The Renormalization Method: A Real-time EEG Source Localization Technique
Valentin Debenay, Grégory Turbelin, Jean-Pierre Issartel, Amine Chellali,
Béatrice Alescio-Lautier, Celine Ramdani, Marie-Hélène Ferrer

To cite this version:
Valentin Debenay, Grégory Turbelin, Jean-Pierre Issartel, Amine Chellali, Béatrice Alescio-Lautier, et al.. The Renormalization Method: A Real-time EEG Source Localization Technique. 30e Colloque Alain BOUYSSY, Dec 2022, Orsay, France. 2022. hal-03955262

HAL Id: hal-03955262
https://hal.science/hal-03955262
Submitted on 25 Jan 2023
The Renormalization Method: A Real-time EEG Source Localization Technique

Valentin Debenay1,2, Grégory Turlamb1, Jean-Pierre Issartel1, Amine Chellali1, Béatrice Alessio-Lautier1, Céline Ramdani1, Marie-Hélène Ferrer1

1Laboratoire de Mécanique et d’Énergétique d’Évry (LMEE, EA 3332), Évry, France. 2Laboratoire d’Informatique, Bio-Informatique et Systèmes Complexes (LIVSC, EA 4526), Évry, France. 3Laboratoire de Neurosciences Cognitives (LNC, UMR 7291), Marseille, France. 4Institut de Recherche Biomédicale des Armées (IRBA), Unité Neurophysiologie du stress, Béthegny-sur-Orgue-Toulon, France.

I. CONTEXT
- Electroencephalography (EEG), a widely used brain imaging technique:
 - Noninvasive, easy to use, inexpensive, very high temporal resolution (ms).
 - Poor spatial resolution (volume conduction, poor SNR).
- EEG scalp potentials can be input into the ill-posed brain source imaging inverse problem: Localizing the electrical current sources in the brain that generate these potentials.
- Our idea: Adapt an approach initially developed to solve a source term estimation problem for atmospheric dispersion of NRBC substances, called “Renormalization” (TRL 5-6), in real time.
- Using anatomically faithful high-resolution 3D head models (FEM), our approach can provide valuable insights for neurophysiological & cognitive monitoring.

II. OBJECTIVES
- Can the Renormalization method bring valuable additional information as compared to other existing source imaging techniques (Minimum Norm, LORETA, MUSIC, Beamformers, ...)?
- Evaluate the complementarity between our source localization technique and classical signal processing pipelines (CSD, time-frequency analysis, Machine Learning, ...) to improve real-time interpretation of EEG signals.
 => To open new perspectives in the field of Brain-Computer Interfaces (BCIs) and to contribute to a better understanding of cognitive functions to improve the care of brain-injured patients (post-TBI rehabilitation assessment, ...).
- Implement and evaluate both a BCI prototype and a new post-TBI rehabilitation assessment pipeline that integrate our method.

III. METHOD
- The workflow:
 1) Compute the lead field matrix A from a sensor point of view.
 2) Generate the visibility matrix W, corresponding to a tensor field, via a “3D renormalization” process.
 3) Compute the estimated source s at each time step by applying the inverse operator G to the measurement vector μ.

- The source estimation enables:
 1. Accurate real-time mapping of electrical brain activity.
 2. Characterization (position, orientation & intensity) of single punctual or distributed sources.

IV. CONCLUSION & OUTLOOK
- Possible applications:
 - Improved neurophysiological & cognitive monitoring
 - Neurophysiological monitoring in real time
 - Accurate localization of epileptogenic foci
 - Cognitive states monitoring
 - Surgical efficacy improvement
 - Patient-tailored treatment
 - More reliable Brain-Computer Interfaces (BCIs)
 - Exoskeletons, prostheses, ...
 - Drones (UAVs, ...)
 - VR, software ...

- Work remaining:
 - Compare our Renormalization method’s outputs with other existing source imaging techniques results, based on the EEG recordings of a 20-subject dataset.
 - Implement the real-time part and display the 3D source vectors at each time step.
 - Explore the potential links between our source localization method and Connectivity.
 - Implement and evaluate a BCI prototype as well as a post-TBI rehabilitation assessment pipeline.