTS for OGS (Figure 4) below.

The Prime Operational Game Semantics LTS is introduced as a synchroniza-
tion product, together with initial transitions, like for OGS. More precisely, the
synchronization between the interactive and typing LTSs requires that active
configurations 〈M; L〉 correspond to type-contexts of the shape 〈ΔO | ⊥〉, with



op
D′ ⊆ L

′

〈L;D〉
op
−−→pd 〈L ⊎ L

′;D ⊎D′〉

PQ/PA
supp(p) ⊆ D

〈L;D〉
p
−→pd 〈L;D〉

L ∩ supp(o) ⊆ D

〈L;D〉
o
−→pd 〈L ∪ supp(o);D ∪ supp(o)〉

OQ/OA

Fig. 7. Definition of LPDi: Disclosing LTS for POGS

Σ;Δ$ ⊢ M : ⊥ and ⊢ L̂ : Σ, for some store typing context Σ. Accordingly, for
passive configurations 〈L; W〉, we synchronize with 〈ΔO | ΔP〉, and check that
Σ;Δ$ ⊢ W : Δ% and ⊢ L̂ : Σ, for some store typing context Σ.

To synchronize with the Disclosing LTS, whose states are of the form 〈L;D〉,
we simply impose that the L component is the same in the state of LPI, both for
active and passive configurations.

We call LPOGS the LTS obtained by synchronizing LPI, LPTy and LPDi. We
write P,Q ∈ ConfsPOGS the configurations of LPOGS. The Lassen tree of a term
is then defined as the unfolding of the LPOGS on the initial active configuration
associated to this term.

Example 8. The Lassen trees (omitting the typing configurations) for
[c]new = in _ .= and [c]_ .new = in = are given by:

〈[c]new = in _ .=; ∅〉, 〈∅; ∅〉

〈{a}; [f ↦→ _ .a]〉, 〈{a}, ∅〉 〈{a}; [f ↦→ _ .a]〉, 〈{a}, {a}〉

〈[c′] (_ .a) (), {a}〉, 〈{a}, ∅〉 〈[c′] (_ .a) (), {a}〉, 〈{a}, {a}〉

〈{a}; Y〉, 〈{a}, {a}〉

c(f) c(f)

f ((), c′) f ((), c′)

c′(a)

〈[c]_ .new = in =; ∅〉, 〈∅; ∅〉

〈∅; [f ↦→ _ .new = in =]〉, 〈∅, ∅〉

〈[c′] (_ .new = in =) (), ∅〉, 〈∅, ∅〉

〈{a}; Y〉, 〈{a}, {a}〉

c(f)

f ((), c′)

c′(a)

Due to the condition supp(p) ⊆ D in
p
−→pd, some configurations with terms in

normal form do not have a corresponding Proponent transition. The dashed
arrows correspond to op transitions that lead to such stuck configurations.

4.2 Bipartite Bisimulations for OGS and POGS

We consider typed relations on passive and active configurations, that is, we
require related configurations to have the same type. This means in particular
that the environment components W of the two configurations have the same
domain. In addition to the typing, we also enforce that both sets of disclosed
atoms are identical.

Definition 9. A bipartite bisimulation is a pair of relations (R�2C ,R%0B) re-
spectively on active and passive configurations, such that:



– If (G1,G2) ∈ R%0B then for all Opponent moves o and H1,H2 such that

G1

o
−→ H1 and G2

o
−→ H2, we have (H1,H2) ∈ R�2C .

– If (G1,G2) ∈ R�2C then there exists a Proponent move p and (H1,H2) ∈ R%0B

such that G1

p
=⇒ H1 and G2

p
=⇒ H2.

An OGS-bipartite bisimulation is a bipartite bisimulation defined over LOGS,
and a POGS-bipartite bisimulation is a bipartite bisimulation defined over LPOGS.
We write ≃ogs and ≃pogs respectively for the greatest bipartite bisimulation respec-
tively over LOGS and LPOGS.

The following property follows from the fact that the transition relation is
deterministic (up to the choice of fresh names).

Lemma 10. ≃ogs coincides with trace equivalence on OGS configurations.

For op transitions, the difference between OGS and POGS shows up in the

disclosing LTS: in
op
−−→pd, a D′ component can be chosen non-deterministically.

This observation is related to the existential quantification in the second clause
of Definition 13. Both in LOGS and LPOGS, there is only one possible next visible
(Proponent) move. However, in ≃pogs, the game involves choosing an appropriate

set of atoms to be disclosed along
op
−−→pd transitions. For instance, when construct-

ing a POGS bipartite bisimulation between terms new = in _ .= and _ .new = in =

from Example 8, we have two choices for the second step:

(
(〈{a}; [f ↦→ _ .a]〉, 〈{a}, ∅〉), (〈∅; [f ↦→ _ .new = in =]〉, 〈∅, ∅〉)

)
(
(〈{a}; [f ↦→ _ .a]〉, 〈{a}, {a}〉), (〈∅; [f ↦→ _ .new = in =]〉, 〈∅, ∅〉)

)

The latter does not satisfy the constraint on the disclosed set, since the sets are
not the same in the two configurations. The former leads to a stuck configuration:
(〈[c′] (_ .a) (), {a}〉, 〈{a}, ∅〉) cannot perform any Proponent move. Thus the two
programs are not equivalent.

4.3 Deciding ≃pogs

We now study how to decide when two POGS configurations are bisimilar. First,
trees generated by LPOGS are of finite depth.

Lemma 11. Taking a POGS configuration G, any trace in TrPOGS(G) is finite.

This lemma is proven using a biorthogonal logical predicate, following the use
of biorthogonality to prove strong normalization of _`-calculus [26], the compu-
tational metalanguage [19], and cut elimination for linear logic [10]. The proof
can be found in Appendix D.

Due to the non-determinism of atom generation in ↦→op, of function name
generation in t, and of name picking in Opponent transitions, the trees gen-
erated by LPOGS are infinitely branching. To tame this infinite branching, we
see the set of moves Moves and the set of configurations ConfsPOGS of LPOGS as
nominal sets [9] over atoms, function and continuation variables. So taking c a



finite permutation over these sets, we write c ∗ - for the action of permutation c

over elements of nominal set - . The transition relation −→pogs of LPOGS preserves

this action of permutation, i.e., it is equivariant : if P
m
−→pogs Q then for all finite

permutation c, we have c ∗ P
c∗m
−−−→pogs c ∗ Q.

One can then consider a variant LDPOGS of the POGS LTS which uses the
same set of configurations as LPOGS, but whose transition relation −→dpogs chooses
fresh atoms and names deterministically. So −→dpogs is then deterministic on op

and Proponent actions, and finitely branching on Opponent actions.
We remark at this point that the notion of bipartite bisimulation ≃pogs intro-

duced in Definition 13 is not suited for LDPOGS. Indeed, it requires equality of
actions in the bisimulation game, and also that configurations related by bisim-
ulation have the same type. So we relax the definition of ≃pogs and work with
ternary relations, adding a finite permutation of names and atoms in order to
match the actions, rather than enforcing syntactic equality.

Definition 12. A relation R ⊆ ConfsPOGS×ConfsPOGS×Perm is said to be valid
when, for all ((I, S, 〈 ,D〉), (J, T, 〈 ,D′〉), c) ∈ R, we have T = c ∗S and D′ = c ∗D.

Definition 13. A relaxed bipartite bisimulation is a pair of valid relations
(R�2C ,R%0B) respectively on active and passive configurations such that:

– If (P1, P2, c) ∈ R%0B then for all Opponent moves o1, o2, for all permutation
c′ extending c, and active POGS configurations Q1,Q2 satisfying o2 = c′∗o1,

P1
o1
−−→ Q1 and P2

o2
−−→ Q2, we have (Q1,Q2, c

′) ∈ R�2C .
– If (P1, P2, c) ∈ R�2C then there exists a permutation c′ extending c, two

Proponent moves p2 = c′ ∗ p1, and two passive POGS configurations Q1,Q2

such that (Q1,Q2, c
′) ∈ R%0B, P1

p1
==⇒ Q1 and P2

p2
==⇒ Q2.

We write ≃A
pogs for the greatest relaxed bipartite bisimulation over LPOGS.

From the fact that −→pogs is equivariant, we deduce that ≃A
pogs and ≃ogs coincide.

Since LDPOGS generates finite Lassen trees, we deduce that the bisimulation game
can be decided.

Theorem 14. Taking two POGS configurations P,Q, we can decide if P ≃pogs Q.

4.4 Relating the Transitions in OGS and POGS

To relate the transitions in the OGS and in the POGS, we need to introduce
some relations and operations on OGS configurations.

Definition 15. Let G = (I, S, 〈L;D〉) and H = (I, S, 〈L;D′〉) be two OGS configu-
rations. We write G ⊆Di H for when D ⊆ D′.

When G ⊆Di H, the configurations only differ by their set of disclosed atoms.

Lemma 16. If G ⊆Di H and G
a
−→ogs G

′ then H
a
−→ogs H

′ and G′ ⊆Di H
′.

Lemma 17. Let P be an active prime configuration. We have the following:



– if P
op
−−→ogs P

′, then P
op
−−→pogs P

′,

– if P
op
−−→pogs P

′, then P
op
−−→ogs⊆Di P

′.

In POGS, the disclosed set increases in op transitions as seen above, but not
in p. In a sense, disclosing in OGS is done only when needed, whereas in POGS,
disclosing must be declared as soon as the atom is created. This is ensured by

the additional condition supp(p) ⊆ D in the rule for
p
−→pd.

Lemma 18. When P
p
−→pogs P

′ with P active, we also have P
p
−→ogs P

′.

However, the converse does not always hold, specifically if an atom has been
declared non-disclosed but still appears in the action p. Indeed, the transi-

tion (〈[c]a; L̂; ∅〉, S, 〈L; ∅〉)
c(a)
−−−→ogs (〈̂L; ∅〉, S, 〈L; {a}〉) is valid for OGS, but has

no counterpart in POGS, since 〈L; ∅〉 cannot make the transition
c(a)
−−−→pd.

Using the following notion of limit (on OGS configurations), we can intuitively
replace D by its minimal extension, preventing this from happening.

Definition 19. Given a configuration G = (I, S, 〈L;D〉), we define its limit as:

lim(G) , (I, S, 〈L;
⋃

t∈Traces

(L ∩D′)〉) with G
t
−→ogs ( , , 〈 ,D′〉)

We have that G ⊆Di lim(G) and lim is idempotent. We call limit configurations
those configurations that are a limit (or alternatively, that are their own limit).
Being a limit configuration is preserved by moves but not necessarily by op.

Lemma 20. Let P be a limit configuration. If P
p
−→ogs P

′, then P
p
−→pogs P

′.

For Opponent transitions, the situation is less simple since not all active
OGS configurations are active POGS configurations. To circumvent that issue,
we reuse the tensor product from [13]. For two OGS configurations where at least
one is passive, we define the tensor product, written ⊗, as follows:

(I, S,D) ⊗ (J, T,E) = (I ⊗ J, S ⊗ T,D ⊗ E)

〈S; W〉 ⊗ 〈S′; W′〉 = 〈S ∪ S′; W · W′〉 〈M; S; W〉 ⊗ 〈S′; W′〉 = 〈M; S ∪ S′; W · W′〉

〈L;D〉 ⊗ 〈L′;D′〉 = 〈L ∪ L′;D ∪D′〉 when
D′ ∩ L ⊆ D

D ∩ L′ ⊆ D′

The side conditions for the L and D components ensure that no shared atom is
disclosed on one configuration but not the other.

We can then describe an active OGS configuration as the tensor of two POGS

configurations (where S = L̂):

(〈M; S; W〉, 〈Δ$ ⊢ ⊥;Δ%〉, 〈L,D〉) = (〈M; L〉, 〈Δ$ ⊢ ⊥〉, 〈L,D〉) ⊗ (〈L; W〉, 〈Δ$ ⊢ Δ%〉, 〈L,D〉)

Finally, we have the following for opponent transitions:

Lemma 21. When P
o
−→pogs Q, we have P

o
−→ogs Q ⊗ P.

When P
o
−→ogs G, we have P

o
−→pogs Q with G = Q ⊗ P.



5 Relating Bisimilarities in OGS and POGS

In this section, we show that ≃pogs can be used to characterize ≃ogs for the
limit configurations introduced above. We rely for that on up-to techniques for
bipartite bisimulation in OGS, which we introduce first.

5.1 Up-to techniques for ≃ogs

The proofs in this section use the theory of compatible functions [30, 28]. More
details can be found in Appendix B.

Definition 22 (Bipartite bisimulation up-to). Given a function 5 , a bipar-
tite bisimulation up to 5 is a pair (R�2C ,R%0B) such that:

– If (G1,G2) ∈ R%0B then for all Opponent moves o and H1,H2 such that

G1

o
−→ogs H1 and G2

o
−→ogs H2, we have (H1,H2) ∈ 5 (R�2C ).

– If (G1,G2) ∈ R�2C then there exists a Proponent move p and (H1,H2) ∈

5 (R%0B) such that G1

p
=⇒

ogs
H1 and G2

p
=⇒

ogs
H2.

We then define hide(R�2C ,R%0B) , (⊆DiR�2C⊇Di, ⊆DiR%0B⊇Di). Recall that
we still require that hide(R�2C ,R%0B) only contains pairs of configurations with
the same disclosed set. The soundness of hide can be proved using Lemma 16.

Lemma 23. hide is a sound up-to technique, i.e. if (R�2C ,R%0B) is a bisimu-
lation up to hide, then (R�2C ,R%0B) ⊆≃ogs.

Given a pair of relations (R�2C ,R%0B) on active and passive OGS configura-
tions respectively, we define the following functions:

tensor(R�2C ,R%0B) ,
(
{(G1 ⊗ G2,H1 ⊗ H2) s.t. (G1,H1) ∈ R�2C , (G2,H2) ∈ R%0B},
{(G1 ⊗ G2,H1 ⊗ H2) s.t. (G1,H1), (G2,H2) ∈ R%0B}

)

split(R�2C ,R%0B) ,
(
{(G1,H1) s.t. (G1 ⊗ G2,H1 ⊗ H2) ∈ R�2C },
{(G1,H1) s.t. (G1 ⊗ G2,H1 ⊗ H2) ∈ R%0B}

)

Lemma 24. split(≃ogs) ⊆≃ogs.

tensor is not a sound up-to technique. It is nevertheless useful to reason
about POGS bipartite bisimilar configurations; see Theorem 30 below.

5.2 Properties of the Limit (in OGS)

Lemma 25 (Monotonicity). If G is passive and G
t
−→ogs H, then there exists

G′ such that G ⊗ G′ ⊆Di H.

Lemma 25 shows that transitions can only increase the substitution and the store
(corresponding to the G′ component), and the set of disclosed atoms (represented
by the use of ⊆Di). More precisely, ⊆Di is required if some atoms from G are
disclosed along the trace t, in which case new ones can appear in G′.



Lemma 25 is language specific. It does not hold when the language allows
the content of the store to be modified (like, e.g. in _`ref). Additionally, LTSs
enforcing some local restriction on the usage of function or continuation names
usually have extra components that are modified along the transitions; we return
to this point in Section 7.

In a limit configuration (Definition 19), all atoms that may be disclosed at
some point are disclosed. By Lemma 25, these atoms can be disclosed using a
single trace.

Lemma 26. Given a passive configuration G, there exists a trace t and a con-

figuration H such that G
t
−→ogs lim(G) ⊗ H.

The limit is also useful to relate transitions in OGS and in POGS as follows.

Lemma 27. Take a POGS configuration P.

If P is active and P
a
−→ogs Q, then lim(P)

a
−→pogs lim(Q).

If P is passive and P
o
−→ogs Q ⊗ P, then lim(P)

o
−→pogs lim(Q).

All in all, we obtain that ≃ogs is a congruence for lim. For R a relation over
configurations, we write lim(R) for the set {(lim(G), lim(H)) | (G,H) ∈ R}.

Lemma 28. ≃ogs is closed by computing the limit: lim(≃ogs)⊆ ≃ogs.

The case for passive configurations follows immediately from Lemmas 26 and 24.
The property of the limit might make us think that the disclosure process

of an atom could be decided statically, by annotating new syntactically. The
following example shows that it is not the case:

_1.new =, < in _ .if 1 then = else <

Either = or < will be disclosed depending on the boolean 1 given by Opponent,
but never both. So this term is indeed contextually equivalent to _1.new = in _ .=.

5.3 Correspondence Between ≃ogs and ≃pogs

Theorem 29 (From ≃ogs to ≃pogs). Consider two POGS configurations P and
Q. If P ≃ogs Q are both limit configurations, then P ≃pogs Q.

To reason about bisimilar POGS configurations, we use the closure of tensor,
written �tensor. Intuitively, �tensor(R�2C ) contains the pairs (G1 ⊗ G2,H1 ⊗ H2)
with (G1,H1) ∈ R�2C , (G2,H2) ∈ �tensor(R%0B), and �tensor(R%0B) contains the
pairs (G1 ⊗ G2,H1 ⊗ H2) with (G1,H1) ∈ R%0B, (G2,H2) ∈ �tensor(R%0B).

Theorem 30 (From ≃pogs to ≃ogs). Suppose R is a POGS bipartite bisimula-
tion. Then �tensor(R) is a OGS bipartite bisimulation up-to hiding.

By Lemma 23, Theorem 30 means that if P ≃pogs Q, then P ≃ogs Q.
The correspondence between ≃ogs and ≃pogs is restricted to prime configura-

tions as ≃pogs can only relate those. Having the additional conditions of config-
urations being limits is enough for our decidability result.



6 Related Work

The a-calculus was introduced in [27], together with logical relations to rea-
son over contextual equivalence for this language. These logical relations use a
Kripke-style definition, worlds being defined as spans of atoms to keep track of
the disclosed atoms, similar to the permutation we use in our relaxed bipartite
bisimulations. They capture contextual equivalence for programs of first order
type, but are an incomplete technique for higher-order programs. This entails
a decidability result for the first-order fragment of the a-calculus, since logical
relations only quantify over finite objects at first-order types.

Categorical models of the a-calculus were provided in [32, 33], using a rep-
resentation of name creation via a strong monad. Two examples of such models
were given: (i) the functor category (4C� with � the category of finite sets and in-
jection; (ii) the category B� of continuous �-sets, with � the topological group
of automorphisms over N. None of these models are fully-abstract, since they
distinguish new = in _G.G = = from _G.false.

These models were later refined using nominal sets [9], so that types are
interpreted via Fraenkel-Mostowski sets [31] or domains [15]. Both of these works
are continuation models; they might be used to provide a semantics for the _`a-
calculus studied in this paper, a direction we wish to explore in future work. Such
use of continuations was justified in [31] to provide a model for an extension of
the a-calculus with recursion. More recently, proof-relevant logical relations were
introduced to deal with recursion in the presence of name generation [5].

In [29], a model of the a-calculus is given in quasi-Borel spaces, showing
a correspondence between random sampling and fresh name generation. This
model is shown to be fully-abstract for terms of first-order types.

In [6], environmental bisimulations for the a-calculus are defined and shown
to be fully abstract. Nevertheless, it does not seem possible to extract a decision
procedure from that result, since environmental bisimulations are played over a
higher-order LTS, that is, an LTS whose actions contain _-terms. So this LTS is
infinitely branching at higher-order types.

Eager normal-form bisimulations have been introduced by Lassen for the call-
by-value _-calculus [17] and _`-calculus. In [34], a notion of bisimulation similar
to ≃ogs is introduced and shown to be fully abstract for an untyped version of
_`ref. Compared to the standard notion of eager normal form bisimulations, the
configurations in the bisimulations in [34] contain an environment similar to the
environment component W of the OGS LTS in Section 3.

In [1], a fully-abstract game model is provided for the a-calculus. However,
this model requires an extensional collapse, that is not directly computable at
higher-order type. So that model could only be used to prove the decidability of
contextual equivalence for terms of first-order types. Enforcing a well-bracketed
and visible behavior for Opponent in the OGS model, we believe that our trace
model would coincide with the intentional game model of [1]. Nominal game
semantics was developed for languages with nominal references and exceptions
in [36]. In that setting, algorithmic presentations of game semantics make it
possible to provide a classification of decidability of call-by-value languages with



(bounded) integer references [22], and ground references [24]. In this setting,
the undecidability of contextual equivalence originates from the use of integer
references by Proponent. A detailed survey on the literature on contextual equiv-
alence for the a-calculus is available in [37].

7 Conclusion

To decide the contextual equivalence between two _`a typed terms M and N

with contexts in the _`ref-calculus, we first construct the corresponding initial
configurations, and we can decide by Thm. 14 if they are POGS-bisimilar. This
decidability result comes from the fact that the POGS LTS generates finite trees.

Then, we prove in Thm. 29 and Thm. 30 that two initial active configura-
tions are POGS-bisimilar iff they are OGS-bisimilar. This is possible because
initial configurations are prime (they are active and W is empty) and are also
limit configurations (their disclosed sets contain all the atoms of the store). In
Thm. 7 and Lemma 10, we prove that M and N are contextually equivalent iff the
corresponding initial configurations are OGS-bisimilar, which yields decidability.

We now examine the obstacles that remain to prove the decidability of con-
textual equivalence with contexts in the a-calculus.

First of all, in that setting, trace equivalence would not be fully-abstract
anymore (Thm. 7). Indeed, without integer references, one cannot observe the
sequentiality of calls and returns. So an extensional collapse would be necessary.

Another obstacle is that in the absence of higher-order references, Oppo-
nent must satisfy a condition of O-visibility [2], that corresponds to a local
well-scoping discipline, for the function names it is allowed to call. Working in
an intuitionistic type system, corresponding to the standard _-calculus without
control operators, the call-and-return discipline of the interaction between Pro-
ponent and Opponent has to be well-bracketed. These two conditions, namely
O-visibility and well-bracketing, can be enforced operationally [14] in the LTS,
by keeping track of part of the history of the interaction. However the reduc-
tion of ≃ogs to ≃pogs is not possible anymore in that setting. Indeed, the limit
over-approximates the set of atoms that can be tested. This can be seen when
comparing the programs

new = in let = H(_I.I = 0) in = and new = in let = H(_I.false) in =

Assuming = is immediately disclosed makes it possible to distinguish the two
programs. Because the local conditions of well-bracketing or visibility would pre-
vent Opponent from playing some actions, Opponent could perform irreversible
changes that would invalidate Lemma 25. This would make ≃pogs incomplete.

To handle this difficulty, we could try and use Kripke eager normal-form
bisimulation [12], using a structure for worlds richer than just a set of atoms.

Finally, in absence of full ground references, that can store locations, atoms
played by Opponent would also follow a local well-scoping discipline, but the
discriminatory power over Player atoms would also be restricted [23]. In such a
setting, the same difficulties as with well-bracketing and O-visibility would arise,
and a more complex extensional collapse would be needed.
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A Full Abstraction of the OGS LTS

We prove in this appendix that trace-equivalence ≃tr and contextual equivalence
≃2C G coincide. The proof uses the notion of ”closed instantiation of all use” (CIU)
equivalence, as introduced in [20].

The proof goes through the introduction of a notion of ”parallel composition
with hiding” of OGS configurations, which is defined as a reduction relation ↦→so.
This composition is used to define an observational equivalence ≃barb for the OGS
LTS as a barbed equivalence. We then prove that

– ≃28D and ≃barb coincide on initial configurations, by using the fact that:

• the observation over Unit type used in the definition of ≃2C G coincides
with the observation used to define ≃barb;



• the reduction relation used to define the composition and the operational
semantics are bisimilar.

– ≃tr is included in ≃barb, since the notion of observation used to define ≃barb

corresponds to an answer c(());
– ≃barb is included in ≃tr, by proving a definability result to build an OGS

configuration that generates exactly a given trace.

A.1 CIU equivalence

Definition 31. Two terms M, N are said to be ciu equivalent, written Σ;Γ ⊢
M ≃28D N : f, when for all store typing context Σ′ ⊇ Σ for all covariable c,
for all substitution W such that Σ′; c : ¬Unit ⊢ W : Γ, for all store S such that
⊢ S : Σ′, and for all continuation variable c we have (M{W}, S) ⇓ [c] () if and only
if (N{W}, S) ⇓ [c] ().

Following the general framework developed in [35], we can prove the corre-
spondence between ≃28D and ≃2C G .

Theorem 32. Σ;Γ ⊢ M ≃28D N : f if and only if Σ;Γ ⊢ M ≃2C G N : f.

A.2 Composition and Barbed Equivalence

We introduce the composition of two OGS configurations, one representing Pro-
ponent and the other Opponent. To do so, we first define when such a composi-
tion is possible, via a compatibility predicate. The latter is defined as a reduction
relation between pairs of OGS configurations, following [16, 13].

Definition 33. Taking a Ty configuration S, we define its c-dual configuration,
written S∗c , as:

〈Δ$ | Δ%〉
∗c , 〈Δ% , c : ¬Unit | ⊥;Δ$〉

〈Δ$ | ⊥;Δ%〉
∗c , 〈Δ% , c : ¬Unit | Δ$〉

Definition 34. We say that two OGS configurations G = (I; S;D) and H =

(J;T;E) are c-compatible, written compatc(G,H) when:

– the two are initial, with G of the shape 〈Σ;Γ ⊢ M : ⊥〉 and H of the shape
〈c : ¬Unit ⊢ (S; W) : (Σ;Γ)〉 with Σ ⊆ Σ′.

– or G = (I; S;D) and H = (J;T;E) one is active and the other passive, and:
• writing S and T for the store component of I and J respectively, for all
ℓ ∈ dom(S) ∩ dom(T), S(ℓ) = T(ℓ) = ().

• T = S∗c ;
• writing D as 〈L,D〉 and E as 〈L′,D′〉, we have D = D′ = L ∩ L′.

We write compat (G,H) when there exists a continuation variable c such that
compatc(G,H).

The composition is then defined as a reduction relation over pairs of com-
patible OGS configurations.



Definition 35 (Synchronization). We define the Synchronizing/Operational
transition system LSO as the transition system whoses configurations are pairs of
OGS compatible configurations, written

(
G1 | |G2

)
, and whose reduction relation

↦→so is defined as ↦→op
so ∪ ↦→sync

so , where:

G1

op
−−→ogs H1 compat (H1,G2)(
G1 | |G2

)
↦→op

so

(
H1 | |G2

)
G2

op
−−→ogs H2 compat(G1,H2)(
G1 | |G2

)
↦→op

so

(
G1 | |H2

)

G1

m
−→ogs H1 G2

m
−→ogs H2(

G1 | |G2

)
↦→sync

so

(
H1 | |H2

)

While compatibility is preserved by ↦→sync
so , it is not necessarily by ↦→op

so . Indeed,

taking G1,H1 two compatible OGS configurations, if G1

op
−−→ogs H1, then this

operational reduction could have allocated fresh locations that already exist in
G2. This explains why we have to restrict to compatible configurations in the
rules defining ↦→op

so . However, in such a case there exists always a configuration

H′
1, equal to H1 up-to renaming of the fresh locations, and such that G1

op
−−→ogs H

′
1

and compat (H′
1,G2).

Using the SO reduction relation we define a notion of observation as a
barb [21].

Definition 36. We write
(
I| |J

)
⇓ c when there exist two interactive configura-

tions I, I′ such that
(
I| |J

)
↦→∗

so

(
I′ | |J′

)
with I′ is a passive configuration of the shape

〈SP; WP〉 and J′ of the shape 〈[c] (); SO; WO〉. This definition can be directly lifted
to OGS configurations.

This is used to define the following equivalence for OGS configurations.

Definition 37. Two configurations G1,G2 are said to be barbed equivalent,
written G1 ≃barb G2, when for all configuration H such that compatc (G1,H) and
compatc(G2,H), we have

(
G1 | |H

)
⇓ c if and only if

(
G2 | |H

)
⇓ c.

A.3 Adequacy

To prove that ≃barb and ≃2C G coincide, we introduce an intermediate transition
system Lbop, and we show that Lbop and LSO (LI) are bisimilar, and that Lbop

and the operational reduction relation are weakly bisimilar, ignoring the sync

actions.
Lbop can be seen as an abstract machine to compute the interaction repre-

sented by LSO (LI). It relies on a notion of telescoped substitution, to avoid cycles
in the concatenation of mappings coming from the composition of two interactive
configurations. This enforces the absence of livelocks in the interaction.

Definition 38. A telescoped substitution X is a substitution seen as a list of
mappings [=1 ↦→ V1, . . . , =: ↦→ V:] such that for all 8 ∈ {1, . . . , :}, we have
supp(V8) ∩ {=8 , . . . , =:} = ∅.



A telescoped substitution X can be transformed into a substitution X∗ that
maps names to closed values.

Definition 39. Taking a telescoped substitution X and : ∈ N∗, we define the
iterated telescoped substitution X8 as:

X1 , X X8+1 , Πn∈dom( X) [n ↦→ X(n){X8 (n)}]

We then define X∗ as X: with : the size of the domain of X. Then if Γ ·Δ ⊢ X : Γ,
we have Δ ⊢ X∗ : Γ.

Lemma 40. Taking X a telescoped substitution and n ∈ dom(X), then there exists
a name n ∈ dom(X) and a natural number : ∈ N∗ such that X: (n) = m and X(m)
is a value that is not a name in dom(X).

Definition 41. We introduce the boxed operational (bop) transition system
Lbop , (Confsbop, ↦→bop) with configurations A,B ∈ Confsbop of the shape (M; S; X)
with X a telescoped substitution such that there exists a typing context Γ and a
store context Σ with Σ;Γ ⊢ M : ⊥, Γ ⊢ S : Σ and Σ ⊢ X : Γ.

Its reduction relation ↦→bop is given by the two reduction relations ↦→op

bop
and

↦→sync

bop
defined in Figure 8.

op
(M; S) ↦→op (N;T)

〈M; S; X〉 ↦→
op

bop
〈N; T; X〉

PQ
Vt(A; W)

〈E[fV]; S; X〉 ↦→
sync

bop
〈[c]X(f)A; S; X · W · [c ↦→ E]〉

Vt(A; W)

〈[c]V; S; X〉 ↦→
sync

bop
〈X(c)[A]; S; X · W〉

PA

Fig. 8. Definition of Lbop

This transition system can be seen as an abstract machine, that performs a
variant of the linear head reduction, which is known to be the way interaction
in game semantics computes [8]. Having a global environment W, it is similar to
the Milner Abstract Machine [3].

We define a bisimulation between ↦→bop and ↦→op by collapsing Lbop config-
urations into operational ones.

Definition 42. We define the function Φ
bop
op : Confsbop → Terms×Stores as the

function:
(M; S; X) ↦→ (M{X∗}; S{X∗})

It is direct to prove that Φbop
op is invariant by ↦→sync

bop
.

Lemma 43. If A ↦→sync

bop
B then Φ

bop
op (A) = Φ

bop
op (B).



Proof. Taking a value V such that Vt(A; W) then:

(
X(c) [A]

)
{(X · W)∗} =

(
X(c) [A{W}]

)
{X∗}

=
(
[c]V

)
{X∗}

(
[c]X(f)A

)
{(X · W · [c ↦→ E])∗} =

(
E[X(f) (A{W})]

)
{X∗}

=
(
E[fV]

)
{X}

Using the fact that the environment of bop configurations are telescoped,
we deduce that such configurations can only perform a finite number of sync
reduction steps, after which they have to perform an op reduction.

Lemma 44. Taking A a bop configuration, then there exists a configuration B
such that A(↦→sync

bop
)∗B and B ∉ dom(↦→sync

bop
).

Proof. Suppose that A ∈ dom(↦→sync

bop
). We write A as 〈M; S; W〉, so that:

– either M is of the shape E[fV] with f ∈ dom(W). Then from Lemma 40, there
exists a natural number : and a function name g such that W: (f) = g and
W(g) is a value that is not a name in dom(W). So W(g) must be a _-abstraction.
Then there exists a configuration B that can be written as 〈W(g)A; T; W · W′〉
such that A(↦→sync

bop
)∗B. Since W(g)A is not a normal form, we deduce that

B ∉ dom(↦→sync

bop
).

– or M is of the shape [c]V with c ∈ dom(W). Then a similar reasoning applies.

Lemma 45. Taking a bop configuration A = (M; S; X) such that (M; S) ↦→op (N; T),

then Φ
bop
op (A) ↦→op Φ

bop
op (〈N; T; X〉).

From Theorem 2, we deduce the following theorem.

Lemma 46. Taking M a term, S a store and W a substitution such that Σ;Γ ⊢ M :
⊥, Γ ⊢ S : Σ and Σ;∅ ⊢ W : Γ, if (M{W}; S{W}) ↦→op (N; T) then:

– either there exists Ñ, T̃ such that (M; S) ↦→op (Ñ; T̃) with Ñ{W} = N and T̃{W} = T,
– or M is of the shape E[fV] with f ∈ dom(W),
– or M is of the shape [c]V with c ∈ dom(W).

Lemma 47. Taking A a bop configuration such that Φ
bop
op (A) ↦→op (N; T) and

A ∉ dom(↦→sync

bop
), then there exists a bop configuration B such that A ↦→op

bop
B

and Φ
bop
op (B) = (N; T).

Proof. We write A as 〈M; S; X〉. Since A ∉ dom(↦→sync

bop
), we get that M cannot be

of the shape E[fV] with f ∈ dom(X), or of the shape [c]V with c ∈ dom(X). We
conclude using Lemma 46.

From this, we deduce that Φbop
op is a functional bisimulation, that is a bisim-

ulation relation that is functional.



Lemma 48. Writing �⇒op

bop
for (↦→sync

bop
)∗ ↦→op

bop
, then Φ

bop
op is a functional bisim-

ulation between (Confsbop, �⇒
op

bop
) and (Terms × Stores, ↦→op).

Proof. Taking A a bop configuration, suppose that there exists (N; T) such that
Φ

bop
op (A) ↦→op (N; T). From Lemma 44, there exists a bop configuration B such

that A(↦→sync

bop
)∗B and B ∉ dom(↦→sync

bop
). From Lemma 43, we get that Φbop

op (A) =

Φ
bop
op (B). Then from Lemma 47, we get that there exists a bop configuration B′

such that B ↦→op

bop
B′ and Φ

bop
op (B′) = (N; T).

Suppose now that A ↦→op

bop
(N; T; X′). Writing A as (M; S; X), we have (M; S) ↦→op

(N; T) with and X′ = X. Then from Lemma 45 we have Φbop
op (A) ↦→op Φ

bop
op (N; T; X′).

We now establish a bisimulation between LSO and Lbop.

Definition 49. We define the function Rso
bop

: Confsso → Confsbop as

{((
(I; S;D) | | (J;T;E)

)
, (M; SP ∪ SO; X)

)
| X a telescoped substitution of WP · WO

}

with I = 〈M; SP; WP〉 and J = 〈SO; WO〉, or I = 〈SP; WP〉 and J = 〈M; SO; WO〉.

Notice that SP∪SO is well-formed in this definition thanks to the fact that I and
J are compatible, being part of a SO configuration.

In order to prove that Rso
bop

is a bisimulation, we prove in the following lemma
that an Opponent configuration can always perform an action as soon as a
compatible Player configuration can perform the dual action.

Lemma 50. Taking G,H two OGS configurations such that compat(G,H), for

all Proponent action p, if G
p
−→ogs G

′, then there exists a configuration H′ s.t.

H
p
−→ogs H

′ and compat(G′,H′).

Proof. From the fact that there exists c such that compatc (G,H), we can write:

– G as (〈M; SP; WP〉; 〈ΔO | ⊥;ΔP〉; 〈L;D〉);
– H as (〈SO; WO〉; 〈ΔP, c : ¬Unit | ΔO〉; 〈L

′;D〉).

Then either p is a question of the shape f (A) with ΔO (f) = f → g, or an answer
of the shape c(A) with ΔO (c) = ¬f.

There exists a typing context Δ disjoint from ΔP and ΔO such that Δ 
 A : f

and 〈ΔO | ⊥;ΔP〉
p
−→Ty 〈ΔO | Δ,ΔP〉. We then have 〈ΔP, c : ¬Unit | ΔO〉

p
−→Ty

〈Δ,ΔP, c : ¬Unit | ΔO〉.
From the fact that G is valid, we get that there exists a store typing context ΣP

such that dom(ΣP) = L and ΣP;ΔO ⊢ M : ⊥. By analysis of the action p generated
by M, we then have supp(p) ⊆ L. Since D = L ∩ L′ and supp(p) = supp(p), we get

that L′∩supp(p) ⊆ L′∩L = D. We then have 〈L′;D〉
p
−→Di 〈L

′∪supp(p);D∪supp(p)〉

and 〈L;D〉
p
−→Di 〈L;D∪supp(p)〉. And indeed, L∩(L′∪supp(p)) = (L∩L′)∪supp(p) =

D ∪ supp(p).



Lemma 51. Rso
bop

is a bisimulation between LSO and Lbop.

Proof. We take
( (
G| |H

)
,A

)
∈ Rso

bop
. Without loss of generality, suppose that G is

the active configuration. So we write:

– G as (I; S;D),
– H as (J;T;E),
– I as 〈M; SP; WP〉
– J as 〈SO; WO〉,
– A as (M; SP ∪ SO; X), with X a telescoped substitution of WP · WO.

First, suppose
(
G| |H

)
↦→so a

(
G′ | |H′

)
. There are two possible cases:

– either a = op and G
op
−−→ogs 〈M′; S′

P
, WP〉 and H = H′. Since G′ is compatible

with H, we deduce that new locations allocated in S′
P
cannot be in SO, so that

S′
P
∪ SO is well-defined. Then writing B as (M′; S′

P
∪ SO; X), we have A ↦→op

bop
B

and
( (
G′ | |H

)
,B

)
∈ Rso

bop
.

– or a = sync so there exists a Proponent move m such that G
m
−→ogs G

′ and

H
m
−→ogs H

′. We then have G′ = (〈SP; WP · W′〉; ; ) and H′ = (〈M′; SO; WO〉; ; ).
W′ · X is a telescoped substitution, so that, defining B as 〈M′; SP ∪ SO; W

′ · X〉,
we have A ↦→op

bop
B and

( (
G′ | |H

)
,B

)
∈ Rso

bop
.

Now suppose that A ↦→bop B, and we write A as (M; S; X). There are three
possible cases:

– either a = sync and M is of the shape E[ 5 V], and there exists a reduction
Vt(A; W) such that N = X( 5 )A and X′ = W · X. Then writing m for 5 (A), we

have the existence of G′ such that G
m
−→ogs G

′. From Lemma 50, we get that

there exists H′ such that H
m
−→ogs H

′ and
( (
G′| |H′

)
,B

)
∈ Rso

bop
.

– or a = sync and M is a named value [c]V, and there exists a reduction Vt(A; W)
such that N = WO(c) [A], and X′ = W · X. Then writing m for c(A), we have the

existence of an OGS configuration G′ s.t. G
m
−→ogs G

′. From Lemma 50, we

get that there exists H′ such that H
m
−→ogs H

′ and
( (
G′ | |H′

)
,B

)
∈ Rso

bop
.

– or a = op, (M, S) ↦→op (N, T) and X′ = X. From the fact that I is validated by S,
we get that there exists a store ΣP such that ⊢ SP : ΣP and ΣP;ΔO ⊢ M : ⊥. We
deduce that there exists a store T′ such that (M, SP) ↦→op (N, T) and T = T′∪SO.

We define I′ as 〈N; T′; WP〉, and G
′ as (I′; S;D). Then G

op
−−→ogs G

′ and G′ is
compatible with H. So

(
G| |H

)
↦→op

so

(
G′ | |H

)
and

( (
G′ | |H

)
,B

)
∈ Rso

bop
.

Combining Lemma 48 and 51, we deduce that the collapse

Φso
op : Confsso → Terms × Stores(

(I; S;D) | | (J;T;E)
)
↦→ (M{X∗}; S{X∗})

with I = 〈M; SP; WP〉 and J = 〈SO; WO〉, or I = 〈SP; WP〉 and J = 〈M; SO; WO〉, and X a
telescoped substitution of WP · WO, is a functional bisimulation

This provides us the following adequacy result between the observation used
to define ≃barb and the one to define ≃28D .



Theorem 52. Taking G,H two compatible configurations, then
(
G| |H

)
⇓ c if and

only if Φso
op(

(
G8 | |H

)
) ⇓ [c] ().

Theorem 53. 〈Σ;Γ ⊢ M1 : f〉 ≃barb 〈Σ;Γ ⊢ M2 : f〉 iff Σ;Γ ⊢ M1 ≃28D M2 : f.

Proof. Let us write G8 for 〈Σ;Γ ⊢ M8 : f〉, with 8 ∈ {1, 2}.

From barb to ciu We first suppose that G1 ≃barb G2. We consider:

– a store typing context Σ′ ⊇ Σ;
– a substitution W such that Σ′; 3 : ¬b ⊢ W : Γ;
– a store S such that ⊢ S : Σ′.

We write H for 〈Σ′; 3 : ¬Unit ⊢ (S; W) : Γ〉. Then for 8 ∈ {1, 2} we have
Φso

op(
(
G8 | |H

)
) = (M8{W}, S).

Taking 8 ∈ {1, 2} Suppose that (M8{W}, S) ⇓ [3] (). Then from Theorem 52,

we get that
(
G8 | |H

)
⇓ 3. From G1 ≃barb G2, taking 9 ,

{
1 if 8 = 2

2 if 8 = 1
, we get

that
(
G 9 | |H

)
⇓ 3. So from Theorem 52, we get that (M 9 {W}, S) ⇓ [3] (), i.e. Σ;Γ ⊢

M1 ≃28D M2 : f.

From ciu to barb Suppose now that Σ;Γ ⊢ M1 ≃28D M2 : f. We take an OGS

configuration H = (I; S;D) such that for all 8 ∈ {1, 2}, compatc (G8 ,H). Then by
definition H = 〈c : ¬Unit ⊢ (S; W) : (Σ′;Γ)〉.

Then for 8 ∈ {1, 2} we have Φso
op(

(
G8 | |H

)
) = (M8{W}, S). We conclude from

Σ;Γ ⊢ M1 ≃28D M2 : f, using again Theorem 52 in both directions.

A.4 Relating barbed equivalence and traces equivalence

We now prove that trace equivalence and barbed equivalence coincide. To do
so, we express the barb observation

(
G| |H

)
⇓ c of LSO as the existence of traces

ending with c(()).

Definition 54. We write (G,H) ∈ yc when there exists a trace t such that
t ∈ TrLOGS

(G) and tc(()) ∈ TrLOGS
(H).

By definition, this notion of observation is preserved by trace equivalence:

Lemma 55. If (G,H) ∈ yc and G ≃tr G
′ then (G′,H) ∈ yc.

It is also closed by antireduction.

Lemma 56. Taking
(
G| |H

)
and

(
G′| |H′

)
two SO configurations such that

(
G| |H

)
↦→so(

G| |H
)
and

(
G′ | |H′

)
∈ yc, then

(
G| |H

)
∈ yc.

This trace predicate coincides with termination:

Lemma 57. (G,H) ∈ yc if and only if
(
G| |H

)
⇓ c.



Proof. First suppose that (G,H) ∈ yc, that is there exists a trace t such that
t ∈ TrLOGS

(G) and tc(()) ∈ TrLOGS
(H). We reason by induction on the length of

t to prove that
(
G| |H

)
⇓ c, using the fact that ⇓ is closed by anti-reduction of

↦→so. When this trace is empty, we have G = 〈SP, WP〉 and H = 〈[c] (); SO; WO〉. So(
G| |H

)
⇓ c.

Next, we suppose the following reduction:

(
G| |H

)
↦→∗

so

(
〈SP; WP〉| |〈(); SO; WO〉

)

We reason by induction over the length of this reduction, using the fact that yc

is closed by anti-reduction of ↦→so (Lemma 56). When this reduction is empty,

we conclude using the fact that 〈[c] (); SO; WO〉
c( ())
−−−−→ogs 〈SO; WO〉.

Combining Lemma 57 and 55, we prove the soundness of trace equivalence.

Theorem 58. Taking G,H two OGS configurations, if G ≃tr H then G ≃barb H.

In order to prove full abstraction, the opposite direction, we rely on a defin-
ability result over traces.

Definition 59. We say that an OGS LTS is O-definable when taking a trace
t ∈ TrOGS(G) with G prime, there exists a configuration H and a continuation
name c such that compatc(G,H) and TrOGS(H) = {t′ | t′ ∼ tc(())}.

Theorem 60. Considering an OGS LTS satisfying the O-definable condition,
and taking G,H two OGS configurations, if G ≃barb H then G ≃tr H.

In the next section, we will prove that LOGS is $-definable. Combining this
result with Theorems 32, 53, 58 and 60, we deduce Theorem 7 stating the cor-
respondence between trace equivalence and contextual equivalence.

A.5 Definability

To prove full abstraction of trace equivalence, we need to be able to define a
program that generates a given trace.

Given such a trace t, we suppose given a function that maps all the function
names f, continuations names c, and atoms appearing in t to locations ℓf , ℓc and
ℓa. These locations are then used to store all these names. To enforce that the
moves appear in the right order, we use a clock implemented via a reference
clock.

To build code from a given trace, we reason inductively on the tree structure
inherited from the justification structure over the trace.

Definition 61. Taking a trace of the shape tm t1 n t2 we say that m is justified
by n when m is a question over a function name f or an answer of a continuation
name c, that is bound in n.

This tree structure corresponds to the Lassen trees generated by the POGS

LTS.



Definition 62. Taking an execution trace

t = (G1, S1, 〈 ,D1〉)
m1

−−→ogs (G2, S2, 〈 ,D2〉) . . .
m:
−−→ogs (G:+1, S:+1, 〈 ,D:+1〉)

we associate the view-tree viewtree(t) whose nodes are triples (8, S8 ,D8)8∈{1,...,: },

and such that (8, S8 ,D8)
m
−→ (:, S: ,D:) when m = m: and:

– either m: is an Opponent move justified by m 9 ;
– or m: is a Proponent move and : = 9 + 1.

To a configuration (8, 〈ΔO | 〉,D) of a view tree, we associate the store S8
defined as:

[clock ↦→ 8] · ⊙f∈dom(ΔO) [ℓf ↦→ f] · ⊙c∈dom (ΔO) [ℓc ↦→ c] · ⊙a∈D [ℓa ↦→ a]

To a variable G and an abstract value A, we associate the following terms
setG,A and get

A
, defined by case analysis over A:

setG,f , ℓf := G getf , ()
setG,aa , ℓa := G getaa , ()
setG,a , G get

a
, !ℓa

setG, () , G get() , ()
setG,true , G get

true
, true

setG,false , G get
false

, false

Proving definability means building a prime Interactive configuration P such
that the only ”successful” interaction of P is represented by T (up-to renaming).

Theorem 63. Taking S an active prime Ty configuration, c a continuation
name, and T ∈ VT(S) a view-tree, there exists a Prime Interactive configuration
P such that P ⊲ S∗c and VT(P; S∗c ) = {T ′ | T ′ = c ∗ T , c a finite permutation}.

Proof. By induction on the tree structure of T .
For the induction step, we consider the tree generated by the LTS from the

configuration PP, represented by the following paths: PP
(p;ℎ)
−−−−→PI PO

(o8 ; 98 )
−−−−−→PI

P8 ⇓op PP,8 for 8 ∈ {1, . . . , :}. We write PP,8 as 〈M8 , S 98 〉.
Taking the function name f introduced in p, we consider all the occurrences

o81 , . . . , o8; of actions of (o8)8∈{1,...,: } of the shape f (A8 9 ; c8 9 ). We then define W( 5 )
as

_G.`c.[c]let 8 =!clock in clock :=!clock + 1;
if (8 = 981 0=3 setG,A81 = get

A81
) then ℓc81 := _H.[c]H; M81

else if (8 = 982 0=3 setG,A82 = get
A82

) then ℓc82 := _H.[c]H; M82
...

else if (8 = 98; 0=3 setG,A8;
= get

A8;
) then ℓc8; := _H.[c]H; M8;

else Ω

Then P8 9 = 〈W(f)A8 9 , Sℎ〉.



The other actions, if they exist, are of the shape c(A8 9 ), with c a continuation
name c introduced in p. In such a case we define W(c) by replacing the first line
of the term above by

letG = • in let 8 =!clock in clock :=!clock + 1;
if (8 = 91 0=3 setG,A81 = get

A81
) then M81

else if (8 = 92 0=3 setG,A82 = get
A82

) then M82
...

else if (8 = 9: 0=3 setG,A8;
= get

A8;
) then M8;

else Ω

Then P8 9 = 〈W(c) [A8 9 ], Sℎ〉.
If p is of the shape g(f, c), then we define PP as 〈W(c) [let G =!ℓg in G W(f)], S<〉.

If p is of the shape 3 (f), then we define PP as 〈let G =!ℓ3 in G W(f), S<〉.
So by construction, we have {T } ⊆ VT(P; S). The reverse inclusion is proven

using the fact that PO reduces to a diverging configuration top-level term for all
moves different from (o8; 98).

We relate the notion of dual Ty configuration with this notion of dual for a
set of traces.

Lemma 64. Taking t ∈ TrTy (S), we have tc(()) ∈ TrTy (S
∗c ).

Combining these statements, we deduce the following definability theorem
for the OGS LTS.

Theorem 65. Taking a trace t ∈ TrOGS (G) with G prime, then there exists a
configuration H compatible with G such that compatc(G,H) and TrOGS(H) = {t′ |
t′ ∼ tc(())}.

B Proofs for Up-to Techniques

B.1 Progression and Compatible Functions

Definition 66 (Progress). A pair of relations (R�2C ,R%0B) on active and pas-
sive configurations respectively progresses to the pair (R ′

�2C
,R ′

%0B
), written (R�2C ,R%0B) ֌

(R ′
�2C

,R ′
%0B

) when:

– (R�2C ,R%0B) ⊆ (R ′
�2C

,R ′
%0B

)
– Whenever (G1,G2) ∈ R%0B, for all Opponent moves o and H1,H2 such that

G1

o
−→ogs H1 and G2

o
−→ogs H2, we have (H1,H2) ∈ R ′

�2C
.

– Whenever (G1,G2) ∈ R�2C , there exists a Proponent move p and (H1,H2) ∈

R ′
%0B

such that G1

p
=⇒

ogs
H1 and G2

p
=⇒

ogs
H2.

Using the notion of progress, a bipartite bisimulation is a pair (R�2C ,R%0B)
that progresses to itself, i.e. (R�2C ,R%0B) ֌ (R�2C ,R%0B). Similarly, a bisimula-
tion up to 5 is a pair (R�2C ,R%0B) such that (R�2C ,R%0B) ֌ 5 (R�2C ,R%0B).



Definition 67 (Compatibility). A monotone function 5 from pairs of rela-
tions to pairs of relations is compatible if for all pairs (R�2C ,R%0B), (R

′
�2C

,R ′
%0B

)
such that (R�2C ,R%0B) ֌ (R ′

�2C
,R ′

%0B
), we have 5 (R�2C ,R%0B) ֌ 5 (R ′

�2C
,R ′

%0B
).

Additionally, we require 5 to be expansive, i.e. 83 ⊆ 5 and idempotent, i.e.
5 ◦ 5 ⊆ 5 .

These results hold without these additional constraints but simplify the
proofs.

Lemma 68. The composition of compatible functions is compatible.

Compatible functions are useful for defining up-to techniques.

Lemma 69. Compatible functions are sound up-to techniques, i.e. if 5 is com-
patible and (R�2C ,R%0B) is a bisimulation up to 5 , then (R�2C ,R%0B) ⊆≃ogs.

Proof. Suppose we have a compatible function 5 and a bisimulation up to 5 :
(R�2C ,R%0B). Then 5 (R�2C ,R%0B) is a bisimulation.

By definition, (R�2C ,R%0B) ֌ 5 (R�2C ,R%0B). As 5 is compatible, this means
5 (R�2C ,R%0B) ֌ 5 ( 5 (R�2C ,R%0B)). We conclude by using the idempotence of
5 .

Lemma 70. Bisimilarity is a congruence w.r.t to compatible functions.

Proof. Take a compatible function 5 . As 5 is expansive, bisimilarity is a bisim-
ulation up to 5 . By the proof above, we know that 5 (≃ogs) is a bisimulation, so
5 (≃ogs) ⊆≃ogs.

A function can satisfy the properties in Lemmas 69 and 70 while not being
compatible. This is trivially the case for any function 5 with 5 ⊆ 6 for a com-
patible function 6. One way of showing that a function 5 falls in that case is to
prove that 5 is compatible up-to.

Definition 71 (Compatible up-to). A monotone, expansive and idempotent
function 5 from pairs of relations to pairs of relations is compatible up-to 6 if
for all pairs (R�2C ,R%0B), (R

′
�2C

,R ′
%0B

) such that (R�2C ,R%0B) ֌ (R ′
�2C

,R ′
%0B

),
we have 5 (R�2C ,R%0B) ֌ (6 ◦ 5 ◦ 6) (R ′

�2C
,R ′

%0B
).

When 6 is compatible, thus expansive, compatibility up-to 6 is weaker than
compatibility.

Lemma 72. For any compatible function 6, if 5 is compatible up-to 6, then
6 ◦ 5 ◦ 6 is compatible.

Proof. For any (R�2C ,R%0B) ֌ (R ′
�2C

,R ′
%0B

), we have 6(R�2C ,R%0B) ֌ 6(R ′
�2C

,R ′
%0B

),
by compatibility of 6. Then, by definition, we have 5 (6(R�2C ,R%0B)) ֌ (6 ◦
5 ◦ 6) (6(R ′

�2C
,R ′

%0B
)). As 6 is compatible, this means 6( 5 (6(R�2C ,R%0B))) ֌

6((6 ◦ 5 ◦ 6) (6(R ′
�2C

,R ′
%0B

))). By idempotence of 6, we can conclude as (6 ◦ 5 ◦
6) (R�2C ,R%0B) ֌ (6 ◦ 5 ◦ 6) (R ′

�2C
,R ′

%0B
).



B.2 Compatible Functions for ≃ogs

The compatibility of hide follows from Lemma 16.

Lemma 73. hide is compatible.

split is not directly compatible as it requires substitutions over atoms. Thus,
we introduce an extra function. We use f to range over substitutions over atoms.
Given a pair of relations (R�2C ,R%0B) on active and passive OGS configurations
respectively, we define the following function:

isub(R�2C ,R%0B) ,
(
{(Gf,Hf) s.t. (G,H) ∈ R�2C , f is injective},
{(Gf,Hf) s.t. (G,H) ∈ R%0B, f is injective}

)

Lemma 74. Take an injective substitution f.

Whenever Gf
a
−→ogs H, there exists G

′, f′, a′,H′ such that Gf = Gf′, a′f′ = a,

H′f′ = H and G′ a′

−→ogs H
′.

Whenever G
a
−→ogs H, Gf

af
−−→ogs Hf.

The compatibility of isub follows from Lemma 74.

Lemma 75. isub is compatible.

Finally, we can study the tensor and prove that split is compatible.

Lemma 76. Whenever G ⊗ H
a
−→ogs G1, then

– either G
a
−→ogs G

′ and G1 = G′ ⊗ H′ with H ⊆Di H
′,

– or H
a
−→ogs H

′ and G1 = G′ ⊗ H′ with G ⊆Di G
′.

In both cases, the configuration that does not perform a transition is passive.

Whenever G
a
−→ogs G

′, then for all passive configuration H with G ⊗H defined

and (LG′ \ LG) ∩ LH = ∅, we have G ⊗ H
a
−→ogs G

′ ⊗ H′ with H ⊆Di H
′.

The need for ⊆Di occurs when a is a Proponent move that disclosed an atom
shared by both G and H. This does not happen if they are limit configurations.
The condition (LG′ \LG) ∩LH = ∅ ensures that the fresh names created via a – via
allocation or given by the environment – do not appear in H. Up to renaming,
this condition always holds:

Remark 77. For any G
a
−→ogs G

′ and passive configuration H with G ⊗ H well-
defined, there always exists an injective substitution f, with Gf = G such that

we can apply Lemma 76 on G
af
−−→ogs G

′f.

Lemma 78. split is compatible up to isub.

Proof. We consider two pairs of relations such that (R�2C ,R%0B)֌ (R ′
�2C

,R ′
%0B

).



– Take (A,A′) ∈ split(R�2C ), meaning (A⊗ P,A′ ⊗ P′) ∈ R�2C . By hypothesis,

there exists p and (G,G′) ∈ R ′
%0B

such that A ⊗ P
p
=⇒

ogs
G, A′ ⊗ P′

p
=⇒

ogs
G′.

By lemma 76, we must have that A
p
=⇒

ogs
P2, A

′
p
=⇒

ogs
P′2 with G = P2 ⊗ P3

and G′ = P′2 ⊗ P′3. Thus, we can conclude as (P2, P
′
2) ∈ split(R ′

%0B
) ⊆

(isub ◦ split ◦ isub) (R ′
%0B

).
– Take (P1, P

′
1) ∈ split(R%0B), meaning (P1⊗P2, P

′
1⊗P

′
2) ∈ R%0B, an Opponent

move o, and configurations G,G′ such that P1
o
−→ogs G and P′1

o
−→ogs G

′.
We can construct f injective such that we can use Lemma 76 for P1 ⊗

P2
of
−−→ogs Gf⊗P2, and P

′
1⊗P

′
2

of
−−→ogs G

′f⊗P′2. So (Gf⊗P2,G
′f⊗P′2) ∈ R ′

�2C
.

Thus, we have (G,G′) ∈ (isub◦split) (R ′
�2C

) ⊆ (isub◦split◦isub) (R ′
�2C

).

C Proofs for the Comparison of ≃ogs and ≃pogs

We write G ≤ H where there exists G′ such that G ⊗ G′ ⊆Di H.
When G ≤ H, if we write 〈L;D〉 (resp. 〈L′;D′〉) for the disclosing components

of G (resp. H), we can decompose L′ as L⊎L 5 and D′ as D⊎D4⊎D 5 with D4 ⊆ L

and D 5 ⊆ L 5 . This means 〈L;D〉 ⊗ 〈L 5 ;D 5 〉 ⊆Di 〈L ⊎ L 5 ; (D ⊎ D4) ⊎ D 5 〉.
Note that we can have (I, S,D) ≤ (J, T,E) when one configuration is Opponent

and the other is Proponent, although we will focus on situations where this is
not the case.

Lemma 79. Suppose G ≤ H where G and H are either both passive or both

active. Then G
a
−→ogs G

′ implies that H
af
−−→ogs H

′ and G′f ≤ H′ for some H′ and
injective f such that Hf = H.

Proof. This is a direct application of Remark 77 and Lemma 16.

The property above can be extended to traces, by a simple induction.

Lemma 80 (Asynchrony of atom disclosure). Consider a configuration G

and two passive configurations H,G′ such that G
t
−→ogs H and G

t′

−→ogs G
′, for

some t, t′. Then there exist t′′,H′ such that G′ t′′

−→ogs H
′ and H ≤ H′.

Among other, this lemma states that if some existing names in D4 can be dis-
closed (using a trace t), then they can always be disclosed after an arbitrary
trace t′.

Proof. If t′ is empty, the result is trivial.
If t is empty, then the result follows immediately from Lemma 25.
Otherwise if G is an active configuration, then t and t′ start with the same

transition so we can conclude by induction.
If G is a passive configuration, by Lemma 25, G ≤ G′. We show the expected

result by an induction on the trace t using Lemmas 79 and 74.



For L$�(, there exists a reachable state in which every name in the limit is
disclosed:

Proof (Lemma 26). Write G = ( , , 〈L,D〉) and lim(G) = ( , , 〈L,D;〉). We have
D; \ D = {01, . . . , 0=}.

We reason by induction on = to show that there exists a reachable configu-
ration G8 such that the disclosed set contains D ⊎ {01, . . . , 08}.

The induction case is a direct consequence of Lemma 80.
Then by definition of the limit, we know that the result configuration cannot

have a disclosed set D′ bigger than D; when restricting to existing names (D′∩L =

D; ∩ L). Thus, the use of ⊆Di in the definition of ≤ is not required.

Proof (Lemma 27). We note L for the set of atoms of P, D (resp. D′) for the
disclosed set of P (resp. Q), and D; (resp. D

′
;
) for the one for the limit configu-

ration. We have the following inequalities: D′
;
∩ L ⊆ D; ⊆ D′

;
. This means that

the disclosed set for lim(Q) may only change from the one of lim(P) in the new
atoms that are created by the transition.

By Lemma 16, we know that lim(P)
a
−→ogs G for some G ⊇Di Q (resp. G ⊇Di

Q ⊗ P).

– for a = p, by Lemma 20, this means lim(P)
p
−→pogs G. We can verify that

lim(Q) = G by looking at the LTS using the inequalities above.
– for a = o, we have that G = P′ ⊗ lim(P) with P′ ⊇Di Q. Then, by Lemma 21,

lim(P)
o
−→pogs P

′. We can verify that lim(Q) = P′ by looking at the LTS using
the inequalities above.

– for a = op, the inequalities correspond to the conditions for the transition
op
−−→pd. Thus, there always is a transition in POGS for which the resulting
configuration is lim(Q).

Proof (Theorem 29). We examine transitions in the target:

– for an Opponent transition, from Lemma 21, for all P
o
−→pogs P

′, we have

P
o
−→ogs P

′ ⊗ P and similarly for Q
o
−→pogs Q

′. Thus, we have P′ ⊗ P ≃ogs Q
′ ⊗Q.

This means P′ split(≃ogs) Q
′ which is included in ≃ogs by Lemma 24. Both

are limits by Lemma 27 so we can conclude.

– for a Proponent transition, we have P
p
=⇒

ogs
P′ and Q

p
=⇒

ogs
Q′. By Lemma 28,

lim(P′) ≃ogs lim(Q′) and we conclude by Lemma 27.

Proof (Theorem 30). Take G �tensor(R) H. We write G , P⊗G′ and H , Q⊗H′.

– for a Proponent transition, we have P
p
=⇒

pogs
P′ and Q

p
=⇒

pogs
Q′ and P′ R Q′.

Thus, by Lemmas 17, 18 and 76, G
p
=⇒

ogs
⊆Di P

′ ⊗ G′ and H
p
=⇒

ogs
⊆Di Q

′ ⊗ H′.

We can conclude as P′ ⊗ G′ �tensor(R) Q′ ⊗ H′.

– for an Opponent transition, if G
o
−→ogs P

′ ⊗ G and H
o
−→ogs Q

′ ⊗ H, then by

Lemma 21, P
o
−→pogs P

′ and Q
o
−→pogs Q

′. Thus, P′ R Q′ and P′ ⊗ G �tensor(R)
Q′ ⊗ H.



D Finiteness of POGS Traces

We prove Lemma 11. We write O for the set of prime OGS configurations G such
that any trace in TrPOGS(G) is finite.

We introduce Kripke biorthogonal logical predicates VÈfÉ,KÈ¬fÉ and EÈfÉ
respectively over quadruple formed by either a value V, an evaluation context
E or a term M, together with two sets of atoms L,D and a typing context for
continuation and function names Δ. They are defined in Figure 9, by recursion
over the type f. Notice that KÈ¬fÉ is defined by orthogonality wrt VÈfÉ, and
EÈfÉ by orthogonality wrt KÈ¬fÉ, the pole being O.

We extend their definition to terms with free variables, using a logical predi-
cate GÈΓÉ on substitution from variable to values. From it, we define the logical
predicate

L;Γ |= M : f

on terms of type f with free variables in Γ, locations in L and function names
in Δ.

VÈBoolÉ , {(b;L;D;Δ) | b ∈ {true, false},D ⊆ L ⊆ Locs,Δ ∈ TCtxs}
VÈrefUnitÉ , {(a;L;D;Δ) | a ∈ L}
VÈf → gÉ {(V;L;D;Δ) | ∀Θ ⊇ Δ.∀(L′,D′) ⊇ (L,D).∀W.(W;L′;D′;Θ) ∈ VÈfÉ

⇒ (VW; L′;D′;Θ) ∈ EÈgÉ}
KÈ¬fÉ , {(E;L;D;Δ) | ∀Θ ⊇ Δ.∀(L′,D′) ⊇ (L,D).∀V.

(V;L′;D′;Θ) ∈ VÈfÉ ⇒ (〈E[V]; L′〉, 〈Θ|⊥〉, 〈L′;D′〉) ∈ O}
EÈfÉ , {(M;L;D;Δ) | Δ; L ⊢ M : f ∧ ∀E.(E;L;D;Δ) ∈ KÈ¬fÉ ⇒ (〈E[M]; L〉, 〈Δ|⊥〉, 〈L;D〉) ∈ O}
EÈ⊥É , {(M;L;D;Δ) | Δ; L ⊢ M : ⊥ ∧ (〈M; L〉, 〈Δ|⊥〉, 〈L;D〉) ∈ O}
GÈ∅É , {(Y;L;D;Δ) | D ⊆ L ⊆ Locs,Δ ∈ TCtxs}
GÈΓ, G : fÉ , {(X · [G ↦→ V]; L;D;Δ) | (X;L;D;Δ) ∈ GÈΓÉ ∧ (V; L;D;Δ) ∈ VÈfÉ}
GÈΓ, c : ¬fÉ , {(X · [c ↦→ E]; L;D;Δ) | (X;L;D;Δ) ∈ GÈΓÉ ∧ (E;L;D;Δ) ∈ KÈ¬fÉ}
L;Γ |= M : f , ∀(L′;D) ⊇ (L; L).∀Θ.∀X.(X;L′;D;Θ) ∈ GÈΓÉ ⇒ (M{X};L′;D;Θ) ∈ EÈfÉ
L;Γ |= E : ¬f , ∀(L′;D) ⊇ (L; L).∀Θ.∀X.(X;L′;D;Θ) ∈ GÈΓÉ ⇒ (E{X};L′;D;Θ) ∈ KÈ¬fÉ

Fig. 9. Definition of the logical predicates

D.1 Basic Lemmas

O is closed by antireduction.

Lemma 81. If G ∈ O and H
op
−−→pogs G then H ∈ O

Logical predicates are monotone over both the typing context of locations
and function names.

Lemma 82. Taking D,D′, L, L′ ⊆ Locs such that D ⊆ L and D′ ⊆ L′, and Δ,Θ ∈
TCtxs, if (L′;D′) ⊇ (L;D) and Θ ⊇ Δ, then:



– if (V; L;D;Δ) ∈ VÈfÉ, then (V; L′;D′;Θ) ∈ VÈfÉ;
– if (E; L;D;Δ) ∈ KÈ¬fÉ, then (E; L′;D′;Θ) ∈ KÈ¬fÉ;
– if (X; L;D;Δ) ∈ GÈΓÉ, then (X; L′;D′;Θ) ∈ GÈΓÉ;

The logical predicates VÈfÉ is included in EÈfÉ.

Lemma 83. Taking V a value such that (V; L;D;Δ) ∈ VÈfÉ, then (V; L;D;Δ) ∈
EÈfÉ.

Lemma 84. Taking f a type, then:

1. if Δ 
 A : f and supp(A) ⊆ D, then (A; L;D;Δ) ∈ VÈfÉ;
2. if (V; L;D;Δ) ∈ VÈf → gÉ then (〈[f ↦→ V]; L〉, 〈Δ|f : f → g〉, 〈L;D〉) ∈ O;
3. ( [c]•; L;D; c : ¬f) ∈ KÈ¬fÉ;
4. if (E; L;D;Δ) ∈ KÈ¬fÉ then (〈[c ↦→ E]; L〉, 〈Δ|c : ¬f〉, 〈L;D〉) ∈ O;

Proof. The four points are proven by a mutual induction over f.

1. Suppose that Δ 
 A : f.
– If f is a ground type this is straightforward;
– Otherwise, if f = f1 → f2, we have A equal to a function name f. Taking

(L′;D′) ⊇ (L;D) and Θ ⊇ Δ, we have to prove that (fV; L′;D′;Θ) ∈ EÈf2É
for all V such that (V; L′;D′;Θ) ∈ VÈf1É. To do so, taking E such that
(E; L′;D′;Θ) ∈ KÈ¬f2É, we then have to prove that (〈E[fV]; L′〉, 〈Δ |
⊥〉, 〈L′;D′〉) ∈ O. Depending on g1, there are then three possible cases:

• if g1 = Bool, then (〈E[fV]; L〉, 〈Θ ⊢ ⊥〉, 〈L′;D′〉)
f (V,c)
−−−−→pogs (〈[c ↦→

E]〉, 〈Θ ⊢ c : ¬f2〉, 〈L
′;D′〉)

• if f1 is functional, then (〈E[fV]; L〉, 〈Θ ⊢ ⊥〉, 〈L′;D′〉)
f (g,c)
−−−−→pogs (〈[g ↦→

V] · [c ↦→ E]〉, 〈Θ ⊢ g : f1, c : ¬f2〉, 〈L
′;D′〉)

• if g1 = refUnit, then (〈E[fV]; L〉, 〈Θ ⊢ ⊥〉, 〈L′;D′〉)
f (V,c)
−−−−→pogs (〈[c ↦→

E]〉, 〈Θ ⊢ c : ¬f2〉, 〈L
′;D′〉).

From induction on (2) at type f1, we deduce that (〈[g ↦→ V]〉, 〈Θ ⊢
g : f1〉, 〈L

′;D′〉) ∈ O. From induction on (4) at type f2, we deduce that
(〈[c ↦→ E]〉, 〈Θ ⊢ c : ¬f2〉, 〈L

′;D′〉) ∈ O. So we deduce that (〈E[fV]; L〉, 〈Θ ⊢
⊥〉, 〈L′;D′〉) ∈ O.

2. Suppose that (V; L;D;Δ) ∈ VÈf → gÉ. We have

(〈[f ↦→ V]; L〉, 〈Δ | f : f → g〉, 〈L;D〉)
f (A;c)
−−−−→pogs (〈[c]VA; L

′〉, 〈Θ,Δ, c : ¬g ⊢ ⊥〉, 〈L′;D′〉)

for all A such that Θ 
 A : f and 〈L′;D′〉 such that 〈L;D〉
f (A)
−−−→Di 〈L

′;D′〉.
From induction on (1) at type f, we deduce that (A; L′;D′;Θ) ∈ VÈfÉ, so
that (VA; L′;D′;Θ) ∈ EÈgÉ. From induction on (3) at type g, we deduce that
( [c]•; L′;D′;Δ) ∈ KÈ¬gÉ, so that (〈[c]VA; L′〉, 〈Θ,Δ, c : ¬g ⊢ ⊥〉, 〈L′;D′〉) ∈ O.
Thus, (〈[f ↦→ V]; L〉, 〈Δ|f : f → g〉, 〈L;D〉) ∈ O.

3. Taking (L′;D′) ⊇ (L;D) and Δ such that c ∉ dom(Δ), for all V such that
(V; L′;D′;Δ, c : ¬f) ∈ VÈfÉ, depending on f there are three cases:



– If f = Bool, then (〈[c]V; L′〉, 〈Δ, c : ¬f |⊥〉, 〈L′;D′〉)
c(V)
−−−→pogs (〈Y; L

′〉, 〈Δ, c :
¬f |Y〉, 〈L′;D′〉) which is a normal form for LPOGS so that it is in O.

– If f = refUnit, then (〈[c]V; L′〉, 〈Δ, c : ¬f |⊥〉, 〈L′;D′〉)
c(V)
−−−→pogs (〈Y; L

′〉, 〈Δ, c :
¬f |Y〉, 〈L′;D′〉) whenever V ∈ D′ (in the other case, no transition can hap-
pen so we are done). And again, this configuration is a normal form for
LPOGS so that it is in O.

– If f is a function type, then (〈[c]V; L′〉, 〈Δ, c : ¬f |⊥〉, 〈L′;D′〉)
c(f)
−−−→pogs

(〈[f ↦→ V]; L′〉, 〈Δ, c : ¬f |f : f〉, 〈L′;D′〉). Then we deduce from (2) that
(〈[f ↦→ V]; L′〉, 〈Δ, c : ¬f |f : f〉, 〈L;D〉) ∈ O.

So we indeed get in all three cases that (〈[c]V; L′〉, 〈Δ, c : ¬f |⊥〉, 〈L′;D′〉) ∈ O.
4. Suppose that (E; L;D;Δ) ∈ KÈ¬fÉ. Then

(〈[c ↦→ E]; L〉, 〈Δ, c : ¬f〉, 〈L;D〉)
c(A)
−−−→pogs (〈E[A]; L

′〉, 〈Θ,Δ ⊢ ⊥〉, 〈L′;D′〉)

for all A such that Θ 
 A : f and 〈L′;D′〉 such that 〈L;D〉
c(A)
−−−→Di 〈L

′;D′〉.
From induction on (1) at type f, we deduce that (A; L;D;Θ) ∈ VÈfÉ, so that
(〈E[A]; L′〉, 〈Θ,Δ ⊢ ⊥〉, 〈L′;D′〉) ∈ O. So (〈[c ↦→ E]; L〉, 〈Δ, c : ¬f〉, 〈L;D〉) ∈ O.

D.2 Fundamental Property

We now prove the standard compatibility lemmas needed to prove the funda-
mental theorem of the logical predicates.

Lemma 85. L;Γ |= G : Γ(G)

Proof. Let us take Θ, (L′;D) ⊇ (L; L), and X such that (X; L′;D;Θ) ∈ GÈΓÉ.
Then by definition of GÈΓÉ, (X(G); L′;D;Θ) ∈ VÈΓ(G)É so that from Lemma 83
(X(G); L′;D;Θ) ∈ EÈΓ(G)É.

Lemma 86. If L;Γ |= V : f → g and L;Γ |= W : f, then L;Γ |= VW : g.

Proof. Let us take (L′;D) ⊇ (L; L), and X such that (X; L′;D;Δ) ∈ GÈΓÉ. We write
Ṽ for V{X} and W̃ for W{X}. Taking E such that (E; L′;D;Δ) ∈ KÈ¬gÉ, we have to
prove that (〈E[ṼW̃]; L′;D〉, 〈Δ | ⊥〉, 〈L′;D〉) ∈ O. To do so, we prove that (E[let G =
• in GW̃]; L′;D;Δ) ∈ KÈ¬(f → g)É. Taking (L′′;D′) ⊇ (L′;D), Θ ⊇ Δ and V′ such
that (V′; L′′;D′;Θ) ∈ VÈf → gÉ, we want to prove that (〈E[V′W̃]; L′′;D′〉, 〈Θ |
⊥〉, 〈L′′;D′〉) ∈ O. Since L;Γ |= W : f, and from Lemma 82 (X; L′′;D′;Θ) ∈ GÈΓÉ,
we get that (W̃; L′′;D′;Θ) ∈ EÈfÉ. So we simply have to prove that (E[let H =

• in V′H]; L′′;D′;Θ) ∈ KÈ¬fÉ, which is straightforward.

Lemma 87. If L;Γ, G : f |= M : g, then L;Γ |= _G.M : f → g.

Proof. Let us take (L′;D) ⊇ (L; L), and X such that (X; L′;D;Δ) ∈ GÈΓÉ, from
Lemma 83 we have to prove that ((_G.M){X}; L′;D;Δ) ∈ VÈf → gÉ. So taking
Θ ⊇ Δ, (L′′;D′) ⊇ (L′;D), V such that (V; L′′;D′;Θ) ∈ VÈfÉ, and E such that



(E; L′′;D′;Θ) ∈ KÈ¬gÉ we have to prove that (〈E[(_G.M{X})V]; L′′〉, 〈Θ | ⊥〉, 〈L′′;D′〉)
︸                                                 ︷︷                                                 ︸

G

∈

O. We conclude using Lemma 81 since

(〈E[(_G.M{X})V]; L′′〉, 〈Θ | ⊥〉, 〈L′′;D′〉)
op
−−→pogs (〈E[(M{X · [G ↦→ V]})V]; L′′〉, 〈Θ | ⊥〉, 〈L′′;D′〉)

︸                                                           ︷︷                                                           ︸
H

. Indeed, by hypothesis, we get that E[(M{X · [G ↦→ V]}; L′′;D′;Θ)] ∈ O. .

Lemma 88. If L;Γ, G : f |= M : g and L;Γ |= E : ¬g then L;Γ |= E[let G = • in M] :
¬f.

Proof. Let us take (L′;D) ⊇ (L; L), and X such that (X; L′;D;Δ) ∈ GÈΓÉ. We
write M̃ for M{X} and Ẽ for E{X}.. Taking V such that (V; L′;D;Δ) ∈ VÈfÉ, we
prove that (〈Ẽ[let G = V in M̃]; L′〉, 〈Δ | ⊥〉, 〈L′;D〉)

︸                                              ︷︷                                              ︸
G

∈ O. Indeed, we have

G
op
−−→pogs (〈Ẽ[M̃{G := V}]; L′〉, 〈Δ | ⊥〉, 〈L′;D〉)

︸                                           ︷︷                                           ︸
H

From L;Γ, G : f |= M : g, we get (M̃{G := V}; L′;D;Δ) ∈ EÈfÉ, which is enough to
conclude that H ∈ O. So from Lemma 81 we get that G ∈ O.

Lemma 89. If L;Γ |= M : f and L;Γ, G : f |= N : g then L;Γ |= let G = M in N : g.

Proof. Let us take (L′;D) ⊇ (L; L), and X such that (X; L′;D;Δ) ∈ GÈΓÉ. We write
M̃ for M{X} and Ñ for N{X}. We want to prove that (let G = M̃ in Ñ; L′;D;Δ) ∈ EÈgÉ.
So taking E such that (E; L′;D;Δ) ∈ KÈ¬gÉ, we have to prove that (〈E[let G =

M̃ in Ñ]; L′〉, 〈Δ | ⊥〉, 〈L′;D〉) ∈ O.
By hypothesis, (M̃; L′;D;Δ) ∈ EÈfÉ, so we prove the fact that (E[let G =

• in Ñ]; L′;D;Δ) ∈ KÈ¬fÉ. Taking (L′′;D′) ⊇ (L′;D) and V such that (W; L′′;D′;Θ),
we prove that (〈E[let G = V in Ñ]; L′〉, 〈Δ ⊢ ⊥〉, 〈L′′;D′〉)

︸                                                 ︷︷                                                 ︸
G

∈ O using Lemma 81. In-

deed,

G
op
−−→pogs (〈Ẽ[M̃{G := V}]; L′〉, 〈Δ | ⊥〉, 〈L′;D〉)

︸                                           ︷︷                                           ︸
H

and from L;Γ, G : f |= M : g, we get (M̃{G := V}; L′;D;Δ) ∈ EÈfÉ, which is enough
to conclude that H ∈ O.

Lemma 90. If L;Γ, G : refUnit |= M : f then L;Γ |= new G in M : f

Proof. For all (L′;D) ⊇ (L; L), taking X such that (X; L′;D;Δ) ∈ GÈΓÉ, we have
to prove that (new G in M{X}; L′;D′;Δ) ∈ EÈfÉ. Taking E such that (E; L;D′;Δ) ∈
KÈ¬fÉ, we have

(〈E[new G in M{X}]; L′〉, 〈Δ | ⊥〉, 〈L′;D′〉)
︸                                                   ︷︷                                                   ︸

G

op
−−→pogs (〈E[M{X · [G ↦→ a]}]; L′ ∪ {a}〉, 〈Δ | ⊥〉, 〈L′ ∪ {a};D′′〉)

︸                                                                      ︷︷                                                                      ︸
H



for all a ∉ L′, with D′′ either equal to D′ or to D′∪{a}. From L;Γ, G : refUnit |= M :
f we get that (M{X · [G ↦→ a]}; L′∪{a};D′′;Δ) ∈ EÈgÉ, since (L′∪{a};D′′) ⊇ (L, L).
This is enough to conclude that H ∈ O and so from Lemma 81 that G ∈ O.

Lemma 91. If L;Γ, c : ¬f |= M : ⊥ then L;Γ |= `c.M : f

Proof. For all (L′;D) ⊇ (L; L), taking X such that (X; L′;D;Δ) ∈ GÈΓÉ, and E

such that (E; L′;D;Δ) ∈ KÈ¬fÉ, writing G for (〈E[`c.M]; L〉, 〈Δ | ⊥〉, 〈L′;D〉), we

have to prove that G ∈ O. We have G
op
−−→pogs (〈M{c := E}; L〉, 〈Δ | ⊥〉, 〈L′;D〉)

︸                                     ︷︷                                     ︸
H

. By

hypothesis, we have that (M{X · [c ↦→ E]}; L′;D;Δ) ∈ EÈ⊥É, so that indeed H ∈ O,
which is enough to conclude.

Lemma 92. If L;Γ |= M : f and Δ(c) = ¬f then L;Γ |= [c]M : ⊥

Proof. For all (L′;D) ⊇ (L; L), taking X such that (X; L′;D;Δ) ∈ GÈΓÉ, we have to
prove that (〈X(c) [(M{X})]〉, 〈Δ | ⊥〉, 〈L′;D〉) ∈ O. From L;Γ |= M : f, we get that
(M; L′;D;Δ) ∈ EÈfÉ, and from (X; L′;D;Δ) ∈ GÈΓÉ we get that (X(c); L;D; c :
¬f) ∈ KÈ¬fÉ, which is enough to conclude.

Lemma 93. L;Γ |= [c]• : Γ(c)

Proof. Let us take Θ, (L′;D) ⊇ (L; L), and X such that (X; L′;D;Θ) ∈ GÈΓÉ. Then
by definition of GÈΓÉ, (X(c); L′;D;Θ) ∈ KÈΓ(G)É.

Theorem 94 (Fundamental property). If Σ;Γ ⊢ M : f then dom(Σ);Γ |= M :
f. If Σ;Γ ⊢ E : ¬f then dom(Σ);Γ |= E : f.

Proof. By induction over the derivation Σ;Γ ⊢ M : f or Σ;Γ ⊢ E : ¬f, each rule
having a corresponding compatibility lemma proven above.

From it, we deduce a proof of Lemma 11. Indeed, taking an active POGS

configuration G = (〈M〉, 〈Δ | ⊥〉〈L;D〉), then L̂;Δ ⊢ M : ⊥. So from Theorem 94, we
get that L;Δ |= M : ⊥. Writing X that the identity substitution Δ ⊢ X : Δ that maps
any function or continuation name in dom(Δ) to itself, we get from Lemma 84,
that (X; L;D;Δ) ∈ GÈΔÉ. So we conclude that (M; L;D;Δ) ∈ EÈ⊥É. Thus, G ∈ O.
A similar reasoning applies to passive POGS configurations.


