The Renormalization Method: A Real-time EEG Source Localization Technique
Valentin Debenay, Grégory Turbelin, Jean-Pierre Issartel, Amine Chellali, Béatrice Alescio-Lautier, Celine Ramdani, Marie-Hélène Ferrer

To cite this version:
Valentin Debenay, Grégory Turbelin, Jean-Pierre Issartel, Amine Chellali, Béatrice Alescio-Lautier, et al.. The Renormalization Method: A Real-time EEG Source Localization Technique. 30e Colloque Alain BOUYSSY, Dec 2022, Orsay, France. 2022. hal-03955262

HAL Id: hal-03955262
https://hal.science/hal-03955262
Submitted on 25 Jan 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
The Renormalization Method: A Real-time EEG Source Localization Technique

Valentin Debenay1,2, Grégory Turbelin1, Jean-Pierre Issartel3, Amine Chellali2, Béatrice Alessio-Lautier3, Céline Ramdani4, Marie-Hélène Ferrer4

1Laboratoire de Mécanique et d’Énergétique d’Évry (LME, EA 3332), Évry, France. 2Laboratoire d’Informatique, Bio-Informatique et Systèmes Complexes (IBISC, EA 4526), Évry, France. 3Laboratoire de Neurosciences Cognitives (LNC, UMR 7291), Marsanne, France. 4Institut de Recherche Biomédicale des Armées (IRBA), Unité Neurophysiologie du stress, Béthune-sur-Oise/Toulouse, France.

I. CONTEXT

- Electroencephalography (EEG), a widely used brain imaging technique:
 - Noninvasive, easy to use, inexpensive, very high temporal resolution (ms).
 - Poor spatial resolution (volume conduction, poor SNR).

- EEG scalp potentials can be input into the ill-posed brain source imaging inverse problem: Localizing the electrical current sources in the brain that generate these potentials.

- Our idea: Adapt an approach initially developed to solve a source term estimation problem for atmospheric dispersion of NRBC substances, called “Renormalization” (TRL 5-6), in real time.

- Using anatomically faithful high-resolution 3D head models (FEM), our approach can provide valuable insights for neurophysiological & cognitive monitoring.

II. OBJECTIVES

- Can the Renormalization method bring valuable additional information as compared to other existing source imaging techniques (Minimum Norm, LORETA, MUSIC, Beamformers, …)?

- Evaluate the complementarity between our source localization technique and classical signal processing pipelines (CSD, time-frequency analysis, Machine Learning, …) to improve real-time interpretation of EEG signals.

 => To open new perspectives in the field of Brain-Computer Interfaces (BCIs) and to contribute to a better understanding of cognitive functions to improve the care of brain-injured patients (post-TBI rehabilitation assessment, …).

- Implement and evaluate both a BCI prototype and a new post-TBI rehabilitation assessment pipeline that integrate our method.

III. METHOD

- The workflow:
 1) Compute the lead field matrix A from a sensor point of view.
 2) Generate the visibility matrix W, corresponding to a tensor field, via a “3D renormalization” process.
 3) Compute the estimated source s at each time step by applying the inverse operator G to the measurement vector μ.

- The source estimation enables:
 1. Accurate real-time mapping of electrical brain activity.
 2. Characterization (position, orientation & intensity) of single punctual or distributed sources.

- Improved neurophysiological & cognitive monitoring
 - EEG acquisition
 - Visual feedback
 - Electrodes 3D config.
 - Lead fields + Visibility computation
 - Forward model: As = μ
 - Inverse model: s = Gμ
 - Renormalization
 - Head model (FEM)

- More reliable Brain-Computer Interfaces (BCIs)
 - Exoskeletons, prostheses, …
 - Drones (UAVs, …)
 - VR, software …

IV. CONCLUSION & OUTLOOK

- Possible applications:
 - Improved neurophysiological & cognitive monitoring
 - More reliable Brain-Computer Interfaces (BCIs)
 - Neurophysiological monitoring in real time
 - Accurate localization of epileptogenic foci
 - Cognitive states monitoring
 - Surgical efficacy improvement
 - Patient-tailored treatment

- Work remaining:
 - Compare our Renormalization method’s outputs with other existing source imaging techniques results, based on the EEG recordings of a 20-subject dataset.
 - Implement the real-time part and display the 3D source vectors at each time step.
 - Explore the potential links between our source localization method and Connectivity.
 - Implement and evaluate a BCI prototype as well as a post-TBI rehabilitation assessment pipeline.