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QUILLEN METRICS AND BRANCHED COVERINGS

XIAONAN MA

Abstract. We give a formula to compare the Quillen metrics associated to a branched

covering from holomorphic line bundles.

0. Introduction

The Quillen metric is a metric on the determinant of the cohomology of a holomorphic

vector bundle over a complex manifold. It is the product of L2-metric and the analytic

torsion which is the regularized determinant of the Kodaira Laplacian. By Quillen,

Bismut, Gillet and Soulé, we know that the Quillen metric has very nice proprieties.

Let i : Y →֒ X be an immersion of compact complex manifolds. Let η be a holomorphic

Hermitian vector bundle over Y . Let ξ be a holomorphic resolution of η over X . Bismut

and Lebeau [11] have calculated the relation of the Quillen metrics associated to η and

ξ.

Let π : W → S be a holomorphic map of compact complex manifolds. Let ξ be

a holomorphic Hermitian vector bundle over W . Let R•π∗ξ be the direct image of ξ.

Let λ(ξ) and λ(R•π∗ξ) be the inverses of the determinant of the cohomology of ξ and

R•π∗ξ. By [21], λ(ξ) ≃ λ(R•π∗ξ). If π is a submersion, Berthomieu and Bismut [2] have

compared the corresponding Quillen metrics on λ(ξ) and λ(R•π∗ξ).

Suppose now that W,S are arithmetic varieties over Spec(Z). Let ξ be an algebraic

vector bundle on W . In [13], Gillet and Soulé conjectured that an arithmetic Riemann-

Roch formula holds. In [14], by using the Bismut-Lebeau embedding formula for Quillen

metrics [11], they proved it for the first arithmetic Chern class. By using Bismut’s

work [5], the family version of [11], Gillet-Roessler-Soulé [12] show that the arithmetic

Riemann-Roch formula in higher degrees holds.

In [3], Bismut has conjectured an equivariant arithmetic Riemann-Roch formula. In

[4], he was able to show the compatibility of his conjecture with immersions. In [22],

Köhler and Roessler have obtained a version of Bismut’s conjecture by using [4]. For

more recent works in this direction, cf. [20, 23, 27].

In this paper, we will compare the Quillen metrics on λ(ξ) and λ(R•π∗ξ) in the case

that π is a branched covering from a holomorphic line bundle. For any holomorphic line

bundle over a compact Kähler manifold S, we give a general construction of a smooth

submanifold W ⊂ L (cf. (1.1)) from holomorphic sections of the powers of L on S such

that πW : W → S the projection from W on S, is a branched covering. We obtain

the analogue of the result of Berthomieu-Bismut [2, Theorem 0.1] and its equivariant

version [24, Theorem 3.1] in this situation. In fact, our first result, Theorem 3.4 is
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compatible with the arithmetic Riemann-Roch formula. Our second result, Theorem 4.1

fits perfectly well with Bismut’s conjecture.

This paper is organized as follows. In Section 1, we construct a branched covering

from a holomorphic line bundle. In Section 2, we describe the canonical sections of

determinant lines. In Section 3, applying the Bismut-Lebeau embedding formula [11,

Theorem 0.1], we calculate the Quillen norm of canonical section. In Section 4, using

the Bismut equivariant embedding formula [4, Theorem 0.1], we calculate the equivariant

Quillen norm of the canonical section.

Acknowledgments. I’m very much indebted to Professor Jean-Michel Bismut for very

helpful discussions and suggestions. This paper was written some time ago, it has re-

mained unpublished. The author is indebted to Esteban Gomezllata Marmolejo who

informs us that our result is useful for his thesis [15]. This motives us to deliberate it.

1. Branched coverings

Let S be a compact complex manifold. Let L be a holomorphic line bundle on S.

Let αi ∈ H0(S, Li) (1 ≤ i ≤ d, d ≥ 2, d ∈ N∗). For (x, t) ∈ L, x ∈ S, set

F (α)(x, t) = td +

d∑

i=1

αi(x)t
d−i,

W =
{
(x, t) ∈ L : F (α)(x, t) = 0

}
.

(1.1)

We suppose that W is smooth.

Let V = P(L ⊕ 1) the projectivisation of the vector bundle L ⊕ C, here C is the

trivial line bundle on S. We identify S with {(x, (0, 1)) ∈ V : x ∈ S} ⊂ V . Let

π : V → S be the natural projection with fibre Y . The complement of P(L) ≃ S in V

is canonical isomorphic to L, so we can identify W to a sub-manifold of V = P(L ⊕ 1).

Let πW : W → S be the projection induced by π. Then W is a branched covering of S

of degree d.

Let ξ be a holomorphic vector bundle on S. Let

ξ′ = π∗
W ξ(1.2)

be the pull-back of the bundle ξ on W . Let R•πW∗ξ
′, R•πW∗OW be the direct images of

OW (ξ′), OW , the sheaves of holomorphic sections of ξ′, and of holomorphic functions on

W , respectively. By [16, Theorem 2.4.2], R•πW∗OW = R0πW∗OW is locally free of rank

d on S. By [19, Exercise 3.8.3], we have

R•πW∗ξ
′ = R0πW∗OW ⊗ ξ.(1.3)

Let H•(W, ξ′) =
⊕dimW

j=1 Hj(W, ξ′), H•(S,R0πW∗ξ
′) be the cohomology groups of OW (ξ′)

on W , OS(R
0πW∗ξ

′) on S, respectively.

For a complex vector space E, the determinant line of E is the complex line

detE = ΛmaxE.(1.4)
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Definition 1.1. Set

λ(ξ′) =
⊗

i

(
detH i(W, ξ′)

)(−1)i+1

,

λ(R•πW∗ξ
′) =

⊗

i

(
detH i(S,R0πW∗ξ

′)
)(−1)i+1

.

(1.5)

By [21], we have the canonical isomorphism λ(ξ′) ≃ λ(R•πW∗ξ
′). Let σ be the canon-

ical section of λ(ξ′)⊗ λ−1(R•πW∗ξ
′).

Example: Let CPn be the complex projective space of dimension n. Let (z0, · · · , zn) =

(z0, z) be the homogeneous coordinate. Let S = {z0 = 0} →֒ CPn. Let W be a

hypersurface of degree d which doesn’t contain the point (1, 0). Let π : W → S be the

projection from (1, 0). Let L = OS(1) be the hyperplane line bundle on S. By [17, p167],

we can reduce this to the situation (1.1).

Remark 1.2. Let π : S1 → S2 be a finite mapping of Riemann surfaces of degree n.

Let M(S1),M(S2) be the meromorphic function fields on S1, S2. Then π caracterize by

the finite field extension M(S2) →֒ M(S1) [26, §2.11]. So S1, π is constructed by an

irreducible polynomial

P (T ) = T n + c1T
n−1 + · · ·+ cn ∈ M(S2)(T ).(1.6)

So our construction contains a large part of general map of Riemann surfaces.

Let ı : S → V ,  : W → V be the natural immersions. Let OV (−1) be the universal

line bundle over V . Let OV (k) = OV (−1)⊗−k. On V , we have the exact sequence of

holomorphic vector bundles [6, (1.21)],

0 → OV (−1)
a
→ π∗L⊕ C

a
→

π∗L⊕ C

OV (−1)
→ 0.(1.7)

Let τ[S](y) ∈
(

π∗L⊕C

OV (−1)

)
y
be given by

τ[S](y) = ay(0,−1).(1.8)

Then τ[S] is a holomorphic section of π∗L⊕C

OV (−1)
which vanishes exactly on S. The map

θ : π∗L → π∗L⊕C

OV (−1)
induced by the projection from π∗L ⊕ C is an isomorphism on L ⊂

P(L⊕ 1). Under this identification, τ[S] is the tautological section of π∗L on L. We have

div(τ[S]) = S.(1.9)

Let σ[S] be the canonical section of [S] on P(L⊕ 1). Then σ−1
[S] ⊗ τ[S] is a nonzero section

of [S]−1⊗ π∗L⊕C

OV (−1)
. We identify the line bundle [S] to π∗L⊕C

OV (−1)
via this section. In particular,

we get

[S]|S = L.(1.10)

The exact sequence (1.7) induces also an isomorphism

[S] ≃ π∗L⊗OV (1).(1.11)
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Remark 1.3. If the linear system |Ld| hasn’t any base points, then for the generic

elements αi ∈ H0(S, Li) (1 ≤ i ≤ d), W is smooth.

In fact, let ν be the holomorphic section of OV (1) defined by (0, 1) ∈ (π∗L⊕C)∗, then

div[ν] = P(L).(1.12)

By (1.8), for c ∈ C, αi ∈ H0(S, Li) (1 ≤ i ≤ d), put

G(α, c) = cτd[S] +

d∑

i=1

αi(x)ν
iτd−i

[S] ,(1.13)

then {G(α, c) : αi ∈ H0(S, Li), 1 ≤ i ≤ d, c ∈ C} is a linear system of [dS] on V , and the

base locus of this system is empty. By Bertini’s Theorem [17, p137], {G(α, 1) = 0} ⊂

P(L ⊕ 1) is smooth for generic elements αi ∈ H0(S, Li). If we identify π∗L to [S] on L

as above, then G(α, 1) = F (α), so we obtain our Remark.

2. Canonical isomorphisms of determinant lines

By (1.1), we can extend F (α) to a meromorphic section of π∗Ld on V . Let t : L →

π∗L be the tautological section of π∗L on L ⊂ P(L⊕ 1) = V . Then t extends naturally

to a meromorphic section of π∗L on V . Set

f(α) = F (α)/td.(2.1)

Then f(α) is a meromorphic function on V , and

div(f(α)) = W − d · S.(2.2)

Let δ{W}, δ{S} be the currents on V defined by the integration on W,S. By (2.2), we

have

∂∂

2iπ
log |f(α)|2 = δ{W} − d δ{S}.(2.3)

We will identify the line bundle [W ] to [dS] via f(α). Let τ[W ] be the canonical section

of [W ] on V , then

τ[W ] = f(α)τd[S].(2.4)

Let TY = TV/S be the holomorphic tangent bundle to the fibre Y . By (1.6), as in

[17, p409], we have an exact sequence of holomorphic vector bundles on V ,

0 → C → (π∗L⊕ C)⊗OV (1) → TY → 0.(2.5)

Let KY = T ∗Y be the relative canonical bundle on V . By (2.5),

KY ≃ π∗L−1 ⊗OV (−2).(2.6)
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Proposition 2.1. For k > 0, we have canonical identifications

R0π∗OV = C, R0π∗OV (−k) = 0,

R1π∗OV (−1) = R1π∗OV = 0,

R1π∗OV (−(k + 1)) =

k⊕

i=1

Li.

(2.7)

Proof. The first two equations are trivial.

Using the Serre duality [19, p240] and (2.6), for m ∈ Z, we have

R1π∗OV (−m) ≃ (H0(Y,OV (m)⊗KY ))
∗

= L⊗ (H0(Y,OV (m− 2)))∗.
(2.8)

The second equation of (2.7) and (2.8) imply the third equation of (2.7).

For k > 0, by [17, p165], we have

H0(Y,OV (k − 1)) = Symk−1((L⊕ C)∗) =
k−1⊕

i=0

L−i.(2.9)

By (2.8) and (2.9), we get the last equation of (2.7). �

Proposition 2.2. We have a canonical isomorphism,

R0πW∗OW ≃

d−1⊕

j=0

L−j .(2.10)

Proof. By [16, §2.4], we can identify R0πW∗OW as the sheaf of polynomial functions

along the fiber L with degree ≤ d− 1, thus we get (2.10). �

Using [19, Exercise 3.8.3], (1.11), (2.7) and (2.10), for k ≥ 2, we get

R•π∗OV ([−S]) = 0,

R0π∗OV ([−kS]) = 0, R1π∗OV ([−kS]) =

k−1⊕

j=1

L−j ,

R0πW∗ξ
′ ≃

d−1⊕

j=0

L−j ⊗ ξ.

(2.11)

Note that we identify [W ] with [dS] via (2.4), by (2.11), we have

R0π∗OV ([−W ]) = 0, R1π∗OV ([−W ]) =
d−1⊕

j=1

L−j .(2.12)

We have the following exact sequence of sheaves over V

0 → OV ([−W ])
τ[W ]
→ OV → ∗OW → 0.(2.13)

By (2.7), (2.13), we get the following exact sequence of sheaves on S

0 → R0π∗OV

→ R0πW∗OW

δ1→ R1π∗OV ([−W ]) → 0.(2.14)
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Proposition 2.3. Under the canonical identification (2.10), (2.12), the exact sequence

(2.14) is canonically split. Let δ :
⊕d−1

i=1 L
−i → R1π∗OV ([−W ]) be the map induced by δ1

and (2.10), then under the decomposition L−1 ⊕ · · · ⊕ L−d+1, we have

δ−1 = (aij) =




1 ∗
. . .

0 1


 .(2.15)

Moreover

aij = αj−i if j > i,

1 if i = j,

0 if j < i.

(2.16)

Proof. Clearly, under the identification (2.7),  is the canonical embedding of C into the

factor C in R0πW∗OW , so the exact sequence (2.14) is canonical split.

To prove (2.15), we use Čech cohomology. Before prove (2.15), we explain the com-

patibility of (2.8), (2.9) and Čech cohomology on CPn.

Let (X0, · · · , Xn) be linear coordinates on Cn+1, and let {xi = Xi/X0 : i = 1, · · · , n}

be the corresponding affine coordinates. Let Ui = (Xi 6= 0) ⊂ CPn. Let K = Λn(T ∗CPn)

be the canonical line bundle on CPn. By [17, p409], we have an exact sequence of

holomorphic vector bundles on CPn

0 → C → OCPn(1)n+1 → TCPn → 0.(2.17)

By (2.17), we have

K
v
≃ OCPn(−(n+ 1)).(2.18)

We trivialize OCPn(1) by (1, 0, · · · , 0) ∈ Cn+1,∗ on U0. By [17, p409], on U0, we have

v(dx1 ∧ · · · ∧ dxn) = 1 ∈ OCPn(−(n+ 1)).(2.19)

By [19, Remark 3.7.1.1], there exists a canonical element a ∈ Hn(CPn, K) which defines

the Serre duality µ. On ∩n
i=0Ui, consider the cocycle, we have

a =
1

x1 · · ·xn
dx1 ∧ · · · ∧ dxn.(2.20)

By [19, Theorem 3.5.1], using Čech cohomology, on ∩n
i=0Ui, H

n(CPn,OCPn(−n− k− 1))

(k ∈ N) is generated by the Čech cocycle

{
αl1···ln = x

−(l1+1)
1 · · ·x−(ln+1)

n :
n∑

i=1

li ≤ k, li ∈ N

}
.

Also H0(CPn,OCPn(k)) (k ∈ N) is generated by

{
βl1···ln = xl1

1 · · ·xln
n :

n∑

i=1

li ≤ k, li ∈ N

}
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on U0. By (2.19), (2.20), we have the following commutative diagram

Hn(CPn,OCPn(−n− k − 1))

µ

��

Čech // span
{
αl1···ln :

∑n
i=1 li ≤ k, li ∈ N

}

µ1

��H0(CPn,OCPn(n+ k + 1)⊗K)∗

≀≀v

��

H0(CPn,OCPn(k))∗
Čech//

(
span

{
βl1···ln :

∑n
i=1 li ≤ k, li ∈ N

})∗

.

(2.21)

Thus the map µ1 is such that

µ1(αl1···ln)(βl′1···l
′
n
) = δ(l1···ln),(l′1···l′n).

Now we are ready to establish (2.15). Let (v, u) be the local homogeneous coordinates

of P(L⊕ 1). Let U1 = {(v, u) ∈ P(L⊕ 1) : v 6= 0}, U2 = {(v, u) ∈ P(L⊕ 1) : u 6= 0} with

affine coordinate t as a function on U2 with values in π∗L. We will identify U2 with L,

then U1 ∩ U2 = L \ S, t−1 is a section of π∗L−1 on U1 ∩ U2. As explained in the proof of

Proposition 2.2, on U2, for x ∈ S, we have

(R0πW∗OW )x =
{ d−1∑

i=0

γit
i : γi ∈ OS,x(L

−i)
}
.(2.22)

We recall that from (1.11), (2.2), on V ,

[−W ] = π∗L−d ⊗OV (−d).

By (2.7), (2.21), on U1 ∩ U2, for x ∈ S, we have

(R1π∗OV ([−W ]))x =
{ d−1∑

j=1

γd−jt
−j : γd−j ∈ OS,x(L

−d+j)
}
.(2.23)

On U1 ∩ U2, we have

τ[W ](γd−jt
−j) = γd−j

(
td−j +

d∑

i=1

αi(x)t
d−i−j

)
.

The function γd−j(t
d−j+

∑d−j−1
i=1 αi(x)t

d−i−j) is holomorphic on U2, γd−j(
∑d

i=d−j αi(x)t
d−i−j)

is holomorphic on U1. By the definition of δ1, we have

δ1

(
γd−j(t

d−j +

d−j−1∑

i=1

αi(x)t
d−i−j)

)
= γd−jt

−j .(2.24)

By (2.22), (2.23) and (2.24), we have (2.15) and (2.16). �

We also have an exact sequence of sheaves over V

0 → OV ([−dS])
τd
[S]
→ OV → ı∗OS

( d−1⊕

i=0

L−i
)
→ 0.(2.25)
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By (2.7) and (2.25), we have the following exact sequence of sheaves over S

0 → R0π∗OV → OS

( d−1⊕

i=0

L−i
) δ′
→ R1π∗OV ([−dS]) = OS

( d−1⊕

i=1

L−i
)
→ 0.(2.26)

Proposition 2.4. Under the identifications (2.11), the exact sequence (2.26) is naturally

split, and δ′|⊕d−1
i=1 L−i = Id.

Proof. We use the notation in the proof of Proposition 2.3. On U1 ∩ U2, we have

τd[S](γd−jt
−j) = γd−jt

d−j .(2.27)

In (2.25) as in (2.23), we have identified ı∗OS(L
−i) to {γit

i : γi ∈ OS(L
−i)} on U2.

By the definition of δ′ and (2.27), we have Proposition 2.4. �

As in Definition 1.1, we define the complex lines

λ′
d(π

∗ξ) = λ(π∗ξ)⊗ λ−1([−dS]⊗ π∗ξ),

λW (ξ) = λ(R0π∗OV ⊗ ξ)⊗ λ(R1π∗([−W ])⊗ ξ).
(2.28)

By [21], (2.13), (2.25), we have the canonical isomorphisms:

λ(ξ′) ≃ λ′
d(π

∗ξ), λ(
d−1⊕

i=0

L−i ⊗ ξ) ≃ λ′
d(π

∗ξ).(2.29)

Let τd, σ1 be the canonical sections of λ
−1(

⊕d−1
i=0 L

−i ⊗ ξ)⊗ λ′
d(π

∗ξ) via (2.25), λ−1(ξ′)⊗

λ′
d(π

∗ξ) via (2.13). Recall that σ is the canonical section of λ(ξ′)⊗ λ−1(R•πW∗ξ
′).

Proposition 2.5. Under the identifications (2.11), we have

σ = σ−1
1 ⊗ τd.(2.30)

Proof. Let ν3 be the canonical section of

λ(R1π∗[−W ]⊗ ξ)⊗ λ(R1π∗[−dS]⊗ ξ)−1

induced by δ in Proposition 2.3. Let pr :
⊕d−1

i=r L
−i →

⊕d−1
i=r+1L

−i be the canonical

projection. Let δr :
⊕d−1

i=r L
−i →

⊕d−1
i=r L

−i be the map defined by the matrix (aij) as in

(2.16), then we have

0 // L−r //

Id

��

⊕d−1
j=r L

−j
pr //

δr
��

⊕d−1
j=r+1L

−j //

δr+1

��

0

0 // L−r //
⊕d−1

j=r L
−j pr //

⊕d−1
j=r+1L

−j // 0.

(2.31)

By considering the long exact sequence from (2.31),

0 // H0(S, L−r ⊗ ξ) //

Id

��

H0(S,
⊕d−1

j=r L
−j ⊗ ξ)

pr //

δr
��

H0(S,
⊕d−1

j=r+1L
−j ⊗ ξ) //

δr+1

��

· · ·

0 // H0(S, L−r ⊗ ξ) // H0(S,
⊕d−1

j=r L
−j ⊗ ξ)

pr // H0(S,
⊕d−1

j=r+1L
−j ⊗ ξ) // · · · ,

(2.32)
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as δd−1 : L−d+1 → L−d+1 is the identity map, by recurrence, we know the canonical

section of

λ(

d−1⊕

j=r

L−j ⊗ ξ)⊗ λ−1(

d−1⊕

j=r

L−j ⊗ ξ)

induced by δr is 1 for all r ≥ 1. We conclude in particular that

ν3 = 1.(2.33)

As in (1.5), we define the complex line λ(ξ) for ξ on S. By Proposition 2.3, (2.14) and

(2.27), we have the following commutative diagram

0 // R0π∗OV
// R0π∗∗OW

δ1 // R1π∗OV ([−W ]) // 0

0 // R0π∗OV
//

Id

OO

OS(
⊕d−1

j=0 L
−j) //

Id

OO

R1π∗OV ([−dS]) //

δ

OO

0,

(2.34)

Let ν1, ν2 be the canonical sections of

λ−1(R0πW∗ξ
′)⊗ λW (ξ), λ−1(

d−1⊕

j=0

L−j ⊗ ξ)⊗ λ(ξ)⊗ λ(R1π∗OV ([−dS])⊗ ξ)

induced by (2.14) and (2.26). By (2.15), (2.33) and (2.34), we have

ν1 = ν2 ⊗ ν3 = ν2.(2.35)

In our situation, the Leray spectral sequences [18, §3.7] associated to π : V → S and

the considering vector bundles η (η = [−dS] ⊗ π∗ξ, etc), are degenerate, as R0π∗η = 0

or R1π∗η = 0, so

Hk(V, η) ≃
⊕

i+j=k

H i(S,Rjπ∗η).(2.36)

Then by (2.13), (2.14), (2.26) and (2.36), we have the following commutative diagram

of long exact sequences

0 // H0(V, π∗ξ) //

��

H0(W,π∗
W ξ) //

��

H1(V, [−W ]⊗ π∗ξ) //

��

· · ·

0 // H0(S, ξ) // H0(S,R0πW∗OW ⊗ ξ)
δ1 // H0(S,R1π∗[−W ]⊗ ξ) // · · ·

0 // H0(S, ξ) //

Id

OO

H0(S,
⊕d−1

j=0 L
−j ⊗ ξ)

δ′ //

OO

H0(S,R1π∗[−dS]⊗ ξ) //

δ

OO

· · ·

0 // H0(V, π∗ξ) //

OO

H0(S,
⊕d−1

j=0 L
−j ⊗ ξ) //

Id

OO

H1(V, [−dS]⊗ π∗ξ) //

OO

· · · .

(2.37)

Let τ be the canonical section of λ′
d
−1(π∗ξ)⊗ λW (ξ) induced by (2.36). The σ (resp.

τ) is obtained from the second vertical map (resp. the rest part of the vertical maps) of



10 XIAONAN MA

the first two lines of (2.37). The σ1 (resp. ν1) is obtained from the first (resp. second)

line of (2.37), and ν2, τd is obtained from the third, fourth line of (2.37). Finally τ is

also obtained from the first and third vertical maps of the last two lines of (2.37).

By [7, (1.3)], [21, Proposition 1], (2.13), (2.25) and (2.37), we have

σ ⊗ τ = σ−1
1 ⊗ ν1,

τ = ν2 ⊗ τ−1
d .

(2.38)

By (2.35) and (2.38), we have (2.30). �

For 0 ≤ i ≤ d− 1, we have an exact sequence of sheaves over V

0 → OV ([−(i+ 1)S])
τ[S]
→ OV ([−iS]) → ı∗OS(L

−i) → 0.(2.39)

By (2.39), we have the exact sequence of sheaves over V

0 →

d−1⊕

i=0

[−(i+ 1)S]⊗ π∗ξ
τ[S]
→

d−1⊕

i=0

[−iS]⊗ π∗ξ → ı∗OS(

d−1⊕

i=0

L−i ⊗ ξ) → 0.(2.40)

Let λd(π
∗ξ), λV ([−kS]⊗ π∗ξ) (k ≥ 1) be the complexe lines

λd(π
∗ξ) = λ(⊕d−1

i=0 [−iS]⊗ π∗ξ)⊗ λ−1(⊕d
i=1[−iS]⊗ π∗ξ),

λV ([−kS]⊗ π∗ξ) = λ([−(k − 1)S]⊗ π∗ξ)⊗ λ−1([−kS]⊗ π∗ξ).
(2.41)

By [21], (2.39), (2.40), we have the canonical isomorphisms:

λ(⊕d−1
i=0L

−i ⊗ ξ) ≃ λd(π
∗ξ), λ(L−k+1 ⊗ ξ) ≃ λV ([−kS]⊗ π∗ξ),

λd(π
∗ξ) = λ′

d(π
∗ξ).

(2.42)

Let ϕk, ρd be the canonical sections of

λ−1(L−k+1 ⊗ ξ)⊗ λV ([−kS]⊗ π∗ξ), λ−1(⊕d−1
i=0L

−i ⊗ ξ)⊗ λd(π
∗ξ).

Then

ρd =

d⊗

i=1

ϕi(2.43)

Proposition 2.6. Under the identification (2.11), we have

τd = ρd.(2.44)

Proof. For k ≥ 1, consider the complex of OV -sheaves on V

0 0 0 0

0 →
↑

ı∗OS(L
−k)

Id
→ ı∗

↑

OS (⊕k
i=0L

−i) →
↑
ı∗ OS(⊕

k−1
i=0L

−i) →
↑

0→ 0

0 →
↑

0→
↑

OV
Id
→

↑

OV→
↑

0→ 0

0 →
↑

0→

τk+1
[S]

↑

OV [−( k + 1)S])
τ[S]
→

τk
[S]

↑

OV ([−kS]) →
↑

ı∗OS (L−k) → 0
↑

0
↑

0
↑

0
↑

0

(2.45)
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In (2.45), the rows are exact sequences of sheaves. The second and third columns corre-

spond to (2.25).

By [21], (2.29), (2.42) and (2.45), we have

τ−1
k ⊗ τk+1 = ϕk+1.(2.46)

By (2.25), (2.39), we have also

ϕ1 = τ1.(2.47)

By (2.43), (2.46), (2.47), we have (2.44). �

3. Comparison formula for the Quillen metrics

Definition 3.1. Let P V be the vector space of smooth forms on a complex manifold V ,

which are sums of forms of type (p, p). Let P V,0 be the vector space of the forms α ∈ P V

such that there exist smooth forms β, γ on V for which α = ∂β + ∂γ.

If A is (q,q) matrix, set

Td(A) = det
( A

1− e−A

)
, ch(A) = Tr[exp(A)], c1(A) = Tr[A].(3.1)

The genera associated to Td and ch are called the Todd genus and the Chern character.

Let P be an ad-invariant power series on square matrices. If (F, hF ) is a holomorphic

Hermitian vector bundle on V , let ∇F be the corresponding holomorphic Hermitian

connection, and let RF be its curvature. Set

P (F, hF ) = P
(−RF

2iπ

)
.(3.2)

By the Chern-Weil theory, then P (F, hF ) is a closed form which lies in P V , and its

cohomology class P (F ) does not depend on hF .

From now on, we use the assumption and notation of Section 1 and S is a compact

Kähler manifold. Then V is Kähler. Recall that we identify S with {(x, (0, 1)) ∈ V :

x ∈ S} ⊂ V .

Let NS/V , NW/V be the normal bundles to S,W in V .

Let hTV be a Kähler metric on TV . Let hTW , hTS, hTY be the metrics on TW, TS, TY

induced by hTV . Let hNS/V , hNW/V be the metrics on NS/V , NW/V , as the orthogonal

complements of TS, TW , induced by hTV .

By (1.8), (2.4), the maps

NS/V → [S]|S, NW/V → [W ]|W ,

y → ∂yτ[S], y → ∂yτ[W ]

(3.3)

define the canonical isomorphisms of NS/V ≃ [S]|S, NW/V ≃ [W ]|W . Let h[S] (resp. h[W ])

be a Hermitian metric on [S] (resp. [W ]) on V such that the isomorphisms (3.3) are

isometries.

Let h[−iS] be the metrics on [−iS] induced by h[S] and let hL be the metric on L

induced by h[S] via (1.10). Let h[−W ] be the dual metric on [−W ] induced by h[W ].
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Let hξ be a metric on ξ. Let hξ′ be the metric on ξ′ induced by hξ. Let hRπW∗ξ
′

be the

metric on R0πW∗ξ
′ induced by hL, hξ under identification (2.11).

Let || ||λ(ξ′), || ||λ(RπW∗ξ′) be the Quillen metric [25], [8] on λ(ξ′), λ(RπW∗ξ
′). Under

identification (2.11), all the complex lines considered in Section 2 provide with the Quillen

metrics.

Let ζ(s) be the Riemann zeta function. Let R(x) be the Gillet-Soulé power series [13],

R(x) =
∑

n≥1

n odd

(2ζ ′(−n)

ζ(−n)
+

n∑

j=1

1

j

)
ζ(−n)

xn

n!
.(3.4)

We identify R to the corresponding additive genus.

Let P V
W be the set of currents on V which are sums of currents of type (p,p), whose

wave front set is included in N∗
W/V,R. Let P V,0

W be the set of current α ∈ P V
W such that

there exist currents β, γ on V , whose wave front set is included in N∗
W/V,R, such that

α = ∂β + ∂γ.

Let (ξ1, v), (ξ2, v) be the complexes on V

(ξ1, v) : 0 → [−W ]⊗ π∗ξ
τ[W ]
→ π∗ξ → 0,

(ξ2, v) : 0 →

d−1⊕

i=0

[−(i+ 1)S]⊗ π∗ξ
τ[S]
→

d−1⊕

i=0

[−iS]⊗ π∗ξ → 0.
(3.5)

Let hξ1 (resp. hξ2) be the metrics on ξ1 (resp. on ξ2) induced by h[W ] (resp. h[S]) and hξ.

Let T (ξ1, h
ξ1) ∈ P V

W , T (ξ2, h
ξ2) ∈ P V

S be the Bott-Chern currents constructed in [9,

Theorem 2.5]. The forms T (ξi, h
ξi) verify the following equations

∂∂

2iπ
T (ξ1, h

ξ1) = Td−1(NW/V , h
NW/V ) ch(ξ′, hξ′)δ{W} − ch(ξ1, h

ξ1)

= Td−1([W ], h[W ])π∗ ch(ξ, hξ)
(
δ{W} − c1([W ], h[W ])

)
,

∂∂

2iπ
T (ξ2, h

ξ2) = Td−1(NS/V , h
NS/V )

d−1∑

j=0

ch([−jS], h[−jS]) ch(ξ, hξ)δ{S}

− ch(ξ2, h
ξ2)

=
(1− e−dx

x

)
([S], h[S])π∗ ch(ξ, hξ)

(
δ{S} − c1([S], h

[S])
)
.

(3.6)

Over W , we have the exact sequence of holomorphic Hermitian vector bundles

0 → TW → TV → NW/V → 0.(3.7)

Let T̃d(TW, TV |W , hTV ) ∈ PW/PW,0 be the Bott-Chern class constructed in [7, Theorem

1.29], such that

∂∂

2iπ
T̃d(TW, TV |W , hTV ) = Td(TV, hTV )− Td(TW, hTW ) Td(NW/V , h

NW/V ).(3.8)
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Over S, we have the exact sequence of holomorphic Hermitian vector bundles

0 → TS → TV → NS/V → 0.(3.9)

Let T̃d(TS, TV |S, h
TV ) ∈ P S/P S,0 be the corresponding Bott-Chern class of [7]. It

verifies the following equation

∂∂

2iπ
T̃d(TS, TV |S, h

TV ) = Td(TV, hTV )− Td(TS, hTS) Td(NS/V , h
NS/V ).(3.10)

We establish first the following result about Bott-Chern classes.

Lemma 3.2. For a holomorphic line bundle F on a compact complex manifold Z, and

hF , hF
1 two metrics on F with dual metrics hF−1

, hF−1

1 on F−1, we have in PZ/PZ,0,

−c̃h(F−1, hF−1

, hF−1

1 ) = T̃d−1(F, hF , hF
1 )c1(F, h

F ) + Td−1(F, hF
1 )c̃1(F, h

F , hF
1 ),(3.11)

with c̃h, T̃d−1, c̃1 the Bott-Chern classes such that

∂∂

2iπ
c̃h(F−1, hF−1

, hF−1

1 ) = ch(F−1, hF−1

1 )− ch(F−1, hF−1

),

∂∂

2iπ
T̃d−1(F, hF , hF

1 ) = Td−1(F, hF
1 )− Td−1(F, hF ),

∂∂

2iπ
c̃1(F, h

F , hF
1 ) = c1(F, h

F
1 )− c1(F, h

F ).

(3.12)

Proof. Consider two holomorphic line bundles F, η with metrics hF , hη and the charac-

teristic form

φ(hF , hη) = Td−1(F, hF ) c1(η, h
η).(3.13)

Then by [7, Remark 1.28], given another pairs of metrics hF
1 , h

η
1 on F, η, the associated

Bott-Chern form φ̃ is given by : for any smooth path hF
t , h

η
t for t ∈ [0, 1], from hF , hη to

hF
1 , h

η
1 respectively, the form

(3.14) φ̃ =

∫ 1

0

{(1− e−x

x

)′

(F, hF
t )(h

F
t )

−1∂h
F
t

∂t
c1(η, h

η
t )

+
(1− e−x

x

)
(F, hF

t )(h
η
t )

−1∂h
η
t

∂t

}
dt ∈ PZ/PZ,0

does not depend on the choice of the path hF
t , h

η
t and

∂∂

2iπ
φ̃ = φ(hF

1 , h
η
1)− φ(hF , hη).(3.15)

In particular, if we choose a path such that hη
t = hη for t ∈ [0, 1

2
] and hF

t = hF
1 for

t ∈ [1
2
, 1], then we get

φ̃ = T̃d−1(F, hF , hF
1 )c1(η, h

η) + Td−1(F, hF
1 )c̃1(η, h

η, hη
1),

c̃1(η, h
η, hη

1) = log
hη
1

hη
.

(3.16)



14 XIAONAN MA

If we take η = F and hF
t = hη

t , the we get

φ(hF
t , h

F
t ) = 1− ch(F−1, hF−1

t ),(3.17)

thus in this case

φ̃ = −c̃h(F−1, hF−1

, hF−1

1 ).(3.18)

From (3.16) and (3.18), we get (3.13). �

We define

(3.19) T (h[S], h[W ]) = Td−1([W ], h[W ]) log ‖τ[W ]‖
2
h[W ]

− Td−1([dS], h[dS]) log ‖τd[S]‖
2
h[dS] − c̃h([−dS], h[−dS], h[−W ]).

Lemma 3.3. In P V
W∪S/P

V,0
W∪S, T (h[S], h[W ]) does not depend on the choice of h[S], h[W ],

thus we denote it as TS,W , and we have

∂∂

2iπ
TS,W = Td−1(NW/V , h

NW/V )δ{W} −
(1− e−dx

x

)
(NS/V , h

NS/V )δ{S}.(3.20)

Proof. By Poincaré-Lelong formula and (3.3), we get first (3.20).

Let h
[W ]
1 be another metric on [W ] such that (3.3) is an isometry. Then by Lemma

3.2, we have in P V
W∪S/P

V,0
W∪S,

(3.21) T (h[S], h[W ])− T (h[S], h
[W ]
1 )

=
(
Td−1([W ], h[W ])− Td−1([W ], h

[W ]
1 )

)
log ‖τ[W ]‖

2
h[W ]

− Td−1([W ], h
[W ]
1 ) log

h
[W ]
1

h[W ]
+ c̃h([−dS], h[−W ], h

[−W ]
1 )

= T̃d−1([W ], h
[W ]
1 , h[W ])δ{W} = 0,

as h[W ] = h
[W ]
1 = hNW/V on W .

By the same argument, we know also T (h[S], h[W ]) does not depend on h[S]. �

Theorem 3.4. The following identity holds

(3.22) log(||σ||2λ(ξ′)⊗λ−1(RπW∗ξ′)
) =

∫

V

Td(TV, hTV )TS,W

−

∫

W

Td−1(NW/V , h
NW/V )T̃d(TW, TV |W , hTV ) ch(ξ′, hξ′)

+

∫

S

(1− e−dx

x

)
(L, h[S])T̃d(TS, TV |S, h

TV ) ch(ξ, hξ)

+

∫

S

Td(TS)R(TS) ch(R•πW∗OW ) ch(ξ)−

∫

W

Td(TW )R(TW ) ch(ξ′).
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Proof. Let ‖ ‖2λ′
d(π

∗ξ) be the Quillen metric on λ′
d(π

∗ξ) (2.28) induced by h[W ], hξ and

hTV . Let ‖ ‖2λd(π∗ξ) be the Quillen metric on λd(π
∗ξ) ≃ λ′

d(π
∗ξ) (2.41) induced by h[S],

hξ and hTV . By the anomaly formula [8, Theorem 1.23], we have

log
‖ ‖2λ′

d(π
∗ξ)

‖ ‖2λd(π∗ξ)

= −

∫

V

Td(TV, hTV )c̃h([−dS], h[−dS], h[−W ]).(3.23)

By using [11, Theorem 6.1], (2.13), (2.40) and (3.5), we have

(3.24) log(||σ1||
2
λ′
d(π

∗ξ)⊗λ−1(ξ′)) = −

∫

V

Td(TV, hTV )T (ξ1, h
ξ1)

+

∫

W

Td−1(NW/V , h
NW/V ) ch(ξ′, hξ′)T̃d(TW, TV |W , hTV )

−

∫

V

Td(TV )R(TV ) ch(ξ)(1− ch([−W ])) +

∫

W

Td(TW )R(TW ) ch(ξ′),

log(||ρd||
2
λd(π∗ξ)⊗λ−1(R•πW∗ξ′)

) = −

∫

V

Td(TV, hTV )T (ξ2, h
ξ2)

+

∫

S

Td−1(NS/V , h
NS/V )T̃d(TS, TV |S, h

TV ) ch(R•πW∗ξ
′,⊕ih

L−i

⊗ hξ)

−

∫

V

Td(TV )R(TV ) ch(ξ)(1− ch([−dS])) +

∫

S

Td(TS)R(TS) ch(R•πW∗ξ
′).

By [10, Remark 3.5 and Theorem 3.17],

T (ξ1, h
ξ1) = π∗(ch(ξ, hξ)) Td−1([W ], h[W ]) log ||τ[W ]||

2
h[W ] in P V

W/P V,0
W ,

T (ξ2, h
ξ2) = π∗(ch(ξ, hξ)) ch(⊕d−1

i=0 [−iS],⊕h[−iS]) Td−1([S], h[S]) log ||τ[S]||
2
h[S]

= π∗(ch(ξ, hξ)) Td−1([dS], h[dS]) log ||τd[S]||
2
h[dS] in P V

S /P V,0
S .

(3.25)

By (1.10), (2.11) and (3.3), we have

Td−1(NS/V , h
NS/V ) ch(R•πW∗ξ

′,⊕ih
L−i

⊗ hξ) =
(1− e−dx

x

)
(L, h[S]) ch(ξ, hξ).(3.26)

By Propositions 2.5, 2.6, and our identification of λd(π
∗ξ) to λ′

d(π
∗ξ) by (2.35), we

have

(3.27) ||σ||2λ(ξ′)⊗λ−1(RπW∗ξ′)
= (||σ1||

2
λ′
d(π

∗ξ)⊗λ−1(ξ′))
−1

· ||ρd||
2
λd(π∗ξ)⊗λ−1(R•πW∗ξ′)

‖ ‖2λ′
d(π

∗ξ)

‖ ‖2λd(π∗ξ)

.

From Lemma 3.3, (3.23)-(3.27), we deduce (3.22). �

Remark 3.5. From V = P(L⊕ 1), as holomorphic vector bundles on S, we have

TV |S = TS ⊕ L, and TY |S = L ≃ NS/V .(3.28)
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Starting from a metric on L, by using the first Chern form of OV (1) and a Kähler metric

on S, we can construct a Kähler metric on V such that (3.28) is an isometry with induced

metrics on TS, TY . Under this assumption, (3.9) splits with metrics as in (3.28), thus

T̃d(TS, TV |S, h
TV ) = 0.(3.29)

4. Comparison formula for equivariant Quillen metrics

In the sequel, we suppose that for 1 ≤ i ≤ d− 1, αi = 0 in (1.1). So

W =
{
(x, t) ∈ L : td + αd(x) = 0

}
.(4.1)

Let G = Z/dZ = {0, 1, · · · , d− 1}. In this case, the group G acts naturally on V . The

action of G is defined by : for g = 1, (t, u) ∈ L⊕ C, the homogeneous coordinate of V .

g · (t, u) = (ei2π/dt, u).(4.2)

Then G preserves W , and S = W/G. Let G act on OV by

g · f(·) = f(g−1·), for g ∈ G, f ∈ OV .

Let G act trivially on ξ. Then G acts also on ξ′. Let G act on L by following : for

g = 1, t ∈ L,

g · t = ei2π/dt.(4.3)

Then it induces also an action on L−i, π∗L.

If given W ∈ Ĝ, λW , µW are complex lines, if λ = ⊕W∈ĜλW , µ = ⊕W∈ĜµW , set

λ−1 =
⊕

W∈Ĝ

λ−1
W , λ⊗ µ =

⊕

W∈Ĝ

λW ⊗ µW .(4.4)

Let λG(ξ
′), λG(R

•πW∗ξ
′) be the inverse of the equivariant determinant of the coho-

mology of ξ′ and R•π∗ξ
′ on W , S [4, §2]. Then λG(ξ

′) (resp. λG(R
•πW∗ξ

′)) is a direct

sum of complex lines. As in [4], [21], we have a canonical isomorphism of direct sums of

complex lines

λG(ξ
′) ≃ λG(R

•πW∗ξ
′).(4.5)

Let σG be the canonical nonzero section of λG(ξ
′)⊗ λ−1

G (R•πW∗ξ
′).

Let hTV be a G-invariant Kähler metric on V (cf. Remark 3.5 for the existence).

We provide the G-invariant Hermitian metrics h[S], h[W ], hξ on [S], [W ], ξ such that

(3.3) are isometries. Then they determine the G-equivariant Quillen metrics || ||λG(ξ′),

|| ||λG(R•πW∗ξ′) on the equivariant determinants λG(ξ
′), λG(R

•πW∗ξ
′) [4, §2a)].

By our constructions, (2.13), (2.25), (2.39) areG-equivariant exact sequences of sheaves.

And the splits of (2.14), (2.26) are also G–equivariant. Set

λ′
d,G(π

∗ξ) = λG(π
∗ξ)⊗ λ−1

G ([−W ]⊗ π∗ξ),

λd,G(π
∗ξ) = λG(⊕

d
i=1[−iS]⊗ π∗ξ)⊗ λ−1

G (⊕d−1
i=0 [−iS]⊗ π∗ξ).

(4.6)
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As in [21], [4, §3b)], by (2.13), (2.25), (2.39), we have the canonical isomorphisms of

direct sums of complex lines

λG(ξ
′) ≃ λ′

d,G(π
∗ξ), λG(R

•πW∗ξ
′) = λG(⊕

d−1
i=0L

−i ⊗ ξ) ≃ λd,G(π
∗ξ).(4.7)

Let σ1,G, ρd,G be the canonical sections of λ−1
G (ξ′) ⊗ λ′

d,G(π
∗ξ), λ−1

G (⊕d−1
i=0L

−i ⊗ ξ) ⊗

λd,G(π
∗ξ).

We denote Σ = W ∩ S = {x ∈ S : αd(x) = 0}. As we suppose that W is a manifold,

we know that Σ is a submanifold of S and ∂αd(x) 6= 0 for any x ∈ Σ. If g ∈ G, set

V g = {x ∈ V : gx = x}, W g = {x ∈ W : gx = x}.(4.8)

If g 6= 0, then V g = S ∪ P(L), W g = Σ.

Let Tdg(TV, g
TV ) be the Chern-Weil Todd form on V g associated to the holomorphic

Hermitian connection on (TV, hTV ) [4, §2a)], which appears in the Lefschetz formulas of

Atiyah-Bott [1]. Other Chern-Weil form will be denoted in a similar way. In particular,

the forms chg(ξ1, h
ξ1) on V g is the Chern-Weil representative of the g-Chern character

form of (ξ1, h
ξ1). Also, we denote by Tdg(TV ), chg(ξ1) · · · the cohomology classes of

Tdg(TV, g
TV ), chg(ξ1, h

ξ1) · · · on V g.

Let R(θ, x) be the power series in [3, (7.39)], [4, (7.43)], which verifies R(0, x) = R(x).

Let Rg(TV ), · · · be the corresponding additive genera [3, §7c)], [4, §7g)].

Let hTΣ be the metric on TΣ induced by hTS. Let hNΣ/S be the metrics on NΣ/S

induced by hTV . As smooth vector bundles on Σ, we have the G-equivariant orthogonal

splitting

TV |Σ = TΣ⊕NΣ/S ⊕NS/V = TΣ⊕NΣ/W ⊕NW/V ,(4.9)

as G acts trivially on TΣ, NΣ/S, and nontrivially on NS/V , NΣ/W , we conclude that

NΣ/S = NW/V , hNΣ/S = hNW/V , NΣ/W = NS/V , hNΣ/W = hNS/V on Σ.(4.10)

Theorem 4.1. For g = j (0 < j ≤ d− 1), the following identity holds

(4.11) log(||σG||
2
λG(ξ′)⊗λ−1

G (RπW∗ξ′)
)(g)

=

∫

S

Td(TS, hTS) Tdg(NS/V , h
NS/V ) Td−1([W ], h[dS]) ch(ξ, hξ) log ||αd||

2
h[dS]

−

∫

Σ

Td−1(NW/V , h
NW/V ) Tdg(NS/V , h

NS/V )T̃d(TΣ, TS|Σ, h
TS) ch(ξ, hξ)

+

∫

Σ

Td(TS, hTS) Tdg(NS/V , h
NS/V )T̃d−1(NW/V , h

[dS], hNW/V ) ch(ξ, hξ)

+

∫

S

Td(TS)R(TS) ch(ξ) chg(R
•πW∗OW )−

∫

Σ

Tdg(TW )Rg(TW ) ch(ξ).

Proof. By the anomaly formula [4, Theorem 2.5], we have

log
(‖ ‖2λ′

d(π
∗ξ)

‖ ‖2λd(π∗ξ)

)
(g) = −

∫

S∪P(L)

Tdg(TV, h
TV )c̃hg([−dS], h[−dS], h[−W ]).(4.12)
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By applying [4, Theorem 0.1] to (2.13), (2.40), we have

(4.13) log(||σ1,G||
2
λ′
d,G(π∗ξ)⊗λ−1

G (ξ′)
)(g) = −

∫

S∪P(L)

Tdg(TV, h
TV )Tg(ξ1, h

ξ1)

+

∫

Σ

Td−1
g (NW/V , h

NW/V ) chg(ξ, h
ξ)T̃dg(TW |Σ, TV |Σ, h

TV )

−

∫

S∪P(L)

Tdg(TV )Rg(TV )π∗ ch(ξ)(1− chg([−W ])) +

∫

Σ

Tdg(TW )Rg(TW ) chg(ξ).

log(||ρd,G||
2
λd,G(π∗ξ)⊗λ−1

G (R•πW∗ξ)
)(g) = −

∫

S∪P(L)

Tdg(TV, h
TV )Tg(ξ2, h

ξ2)

+

∫

S

Td−1
g (NS/V , h

NS/V )T̃dg(TS, TV |S, h
TV ) ch(ξ, hξ) chg(R

•πW∗OW ,⊕h[−iS])

−

∫

S∪P(L)

Tdg(TV )Rg(TV )π∗ ch(ξ)(1− chg([−dS]))

+

∫

S

Tdg(TS)Rg(TS)π
∗ ch(ξ) chg(R

•πW∗OW ).

In this case, since the identifications in Section 2 is G-equivariant, as (3.27), we have

(4.14) ‖σG‖
2
λG(ξ′)⊗λ−1

G (RπW∗ξ′)
(g) =

{
(‖σ1,G‖

2
λ′
d,G(π∗ξ)⊗λ−1

G (ξ′)
)−1

· ‖ρd,G‖
2
λd,G(π∗ξ)⊗λ−1

G (R•πW∗ξ′)

‖ ‖2λ′
d(π

∗ξ)

‖ ‖2λd(π∗ξ)

}
(g).

Note that by (1.8), g = j acts on [S] as multiplication by ei2πj/d on S = V g ∩ S,

and g acts on [W ]|S as gd = Id. By [4, §6b)], [10, Theorem 3.17], (3.5) and (4.8), on

S = V g ∩ S, we calculate easily

Tg(ξ1, h
ξ1) = ch(ξ, hξ) Td−1([W ], h[W ]) log ||αd||

2
h[W ] in P S

Σ/P
S,0
Σ ,

Tg(ξ2, h
ξ2) =0 in P S/P S,0.

(4.15)

In the second equation of (4.15), we use τ[S] = 0 on Sg = V g ∩ S, thus the form

Trs[gNH exp(−C2
u)] in the definition of Tg(ξ2, h

ξ2) does not depend on u, and automati-

cally Tg(ξ2, h
ξ2) vanishes.

As explain above, on S ∪P(L), g acts as identity on [dS] = [W ], and by the argument

in (3.21), we know in P S
Σ/P

S,0
Σ ,

(4.16) Td−1([W ], h[W ]) log ||αd||
2
h[W ] − c̃hg([−dS], h[−dS], h[−W ])

− Td−1([W ], h[dS]) log ||αd||
2
h[dS]

= T̃d−1([W ], h[dS], h[W ])δ{Σ} = T̃d−1([W ], h[dS], hNW/V )δ{Σ}.

On P(L), by (1.8), g acts on [S] as identity, and by (1.7), we have

[−W ] = [−S] = OP(L) on P(L).(4.17)
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By using [4, §6b)], we have also

Tg(ξ1, h
ξ1) = c̃h

(
[−W ]|P(L), h

OV , h[−W ]
)
ch(ξ, hξ) in P P(L)/P P(L),0,

Tg(ξ2, h
ξ2) =

d∑

i=1

c̃h
(
[−iS]|P(L), h

[−(i−1)S], h[−iS]
)
ch(ξ, hξ) in P P(L)/P P(L),0.

(4.18)

From (4.17), we have

(4.19)

d∑

i=1

c̃h
(
[−iS]|P(L), h

[−(i−1)S], h[−iS]
)
+ c̃hg([−dS], h[−dS], h[−W ])

= c̃h
(
[−W ]|P(L), h

OV , h[−W ]
)

in P P(L)/P P(L),0.

Since g acts on NW/V = [W ] on Σ as Id, we have

Td−1
g (NW/V , h

NW/V ) = Td−1(NW/V , h
NW/V ) on Σ.(4.20)

The restriction of the exact sequence (3.7) on Σ is split as in [4, (6.8)] to two following

exact sequences

0 → TΣ → TS → NΣ/S → 0, 0 → NΣ/W → NS/V → 0 → 0.(4.21)

By (3.6), (4.10) and (4.21), we have

T̃dg(TW |Σ, TV |Σ, h
TV |Σ) = Tdg(NS/V , h

NS/V )T̃d(TΣ, TS|Σ, h
TS) in PΣ/PΣ,0,

Tdg(TV, h
TV ) = Tdg(NS/V , h

NS/V ) Td(TS, hTS) on S.
(4.22)

As (3.9) splits G-equivariantly and isometrically, as in (3.28), we get

T̃dg(TS, TV |S, h
TV ) = 0 in P S/P S,0.(4.23)

By (4.12)-(4.23), we have (4.11). �
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Case 7012, 75205 Paris Cedex 13, France

Email address : xiaonan.ma@imj-prg.fr


