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Overlap-ADAPT-VQE: practical quantum
chemistry on quantum computers via
overlap-guided compact Ansätze
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Jean-Philip Piquemal 1,2✉

ADAPT-VQE is a robust algorithm for hybrid quantum-classical simulations of quantum

chemical systems on near-term quantum computers. While its iterative process system-

atically reaches the ground state energy, practical implementations of ADAPT-VQE are

sensitive to local energy minima, leading to over-parameterized ansätze. We introduce the

Overlap-ADAPT-VQE to grow wave-functions by maximizing their overlap with any inter-

mediate target wave-function that already captures some electronic correlation. By avoiding

building the ansatz in the energy landscape strewn with local minima, the Overlap-ADAPT-

VQE produces ultra-compact ansätze suitable for high-accuracy initialization of a new

ADAPT procedure. Significant advantages over ADAPT-VQE are observed for strongly cor-

related systems including substantial savings in circuit depth. Since this compression strategy

can also be initialized with accurate Selected-Configuration Interaction (SCI) classical target

wave-functions, it paves the way for chemically accurate simulations of larger systems, and

strengthens the promise of decisively surpassing classical quantum chemistry through the

power of quantum computing.
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The computational cost of approximating the ground state
energy of an n-electron molecular system on classical
computing architectures typically grows exponentially in n.

Quantum computers allow for the encoding of the exponentially
scaling underlying Hilbert space using only OðnÞ qubits, and are
therefore likely to outperform classical devices on a range of
chemical simulations1–3. The Variational-Quantum Eigensolver
(VQE) is a hybrid quantum-classical algorithm that is considered
a very promising candidate for chemical calculations on Noisy
Intermediate Scale Quantum (NISQ) devices4,5. In this approach,
a parameterized wave-function is generated and variationally
tuned to minimize the expectation value of the molecular elec-
tronic Hamiltonian. A variety of different parameterized wave-
functions have been proposed, including the Trotterised Unitary
Coupled Cluster (tUCC) ansatz6,7 which consists of a sequence of
exponential, unitary operators acting on a judiciously chosen
reference state. While the tUCC approach includes electronic
correlation and has, in principle, a rather simple quantum circuit
structure, the excessive depth of these quantum circuits make
them ill-suited for applications in the NISQ regime. This issue has
led to the proposal that ansatz wave-functions be constructed
through the action of a selective subset of possible unitary
operators, i.e., only those operators whose inclusion in the ansatz
can potentially lead to the largest decrease in the expectation
value of the molecular electronic Hamiltonian. In this context, the
Adaptive Derivative-Assembled Pseudo-Trotter VQE (ADAPT-
VQE)8 has emerged as the gold standard for generating highly
accurate and compact ansatz wave-functions. In ADAPT-VQE,
the ansatz is grown iteratively by appending a sequence of unitary
operators to the reference Hartree-Fock state. At each iteration,
the unitary operator to be applied is chosen according to a simple
criterion based on the gradient of the expectation value of the
Hamiltonian (see the Methods section for details).

Assuming that the number of spin-orbitals N being considered is
proportional to the number of electrons n in the system, the pool of
potential unitary operators in tUCC-based VQEs scales as OðN‘Þ
for ℓ≥4. Thus, the pool of operators in tUCC singles and doubles,
for instance, scales as OðN4Þ, that of tUCC singles, doubles, and
triples scales as OðN6Þ, etc. As a consequence, conventional VQEs
based on the tUCC ansatz require the representation of a product
of OðN‘Þ unitary operators on quantum circuitry and the opti-
mization of anOðN‘Þ-dimensional cost function, both of which are
practically impossible using the current generation of NISQ devi-
ces. The ADAPT-VQE algorithm attempts to alleviate these pro-
blems by avoiding the inclusion of unitary operators in the ansatz
wave-function that are not expected to lead to a lowering of the
resulting energy. Numerical evidence suggests that ADAPT-VQE is
indeed resource-saving and the energy-gradient criterion employed
by ADAPT-VQE leads to much more accurate wave-functions
than conventional VQE algorithms while preserving moderate
circuit depth8–10. Thus, while the state-of-the-art k-UpCCGSD
algorithm11, which the review article12 considers the most pro-
mising fixed-ansatz VQE, is shown to obtain an accuracy of about
10−6 Hartree for the BeH2 molecule at equilibrium distance at a
cost of more than 7000 controlled NOT (CNOT) gates (see Table 1
in13), ADAPT-VQE achieves a higher accuracy of about 2 × 10−8

Hartree for the same system using only about 2400 CNOT gates9.
In spite of this comparative advantage, such an energy-gradient
guided procedure has a tendency to fall into local minima of the
energy landscape. Exiting from such minima comes at the expense
of adding and optimizing operators through multiple ADAPT
iterations14 and leads to over-parameterized wave-functions. In
practice, this is associated with an unnecessary increase of the
quantum circuit depth required for the representation of the ansatz
wave-function coupled to an increasingly difficult classical opti-
mization. This is dramatically revealed in the supplementary

information in9 wherein the basic qubit excitation-based (QEB)
variant of ADAPT-VQE is applied to the strongly correlated
stretched H6 linear chain, and it is shown that more than a
thousand CNOT gates are required to construct a chemically
accurate ansatz. Given that the current state-of-the-art simulations
on physical quantum computers typically involve a maximal circuit
depth of less than 100 CNOT gates15, it seems unrealistic in the
very short-term to expect a chemically accurate quantum device
implementation of ADAPT-VQE for strongly correlated molecules.
Let us remark here that while the focus of this article is on hybrid
quantum-classical adaptive algorithms in the tradition of ADAPT-
VQE, quantum imaginary time evolution approaches have also
been recently proposed and shown an improved optimization in
the high-dimensional non-convex energy landscape16.

Our proposed approach for overcoming the challenges of
energy plateaus requires modifying the manner in which the
ansatz wave-function is constructed. Indeed, rather than con-
structing an ansatz wave-function through an energy minimiza-
tion procedure and potentially encountering local minima, we
grow the ansatz wave-function through a process that maximizes
its overlap with a—potentially intermediate—target wave-
function that already captures some electronic correlation of the
system. We then use such a target wave-function as a guide to
help us build our ansatz in the right direction so as to catch the
bulk of electronic correlation (see the Methods section for a
detailed description and workflow). The resulting overlap-guided
ansatz is subsequently used as a high-accuracy initialization for
an ADAPT-VQE procedure, an algorithm that we refer to as
Overlap-ADAPT-VQE. We benchmark and compare the ansatz
wave-functions obtained with Overlap-ADAPT-VQE method to
standard ADAPT-VQE on a range of small chemical systems
with varying levels of correlation. Our results indicate that this
Overlap-ADAPT-VQE strategy yields chemically accurate ansatz
wave-functions that are significantly more compact than those
produced by the classical ADAPT-VQE procedure thus main-
taining optimism for achieving chemically accurate molecular
simulations on near-term quantum devices.

Results
Setting of numerical simulations. The classical numerical
simulations reported in this section have been carried out with an
in-house code, using the Openfermion-PySCF module17 for
integral computations and OpenFermion18 for the second
quantization and Jordan–Wigner mappings. All calculations are
performed within the minimal STO-3G basis set19 without con-
sidering frozen orbitals unless otherwise specified. Note that
the number of qubits that a simulation requires is equal to the
number of spin-orbitals of a system, which therefore limits the
quality of the single-particle basis and the size of the system that
can be simulated. All optimization routines use the Broyden-
Fletcher-Goldfarb-Shanno algorithm implemented on the SciPy
Python module20. We use a pool of non-spin-complemented
restricted single- and double-qubit excitations evolutions. By
“restricted”, we mean that we consider only excitations from
occupied orbitals to virtual orbitals with respect to the Hartree-
Fock determinant. Using fewer operators in the pool makes the
gradient screening process faster and easier to handle from a
computational point of view9. To ensure a fair comparison, this
same operator pool is used for both the overlap-guided Ansatz
and ADAPT-VQE.

To anticipate applications of such adaptive algorithms on noisy
quantum machines, there are essentially two constraints to
respect:

● The circuit depth should be kept as shallow as possible so as
to reduce the effect of decoherence in NISQ devices. In the
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current context, the circuit depth corresponds to the number
of gates used to construct our wave-function ansatz.

● The number of measurements an NISQ device can
undertake is very limited. On the other hand, the
ADAPT-VQE algorithm requires a large number of
measurements both in the form of gradient evaluations at
the beginning of each iteration and during the VQE
optimization step of the ansatz wave-function. The
optimization step in particular often requires an excessive
number of measurements since the cost function is both
high-dimensional and noisy. Consequently, the optimiza-
tion of the ansatz wave-function is simply intractable with a
limited number of evaluations thus preventing practical
application of ADAPT-VQE on current quantum devices.

In order to implement such adaptive algorithms on the current
generation of NISQ devices, therefore, we must minimize both
the circuit depth and the number of evaluations. Indeed, as the
depth of a circuit increases, the noise level also increases, which
results in a greater number of samples being required for accurate
measurement of the Hamiltonian expectation values. In ADAPT-
VQE, each operator added to the ansatz corresponds to an
additional layer of quantum gates in the circuit and an additional
parameter in the ansatz. Consequently, to address both the circuit
depth and the number of evaluations constraints, we will evaluate
the energy convergence as a function of the number of operators
present in the ansatz. Details on the operator and gate counts for
all circuits used in this study can be found in Supplementary
Note 2 (see Supplementary Table 1).

Application of Overlap-ADAPT-VQE to reference full-CI
wave-functions. As a first proof-of-concept, we apply the
Overlap-ADAPT procedure to the reference full-CI wave-func-
tions of some simple, yet strongly correlated molecular systems in
an effort to understand the compactness of the wave function
generated by the qubit excitation-based (QEB) ADAPT-VQE
algorithm in the chemical accuracy regime. To do so, we will
compute the energy of the Overlap-ADAPT approximation of the
target full-CI wave-functions of a stretched BeH2 molecule and a
stretched linear H6 chain in a minimal basis set as a function of
the number of optimization parameters, and plot this energy in
comparison to the energy obtained using QEB-ADAPT-VQE.

The resulting energy plots, which are displayed in Fig. 1, clearly
show that the overlap-guided adaptive procedure is able to avoid
the initial energy plateaus afflicting the ADAPT procedure that
prevent the attainment of chemical accuracy in a small number of

iterative steps. These results strongly suggest the potential for
creating a more condensed ansatz wave-function than that
generated by ADAPT-VQE which can sidestep the issue of early
energy plateaus.

Before proceeding, let us point out that a key metric for
evaluating the efficiency of the overlap-ADAPT algorithm is to
compute the overlap between the ansatz wave-function and the
full-CI wave-function over the course of several algorithm
iterations. Consequently, for the stretched BeH2 and stretched
linear H6 chain considered above, we plot the overlap
convergence with respect to the full-CI wave-function in Fig. 2.
It is readily seen that the Overlap-ADAPT procedure targeted at
the full-CI wave-function outperforms the original ADAPT-VQE,
achieving a higher overlap with the full-CI wave-function for both
a stretched BeH2 molecule and a stretched linear H6 chain. In
particular, for the H6 system, while ADAPT-VQE reaches a
plateau and stalls its progress, the Overlap-ADAPT procedure
smoothly advances without interruption.

Of course, the Overlap-ADAPT-VQE targeted at a full-CI
wave-function does not define a practical VQE since the full-CI
ground state energy is precisely the quantity we wish to
approximate. A practical VQE based on orbital overlap
optimization can, however, be developed by replacing the targeted
full-CI wave-function with a tractable high accuracy approxima-
tion thereof and using the resulting overlap-guided ansatz wave-
function as a high accuracy initialization for a new ADAPT-VQE
procedure. The targeted “computable” wave-function in this
situation can be completely general, i.e., it can be the output of
any existing numerical algorithm, whether classical or quantum.

The goal of the forthcoming subsections is to showcase the
efficacy of this Overlap-ADAPT algorithm in obtaining chemi-
cally accurate results using a minimal number of optimization
parameters. Such findings are important for practical uses of
quantum computing for quantum chemistry since, as we have
already stated, real-life chemists are interested in reaching
convergence in energies corresponding to the so-called chemical
accuracy, i.e. 10−3 to 10−4 Hartree. Our results can therefore
introduce a practical route for compactifying the ADAPT-VQE
operator counts using the Overlap-ADAPT-VQE within this
accuracy regime.

Application of Overlap-ADAPT-VQE for compactification of
ADAPT-VQE Ansatzë. As a first practical test of its effectiveness,
we apply the overlap-guided adaptive algorithm to a target wave-
function provided by an existing qubit excitation-based (QEB)

Fig. 1 Comparison of the full-CI overlap-guided ADAPT-VQE and ADAPT-VQE for the ground state energy of a stretched BeH2 molecule and a
stretched linear H6 chain. a demonstrates the numerical results for a stretched BeH2 molecule while b displays the results for a stretched linear H6 chain.
Both plots represent the energy convergence as a function of the number of parameters in the ansatz. The pink area indicates chemical accuracy at 10−3

Hartree.
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ADAPT-VQE procedure and then use the result as a high-accuracy
initialization for a new QEB-ADAPT-VQE procedure. Essentially,
this first set of numerical experiments is meant to model the
situation where we have a strong constraint on the circuit depth
(represented by the number of optimization parameter in the
ansatz wave-function), and we wish to see if it is possible to use the
Overlap-ADAPT-VQE procedure to compactify the ADAPT-VQE
ansatz thereby obtaining a higher accuracy wave-function that
respects the constraint on the circuit depth.

We compute the ground state energy of the benchmark
Beryllium Hydride (BeH2) molecule considered in the original
ADAPT-VQE articles8. We consider the BeH2 molecule both at
its equilibrium geometry (bond length of 1.3264 Angstrom) as
well as at a stretched geometry (bond length of 3.0 Angstrom),
which is meant to model a more strongly correlated system. Our
results are depicted in Fig. 3.

The numerical results indicate that the Overlap-ADAPT-VQE
can indeed compactify the QEB-ADAPT-VQE ansatz wave-
function and using the output as an initialization for a new

QEB-ADAPT-VQE yields a much more accurate wave-function.
Under the constraint of a maximal operator count of 50, the
overlap-guided procedure improves the final accuracy of the
computed BeH2 ground state energy at equilibrium and stretched
geometries by a factor of 3 and 10, respectively. Note that the
improvement in accuracy is much higher in the case of the
stretched BeH2 molecule which exhibits strong correlation, and this
suggests that the comparative advantage of the overlap-guided
adaptive algorithm over a pure ADAPT-VQE procedure will be
more conspicuous for strongly correlated molecules—systems for
which the ADAPT-VQE algorithm struggles to compute the
ground state energy. Thus, in the case of the BeH2 molecule, for
instance, we are able to achieve chemical accuracy using only a 34
operator-ansatz wave-function whereas the QEB-ADAPT-VQE
algorithm requires more than 50. Numerical simulations for
stretched BeH2 using a lower maximal operator count of 40 and 45
are displayed in Fig. 4 and show similar improvements in the final
accuracy of the ansatz wave-function, although the advantage
decreases as the maximal operator count decreases.
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Fig. 2 Comparison of the full-CI overlap-guided ADAPT-VQE and ADAPT-VQE for maximizing the overlap with the full-CI wave-function of a
stretched BeH2 molecule and a stretched linear H6 chain. a demonstrates the numerical results for a stretched BeH2 molecule while b displays the results
for a stretched linear H6 chain. Both plots represent the lack of fidelity between the ansatz and the full-CI wave-function, calculated as one minus the
overlap, as a function of the number of parameters in the ansatz.

Fig. 3 Comparison of the Overlap-ADAPT-VQE and ADAPT-VQE for the ground state energy of a BeH2 molecule. a demonstrates the numerical results
for a BeH2 molecule at equilibrium geometry while b displays the results for a stretched BeH2 molecule. Both plots represent the energy convergence as a
function of the number of parameters in the ansatz. The left-pointing triangles denote the target wave-functions used for subsequent Overlap-ADAPT
procedures. For simplicity, we do not plot the entire Overlap-ADAPT curve, but rather only the portion corresponding to the energy minimization using a
classical ADAPT-VQE procedure. Thus, in a, the overlap maximization portion of Overlap-Guided QEB-ADAPT-VQE lasts until parameter 40 at which
point the energy minimization portion is initiated. The green dotted line corresponds to a full- configuration interaction (full-CI) Overlap-ADAPT-VQE
procedure which is plotted as a reference. Note that at equilibrium distance (a), the QEB-ADAPT-VQE curve and the full-CI Overlap-ADAPT- VQE nearly
coincide whereas for the stretched molecule (b) the full-CI Overlap-ADAPT-VQE curve is lower. The pink area indicates chemical accuracy at 10−3

Hartree.
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A further test of the Overlap-ADAPT-VQE applied to a target
QEB-ADAPT-VQE wave-function is carried out for the diatomic
Nitrogen (N2) molecule at equilibrium and stretched geometries.
Although the minimal basis set for N2 is quite large, a tractable
computation can be carried out using an active space approach
where the eight core electrons of the N2 molecule are frozen and
the ground state energy of the system is computed using the
resulting frozen core effective Hamiltonian, an approach
commonly referred as CAS(6,6). As shown in Fig. 5, the
Overlap-ADAPT procedure does not further compactify the
QEB-ADAPT-VQE wave-function at equilibrium, the final
accuracy of the Overlap-QEB-ADAPT-VQE being only slightly
higher than that of the classical QEB-ADAPT-VQE procedure.
Nevertheless, by applying the Overlap-ADAPT-VQE procedure
twice, i.e., taking a QEB-ADAPT-VQE wave-function as the first
target, performing an Overlap-ADAPT-VQE procedure, and then
taking the resulting wave-function as the target for an additional
Overlap-ADAPT-VQE procedure yields a significant gain in
accuracy for the stretched geometry. Indeed, the Overlap-QEB-
ADAPT-VQE energy is nearly an order of magnitude more
accurate than the classical QEB-ADAPT-VQE energy.

Let us remark that as a rule of thumb, for all these
simulations, the Overlap-ADAPT algorithm is used to construct
an approximate wave-function using a number of operators
equal to ~40–50% of the maximal operator count. If the
maximal operator count is more flexible, then as a general rule
we observe that the ADAPT-VQE ansatz taken immediately
after the ADAPT process has exited an energy plateau, serves as
an effective choice of target wave-function for an overlap-
guided adaptive procedure, i.e., the Overlap-ADAPT-VQE can
produce a more compact wave-function with comparable
energy to that of the target ADAPT wave-function. On the
other hand, taking ADAPT-VQE ansatz wave-function from the
middle of an energy plateau as the overlap-guided target seems
to be a less effective strategy.

Application of Overlap-ADAPT-VQE to classically computed
wave-functions. The stretched linear H6 chain is a molecular
system that exhibits a high degree of electronic correlation. The
complex electronic structure creates a rough energy landscape
with many local minima, making finding of the global energy
minimum difficult. This system has already been extensively

Fig. 4 Comparison of the Overlap-ADAPT-VQE and ADAPT-VQE for the ground state energy of a stretched BeH2 molecule with different maximal
operator counts. a demonstrates the numerical results for a maximal operator count of 40 while b displays the results for a maximal operator count of 45.
Both plots represent the energy convergence as a function of the number of parameters in the ansatz. The left-pointing triangles denote the target wave-
functions used for a subsequent overlap-ADAPT procedure. For simplicity, we do not plot the entire Overlap-ADAPT curve, rather only the portion
corresponding to the energy minimization using a classical ADAPT-VQE procedure. The green dotted line corresponds to a full-CI Overlap-ADAPT-VQE
procedure which is plotted as a reference. The pink area indicates chemical accuracy at 10−3 Hartree.

Fig. 5 Comparison of the Overlap-ADAPT-VQE and ADAPT-VQE for the ground state energy of an N2 molecule. a demonstrates the numerical results
for an N2 molecule at equilibrium geometry while b displays the results for a stretched N2 molecule. Both plots represent the energy convergence as a
function of the number of parameters in the ansatz. The left-pointing triangles denote the target wave-functions used for a subsequent Overlap-ADAPT
procedure. For simplicity, we do not plot the entire Overlap-ADAPT curve, rather only the portion corresponding to the energy minimization using a
classical ADAPT-VQE procedure. The green dotted line corresponds to a full-CI Overlap-ADAPT-VQE procedure which is plotted simply as a reference.
The pink area indicates chemical accuracy at 10−3 Hartree.
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studied9 and it was shown that achieving chemical accuracy with
ADAPT-VQE method required constructing an ansatz wave
function with more than 150 operators from a pool of either
generalized fermionic or generalized qubit-excitations. Clearly,
resources of this kind are far from being accessible on current
NISQ devices, and it is therefore necessary to develop adaptive
methods for simulating systems using a much smaller operator
count. Until now, the most extensive VQE experiments have
typically encompassed around 10 operators while accumulating
an error of at least 0.1 Hartree21,22. Unfortunately, the ADAPT-
VQE ansatz wave-function, presumably not constructed with a
satisfactory choice of qubit excitation evolution operators prior to
an unreachable number of iterations, cannot be used as the target
of the overlap-guided adaptive algorithm as in the previous
subsection. Instead, we propose the use of an intermediate,
classically computed, multi-configuration wave-function as the
overlap-guided target, an approach that has the consequent
advantage of not costing additional quantum resources. While
many different choices of classically computed wave-functions are
possible, in this study, we choose to employ the so-called CI
perturbatively selected iteratively (CIPSI) algorithm implemented
in QP223 (see the Methods section for a brief recap of the CIPSI
method).

CIPSI-Overlap-ADAPT numerical results. We performed CIPSI
calculations through the open-source quantum chemistry
environment Quantum Package23 for the different molecular
systems. As mentioned previously, the CIPSI wave-function is
used as a target for the overlap-guided adaptive algorithm and is
therefore not required to be very accurate. In particular, all
CIPSI wave-functions employed in this study have errors much
larger than 10−3 Hartree, i.e., they are not chemically accurate.
In the remainder of this section, we compare the energy con-
vergence of the QEB-ADAPT-VQE algorithm starting from an
intermediate wave-function obtained by applying the overlap-
guided algorithm to a CIPSI wave-function with the traditional
QEB-ADAPT-VQE procedure that initializes from a simple
Hartree-Fock ansatz. As a rule of thumb, for all these simula-
tions, the Overlap-ADAPT-VQE is used to construct an
approximate wave-function with energy comparable to that of
the targeted CIPSI wave-function before initiating the sub-
sequent QEB-ADAPT-VQE procedure.

Figure 6 shows the energy convergence plot of the two different
ADAPT-VQE protocols on the stretched linear H6 system. We
observe a significant difference in the results, with chemical
accuracy being achieved using only 40 parameters when the QEB-
ADAPT-VQE procedure is initialized with the overlap-guided-
CIPSI intermediate wave-function whereas the classical ADAPT-
VQE ansatz is ~15 times less accurate despite using 50
parameters. Additional calculations revealed that with the
classical QEB-ADAPT-VQE protocol requires >150 parameters
to achieve chemical accuracy9. This massive performance gap
demonstrates that the CIPSI wave-function initialization guides
the ansatz construction in a manner that avoids an initial massive
energy plateau which impedes the progress of classical QEB-
ADAPT-VQE.

Let us emphasize here that the initial CIPSI wave-function was
composed of only 50 determinants and had an error larger than
10−2 Hartree, which suggests that even a low accuracy classically
computed target wave-function for the overlap-guided algorithm
is enough to improve the convergence of the subsequent QEB-
ADAPT-VQE procedure. This observation is particularly impor-
tant since it highlights the potential of applying this CIPSI-
Overlap-ADAPT procedure to much larger systems with strong
correlation where CIPSI approaches are not effective and are
simply unable to achieve chemical accuracy. For such systems, we

can envision computing a CIPSI wave-function at the limit of
classical computational resources, using this non-chemically
accurate CIPSI wave-function as a target for the overlap-guided
adaptive algorithm, and initializing a subsequent QEB-ADAPT-
VQE procedure on a quantum computer in order to obtain a final
result with chemical accuracy.

To further test the effectiveness of this CIPSI-Overlap-ADAPT
approach, we return to the stretched BeH2 molecule considered in
the previous subsection. We employ two different CIPSI wave-
functions as targets for the overlap-guided adaptive algorithm
and use the approximate wave-functions obtained as high
accuracy initializations for QEB-ADAPT-VQE procedures. Our
results are displayed in Fig. 7 and demonstrate that the CIPSI-
Overlap-ADAPT produces a significantly more compact ansatz
than the classical QEB-ADAPT-VQE procedure for both choices
of CIPSI wave-functions. In both cases, the final accuracy of the
wave-function with a maximal operator count of 50 operators is
nearly an order of magnitude more than that of QEB-ADAPT-
VQE. Furthermore, as noted in the case of the H6 molecule, the
choice of a low accuracy CIPSI wave-function as the initial target
for the Overlap-ADAPT-VQE does not meaningfully degrade the
final accuracy. Let us also remark here that the CIPSI-Overlap-
ADAPT-VQE wave-function obtained at the end of the iterative
process can then further be used a target for an additional
Overlap-ADAPT-VQE procedure, thereby further increasing the
accuracy of the ansatz wave-function. In the case of the stretched
BeH2 molecule, this results in further minor improvements to the
final energy that is achievable using a maximal operator count of
50, as displayed in Fig. 7.

Discussion
In this study, we have explored the possibility of creating ansatz
wave-functions for the variational-quantum eigensolver that are
more compact than the popular ADAPT-VQE at the chemical

Fig. 6 Comparison of the CIPSI-Overlap-ADAPT-VQE and ADAPT-VQE
for the ground state energy of a linear H6 chain with an interatomic
distance of 3 Angstrom. The plot represents the energy convergence as a
function of the number of parameters in the ansatz. The CIPSI-Overlap
ansatz is grown up to 20 parameters and then used as the initial state for
an ADAPT-VQE process. This transition from Overlap-ADAPT-VQE to
classical ADAPT-VQE is denoted by the top-pointing triangle. The
horizontal black dotted line corresponds to the energy error of the initial
CIPSI target wave-function. The light blue dotted line corresponds to the
energy of the tUCCSD method9, which consists of an ansatz wave-function
composed of 118 generalized excitation evolutions acting on a reference
Hartree-Fock state. The green dotted line corresponds to an full-CI
Overlap-ADAPT-VQE procedure which is plotted simply as a reference.
The pink area indicates chemical accuracy at 10−3 Hartree.
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accuracy level for some small molecular systems. Since the
overparametrization phenomenon observed in the ADAPT
algorithm can be attributed to the algorithm’s natural propensity
to encounter local energy minima, we have proposed an overlap-
guided adaptive algorithm called Overlap-ADAPT-VQE, wherein
the ansatz wave-function is grown by maximizing its overlap with
an intermediate target wave-function that already captures some
electronic correlation. We then use this overlap-guided ansatz as
a high-accuracy initialization for a classical ADAPT-VQE
procedure.

As a first test of our proposed approach, we used an existing
ADAPT-VQE ansatz wave-function as a target for the overlap-
guided adaptive algorithm. The resulting ansatz wave-function
was shown to achieve chemical accuracy using significantly less
operators than the classical ADAPT-VQE ansatz. We have also
shown that this compression process can be carried out more
than once and leads to an even more compact ansatz. For strongly
correlated systems, the overlap-guided ansatz is steered by the
target wave-function away from the majority of local traps that
are typically encountered in standard ADAPT-VQE when start-
ing from the Hartree-Fock state. While it appears that the
ADAPT ansatz is already quite compact for systems with poor
electronic correlation, the Overlap-ADAPT approach remains
able to offer slight improvements.

Motivated next by the inability of ADAPT-VQE to process
highly correlated systems such as the stretched linear H6 chain
using a reasonably compact ansatz, we combined classical
selected-CI approaches and quantum computing by taking a
CIPSI wave-function as a target for our overlap-guided adaptive
algorithm. The resulting CIPSI-Overlap-ADAPT-VQE procedure
produced a massive improvement over standard ADAPT-VQE,
allowing us to reach chemical accuracy using an ansatz with only
40 operators compared to more than 150 for the classical
ADAPT-VQE method.

Previous studies have already investigated the use of additional
classical computation to enhance the UCCSD or ADAPT-VQE
methods and have demonstrated promising improvements7,24–27.
Our work builds upon this research and contributes to this line of
study. It is worth noting that the overlap-guided ansatz can also
be interpreted as a state preparation algorithm for Hamiltonian
simulation28–30, as it generates a state with high overlap on the
ground state (see Fig. 2).

However, within our framework, the hybrid selected-CI-
Overlap algorithm has the potential to bring a quantum advan-
tage over classical quantum chemistry methods by following this
procedure: pushing the classical computation of a complex
molecular system to its limits, then generating the corresponding
ansatz in a quantum computer using the Overlap adaptive algo-
rithm, and further improving this ansatz through ADAPT-VQE
and potentially additional overlap-guided compression steps. We
are also testing the possibility of a final perturbative state (PT2)
calculation following the spirit of the modern classical selected-CI
approaches.

Finally, let us emphasize that Overlap-ADAPT-VQE is, by
design, able to integrate seamlessly with the recent improvements
made to ADAPT-VQE31,32, sharing the same structure and
adaptive property while still leveraging its own unique approach
to operator selection, and many combinations with ADAPT
variants can now be proposed and studied. Conversely, con-
vergence in overlaps can be achieved more quickly by incorpor-
ating a wider range of operators, such as generalized excitations
or symmetry-breaking operators, into the pool of operators used.
This would lead to immediate improvements in the performance
of the Overlap-ADAPT-VQE algorithm. To explore further the
capabilities of the various Overlap-ADAPT approaches and their
potential practical advantage over classical methods, we are cur-
rently working towards larger-scale simulations on extended
implementations encompassing larger qubit counts on present
NISQ machines and HPC simulators.

Methods
Qubit representation of the molecular Hamiltonian. The molecular electronic
Hamiltonian with one-body and two-body interactions can be expressed in second-
quantization notation as

H :¼ ∑
p;q

hpqa
y
paq þ ∑

p;q;r;s
hpqrsa

y
pa

y
r asaq: ð1Þ

Here, p, q, r, and s are indices that label the spin-orbitals used to discretize the
system, ap and ayp are the pth fermionic annihilation and creation operators that
satisfy the anti-commutation relations:

ap; a
y
q

n o
:¼ apa

y
q þ ayqap ¼ δpq and ap; aq

n o
:¼ apaq þ aqap ¼ 0; ð2Þ

with δpq representing the classical Kronecker symbol in the frame of operator
algebra, and hpq and hpqrs are one-electron and two-electron integrals that can be

Fig. 7 Comparison of the CIPSI-Overlap-ADAPT-VQE and ADAPT-VQE for the ground state energy of a stretched BeH2 molecule for different CIPSI
wave-functions. The plots represent the energy convergence as a function of the number of parameters in the ansatz. a the CIPSI-Overlap ansatz is grown
up to 12 parameters using a low accuracy initial CIPSI target whereas in b, the CIPSI-Overlap ansatz is grown up to 25 parameters using a moderate
accuracy initial CIPSI target. The resulting wave-functions in both cases are used as initial states for ADAPT-VQE procedures. This transition from Overlap-
ADAPT-VQE to classical ADAPT-VQE is denoted by the top-pointing triangle. The horizontal dotted lines correspond to the energy error of the initial CIPSI
target wave-functions. The green dotted lines corresponds to a full-CI Overlap-ADAPT-VQE procedure which is plotted simply as a reference. The pink
area indicates chemical accuracy at 10−3 Hartree.
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computed on classical hardware through the expressions

hpq :¼
Z
R3

Ψ�
pðxÞ � 1

2
Δ� Vnuc

� �
ΨqðxÞ dx;

hpqrs :¼
Z
R3

Z
R3

Ψ�
pðxÞΨ�

r ðyÞ
1

jx � yj

� �
ΨqðxÞΨsðyÞ dxdy;

ð3Þ

where Ψp, Ψq, Ψr, Ψs denote spin-orbitals labeled by the indices p, q, r, and s,
respectively.

In order to represent the second-quantized Hamiltonian H on a quantum
computer, we use the Jordan–Wigner transform33,34 to map the creation and
annihilation operators to tensor products involving unitary matrices. To this end,
we denote by 0j ip and 1j ip states corresponding to an empty and occupied spin-
orbital p respectively. Using this formalism, the reference Hartree-Fock state for a
system having n electrons in N spin-orbitals can be expressed as
ΨHF
�� �

:¼ 10 ¼ 1n0nþ1 ¼ 0N
�� �

, and the corresponding fermionic creation and
annihilation operators are given by

ap ¼
Op�1

i¼0

Zi

 !
� Xp þ iYp

2
¼:

Op�1

i¼0

Zi

 !
� Qp;

ayp ¼
Op�1

i¼0

Zi

 !
� Xp � iYp

2
¼:

Op�1

i¼0

Zi

 !
� Qy

p ;

ð4Þ

where Xp, Yp, Zp are single-qubit Pauli gates applied to qubit p35. Note that in
Equation (4), we have introduced the so-called qubit excitation and de-excitation
operators Qp and Qy

p respectively that switch the occupancy of the spin-orbital.
These operators will be the subject of further discussion in the sequel. Let us also
remark here that the Jordan–Wigner-transformed excitation and de-excitation
operators (4) respect the anti-commutation relations (1). This is simply a
consequence of including the tensor product of Z-Pauli gates in Equation (4)33.

The variational-quantum Eigensolver. Equipped with the single-qubit Pauli gate
representation of the molecular Hamiltonian H, we are now interested in
approximating its ground state eigenvalue. The Variational-Quantum-Eigensolver
(VQE) is a hybrid quantum-classical algorithm that couples a classical optimization
loop to a subroutine that computes on a quantum computer, the expectation value
of the Hamiltonian with respect to a proposed ansatz wave-function. This quantum
subroutine involves two fundamental steps:

1. The preparation of a trial quantum state (the ansatz wave-function) jΨð θ!Þi.
A variety of different functional forms for the ansatz wave-function have
been proposed7,36–38 including the aforementioned tUCC ansatz which
consists of a sequence of parameterized, exponential fermionic excitation
and de-excitation operators acting on a reference state (see below for explicit
expressions of these operators).

2. The measurement of the expectation value hΨð θ!ÞjHjΨð θ!Þi.
The output of the quantum subroutine is fed into a classical optimization

algorithm which calculates the optimal set of parameters θ
!

opt that minimizes the
expectation value of the Hamiltonian H. The variational principle ensures that the
resulting optimized energy is always an upper bound for the exact ground state
energy E0 of H, i.e.,

Ψ θ
!

opt

� �D ���H Ψ θ
!

opt

� ���� E
≥ E0: ð5Þ

The fundamental challenge in implementing the VQE methodology on NISQ
devices is thus to construct an ansatz wave-function that can capture the most
important contributions to the electronic correlation energy and, at the same time,
is capable of being represented on rather shallow quantum circuits. A necessary
condition to achieve the latter is that the chosen ansatz wave-function be
parameterized with a relatively small number of optimization parameters. Thus,
the major computational shortcoming of the popular tUCCSD method– which
otherwise possesses an attractive functional form7—is that its actual
implementation on quantum computers requires extremely deep circuits which
generate far too much noise on the current generation of NISQ devices22. Indeed,
implementing the tUCCSD algorithm on quantum architectures through the
Jordan–Wigner mapping (4) requires O(N3n2) quantum gates7 (recall that N is the
number of spin-orbitals being considered and n is the number of electrons in the
system so that if N is proportional to n, then the number of quantum gates
required will be of the order of O(N5)). This problem is further exacerbated by the
ubiquitous usage of CNOT gates in the construction of quantum circuits for
fermionic excitation and de-excitation operators. tUCCSD has been recently
extended to triple excitations (tUCCSDT)39 and coupled to both spin and orbital
symmetries to reduce the operators count but this latter remains too high for real-
life QPUs implementation despite a significantly increased accuracy over
tUCCSD.

The ADAPT-VQE ansatz. The adaptive derivative-assembled pseudo-Trotter
variational-quantum eigensolver (ADAPT-VQE)8 was designed to overcome the
computational shortcomings of the traditional tUCCSD method by proposing an

ansatz function that is adaptively grown through an iterative process. ADAPT-
VQE is based on the fact40 that the full-CI quantum state can be represented by the
action of a potentially infinitely long product of only one-body and two-body
operators on the reference Hartree-Fock determinant, i.e.,

ΨFCI

�� � ¼Y1
k

Y
pq

Â
q
pðθpqk Þ

Y
pqrs

Â
rs
pqðθpqrsk Þ

" #
ΨHF

�� �
: ð6Þ

Here, Â
q
pðθpqk Þ :¼ eθ

pq
k τ̂qpðkÞ and Â

rs
pqðkÞ :¼ eθ

pqrs
k τ̂rspq where τ̂qp and τ̂rspq denote the

anti-symmetric operators âqp � âpq and ârspq � âpqrs and θpqk (resp. θpqrsk ) is the

expansion coefficient of the kth repetition of the operator Â
q
p (resp. Â

rs
pq).

The general workflow of the ADAPT-VQE algorithm is as follows:

1. On classical hardware, compute one-electron and two-electron integrals,
and map the molecular Hamiltonian into a qubit representation. On
quantum hardware, boot the qubits to an initial state jΨ0i ¼ jΨHFi.

2. Define a pool of parameterized unitary operators that will be used to
construct the ansatz.

3. On quantum hardware, at the mth iteration, identify the parameterized
unitary operator ÛmðθmÞ whose action on the current ansatz jΨm�1i will
produce a new wave-function with the largest drop in energy. This
identification is done by computing suitable gradients at θm= 0, the
gradients being expressed in terms of commutators involving the molecular
Hamiltonian acting on the current ansatz wave-function:

∂

∂θm
hΨm�1j ÛmðθmÞyHÛmðθmÞjΨm�1ijθm¼0 ¼ hΨm�1j½H; Ûmð0Þ�jΨm�1i

ð7Þ
4. Exit the iterative process if the gradient norm is smaller than some threshold

ϵ. Otherwise, append the selected operator to the left of the current
ansatz wave-function jΨm�1i, i.e., define jfΨmi :¼ ÛmðθmÞjΨm�1i ¼
ÛmðθmÞ ^Um�1ðθ0m�1Þ¼ Û1ðθ01Þ Ψ0

�� �
.

5. Hybrid Quantum-Classical VQE: Optimize all parameters θm, θm−1,…, θ1 in
the new ansatz wave-function so as to minimize the expectation value of the
molecular Hamiltonian, i.e., solve the optimization problem

θ
!opt

:¼ ðθ01; ¼ ; θ0m�1; θ
0
mÞ

:¼ argmin
θ1 ;¼ ;θm�1 ;θm

hÛmðθmÞÛm�1ðθm�1Þ¼ Û1ðθ1ÞΨ0jHÛmðθmÞÛm�1ðθm�1Þ¼ Û1ðθ1ÞΨ0i

ð8Þ
and define the new ansatz wave-function Ψmj i using the newly optimized
parameters θ01; ¼ ; θ0m , i.e., define Ψmj i :¼ Ûmðθ0mÞ ^Um�1ðθ0m�1Þ¼Û1ðθ01Þ Ψ0

�� �
. Let us emphasize that although we also denote the newly

optimized parameters at the current mth iteration by θ01; ¼ θ0m , these
optimized values are not necessarily the same as those used to define Ψm�1

�� �
and referenced in Step 4 above.

6. Return to Step 3 with the updated ansatz Ψmj i.
There are essentially three types of operator pools that are used to construct the

ADAPT-VQE ansatz.

● Fermionic-ADAPT-VQE8 uses a pool of spin-complemented pairs of single
and double fermionic excitation operators. The quantum circuits
performing these unitary operations are of the staircase shape (see Fig. 8a).

● Qubit-ADAPT-VQE10 divides the fermionic-ADAPT operators after the
Jordan–Wigner mapping and takes the individual Pauli strings as operators
of the pool. The quantum circuit for an operator is a single layer of
fermionic excitation “CNOT-staircase” circuits, similar to the circuit
displayed in Fig. 8b.

● Qubit-Excitation-Based-ADAPT-VQE (QEB-ADAPT-VQE)9 uses a pool
of qubit excitation operators. Exponential single-qubit and double-qubit
excitation evolutions can be expressed using the qubit creation and
annihilation operators Qp and Qy

p defined through Equation (4) as

U ðsqÞ
pq ðθÞ ¼ expðθðQy

pQq � Qy
qQpÞÞ

U ðdqÞ
pqrsðθÞ ¼ expðθðQy

pQ
y
qQrQs � Qy

r Q
y
s QpQqÞÞ;

ð9Þ

which, after the Jordan–Wigner encoding yields

U ðsqÞ
pq ðθÞ ¼ exp �i

θ

2
XqYp � YqXp

� �� �
U ðdqÞ

pqrsðθÞ ¼ exp �i
θ

8
XrYsXpXq þ YrXsXpXq þ YrYsYpXq þ YrYsXpYq

��
� XrXsYpXq � XrXsXpYq � YrXsYpYq � XrYsYpYq

��
;

ð10Þ
with p, q, r, and s denoting, as usual, indices for the spin-orbitals, and we
have written (sq) and (dq) as abbreviations for single-qubit and double-
qubit excitation evolutions respectively. The quantum circuits correspond-
ing to the double-qubit excitation operators41 are then given in Fig. 8c.
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Extensive comparisons between these pools of operators have been carried out
by Yordanov et al.9 and numerical evidence suggests that QEB-ADAPT-VQE
generates the most computationally tractable ansatz wave-functions. This is
primarily due to the fact that qubit excitation circuits can be constructed using
much fewer quantum gates than fermionic excitation circuits41 in combination
with the observation that qubit excitation evolutions approximate molecular
electronic wave-functions with almost the same level of accuracy as fermionic
excitation evolutions. For the purpose of this article, therefore, we will restrict our
attention to operator pools involving qubit excitation evolutions and work in the
framework of QEB-ADAPT-VQE.

The overlap-guided adaptive algorithm (Overlap-ADAPT). The numerical evidence
presented in the article8,9,14 demonstrates that the ADAPT-VQE algorithm is cap-
able of approximating the ground state full-CI energy with very high accuracy.
Unfortunately, achieving a suitably accurate approximation to the sought-after
energy may require a large number of ADAPT iterations which results both in deep
quantum circuits that cannot be implemented on the current generation of NISQ
devices as well as an increasingly computationally expensive optimization procedure.
This problem is particularly apparent in strongly correlated systems for which the
ADAPT algorithm frequently encounters energy plateaus prior to achieving the
classical chemical accuracy threshold of 10−3 Hartree. During such plateaus, a series
of new operators are added to the ansatz without meaningfully reducing the energy.
Since quantum chemists are primarily interested in numerical results in the regime
10−3 to 10−4 Hartree, i.e., slightly more accurate than the chemical accuracy
threshold, it is natural to ask if the ADAPT-VQE procedure could be modified so as
to avoid these initial energy plateau slowdowns and achieve the required accuracy
using an ansatz compact-enough to be implementable on current NISQ devices.

To make these ideas more precise, let us first introduce for any natural number
p, the set of all wave-functions that can be represented by the product of exactly p
exponential, one-body, and two-body qubit excitation evolution operators acting
on the Hartree-Fock reference state:

Wp :¼
Yp
k¼1

exp θkQpk
Qy

pk

� � !
ΨHF

�� �
: θk 2 R; Qpk

;Qy
pk

defined as in Equation ð4Þ
( )

:

ð11Þ
Given now an arbitrary electronic wave-function Ψref

�� �
, we can define the best

approximation of Ψref

�� �
in the set Wp as

Ψ�
p

��� E
:¼ argmin

Ψj i2Wp

Ψj i � Ψref

�� ��� ��; ð12Þ

where ∥⋅∥ denotes a suitable norm such as the usual L2 or H1 norms on the space of
all electronic wave-functions. The L2-norm and the H1-norm can both be

computed on either classical computers or on quantum devices, depending on
whether the underlying wave-functions are represented classically or on quantum
circuitry. The computation of the L2-norm, however, is more direct and we have
therefore adopted this choice of norm for the numerical simulations considered in
this study.

Returning now to Equation (12), we see that jΨ�
pi is the best approximation of

an arbitrary target wave-function jΨref i using a product of exactly p exponential
qubit excitation evolution operators acting on the Hartree-Fock reference state. The
question we are now interested in answering is the following: If we take the full-CI
wave-function jΨFCIi as the target, does the corresponding best approximation
jΨFCI

p i defined according to (12) provide a chemically accurate wave-function for
small choices of p? More precisely, we wish to explore if for small choices of
maximal operator count p it holds that

ΨFCI
p

D ���H ΨFCI
p

��� E
� ΨFCI

	 ��H ΨFCI

�� � ¼ ΨFCI
p

D ���H ΨFCI
p

��� E
� E0<10

�3 Ha: ð13Þ
The answer to this question will be a strong indication as to whether there exists

an ansatz wave-function that is simultaneously more compact than the ADAPT-
VQE ansatz and which can also capture the bulk of the electronic correlation in the
system. Let us emphasize that we are specifically interested in understanding
whether we can obtain a more compact ansatz wave-function than that produced
by ADAPT-VQE at chemical accuracy and not at the level of full-CI accuracy.

Unfortunately, answering this question by solving the optimization problem
(12) for an arbitrary target wave-function exactly is not computationally feasible
since the size of the set Wp grows exponentially in p. Nevertheless, an adaptive,
iterative procedure that generates an approximate solution to the optimization
problem (12) can be defined as follows (see also Fig. 9). Given a target wave-
function Ψref

�� �
and a maximal operator count p:

1. Set the initialization to the Hartree-Fock reference state, i.e., set
Ψ0
�� � ¼ ΨHF

�� �
.

2. At the mth iteration, m ≤ p, identify the parametrized exponential qubit
excitation evolution operator bAmðθmÞ whose action on the current ansatz
Ψm�1
�� �

will produce a new wave-function with the largest overlap with
respect to the target wave-function. This identification is done by computing
the following gradient involving the current ansatz wave-function at θm= 0:

∂

∂θm
hΨref j bAmðθmÞΨm�1ijθm¼0: ð14Þ

Fig. 9 Workflow for overlap-guided adaptive algorithm (Overlap-
ADAPT). Note that the target state Ψref

�� �
and the maximal operator count

p have to be provided as an input to the algorithm.

Fig. 8 Examples of quantum circuits for different fermionic excitation and
qubit evolution operators. a displays a quantum circuit applying the
operator eθða

y
i ak Þ as part of a single fermionic excitation, b shows a quantum

circuit performing a generic single-qubit evolution UðsqÞ
pq ðθÞ, and c displays a

quantum circuit performing a generic double-qubit evolution UðdqÞ
pqrs ðθÞ. Note

that the terms single-qubit and double-qubit excitations refer to the fact
that these operator perform rotations on one pair and two pairs of qubits
respectively, not one and two individual qubits.
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A detailed description of how to compute the gradients given in Equation
(14) can be found in the Supplementary Note 1.

3. Append the selected operator to the left of the current ansatz wave-function
jΨm�1i, i.e., define jfψmi :¼ bAmðθmÞjΨm�1i ¼ bAmðθmÞbAm�1ðθ0m�1Þ¼bA1ðθ01Þ Ψ0

�� �
.

4. Optimize all parameters θm, θm−1, …,θ1 in the new ansatz wave-functionfψm
�� �

so as to maximize its overlap with the target wave-function, i.e., solve
the optimization problem

θ
!opt

:¼ ðθ01; ¼ ; θ0m�1; θ
0
mÞ

:¼ argmax
θ1 ;¼ ;θm�1 ;θm

hΨref jbAmðθmÞbAm�1ðθm�1Þ¼ bA1ðθ1ÞΨ0i; ð15Þ

and define the new ansatz wave-function Ψmj i using the newly optimized
parameters θ01; ¼ ; θ0m , i.e., define Ψmj i :¼ bAmðθ0mÞbAm�1ðθ0m�1Þ¼bA1ðθ01Þ Ψ0

�� �
. Let us emphasize that although we also denote the newly

optimized parameters at the current mth iteration by θ01; ¼ θ0m , these
optimized values are not necessarily the same as those used to define Ψm�1

�� �
and referenced in Step 3 above.

5. If the total number of operators in the updated ansatz is equal to p, exit the
iterative process. Otherwise go to Step 2 with the updated ansatz wave-
function.

We refer to this adaptive procedure as the Overlap-ADAPT-VQE. Let us
emphasize here that rather than fixing a maximal operator count, we may employ
some other convergence criteria such as the magnitude of the overlap or the
magnitude of the gradient vectors as in the original ADAPT-VQE. Moreover,
depending on whether the target wave-function is in a quantum or a classical
representation, the gradient screening and the overlap measurements can be
performed using either a quantum or a classical device. In particular, if the targeted
wave-function is classically computed, then no additional quantum resources or
measurements are required to compute the overlaps. Classically computed wave-
functions that are particularly suited to the Overlap-ADAPT-VQE framework are
provided by the so-called Selected-CI (SCI) methods.

Combining classical selected-CI approaches and quantum computing. The key
idea of SCI methods is to build a compact representation of the reference wave-
function by selecting on-the-fly, the most relevant Slater determinants thanks to an
importance criterion based on perturbation theory (PT). Thanks to this clever
selection of the Slater determinants, the variational energy of the reference wave-
function converges rapidly towards the full-CI energy. Although the recent revival of
SCI approaches23,42–49 has significantly pushed further the size limit of systems for
which near full-CI quality energies can be obtained (typically a few tens of correlated
electrons in about two hundreds of orbitals50,51), the scaling of SCI methods is
intrinsically exponential in the number of correlated electrons and orbitals.

The reason for this exponential scaling is directly linked to the linear
parametrization of the sought-after wave-function in terms of Slater determinants,
which implies that the intrinsic exponential structure of the wave-function must be
built explicitly by adding more and more determinants to the reference wave-
function. This necessarily leads to size consistency errors which manifest through
an underestimation of the coefficients of the reference and perturbative wave-
functions and therefore of the correlation energy. Because the size consistency
errors grow with the total (absolute) value of the correlation energy, SCI methods
struggle more and more as the number of correlated electrons increases and/or the
strength of correlation increases. Recently, attempts to cure this problem have been
proposed with a selection of the individual excitation operators52,53 in a single-
reference CC approach.

To overcome these limitations of SCI approaches, an alternative idea is to
combine the robust and linear parametrization of SCI with the intrinsic
exponential parametrization of the ansatz used in QC computation to take
advantage of both worlds:

1. While reaching chemical accuracy in SCI methods is a struggle in the
strong correlation regime, obtaining a compact and robust representation
of the bulk of correlation effects is an easy task thanks to the smart
selection of Slater determinants and the simplicity of the linear
parametrization;

2. Use this compact SCI wave-function as the target of the overlap-guided
adaptive algorithm so as to obtain an intermediate wave-function
represented in terms of qubit excitation evolution operators acting on the
Hartree-Fock reference state;

3. Use the intermediate wave-function as a high accuracy initialization of a
new QEB-ADAPT-VQE procedure.

For the purpose of this study, we choose to employ the so-called CI
perturbatively selected iteratively (CIPSI) algorithm implemented in QP223 to
generate the required SCI wave-function.

The CIPSI algorithm in a nutshell. The CIPSI algorithm, which was originally
introduced in the late seventies54,55, is the archetype of SCI approaches: it
approximates the full-CI wave-function through an iterative selected-CI procedure,

and the full-CI energy through a second-order multi-reference perturbation theory
(in this case, with an Epstein–Nesbet56,57 partition).

The CIPSI energy is defined as

ECIPSI :¼ Ev þ Eð2Þ: ð16Þ
Here, Ev is the variational energy given by

Ev :¼ min
fcIg

Ψð0Þ	 ��H Ψð0Þ�� �
hΨð0ÞjΨð0Þi ; ð17Þ

where the reference wave-function Ψð0Þ�� � ¼ ∑I2R cI Ij i is expanded in Slater
determinants Ij i within the CI reference space R, and E(2) is the second-order
energy correction defined as

Eð2Þ :¼ ∑
κ

j Ψð0Þ	 ��H κj ij2
Ev � κh jH κj i ¼ ∑

κ
eð2Þκ ; ð18Þ

where κ denotes a determinant outside the reference space R.
The CIPSI energy is systematically refined by doubling the size of the CI

reference space at each iteration, selecting the determinants κ with the largest jeð2Þκ j.
The calculations are stopped when a target value of E(2) is reached.
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