Improving non-invasive Brain-Computer Interfaces using an innovative real-time inversion method for EEG source reconstruction

Valentin Debenay, Grégory Turbelin, Jean-Paul Issartel, Amine Chellali, Marie-Hélène Ferrer

To cite this version:

Valentin Debenay, Grégory Turbelin, Jean-Paul Issartel, Amine Chellali, Marie-Hélène Ferrer. Improving non-invasive Brain-Computer Interfaces using an innovative real-time inversion method for EEG source reconstruction. Annual CORTICO Days Meeting 2022, Mar 2022, Autrans, France. 2022. hal-03955180

HAL Id: hal-03955180
https://hal.science/hal-03955180
Submitted on 25 Jan 2023
Context

- Non-invasive EEG-based BCIs seek to translate the brain's electrical activity into computer commands:
 1. Feature extraction
 - Application of a variety of commonly used time-frequency domain analysis methods, followed by dimensionality reduction algorithms.
 2. Pattern classification
 - Generally carried out by applying a Machine Learning (ML) classifier.
- EEG-based BCIs have excellent temporal resolution and usability, yet they suffer from poor spatial resolution and are more subject to noise from eye or muscle movements.
- Source reconstruction methods improve the spatial resolution of scalp EEG, and could be a way to improve classification accuracy.

Aims

- The EEG Inverse Problem's objective is to reconstruct the current distribution within the brain, involving:
 - Potentials measured on the scalp
 - A source-receptor model to describe the electric propagation through the head tissues.
- We offer to use our "Renormalization" method to obtain a unique and stable solution to this ill-posed Source Term Estimation (STE) problem.
- We aim to determine whether our "Renormalization" method can complement existing non-invasive EEG-based BCI methodologies.

Method description

- The "Renormalization" method is based on the Lead Field and "visibility" concepts.
- It uses the "visibility field" to compute the 3D position, orientation and strength of the sources.
- It can locate distributed sources as well as single sources.
- It generates a unique and stable solution to the inverse problem, in real-time.

Theoretical properties

- Developed from a deterministic approach
- Low computational costs
- Introduces the concepts of "visibility" and well/badly seen brain areas
- Symmetric resolution matrix with maximums as diagonal elements
- Perfect reconstruction of position and amplitudes of all single sources

Conclusions and Prospects

- Source reconstruction methods improve the spatial resolution of scalp EEG, and could be a way to improve classification accuracy.
- The "Renormalization" method generates in real-time a unique and stable solution to the ill-posed Source Term Estimation (STE) problem, based on the Lead Field and "visibility" concepts.
- We aim to determine whether our "Renormalization" method can complement existing non-invasive EEG-based BCI methodologies.
- Alternatively, feature extraction and classification steps can be regarded as a whole within the Riemannian framework:
 - Based on the Riemannian geometry
 - Allows easy manipulation of covariance matrices
 - Characterized by its simplicity, accuracy, robustness, and transfer learning capabilities.

References

DISCLAIMER: The opinions or assertions expressed here in are the private views of the authors and are not to be considered as official or as reflecting the views of our organizations.